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Abstract. In early January 2021, Spain was affected by two extreme events – an unusually long cold spell and a heavy snowfall

event associated with extratropical cyclone Filomena. For example, up to 50 cm of snow fell in Madrid and the surrounding

areas in 4 days. Already during 9 days prior to the snowfall event, anomalously cold temperatures at 850 hPa and night frosts

prevailed over large parts of Spain. During this period, anomalously cold and dry air was transported towards Spain from

central Europe and even from the Barents Sea. The storm Filomena, which was responsible for major parts of the snowfall5

event, developed from a precursor low-pressure system over the central North Atlantic. Filomena intensified due to interaction

with an upper-level potential vorticity (PV) trough, which was the result of anticyclonic wave breaking over Europe. In turn, this

wave breaking was related to an intense surface anticyclone and upper-level ridge, whose formation was strongly influenced

by a warm conveyor belt outflow of a cyclone off the coast of Newfoundland. The most intense snowfall occurred on 09

January and was associated with a sharp air mass boundary with an equivalent potential temperature difference at 850 hPa10

across Spain exceeding 20 K. Overall, the combination of pre-existing cold surface temperatures, the optimal position of the 

air mass boundary, and the dynamical forcing for ascent induced by Filomena and its associated upper-level trough were all 

essential – and in parts physically independent – ingredients for this extreme snowfall event to occur.

1 Introduction15

Extreme weather events in winter like cold spells and heavy snowfalls often have hazardous impacts on society and economy.

Such an event occurred in Spain in early January 2021, when large parts of the country were affected by a long-lasting cold spell

and an unusually strong snowfall event associated with extratropical cyclone Filomena. The cold spell commenced at the end of

December 2020 and from 07 to 10 January 2021, large parts of Spain were covered by a thick snow layer. The heavy snowfall

has led to four deaths and to more than 1.8 billion EUR of economic costs (AON, 2021). According to a report issued by20

AEMET (2021), the intense snowfall and widespread snow cover in Spain associated with Filomena were exceptional. Many

mountain areas registered deep accumulations of snow, but also areas typically untroubled by strong snowfall, like Madrid,

were heavily affected. Barajas International Airport measured 38 cm of snow and parts of Madrid registered more than 50 cm
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of snow, while most of the precipitation in the Canary Islands and southern Spain fell as rain. Directly after the snowstorm,

daily minimum temperatures reached record low values. On 12 January 2021, minimum temperatures down to -26◦C were25

measured in Torremocha de Jiloca – a municipality located between Madrid and Valencia (AEMET, 2021). Snowstorms occur

rather rarely in the Mediterranean, it is therefore worth analysing the processes that led to the long-lasting cold spell and the

heavy snowfall associated with Filomena.

The synoptic dynamics of heavy snowfalls have been frequently studied for events in the US, in particular for events along

the east coast. A famous example of such an event is the Presidents’ Day snowstorm in February 1979 that affected large parts30

of the US east coast. It was the result of a rapidly deepening extratropical cyclone that propagated along an intense coastal

front (Bosart, 1981). At upper levels, the interaction of subtropical and polar jet streaks further enhanced the development of

the surface cyclone (Uccellini et al., 1984). However, also climatologically warmer regions, like the southeastern US, can be

affected by snowstorms. In that region, snowstorms are accompanied by extratropical cyclones that are often located at the

right entrance of the jet (Mote et al., 1997) – an area of the polar jet streak that is typically associated with strong forcing for35

ascent [e.g., Fig. 3 in Uccellini and Kocin (1987)], which favours precipitation and cloud formation. In addition to the listed

factors, advection of moisture and low static stability appear to be also relevant (O’Hara et al., 2009). When lower-tropospheric

temperatures are slightly above the freezing point, the falling snow starts to melt and is therefore very wet and heavy. Such wet

snowfall events occurred, for example, in November 2005 over parts of Germany (Frick and Wernli, 2012) and in March 2010

in northeastern Spain (Llasat et al., 2014).40

In winter, the Mediterranean receives its largest fraction of annual precipitation when it is frequently influenced by extratrop-

ical cyclones (Trigo et al., 1999; Wernli and Schwierz, 2006). In this region and season, cyclones and fronts are often involved

in extreme precipitation events (Field and Wood, 2007; Pfahl and Wernli, 2012; Catto and Pfahl, 2013), however, they rarely

lead to extreme snowfalls due to climatologically warm temperatures in the Mediterranean (Tayanç et al., 1998; Llasat et al.,

