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Abstract

Soil moisture is a key variable for drought monitoring but soil moisture measurements
networks are very scarce. Land-surface models can provide a valuable alternative to
simulate soil moisture dynamics, but only a few countries have such modelling schemes
implemented for monitoring soil moisture at high spatial resolution. In this study, a soil
moisture accounting model (SMA) was regionalized over the Iberian Peninsula, taking as
a reference the soil moisture simulated by a high-resolution land surface model. To
estimate soil water holding capacity, the sole parameter required to run the SMA model,
two approaches were compared: the direct estimation from European soil maps using
pedotransfer functions, or an indirect estimation by a Machine Learning approach,
Random Forests, using as predictors altitude, temperature, precipitation, potential
evapotranspiration and land use. Results showed that the Random Forest model
estimates are more robust, especially for estimating low soil moisture levels.
Consequently, the proposed approach can provide an efficient way to simulate daily soil
moisture and therefore monitor soil moisture droughts, in contexts where high-resolution
soil maps are not available, as it relies on a set of covariates that can be reliably estimated
from global databases.
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1. Introduction

Soil moisture droughts have strong impacts on vegetation and agricultural production
(Raymond et al., 2019; Tramblay et al., 2020; Vicente-Serrano et al., 2014; Pena-Gallardo
et al., 2019). There is a growing interest for simple indicators to monitor drought events
at short timescales that could be related to impacts (Li et al., 2020; Noguera et al., 2021).
In particular, soil moisture indicators could be more relevant than climatic ones to monitor
potential impacts of droughts on agriculture and natural vegetation (Piedallu et al., 2013).
Since actual soil moisture measurements remain very scarce, soil moisture simulated
from land-surface models are an interesting proxy to develop simplified methodologies
that could be applied on data-sparse regions. Land-surface models (LSM) are valuable
tools for a fine scale monitoring of drought events; however, theirimplementation requires
accurate forcing data and computational resources (Almendra-Martin et al., 2021;
Quintana-Segui et al.,, 2019; Barella-Ortiz and Quintana-Segui, 2019). Global
implementation also exists but with a coarser resolution and driven by reanalysis data
(Rodell et al., 2004; Mufioz Sabater, 2020) that may not be adequate for local-scale
applications. Only very few countries have land-surface schemes implemented at the
national level to monitor droughts (Habets et al., 2008).

Remote Sensing is another option which allows monitoring soil moisture (Dorigo et al.,
2017; Brocca et al., 2019). Microwave sensors allow monitoring of surface soil moisture
(first 5 cm for L-band based products, skin for C-band based products), without the
interference of clouds. However, surface soil moisture is not enough for most applications,
which require root zone soil moisture, which is the water resource in the soil available to
plants. Furthermore, passive L-band products, such as SMOS (Martinez-Fernandez et
al., 2016) or SMAP (Mishra et al., 2017), have a low resolution and active C-band
products, such as Sentinel 1 (Bauer-Marschallinger et al., 2019), which have higher
resolution, suffer from higher noise and are more sensitive to vegetation. Thus, even
though remote sensing is very useful, it still has problems to be surmounted. The
resolution of passive L-band products can be increased using optical data (NDVI, LST),
by means of downscaling algorithms (Merlin et al., 2013; Fang et al., 2021), but then the
resulting product is sensitive to cloud cover. Also, some progress has been made in
deriving root zone soil moisture from surface soil moisture estimations using an
exponential filter (Stefan et al., 2021) calibrated using the SURFEX LSM (Masson et al.,
2013), but these products are in early stages and are not operational yet.

