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Abstract 16 

 17 

Soil moisture is a key variable for drought monitoring but soil moisture measurements 18 

networks are very scarce. Land-surface models can provide a valuable alternative to 19 

simulate soil moisture dynamics, but only a few countries have such modelling schemes 20 

implemented for monitoring soil moisture at high spatial resolution. In this study, a soil 21 

moisture accounting model (SMA) was regionalized over the Iberian Peninsula, taking as 22 

a reference the soil moisture simulated by a high-resolution land surface model. To 23 

estimate soil water holding capacity, the sole parameter required to run the SMA model, 24 

two approaches were compared: the direct estimation from European soil maps using 25 

pedotransfer functions, or an indirect estimation by a Machine Learning approach, 26 

Random Forests, using as predictors altitude, temperature, precipitation, potential 27 

evapotranspiration and land use. Results showed that the Random Forest model 28 

estimates are more robust, especially for estimating low soil moisture levels. 29 

Consequently, the proposed approach can provide an efficient way to simulate daily soil 30 

moisture and therefore monitor soil moisture droughts, in contexts where high-resolution 31 

soil maps are not available, as it relies on a set of covariates that can be reliably estimated 32 

from global databases. 33 

 34 
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1. Introduction 41 

 42 

Soil moisture droughts have strong impacts on vegetation and agricultural production 43 

(Raymond et al., 2019; Tramblay et al., 2020; Vicente-Serrano et al., 2014; Pena-Gallardo 44 

et al., 2019). There is a growing interest for simple indicators to monitor drought events 45 

at short timescales that could be related to impacts (Li et al., 2020; Noguera et al., 2021). 46 

In particular, soil moisture indicators could be more relevant than climatic ones to monitor 47 

potential impacts of droughts on agriculture and natural vegetation (Piedallu et al., 2013). 48 

Since actual soil moisture measurements remain very scarce, soil moisture simulated 49 

from land-surface models are an interesting proxy to develop simplified methodologies 50 

that could be applied on data-sparse regions. Land-surface models (LSM) are valuable 51 

tools for a fine scale monitoring of drought events; however, their implementation requires 52 

accurate forcing data and computational resources (Almendra-Martín et al., 2021; 53 

Quintana-Seguí et al., 2019; Barella-Ortiz and Quintana-Seguí, 2019). Global 54 

implementation also exists but with a coarser resolution and driven by reanalysis data 55 

(Rodell et al., 2004; Muñoz Sabater, 2020) that may not be adequate for local-scale 56 

applications. Only very few countries have land-surface schemes implemented at the 57 

national level to monitor droughts (Habets et al., 2008).  58 

 59 

Remote Sensing is another option which allows monitoring soil moisture (Dorigo et al., 60 

2017; Brocca et al., 2019). Microwave sensors allow monitoring of surface soil moisture 61 

(first 5 cm for L-band based products, skin for C-band based products), without the 62 

interference of clouds. However, surface soil moisture is not enough for most applications, 63 

which require root zone soil moisture, which is the water resource in the soil available to 64 

plants. Furthermore, passive L-band products, such as SMOS (Martínez-Fernández et 65 

al., 2016) or SMAP (Mishra et al., 2017), have a low resolution and active C-band 66 

products, such as Sentinel 1 (Bauer-Marschallinger et al., 2019), which have higher 67 

resolution, suffer from higher noise and are more sensitive to vegetation. Thus, even 68 

though remote sensing is very useful, it still has problems to be surmounted. The 69 

resolution of passive L-band products can be increased using optical data (NDVI, LST), 70 

by means of downscaling algorithms (Merlin et al., 2013; Fang et al., 2021), but then the 71 

resulting product is sensitive to cloud cover. Also, some progress has been made in 72 

deriving root zone soil moisture from surface soil moisture estimations using an 73 

exponential filter (Stefan et al., 2021) calibrated using the SURFEX LSM (Masson et al., 74 