2014; Gascón et al., 2015; de Pablo Dávila et al., 2021). In the region of Madrid, precipitation typically occurs as rain also in45

January, due to surface temperatures above the freezing level (DWD, 2021). Hence, an extreme snowfall event and a persistent

snow layer at the surface need at least two essential ingredients: (i) cold surface temperatures, and (ii) a (slow-moving) cyclone

to produce a substantial amount of accumulated precipitation.

The first essential ingredient, cold surface temperatures, prevents the snow from melting when reaching the surface. Cold

spells in the Iberian Peninsula are typically caused by advection of cold continental air from the northeast, which is favoured50

by an anticyclone over the British Isles and a cut-off low over Italy (Santos et al., 2015). Cold air is typically quite dry and

therefore advection and lifting of slightly warmer and moister air, ideally above the still very cold near-surface layer, is needed

to produce large amounts of snow. Heavy snowfall events in the Iberian Peninsula are associated with an upper-level trough

over southwestern Europe and a surface cyclone located either over the Mediterranean Sea or central Europe (Esteban et al.,

2005; de Pablo Dávila et al., 2021). This large-scale pattern facilitates the advection of anomalously cold air from the north55

near the surface and of warm and humid air from the south towards the snowfall area above the cold layer (Llasat et al., 2014;

Gascón et al., 2015).
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Warm and humid air in cyclones is typically associated with warm conveyor belts (WCBs), which are coherent, poleward

ascending airstreams in extratropical cyclones (e.g., Browning et al., 1973; Wernli and Davies, 1997). The ascent from the

planetary boundary layer towards the upper troposphere leads to a cooling of the air parcels and the condensed water vapour60

leads to the formation of clouds and precipitation (Browning, 1990; Joos and Wernli, 2012). WCBs frequently contribute to

heavy precipitation events (Grams et al., 2014; Pfahl et al., 2014) and can therefore also contribute to heavy snowfall events

(Gehring et al., 2020). In addition to precipitation, WCBs also influence the synoptic-scale flow in the upper troposphere, e.g.,

the amplification of Rossby waves (Massacand et al., 2001; Grams et al., 2011; Raveh-Rubin and Flaounas, 2017), and the

formation of blocks (Pfahl et al., 2015).65

In this study, we focus on the synoptic-scale dynamic evolution of the cold spell and the snowstorm Filomena in early January

2021. We will not analyse mesoscale processes, which can locally intensify snowfall, e.g., via the formation of mesoscale snow

bands (e.g., Nicosia and Grumm, 1999; Schumacher et al., 2010). The key questions of our case study analysis are:

1. How unusual was the cold spell and which processes led to the anomalously low temperatures over Spain?

2. Which processes led to the formation of Filomena?70

3. Which characteristics of Filomena facilitated the heavy snowfall?

Furthermore, we compare this event to earlier heavy snowfall events in the Iberian Peninsula.

Section 2 provides an overview of the employed data and methods. Then, Sect. 3 presents the evolution of temperature

and precipitation in the first half of January 2021. Processes leading to the cold spell are discussed in Sect. 4 with the help

of trajectories (question 1). Subsequently, Sect. 5 investigates the evolution of cyclone Filomena and the large-scale weather75

situation in the North Atlantic (question 2), as well as the heavy snowfall event (question 3). In Sect. 6, we compare the

snowstorm Filomena with two other snowstorms in the Iberian Peninsula. Finally, Sect. 7 concludes and discusses our main

findings.