Simplified methodologies to estimate and monitor the status of soil moisture, are needed
in contexts where LSM data is not available and where remote sensing products fall short,
such as areas and time periods with dense vegetation, or high soil roughness which may
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affect their accuracy (Escorihuela and Quintana-Segui, 2016). Different modelling
approaches have been proposed, either with conceptual soil moisture accounting models
or computational variants of the antecedent precipitation index (Willgoose and Perera,
2001; Javelle et al., 2010; Brocca et al., 2014; Zhao et al., 2019; Li et al., 2020). The
general availability of spatial estimates of soil moisture content would help introduce soil
moisture in drought monitoring systems, improving their scope and usefulness.
Furthermore, this would also facilitate the creation of long-term reanalysis, based on
meteorological forcing data, and future climate change studies, without the need of
running LSM models. However, to apply this type of models at regional or national scale,
there is a need to estimate their parameters over the area of interest. For that purpose,
regionalization methods have been employed in hydrology for decades to estimate the
parameters of hydrological models in ungauged basins (Bléschl and Sivapalan, 1995; He
et al., 2011; Hrachowitz et al., 2013). Several methods exist, based either on catchment
similarity or the direct estimation of model parameters using regression techniques with
physiographic attributes. For soil moisture modelling, up to now only very few studies
have considered these approaches to apply soil moisture accounting models at ungauged
locations (Grillakis et al., 2021) or estimate root zone soil moisture using machine learning
methods (Carranza et al., 2021).

The goal of the present study is to regionalize a simple soil moisture accounting (SMA)
scheme that could be used to monitor soil moisture droughts. The SMA model considered
in_the present study requires a single parameter, the maximum soil water holding
capacity. Two different approaches are compared to estimate this parameter regionally:
the direct estimation with soil maps or with a machine learning technigue, namely
Random Forests.

2. Study area and Data

The study area of this work is the Iberian Peninsula, which is located between the
Mediterranean Sea and the Atlantic Ocean and thus is influenced by both synoptic scale
systems, that often come from the Atlantic side, and mesoscale heavy precipitation
events, that often come from the Mediterranean side. The Iberian Peninsula presents a
marked relief, with a large and high central plateau and different mountain ranges, which
heavily influence the spatial patterns of precipitation, enhancing it windward and
decreasing it leeward, generating areas of high precipitation on the west, north-west and
north, and very dry areas on the central plains and, specially, on the South-east, as a
consequence the Iberian Peninsula has a heterogeneous distribution of average annual
rainfall, with values ranging from 2000 mm/y to less than 100 mm/y. All this has a strong
influence on the spatial and temporal variability of soil moisture and soil moisture regimes,
having wet regimes on the west and north, where the soil is hardly stressed and, and
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semi-arid areas elsewhere, with a wet (energy limited) and a dry (water limited) season,
with a dry down that might be interrupted by convective events. All this makes the
modelling of soil moisture in Iberian a rather challenging task.

Daily precipitation, temperature and potential evapotranspiration (PET) were retrieved
from the SAFRAN-Spain database (Quintana-Segui et al., 2017). SAFRAN (Durand et
al., 1993) is a meteorological reanalysis that produces gridded datasets by combining the
outputs of a meteorological model and all available observations using an optimal
interpolation algorithm. It has been implemented over France (Quintana-Segui et al.,
2008) and recently over the Iberian Peninsula (Quintana-Segui et al., 2017) with a
5kmx5km spatial resolution. The SAFRAN dataset used in this study not only includes
observations from the Spanish part of the Iberian Peninsula, it has also ingested data
from Portugal. The SURFEX LSM (Masson et al., 2013) has been run using SAFRAN-
Spain as the meteorological forcing dataset and on the same grid, as it was done in
Quintana-Segui et al., (202062019). SURFEX uses the ECOCLIMAP2 (Faroux et al.,
2013) physiographic database and it uses the ISBA (Interaction Sol-Biosphére-
Atmosphere) scheme (Noilhan and Mahfouf, 1996) for natural surfaces. ISBA has
different options; we have used ISBA-DIF, the multi-layer diffusion version (Boone 2000;
Habets et al. 2003). From this simulation, we have extracted the soil moisture of the first
60 cm of the soil, by performing the weighted average of the soil layers that fall within this
range. This simulated soil moisture over the Iberian Peninsula is considered herein as the
observed reference, in the absence of dense monitoring networks of soil moisture
(Martinez-Fernandez et al., 26452016). From the ECOCLIMAP?2 database, elevation and
land cover data have also been retrieved and aggregated in the following nine categories:
water, bare, ice/snow, urban, forest, grass, dry crops, irrigated crops, wetlands.