2013), but these products are in early stages and are not operational yet. 75 

 76 

Simplified methodologies to estimate and monitor the status of soil moisture, are needed 77 

in contexts where LSM data is not available and where remote sensing products fall short, 78 

such as areas and time periods with dense vegetation, or high soil roughness which may 79 

affect their accuracy (Escorihuela and Quintana-Seguí, 2016). Different modelling 80 

https://www.zotero.org/google-docs/?lEWGoa
https://www.zotero.org/google-docs/?lEWGoa
https://www.zotero.org/google-docs/?foptcw
https://www.zotero.org/google-docs/?I9xJ9b
https://www.zotero.org/google-docs/?ZLSBIe
https://www.zotero.org/google-docs/?ZLSBIe
https://www.zotero.org/google-docs/?b7yCKy
https://www.zotero.org/google-docs/?rb4SYi
https://www.zotero.org/google-docs/?Kf3mPB
https://www.zotero.org/google-docs/?Kf3mPB
https://www.zotero.org/google-docs/?Kn5ogX
https://www.zotero.org/google-docs/?Kn5ogX
https://www.zotero.org/google-docs/?zpljEU
https://www.zotero.org/google-docs/?TnCK7m
https://www.zotero.org/google-docs/?0BCcOz
https://www.zotero.org/google-docs/?KV3uiJ
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approaches have been proposed, either with conceptual soil moisture accounting models 81 

or computational variants of the antecedent precipitation index (Willgoose and Perera, 82 

2001; Javelle et al., 2010; Brocca et al., 2014; Zhao et al., 2019; Li et al., 2020). The 83 

general availability of spatial estimates of soil moisture content would help introduce soil 84 

moisture in drought monitoring systems, improving their scope and usefulness. 85 

Furthermore, this would also facilitate the creation of long-term reanalysis, based on 86 

meteorological forcing data, and future climate change studies, without the need of 87 

running LSM models. However, to apply this type of models at regional or national scale, 88 

there is a need to estimate their parameters over the area of interest. For that purpose, 89 

regionalization methods have been employed in hydrology for decades to estimate the 90 

parameters of hydrological models in ungauged basins (Blöschl and Sivapalan, 1995; He 91 

et al., 2011; Hrachowitz et al., 2013). Several methods exist, based either on catchment 92 

similarity or the direct estimation of model parameters using regression techniques with 93 

physiographic attributes. For soil moisture modelling, up to now only very few studies 94 

have considered these approaches to apply soil moisture accounting models at ungauged 95 

locations (Grillakis et al., 2021) or estimate root zone soil moisture using machine learning 96 

methods (Carranza et al., 2021). 97 

 98 

The goal of the present study is to regionalize a simple soil moisture accounting (SMA) 99 

scheme that could be used to monitor soil moisture droughts. The SMA model considered 100 

in the present study requires a single parameter, the maximum soil water holding 101 

capacity. Two different approaches are compared to estimate this parameter regionally: 102 

the direct estimation with soil maps or with a machine learning technique, namely 103 

Random Forests. 104 

 105 

2. Study area and Data 106 

 107 

The study area of this work is the Iberian Peninsula, which is located between the 108 

Mediterranean Sea and the Atlantic Ocean and thus is influenced by both synoptic scale 109 

systems, that often come from the Atlantic side, and mesoscale heavy precipitation 110 

events, that often come from the Mediterranean side. The Iberian Peninsula presents a 111 

marked relief, with a large and high central plateau and different mountain ranges, which 112 

heavily influence the spatial patterns of precipitation, enhancing it windward and 113 

decreasing it leeward, generating areas of high precipitation on the west, north-west and 114 

north, and very dry areas on the central plains and, specially, on the South-east, as a 115 

consequence the Iberian Peninsula has a heterogeneous distribution of average annual 116 

rainfall, with values ranging from 2000 mm/y to less than 100 mm/y. All this has a strong 117 

influence on the spatial and temporal variability of soil moisture and soil moisture regimes, 118 

having wet regimes on the west and north, where the soil is hardly stressed and, and 119 

semi-arid areas elsewhere, with a wet (energy limited) and a dry (water limited) season, 120 

https://www.zotero.org/google-docs/?ubORb5
https://www.zotero.org/google-docs/?ubORb5
https://www.zotero.org/google-docs/?IdHxfi
https://www.zotero.org/google-docs/?IdHxfi
https://www.zotero.org/google-docs/?eldkht
https://www.zotero.org/google-docs/?wHM6do


4 
 

with a dry down that might be interrupted by convective events. All this makes the 121 

modelling of soil moisture in Iberian a rather challenging task. 122 

 123 

Daily precipitation, temperature and potential evapotranspiration (PET) were retrieved 124 

from the SAFRAN-Spain database (Quintana-Seguí et al., 2017). SAFRAN (Durand et 125 

al., 1993) is a meteorological reanalysis that produces gridded datasets by combining the 126 

outputs of a meteorological model and all available observations using an optimal 127 

interpolation algorithm. It has been implemented over France (Quintana-Seguí et al., 128 