2 Data and Methods

2.1 Data80

This study is based on hourly ERA5 reanalyses (Hersbach et al., 2020) from the European Centre for Medium-Range Weather

Forecasts (ECMWF) interpolated to a 0.5◦ x 0.5◦ longitude-latitude grid for the period 1979-2021. Secondary fields like

equivalent potential temperature and potential vorticity (PV) were calculated from the model level data. Total precipitation, i.e.

the sum of large-scale and convective precipitation, as well as snowfall data are taken from short-term ECMWF forecasts.

2.2 Trajectories85

To investigate the origin of the cold spell, ten-day backward trajectories, driven by three-dimensional wind fields on verti-

cal model levels, are calculated with LAGRANTO (Wernli and Davies, 1997; Sprenger and Wernli, 2015). Trajectories are
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initialised only from grid points in the Iberian Peninsula that were affected by the snowstorm, i.e. grid points where the accu-

mulated snowfall between 00 UTC 07 January and 00 UTC 11 January 2021 exceeded 5 mm (Fig. 1a). From these grid points,

trajectories are started every 3 hours during the cold-spell period from 00 UTC 30 December 2020 to 00 UTC 09 January90

2021 at 10, 30, 50, 70, and 90 hPa above ground level, similar to, e.g., Zschenderlein et al. (2019) and Papritz (2020). Physical

parameters traced along the trajectories include temperature, potential temperature, and specific humidity. Note that the cold

spell lasted beyond 9 January, but since we are primarily interested in the origin of the cold air prior to the peak of the heavy

snowfall, we have only calculated trajectories until this date. This trajectory analysis for the event in January 2021 is comple-

mented by a climatological analysis, in which trajectories are initialised at the same grid points and vertical levels, and on the95

same December and January days in all previous winters from 1980 to 2020.

Trajectories are also used to identify WCBs over the North Atlantic and the Iberian Peninsula during the study period in

early January 2021 and for other heavy snowfall events. For that, we computed 2-day forward trajectories initialised between

20◦-50◦N and 90◦W-15◦E in the lower troposphere from 1000 to 700 hPa in 25 hPa increments. Trajectories ascending more

than 600 hPa in 2 days were selected as WCBs, and in addition, we identify the ascent phase of a WCB, which corresponds to100

WCB trajectories in the pressure layer between 800 and 400 hPa, following the definition of Madonna et al. (2014).

2.3 Identification of further heavy snowfall events and cold spells

In order to compare the snowstorm Filomena with other snowstorms in the Iberian Peninsula, we identify events in all winters

from 1979 to 2019. For that, we compute the accumulated snowfall in the Iberian Peninsula at grid points over land between

36◦N-44◦N and 10◦W-4◦E in a 4-day window and determine the area affected by snowfall larger than 5 mm. We use a time105

window of 4 days because the snowfall event in early January 2021 lasted for 4 days. In addition, we identify cold spells in all

winters from 1979 to 2019, but only for the area where the accumulated snowfall between 00 UTC 07 January and 00 UTC 11

January 2021 exceeded 5 mm (Fig. 1a). In this area, we average the daily 2-m minimum temperature and define a cold spell as

a continuous period with daily 2-m minimum temperatures below 0 ◦C.

3 Precipitation and temperature evolution in Spain in early January 2021110

Many areas in Spain and Morocco experienced large amounts of precipitation between 07 and 10 January 2021. Most of it

fell as rain in southern Spain and Morocco, and as snow in the rest of Spain and in the Atlas Mountains (Fig. 1a). The highest

snow accumulation occurred near Madrid, as well as in eastern and southeastern Spain. Precipitation was confined to a corridor

extending from Morocco, Andalusia, Madrid to provinces along the east coast of Spain, while Portugal, France and other parts

of North Africa were not affected by the event. Overall, precipitation was most intense in Andalusia and off the Moroccan coast115

(more than 75 mm in 4 days), where it however fell exclusively as rain. Compared to all winters from 1979-2019 in the Iberian

Peninsula, the 4-day snow period associated with Filomena has, according to ERA5, the highest recorded snow accumulation

and is one of the events with the largest extent (Fig. 1b).
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The area enclosed by the 5 mm snowfall contour in Fig. 1a (thereafter called snowfall area) experienced night frosts since