We_also use the European Soil database (ESDB) produced by the European Soil Data
Centre (Panagos et al., 2012). The ESDB contains information on soil characteristics,
including soil depth and texture for topsoil (0-30cm) and subsoil (30-70cm) layers at a
grid resolution of 1 km. The total available water content (TAWC) is a volumetric
parameter describing the water content between field capacity and permanent wilting
point, as a function of available water content, presence of coarse fragments and depth
(Reynolds et al., 2000). In ESDB, water content at field capacity and permanent wilting
point were determined following the equation from (van Genuchten, 1980) to estimate the
soil water retention curve (Hiederer, 2013). The parameters of the equation are provided
by a pedotransfer function (Wésten et al.,, 1999) for volumetric soil water content
computed from the soil water retention curve. The pedotransfer function uses soil texture,
organic carbon content and bulk density to determine the parameters of the soil water
retention curve (Hiederer, 2013).-
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3. Methods
3.1 Soil moisture accounting model

The soil moisture model considered here has been previously applied in several studies
for applications related to soil moisture monitoring (Anctil et al., 2004; Javelle et al., 2010;
Tramblay et al., 2012, 2014), it consists in the SMA part of the GR4J model (Perrin et al.,
2003), driven by precipitation and PET, that represents a conceptual formulation of the
impact of precipitation and PET on soil water balance, using a soil reservoir of fixed depth,
A. This parameter represents the maximum capacity of that reservoir, that can be
assumed to be equivalent to the soil water holding capacity (Perrin et al., 2003, Javelle
etal., 2010, Tramblay et al., 2014). The soil reservoir has either a net outflow when PET
exceed rainfall:

If P, < PET,

Seeq (2A—St_1)tanh(%)

1
A+(A—st_1)tanh(@ @

St =58

Or net inflow in all the other cases:

If P,<PET,

(Az—s,?_l)tanh(@

S* = St—l +

2)

(A+st_1)tanh(@)

Where S* can never exceed the maximum reservoir capacity. Finally, the outflow from

the storage reservoir due to percolation is taken into account using:

S, =5" [1 n (45*)4]'% 3)
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The level of the soil reservoir is given by S/A, ranging between 0 and 1, which provides a
soil wetness index (SWI) for the catchment. The outputs of SURFEX soil moisture are
first normalized with the maximum and minimum values, to obtain a SWI consistent with
the SMA model output. Then, the SMA model parameter A is calibrated using this
normalized SURFEX soil moisture as a reference. The SMA model is calibrated for each
grid cell independently using soil moisture simulated with SURFEX covering the full
Iberian Peninsula domain. The Nelder-Mead simplex algorithm is used for the calibration
with the Nash efficiency criterion. To regionally estimate the values of A, two different
methods are compared: the direct estimation of A with TAWC from ESDB soil maps or its
indirect estimation with machine learning methods, namely Random Forests using
5kmx5km grid physiographic and climatic properties.

3.2 Regionalization with soil maps

The first approach consists in using the total available water content from the ESDB
database to estimate the A parameter for each grid cell. In the present work, the TAWC
of subsoil and topsoil layers have been added and averaged at the scale of 5km x 5km,
matching the spatial resolution of the SAFRAN grid. Then, these estimates have been
used to set the A parameter of the SMA model. Thus, this regionalization approach is
based on the a priori estimation of the A parameter from soil maps solely.