2008) and recently over the Iberian Peninsula (Quintana-Seguí et al., 2017) with a 129 

5kmx5km spatial resolution. The SAFRAN dataset used in this study not only includes 130 

observations from the Spanish part of the Iberian Peninsula, it has also ingested data 131 

from Portugal. The SURFEX LSM (Masson et al., 2013) has been run using SAFRAN-132 

Spain as the meteorological forcing dataset and on the same grid, as it was done in 133 

Quintana-Seguí et al., (2019). SURFEX uses the ECOCLIMAP2 (Faroux et al., 2013) 134 

physiographic database and it uses the ISBA (Interaction Sol-Biosphère-Atmosphère) 135 

scheme (Noilhan and Mahfouf, 1996) for natural surfaces. ISBA has different options; we 136 

have used ISBA-DIF, the multi-layer diffusion version (Boone 2000; Habets et al. 2003). 137 

From this simulation, we have extracted the soil moisture of the first 60 cm of the soil, by 138 

performing the weighted average of the soil layers that fall within this range. This 139 

simulated soil moisture over the Iberian Peninsula is considered herein as the observed 140 

reference, in the absence of dense monitoring networks of soil moisture (Martínez-141 

Fernández et al., 2016). From the ECOCLIMAP2 database, elevation and land cover data 142 

have also been retrieved and aggregated in the following nine categories:  water, bare, 143 

ice/snow, urban, forest, grass, dry crops, irrigated crops, wetlands.  144 

 145 

We also use the European Soil database (ESDB) produced by the European Soil Data 146 

Centre (Panagos et al., 2012). The ESDB contains information on soil characteristics, 147 

including soil depth and texture for topsoil (0-30cm) and subsoil (30-70cm) layers at a 148 

grid resolution of 1 km. The total available water content (TAWC) is a volumetric 149 

parameter describing the water content between field capacity and permanent wilting 150 

point, as a function of available water content, presence of coarse fragments and depth 151 

(Reynolds et al., 2000). In ESDB, water content at field capacity and permanent wilting 152 

point were determined following the equation from (van Genuchten, 1980) to estimate the 153 

soil water retention curve (Hiederer, 2013). The parameters of the equation are provided 154 

by a pedotransfer function (Wösten et al., 1999) for volumetric soil water content 155 

computed from the soil water retention curve. The pedotransfer function uses soil texture, 156 

organic carbon content and bulk density to determine the parameters of the soil water 157 

retention curve (Hiederer, 2013). 158 

 159 

3. Methods 160 

https://www.zotero.org/google-docs/?MrmfdB
https://www.zotero.org/google-docs/?RRsPDp
https://www.zotero.org/google-docs/?RRsPDp
https://www.zotero.org/google-docs/?tocWOF
https://www.zotero.org/google-docs/?tocWOF
https://www.zotero.org/google-docs/?WJ1Api
https://www.zotero.org/google-docs/?broken=OQacJB
https://www.zotero.org/google-docs/?PvYJUE
https://www.zotero.org/google-docs/?t1hXPU
https://www.zotero.org/google-docs/?mPtBgt
https://www.zotero.org/google-docs/?mPtBgt
https://www.zotero.org/google-docs/?vba8vN
https://www.zotero.org/google-docs/?yDXNJE
https://www.zotero.org/google-docs/?QJYJRr
https://www.zotero.org/google-docs/?X7FeH3
https://www.zotero.org/google-docs/?GC01bh
https://www.zotero.org/google-docs/?kkP1No
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 161 

3.1 Soil moisture accounting model 162 

 163 

The soil moisture model considered here has been previously applied in several studies 164 

for applications related to soil moisture monitoring (Anctil et al., 2004; Javelle et al., 2010; 165 

Tramblay et al., 2012, 2014), it consists in the SMA part of the GR4J model  (Perrin et al., 166 

2003), driven by precipitation and PET, that represents a conceptual formulation of the 167 

impact of precipitation and PET on soil water balance, using a soil reservoir of fixed depth, 168 