30 December 2020 and negative 2-m and 850 hPa temperature anomalies (Fig. 2a). In addition, the period was mostly dry120

and only two short precipitation events on 28 December 2020 and 01 January 2021 affected the region prior to the snowstorm

(Fig. 2b). The precipitation between 07 and 10 January was associated with cyclone Filomena and, in contrast to the two earlier

precipitation events, most of the precipitation fell as snow. The diurnal cycle of temperatures on 09 January, i.e. at the peak of

the snowfall event, was less pronounced than during the other days. After the snow event, night-time temperatures dropped, but

at 850 hPa, a new air mass arrived and temperatures at this level were increasing again (Fig. 2a). Due to the existing snow cover,125

2-m temperatures during night were still anomalously low and an inversion formed. Interestingly, the 2-m temperature and its

anomaly curve have an opposite diurnal cycle, which means that the low day temperatures were particularly anomalous. As an

example on 09 January, daily minimum temperature was about 3 K colder than climatology, while daily maximum temperature

was more than 7 K colder than climatology, which is presumably related to the lack of incoming solar radiation. The cold spell,

i.e. the period with daily minimum temperatures below the freezing point, lasted until 19 January 2021 (not shown).130

Due to the cold spell in early January, the surface progressively cooled down and this prevented the snow from melting

when reaching the surface on 07-10 January. Therefore, this cold spell preconditioning appears to be an important ingredient

of the extreme snowfall accumulation. In the next section, we analyse the origin of this cold spell and put its duration in a

climatological context.

4 Processes leading to the long-lasting cold spell135

Before discussing the origin of the cold air near the surface over Spain in early January 2021, we first quantify how anomalous

the duration of the cold spell was. We therefore compare the duration of this event with previous cold spells in the winters

1979 to 2019 that occurred in the area affected by snowfall on 07-10 January 2021 (Fig. 1a). Figure 3 shows the number of

continuous days with minimum temperatures below 0 ◦C at 2 m and 850 hPa, respectively. The cold spell in early January

2021 lasted for 21 days at 2 m, and for 14 days at 850 hPa. The difference is presumably associated with the inversion that140

formed after the snow event due to warm air advection at 850 hPa (Fig. 2a). The longevity of the cold spell at the surface can

be classified as extreme because it exceeds the 99th percentile of the climatology of continuous night frost days at 2 m, while

the duration of the cold spell at 850 hPa is slightly below the 99th percentile (Fig. 3). The 99th percentile of the climatological

cold spell duration at 2 m is 16 days, and with 21 days the January 2021 event is the 3rd longest in the period 1979-2019. The

longest cold spell with 29 days occurred from 29 December 1999 to 26 January 2000 and the second longest from 10 January145

1992 to 04 February 1992. Both events were not followed or accompanied by heavy snowfalls, hence, the combination of

long-lasting cold temperatures and high accumulations of snow is a unique feature of the event in early January 2021, at least

since 1979.

Figure 4 illustrates the origin of the cold air in the snowfall area during the cold spell period from 30 December 2020 to 09

January 2021, based on the trajectory method described in Section 2.2. The locations of air parcels are shown as frequencies150

per km6, i.e. the trajectory count at each grid point is normalised by the number of all trajectories, such that the spatial integral
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yields 100 %. The normalisation was applied separately to the trajectories of the cold spell and the climatology. The purple

lines in Fig. 4 show the position of air parcels three days prior to their arrival over Spain in early January 2021. Most of them

are located over central Europe, France, the British Isles, and some even over the Barents Sea (Fig. 4). In comparison with

climatology, i.e. with the origin of air on all days between 30 December and 09 January in the years 1980 to 2020, the origin155

of the cold air in January 2021 is unusually far north. Transport of cold air from the north has been reported as an important

feature of cold spells in general (Bieli et al., 2015).