A. This parameter represents the maximum capacity of that reservoir, that can be 169 

assumed to be equivalent to the soil water holding capacity (Perrin et al., 2003, Javelle 170 

et al., 2010, Tramblay et al., 2014). The soil reservoir has either a net outflow when PET 171 

exceed rainfall: 172 

 173 

If 𝑃𝑡 ≤ 𝑃𝐸𝑇𝑡 174 

𝑆∗ = 𝑆𝑡−1 −
𝑆𝑡−1(2𝐴−𝑆𝑡−1)𝑡𝑎𝑛ℎ(

𝑃𝐸𝑇𝑡−𝑃𝑡
𝐴

)

𝐴+(𝐴−𝑆𝑡−1)𝑡𝑎𝑛ℎ(
𝑃𝐸𝑇𝑡−𝑃𝑡

𝐴
)

        (1) 175 

 176 

Or net inflow in all the other cases: 177 

 178 

If 𝑃𝑡≤𝑃𝐸𝑇𝑡 179 

𝑆∗ = 𝑆𝑡−1 +
(𝐴²−𝑆𝑡−1

2 )𝑡𝑎𝑛ℎ(
𝑃𝑡−𝑃𝐸𝑇𝑡

𝐴
)

(𝐴+𝑆𝑡−1)𝑡𝑎𝑛ℎ(
𝑃𝑡−𝑃𝐸𝑇𝑡

𝐴
)
         (2) 180 

 181 

Where S* can never exceed the maximum reservoir capacity. Finally, the outflow from 182 

the storage reservoir due to percolation is taken into account using: 183 

 184 

 𝑆𝑡 = 𝑆∗ [1 + (
4𝑆∗

9𝐴
)

4

]
−

1

4

          (3) 185 

 186 

https://www.zotero.org/google-docs/?rPq5WC
https://www.zotero.org/google-docs/?rPq5WC
https://www.zotero.org/google-docs/?r16Pi7
https://www.zotero.org/google-docs/?r16Pi7
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The level of the soil reservoir is given by S/A, ranging between 0 and 1, which provides a 187 

soil wetness index (SWI) for the catchment. The outputs of SURFEX soil moisture are 188 

first normalized with the maximum and minimum values, to obtain a SWI consistent with 189 

the SMA model output. Then, the SMA model parameter A is calibrated using this 190 

normalized SURFEX soil moisture as a reference. The SMA model is calibrated for each 191 

grid cell independently using soil moisture simulated with SURFEX covering the full 192 

Iberian Peninsula domain. The Nelder-Mead simplex algorithm is used for the calibration 193 

with the Nash efficiency criterion. To regionally estimate the values of A, two different 194 

methods are compared: the direct estimation of A with TAWC from ESDB soil maps or its 195 

indirect estimation with machine learning methods, namely Random Forests using 196 

5kmx5km grid physiographic and climatic properties. 197 

 198 

3.2 Regionalization with soil maps 199 

 200 

The first approach consists in using the total available water content from the ESDB 201 

database to estimate the A parameter for each grid cell. In the present work, the TAWC 202 

of subsoil and topsoil layers have been added and averaged at the scale of 5km x 5km, 203 

matching the spatial resolution of the SAFRAN grid. Then, these estimates have been 204 

used to set the A parameter of the SMA model. Thus, this regionalization approach is 205 

based on the a priori estimation of the A parameter from soil maps solely. 206 

 207 

3.3 Regionalization with Random forests  208 

 209 

Random Forests (Breiman, 2001) belong to the class of Machine Learning techniques. 210 

RF are based on a bootstrap aggregation (Breiman, 1996) of Classification and 211 

Regression Trees (Breiman et al., 2017). It generates a bootstrap sample from the original 212 

data and trains a tree model using this sample. The procedure is repeated many times 213 

and the bagging's prediction is the average of the predictions. Among the many 214 

advantages of RF, they are fast, non-parametric, robust to noise in the predictor variables, 215 

able to capture nonlinear dependencies between predictors and dependent variables and 216 

they can simultaneously incorporate continuous and categorical variables (Tyralis et al., 217 

2019). The drawbacks are they are complex to interpret and they cannot extrapolate 218 

outside the training range. Given their advantages, this algorithm is particularly suited for 219 

the estimation of spatial variables such as soil properties (Booker and Woods, 2014; 220 

Hengl et al., 2018; Gagkas and Lilly, 2019; Stein et al., 2021). In the present work, a RF 221 

model is generated to estimate the values of the A parameter of the SMA model, 222 

representing soil water holding capacity, with the properties of the 5x5km grid cells namely 223 

altitude, land cover, mean annual precipitation, temperature and PET, using Random Forests.  224 

 225 

https://www.zotero.org/google-docs/?C7XoOl
https://www.zotero.org/google-docs/?PtPXpZ
https://www.zotero.org/google-docs/?A8qd1w
https://www.zotero.org/google-docs/?R7hDxP
https://www.zotero.org/google-docs/?R7hDxP
https://www.zotero.org/google-docs/?33em3Z
https://www.zotero.org/google-docs/?33em3Z
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To estimate the reliability of the method, the 5km x 5km grid cells covering the Iberian 226 

Peninsula have been split randomly into a training sample containing 70% of the cells 227 

(15636 data points) and a testing sample with the 30% remaining cells (6701 data points). 228 

The random selection of the training and testing sets have been performed using a Latin 229 

Hypercube Sampling (McKay et al., 1979) to ensure a homogeneous sampling over the 230 

Iberian Peninsula. Given that the RF trees cannot be interpreted directly, as for example 231 

the weights in a linear regression, we additionally implemented an out-of-bag predictor 232 

importance estimation by permutation (Loh and Shih, 1997), to measure how influential 233 

the predictor variables in the model are at predicting the response. The influence of a 234 

predictor increases with the value of this measure. If a predictor is influential in prediction, 235 

then permuting its values should affect the model error. If a predictor is not influential, 236 

then permuting its values should have little to no effect on the model error. 237 

 238 

3.3 Validation on the ability to detect dry soil moisture conditions 239 

 240 

To compare the efficiency of the two methods compared to estimate the A parameter of 241 

the SMA model, the SMA model was run using the two methods and all daily values of 242 

soil moisture below the 10th percentile were extracted, corresponding to dry soil 243 

conditions. Only the grid cells in the testing sample were considered for this validation. 244 

We computed different verification scores to assess the relative efficiency of the two 245 

methods to reproduce daily soil moisture below the 10th percentile using the ISBA 246 

simulated soil moisture as a benchmark; the Probability of Detection (POD), the False 247 

Alarm Ratio (FAR) and the Heidke Skill Score (HSS) summarizing the global efficiency to 248 

detect dry periods (Jolliffe and Stephenson, 2011). These scores are based on the 249 

contingency table between forecasts (or simulated values in the case of the present 250 

study) and observations (Table 1).  251 

 252 

POD is the probability of detection (equation 1), FAR is the number of false alarms per 253 

the total number of warnings or alarms (equation 2) and HSS is a skill score ranging from 254 

-∞ to 1 (equation 3), for categorical forecasts where the proportion of correct measure is 255 

scaled with the reference value from correct forecasts due to chance. 256 

 257 

𝑃𝑂𝐷 =  𝑎 / (𝑎 + 𝑐)                                                                                                  (4) 258 

 259 

𝐹𝐴𝑅 =  𝑏 /(𝑎 + 𝑏)                                                                                                   (5) 260 

 261 

𝐻𝑆𝑆 = 2 (𝑎𝑑 −  𝑏𝑐) / (𝑎 +  𝑏)(𝑏 +  𝑑)  +  (𝑎 + 𝑐)(𝑐 + 𝑑)                                         (6) 262 

 263 

 264 

4. Results 265 

https://www.zotero.org/google-docs/?o0BlPL
https://www.zotero.org/google-docs/?m90Be7
https://www.zotero.org/google-docs/?Tzf1qA
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 266 

4.1 Calibration of the SMA model 267 

 268 

The calibration results of the SMA model against SURFEX soil moisture provide very 269 

good model performance, with a mean Nash coefficient equal to 0.94, indicating its ability 270 

to reproduce the soil moisture dynamics as simulated by SURFEX. Nash values below 271 

0.5 are found for 1.21 % of grid cells (n= 273), only for areas located in the mountainous 272 

range affected by snow processes, above 1500 m.a.s.l. (Figure 1). This outcome is 273 

expected, since the SMA model does not include a snow-module it cannot reproduce 274 

snow dynamics in these areas. However, high-elevation areas with seasonal snow cover 275 

are not the area’s most at risk of soil moisture droughts for agricultural activities in Spain. 276 