The air mass origin in 2021 is not only unusual when considering the position three days prior to arrival in Spain, but

also for the whole 10-day period of the backward trajectories (Fig. 5). Cold air parcels in 2021 are advected from further

north (Fig. 5a), and from further east (Fig. 5b); they originate from slightly lower altitudes (Fig. 5c) and are transported along160

substantially lower isentropes compared to climatology (Fig. 5e). The lower isentrope (median value of 285 K compared to

295 K in the climatology) is related to the northern origin. This anomalously cold air is also drier than normal (Fig. 5f). It is

interesting that the temperature of the air parcels at their origin is only slightly colder than normal (Fig. 5d), which can be

explained by compensating effects of being further north (Fig. 5a) and at a lower altitude (Fig. 5c). During the last five days

of the transport, they were less warmed compared to climatology and therefore stayed below 0 ◦C (Fig. 5d). Physically, air165

parcels change their temperatures due to adiabatic processes (vertical motion), or diabatic processes, e.g. radiative cooling or

heating by surface sensible heat fluxes. Potential temperature changes along the backward trajectories associated with the cold

spell are weak and temperature changes are therefore primarily due to adiabatic warming during descent. Indeed, air parcels

leading to the cold spell descend less than climatologically expected (Fig. 5c). Therefore, the cold air is eventually cold due to

(i) slightly colder origin temperatures, and (ii) weaker subsidence and therefore less adiabatic warming. Hence, over a period170

of approximately ten days, cold and dry air was steadily advected towards the snowfall area and helped to progressively cool

down the surface. This trajectory analysis explains why 2-m temperatures in Spain were exceptionally cold in early January

2021. We now continue with investigating the lifecycle of cyclone Filomena, which was responsible for the snowfall event at

the end of this exceptional cold spell.

5 Snowstorm Filomena175

Cyclone Filomena evolved from a decaying low-pressure system over the central to eastern North Atlantic (marked with L1 in

Fig. 6c). It is therefore interesting to first discuss the evolution of this precursor cyclone L1. The cyclogenesis of L1 occurred at

12 UTC 02 January near Newfoundland (Fig. 6a). The weak upper-level PV trough intensified into a narrow PV streamer until

00 UTC 04 January 2021, and L1 underwent rapid intensification reaching a core pressure of nearly 980 hPa in the western

North Atlantic (Fig. 6b). Within the next hours, the elongated PV streamer broke up into a PV cut-off. Until 00 UTC 06180

January, L1 weakened and propagated further east, but remained at fairly low latitudes (36◦N, Fig. 6c). The large-scale flow

pattern over the North Atlantic then quickly changed in the next 36 hours. A second low pressure system, L2, evolved near

Newfoundland at almost the same location as L1 three days earlier (Fig. 6a,c). This low was associated with strong warm

conveyor belt activity at its leading edge (Fig. 6d). This warm conveyor belt helped to intensify the downstream ridge and the
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associated surface high-pressure system over the central North Atlantic, a situation that is often observed in this region (Grams185

et al., 2011). The strong ridge contributes to anticyclonic wave breaking over western Europe, which is important for the re-

intensification of the decaying low L1 and the cyclogenesis of Filomena near 32◦N at 12 UTC 07 January 2021 (marked with

F in Fig. 6d). The anticyclonic wave breaking pushed the upper-level PV trough towards the Iberian Peninsula, and therefore,

Filomena slightly intensified while propagating north-eastwards towards the Iberian Peninsula (Fig. 6e). At 00 UTC 09 January

2021, Filomena was located over the Iberian Peninsula where it led to intense rain and snow in this area (Fig. 6f, cf. Fig. 1a and190

2b). In addition to the anticyclonic wave breaking, the transverse vertical circulations associated with the subtropical and the

polar jet influenced the development of Filomena and the associated warm conveyor belt. For example at 00 UTC 09 January

2021, Filomena is located at the intersection of the left exit region of the subtropical jet and the right entrance of the polar

jet stream (Fig. S1). A similar situation was observed for snowstorms in the eastern US (Uccellini and Kocin, 1987) and for

cyclogenesis in the eastern Mediterranean (Prezerakos et al., 2006).195

The storm Filomena led to strong contrasts of equivalent potential temperature (θe) at 850 hPa exceeding 20 K over Spain at

the peak of the snowfall event at 00 UTC 09 January 2021 (Fig. 7c). Four days earlier, on 05 January 2021, the air was cold

and dry over the Iberian Peninsula with θe values below 300 K (Fig. 7a). With the approach of Filomena from 07-09 January