The calibrated values of the A parameter of the SMA model ranges from 60 to 250 mm, 277 

depending on the location (Figure 3). There is no significant correlation between A and 278 

mean annual precipitation or the aridity index (P/PET). This highlights the interplays 279 

between soil properties and climate to explain the spatial variability on soil water holding 280 

capacity.  281 

 282 

4.2 Regional estimation of the A parameter 283 

 284 

The values of the calibrated A parameter are related to the properties of the 5x5km grid 285 

cells using Random Forests. First, an out-of-bag predictor importance estimation by 286 

permutation is applied to compute the overall performance of RF and estimate the relative 287 

influence of each predictor. When using the A out-of-bag estimates to run the SMA model, 288 

the loss of performance is very small, the decrease in Nash values in validation is on 289 

average equal -0.0019 (with a maximum decrease of -0.04).  This is due to the small 290 

sensitivity of the SMA model to the value of A, given that the error in the estimation of A 291 

is in the range of 10 mm (RMSE = 13.18 mm). This type of validation mimics the case 292 

when the estimation at one single location is required, yet since all the remaining points 293 

are used for the estimation, it makes the approach in that case very robust. The relative 294 

importance for each predictor is plotted on Figure 3, indicating that precipitation and 295 

potential evapotranspiration are two most important predictors, followed by altitude. On 296 

the contrary, the land cover attributes for each grid cell are the least important predictors, 297 

and removing them from the RF model does not significantly change the results. This 298 

shows the relative importance of climatic variables in the spatial variability of soil moisture 299 

holding capacity. 300 

 301 

To estimate the robustness of the method, we applied a split-sample validation into a 302 

testing and a training sample. The results are presented for the testing set (Figure 4). The 303 

performance in terms of Nash for the SMA model with A estimated by Random Forests 304 

or soil map is very similar, with mean Nash equal to 0.86 (median = 0.89) with RF and 305 
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0.81 (median = 0.85) with soil maps. The Nash values in validation (testing set) are low, 306 

or even negative, only for mountainous ranges, as expected. Overall, the spatial patterns 307 

of the Nash coefficients obtained with RF or ESDB are very similar too. There are no 308 

significant relationships between model efficiency and the aridity index or the presence 309 

of irrigated areas, as identified in the ECOCLIMAP2 land cover database.  310 

 311 

4.3 Estimation of dry soil conditions 312 

 313 

A further validation is made for daily soil moisture below the 10th percentile corresponding 314 

to dry soil conditions. We computed the Probability of Detection (POD), the False Alarm 315 

Ratio (FAR) and the Heidke Skill Score (HSS) summarizing the global efficiency to detect 316 

dry periods. For both approaches to estimate A, the mean POD is very high, close to 317 

97%, while the FAR is close to 3%. But these average results hide some discrepancy in 318 

the different regions (Figure 5): the efficiency is the highest for the North-Western region, 319 

the wettest areas of Spain, with the most important increase of HSS and POD, associated 320 

with a decrease in FAR, using Random forests, while in the South and Central parts of 321 

Spain the performance is lower on average and very similar with the two regionalization 322 

approaches. For the wettest parts of the Iberian Peninsula, the POD remains higher than 323 

94% and the FAR lower than 6% and it is the region where the main improvements with 324 

RF are observed. As shown in Figure 5, the results with Random forests mostly follow the 325 

climate conditions, with improved estimations in the wettest regions of North and 326 

Northwestern part of Spain. For the estimation with EU soil maps, the results seem related 327 

to soil depth and to a lesser extent, land cover. Indeed, higher scores are found in regions 328 

with shallow soils, such as those of plutonic (Galician region, western parts of the 329 

Extremaduran mountainous ranges, Douoro basin) or metamorphic origins (western 330 

Cantabric range, north Iberian range, eastern-central regions and Sierra Morena in 331 

Andalucia) and also sedimentary regions with shallow limestones (eastern Cantabric 332 

mountains, Basque region, Southern Iberian range). On the opposite, lower scores are 333 

found in regions with the deepest soils (Guadalquivir floodplains, Mid- Tagus River, upper 334 

Duero, piedmonts of Cantabric in Leon and Palencia, most of Middle Navarra). With the 335 

exception of regions such as Bizcaya or coastal Portugal, with a dense forest cover 336 

(mostly Pinus radiata or pinaster) where soil depth is probably overestimated. On 337 

average, the RF estimation method outperforms the approach based on ESDB (Figure 338 

7), with more stable results in terms of HSS since all values obtained with RF are above 339 

0.4 while with ESDB for the grid cells the HSS scores drops to values close to zero. 340 