2021, θe values in northern Spain decreased even more and over Northern Africa, θe values increased due to the approaching

warm sector of Filomena with values exceeding 310 K (Fig. 7b,c). Most of the precipitation occurred in areas with very large200

θe gradients, i.e. fronts. The warm front on 09 January led to the strongest snowfall in central Spain associated with a warm

conveyor belt, which ascended exactly at the location of strong snowfalls (Fig. 6d-f). The extreme accumulation of snow is

also related to the slow propagation of Filomena and its warm front ahead of the quasi-stationary upper-level trough. Figure 8

illustrates the stationarity of the front with the aid of meridionally oriented vertical cross sections of θe and cloud variables. At

all three timesteps, the upper part of the clouds are completely glaciated, at medium levels liquid and ice clouds coexist, while205

the lower part consists of cloud water with rain on the warm side of the front and (intense) snow on the cold side. On the warm

side of the front clouds were quite shallow, while on the cold side they were comparably deep with cloud tops up to 350 hPa.

South of the front, the air in the warm conveyor belt inflow was very moist. It is nicely visible that the ascent of the warm

conveyor belt at the warm front is co-located with the heaviest snowfall at all three time steps. Altogether, the combination of

a slow-moving front, sufficient lower-tropospheric moisture on its warm side, and pre-existing cold surface temperatures prior210

to and during the snowstorm were essential ingredients for the large amounts of surface snow accumulation.

6 Comparison with other heavy snowfall events

In the final part of this study, snowstorm Filomena is compared to the second and third strongest snowstorms in the period

1979-2019, based on the method described in Section 2.3. These events are labelled as E2 and E3 in Fig. 1b, respectively, and

we briefly compare the snow cover, the synoptic situation, and the air mass origin with the Filomena event in 2021. For this215

section, all Figures can be found in the supplement.

7

https://doi.org/10.5194/nhess-2021-396
Preprint. Discussion started: 4 January 2022
c© Author(s) 2022. CC BY 4.0 License.



The second strongest snowstorm, the E2 event, occurred from 02 to 05 January 1997 and mainly affected mountainous re-

gions in Northern Spain, in particular the Pyrenees (Fig. S2a). Hence, the snowstorm was associated with significant orographic

effects, in contrast to snowstorm Filomena. Another difference to Filomena was the higher surface temperature, which led to

stronger snowmelt in the lowlands. Similar to Filomena, temperatures decreased before the onset of the snowfall, however,220

with still higher temperatures than during Filomena (not shown). The third strongest snowstorm, the E3 event, lasted from 28

to 31 January 1986 and also affected mountainous regions (Fig. S2b). Cold air from Greenland was transported and moist-

ened over the North Atlantic, and when reaching northern Spain, it was orographically lifted and contributed to the cloud and

precipitation formation (not shown). East of the Pyrenees, an intense cyclone with a core pressure of about 970 hPa enabled

the strong snowfall (Fig. S3). In both events, the horizontal θe contrasts were weaker than during the passage of Filomena225

(Figs. S4a, S4b, and 7c). It is interesting that the very deep cyclone during the E3 event is accompanied by weaker θe gra-

dients than the weak cyclone Filomena with core pressures of about 1000 hPa (Fig. 6f). High θe gradients can influence the

intensity of a cyclone, as for example the winter storms hitting Europe in December 1999, which were very intense (Ulbrich

et al., 2001). However, it appears that the strong θe gradient during the passage of Filomena did not have a large impact on the

intensification of the cyclone, but rather on the precipitation intensity. In comparison with events E2 and E3, it is remarkable230

that the accumulation of snow during Filomena is so large without substantial orographic influences from the Pyrenees, which

underlines the importance of the cold spell preconditioning in early January 2021.

7 Conclusions

In this study, we analysed the synoptic-scale dynamic evolution of two extreme events in early January 2021 affecting large

parts of the Iberian Peninsula – a long-lasting cold spell from 30 December 2020 to 19 January 2021, and a heavy snowfall235

event from 07 to 10 January associated with the passage of extratropical cyclone Filomena. The snowstorm was exceptional due

to the widespread snow cover and large accumulations of snow even in areas like Madrid that are rarely troubled by snow. Prior

to the snowfall, a cold spell established and served as an important preconditioning for the snowfall event. We now summarise

the key results by addressing the research questions raised in the Introduction.

1. How unusual was the cold spell and which processes led to the anomalously low temperatures?240

The cold spell lasted 21 days and exceeded the 99th percentile of the number of continuous days with 2-m minimum

temperature below 0 ◦C. Due to the steady advection of dry and cold air from the north, surface temperatures could

progressively cool down, which later prevented the snow from melting. A comparison with the climatological origin

of near-surface air over Spain revealed that during the cold spell, exceptionally cold and dry air was transported from

central and western Europe, but also from the Barents Sea. This air mass origin is shown to be unusual.245

2. Which processes led to the formation of Filomena?

Filomena evolved from a decaying low in the central North Atlantic at fairly low latitudes and intensified along a quasi-

stationary upper-level PV trough, which formed due to anticyclonic Rossby wave breaking over Europe. This wave
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breaking in turn was related to an intense anticyclone over the central North Atlantic, which was strongly influenced

by the WCB outflow of an intense extratropical cyclone off the coast of Newfoundland. Filomena was located at the250

intersection of the left exit of the subtropical jet and the right entrance of the polar jet – both regions are associated

with large-scale forcing for ascent, and therefore, the configuration of the two jets further influenced the intensification

of Filomena. However, Filomena was not very intense with a minimum pressure of about 1000 hPa. This sequence

of events, including the upstream influence from a cyclone and its warm conveyor belt in the western North Atlantic

illustrates the complex dynamics responsible for the formation of Filomena.255

3. Which characteristics of Filomena facilitated the heavy snowfall?

Large parts of Spain, especially the area in and around Madrid, were affected by intense snowfall that occurred along a

sharp air mass boundary identified by a horizontal contrast of θe of more than 20 K across Spain. Along the warm frontal

part of this boundary, dynamical forcing for ascent, imposed by the surface cyclone and upper-level trough, led to warm

conveyor belt ascent and intense snowfall. Hence, the combination of pre-existing cold near-surface temperatures, the260

"optimal" position of the air mass boundary, and the ascent of the moist air along steep moist isentropes associated with

the warm front of Filomena were essential ingredients for this extreme snowfall event to occur.

This case study reveals how different processes on various time scales co-produced this hazardous event. In addition, this

event is also an example of the relevance of diabatic processes for large-scale weather patterns in the North Atlantic (e.g. Grams

et al., 2011; Magnusson, 2017). A comparison with two heavy snowfall events and two long-lasting cold spells has revealed the265

uniqueness of the events in early January 2021. First, snowfall events with comparable accumulated 4-day snowfalls as during

Filomena in the Iberian Peninsula are usually strongly influenced by orographic effects, i.e. the Pyrenees typically record the

highest snow accumulation. In such situations, northwesterly winds transport cold and humid air towards the Pyrenees and

produce precipitation by orographic lifting. Second, the co-occurrence of such a long-lasting cold spell and heavy snowfall

is unusual – the two longest-lasting cold spells in that region were not associated with significant amounts of snow. Overall,270

our case study analysis, together with the comparison with other heavy snowfall events and cold spells, show the special

characteristics of this events in early January 2021.