 341 

5. Summary and conclusions 342 

 343 

In this study, a simple model allowing the monitoring of  soil moisture conditions  was 344 

regionalized over the entire Iberian Peninsula, taking as a reference the soil moisture 345 
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simulated by a high-resolution land surface model. Two different regionalization methods 346 

have been compared, either the direct estimation of soil water holding capacity from 347 

European soil maps or by Random Forests, using covariates such as altitude, 348 

temperature, precipitation, potential evapotranspiration and land cover. Results have 349 

shown that the estimation by Random Forest is more robust notably to estimate low soil 350 

moisture levels. Despite similar average performance between the two methods, the use 351 

of soil maps to set the water holding capacity reveals less stable results in some cases, 352 

most probably related to the uncertainties in the pedo-transfer functions used. While these 353 

pedo-transfer functions are process-based predictive functions of certain soil properties, 354 

Random Forest are not based on physical processes and are tailored to provide the best 355 

estimates in a statistical sense. Therefore, they provide a valuable alternative in contexts 356 

where high-resolution soil maps are not available since they rely on a set of covariates 357 

that can be reliably estimated from global databases, such as satellite or reanalysis 358 

products (Funk et al., 2015; Hersbach et al., 2020; Muñoz Sabater, 2020).  359 

 360 

It should be noted that the results presented herein are highly dependent on the quality 361 

of land surface simulations, in the absence of dense monitoring networks of in situ soil 362 

moisture data, thus these results suffer from the same limitations as LSMs, notably, the 363 

lack of human processes (irrigation). However, new remote sensing irrigation estimates 364 

are being developed (Massari et al., 2021), as a consequence, once the RF model is 365 

trained, irrigation estimations could be added to the precipitation forcing data in order to 366 

include the human impacts on soil moisture estimations. The results show that this 367 

approach allows us to cheaply extend the value of high resolution LSM simulations to 368 

areas where no LSM is implemented (ie. north Africa), as long as the climate conditions 369 

belong to the range of values used to train the model, mostly in terms of precipitation and 370 

potential evapotranspiration ranges. Thus, the model train over the Iberian Peninsula 371 

could be applied to other similar areas such as North Africa, Italy or Greece. As a 372 

perspective, other simulations from countries where high resolution LSM simulations are 373 

available, such as France or the USA, could be added to the database in order to expand 374 

the coverage over different physiographic and climate contexts (Ma et al., 2021). 375 

Consequently, the benefits of LSM simulations of soil moisture could be expanded to 376 

other areas, provided that suitable forcing datasets are available. Furthermore, if public 377 

meteorological and hydrological organizations were to create soil moisture observation 378 

networks, cleverly designed to cover the most relevant climates of their countries, this 379 

approach could be used to train the model using these observations and then regionalize 380 

the results to the rest of the territory, thus, converting an in-situ observation dataset into 381 

a gridded dataset with a much greater spatial coverage. 382 

 383 
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TABLE 686 

 687 

Table 1: Contingency table of the comparison between forecasts and observations or 688 

any two analyses. The symbols a–d are the different numbers of cases observed to 689 

occur in each category. 690 

 691 

 Observations 

Forecast 1 0 

1 a (hit) b (false alarm) 

0 c (miss) d (correct rejection) 

 692 

FIGURES 693 

 694 

 695 

 696 

 Figure 1: Efficiency of the SMA model to reproduce soil moisture from SURFEX  697 

 698 

 699 

 700 
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 701 

Figure 2: Map of the calibrated values of the A parameter of the SMA model 702 

 703 

 704 

 705 

Figure 3: Relative importance of each predictor (Alt= altitude, P= precipitation, PET= 706 

potential evapotranspiration, T=temperature, LC=land cover classes) in the Random 707 

Forest method 708 

 709 
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 710 

 711 

 712 

Figure 4: Nash efficiency coefficient obtained for the testing set, with the A parameter of 713 

the SMA model estimated by RF (left) or ESDB (right) 714 

 715 

 716 

 717 

 718 

Figure 5: Validation results in terms of HSS, POD and FAR with A estimated with either 719 

Random Forests or European soil database.  720 
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 722 

 723 

 724 

Figure 6: Boxplot of the HSS obtained with RF or EU soil maps. The limits of the box 725 

represent the 25th and 75 percentiles, the line in the middle refers to the median, and 726 

the limits of the whiskers extend to the minimum and maximum values.  727 
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