Data availability. ERA5 data can be downloaded from https://cds.climate.copernicus.eu (last access: 17 December 2021).
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(a) (b)

E2

E3

Figure 1. (a) Precipitation accumulated from 00 UTC 07 January to 00 UTC 11 January 2021 (from ECMWF short-range forecasts). The

red contours denote the accumulated snowfall in this period, starting from 5 mm in 10 mm increments. (b) 4-day accumulated snowfall vs.

snow covered area of all winters from 1979 to 2019 in the Iberian Peninsula (IBP), based on the method described in Sect. 2.3. The red point

represents the period 07-10 January 2021 (Filomena), label E2 marks the period 02-05 January 1997 and E3 the period 28-31 January 1986.
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Figure 2. (a) Temporal evolution of 2-m temperature (solid) and 850-hPa temperature (dashed) over Spain from 27 December 2020 to 13

January 2021. Grey lines show anomalies. (b) Temporal evolution of precipitation (blue) and snowfall (red). All values are averaged over the

area enclosed by the 5 mm snowfall contour in Fig. 1a.
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Figure 3. Boxplot of the duration of cold spells over Spain in the winters 1979-2019. Values are number of days with continuous minimum

temperatures below 0 ◦C at 2 m and 850 hPa, respectively, in the area enclosed by the 5 mm snowfall contour in Fig. 1a. The blue lines denote

the median, the boxes the inter-quartile range, the whiskers the 1st and 99th percentiles, and the open circles the outliers. The red circles

denote the cold spell duration in early January 2021.
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Figure 4. Location of air parcels three days prior to their arrival in the snowfall area over Spain (see text for details). The colour shading

represents the climatological origin of near-surface air in late December and early January, and the purple lines (1 and 17 % km−6) represent

the origin of air associated with the cold spell in late December 2020 and early January 2021.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Time series along backward trajectories from Spain of (a-c) latitude, longitude, and pressure and (d-f) temperature, potential

temperature and specific humidity. The grey colours denote values for the climatology and the blue colours for the cold spell in early January

2021. The bold lines denote the median and the shading the inter-quartile range. The green line in (d) marks a temperature of 0 ◦C.
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(a) 02 Jan 2021 12 UTC (b) 04 Jan 2021 00 UTC

(c) 06 Jan 2021 00 UTC (d) 07 Jan 2021 12 UTC

(e) 08 Jan 2021 00 UTC (f) 09 Jan 2021 00 UTC

L1
L1

L1
L2 L2

F

F

L2
L2

F

Figure 6. Synoptic maps with sea level pressure (black), 1-h accumulated total precipitation (blue contours for 1 mm), 1-h accumulated

snowfall (red contours for 1 mm), PV at 320 K in colour shading, and the position of every 30th WCB trajectory in the ascent phase. The

panels are valid at (a) 12 UTC 02 January, (b) 00 UTC 04 January, (c) 00 UTC 06 January, (d) 12 UTC 07 January, (e) 00 UTC 08 January,

and (f) 00 UTC 09 January 2021.
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(a) 05 Jan 2021 00 UTC (b) 07 Jan 2021 00 UTC

(c) 09 Jan 2021 00 UTC (d) 10 Jan 2021 00 UTC

Figure 7. Maps with equivalent potential temperature (θe) at 850 hPa (colour shading), 1-h total accumulated precipitation (blue contours

for 1 mm), and 1-h accumulated snowfall (red contours for 1 mm). Panels are valid at (a) 00 UTC 05 January, (b) 00 UTC 07 January, (c) 00

UTC 09 January, and (d) 00 UTC 10 January 2021. The grey lines denote the anomaly of θe at 850 hPa (solid: +4K, dashed: -4K), which is

calculated with respect to a 21-day running mean.
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(a) 07 Jan 2021 00 UTC (b) 08 Jan 2021 00 UTC (c) 09 Jan 2021 00 UTC

Figure 8. Vertical cross sections from 33 ◦N to 44 ◦N along 3 ◦W at (a) 00 UTC 07 January, (b) 00 UTC 08 January, and (c) 00 UTC 09

January 2021. Shown are equivalent potential temperature (black), specific humidity (blue shading), vertical motion (green; for -1, -0.5, 0.5,

and 1 Pa s−1), rain water content (yellow), ice water content (purple), snow water content (red), and liquid water content (orange). The latter

four variables are shown in intervals between 0.05 g kg−1 and 0.55 g kg−1 in 0.05 g kg−1 increments.
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