3.23 Regionalization with Random forests

Random Forests (Breiman, 2001) belong to the class of Machine Learning techniques.
RF are based on a bootstrap aggregation (Breiman, 1996) of Classification and
Regression Trees (Breiman et al., 2017). It generates a bootstrap sample from the original
data and trains a tree model using this sample. The procedure is repeated many times
and the bagging's prediction is the average of the predictions. Among the many
advantages of RF, they are fast, non-parametric, robust to noise in the predictor variables,
able to capture nonlinear dependencies between predictors and dependent variables and
they can simultaneously incorporate continuous and categorical variables (Tyralis et al.,
2019). The drawbacks are they are complex to interpret and they cannot extrapolate
outside the training range. Given their advantages, this algorithm is particularly suited for
the estimation of spatial variables such as soil properties (Booker and Woods, 2014;
Hengl et al., 2018; Gagkas and Lilly, 2019; Stein et al., 2021). In the present work, a RF
model is generated to estimate the values of the A parameter of the SMA model,
representing soil water holding capacity, with the properties of the 5x5km grid cells namely
altitude, land cover, mean annual precipitation, temperature and PET, using Random Forests.
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To estimate the reliability of the method, the 5km x 5km grid cells covering the Iberian
Peninsula have been split randomly into a training sample containing 70% of the cells
(15636 data points) and a testing sample with the 30% remaining cells (6701 data points).
The random selection of the training and testing sets have been performed using a Latin
Hypercube Sampling (McKay et al., 1979) to ensure a homogeneous sampling over the
Iberian Peninsula. Given that the RF trees cannot be interpreted directly, as for example
the weights in a linear regression, we additionally implemented an out-of-bag predictor
importance estimation by permutation (Loh and Shih, 1997), to measure how influential
the predictor variables in the model are at predicting the response. The influence of a
predictor increases with the value of this measure. If a predictor is influential in prediction,
then permuting its values should affect the model error. If a predictor is not influential,
then permuting its values should have little to no effect on the model error.

3.3 Validation on the ability to detect dry soil moisture conditions

To compare the efficiency of the two methods compared to estimate the A parameter of
the SMA model, the SMA model was run using the two methods and all daily values of
soil moisture below the 10th percentile were extracted, corresponding to dry soil
conditions. Only the grid cells in the testing sample were considered for this validation.
We computed different verification scores to assess the relative efficiency of the two
methods to reproduce daily soil moisture below the 10th percentile using the ISBA
simulated soil moisture as a benchmark; the Probability of Detection (POD), the False
Alarm Ratio (FAR) and the Heidke Skill Score (HSS) summarizing the global efficiency to
detect dry periods (Jolliffe and Stephenson, 2011). These scores are based on the
contingency table between forecasts (or simulated values in the case of the present
study) and observations (Table 1).

POD is the probability of detection (equation 1), FAR is the number of false alarms per
the total number of warnings or alarms (equation 2) and HSS is a skill score ranging from
- to 1 (equation 3), for categorical forecasts where the proportion of correct measure is
scaled with the reference value from correct forecasts due to chance.

POD = a/(a+c) eg-1(4)

FAR = b /(a+ D) eg2(5)

HSS=2(ad — bc)/(a + b)(b+ d) + (a+c)(c+4d) eg-3(6)
4. Results
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4.1 Calibration of the SMA model

The calibration results of the SMA model against SURFEX soil moisture provide very
good model performance, with a mean Nash coefficient equal to 0.94, indicating its ability
to reproduce the soil moisture dynamics as simulated by SURFEX. Nash values below
0.5 are found for 1.21 % of grid cells (n= 273), only for areas located in the mountainous
range affected by snow processes, above 1500 m.a.s.l. (Figure 1). This outcome is
expected, since the SMA model does not include a snow-module it cannot reproduce
snow dynamics in these areas. However, high-elevation areas with seasonal snow cover
are not the area’s most at risk of soil moisture droughts for agricultural activities in Spain.
The calibrated values of the A parameter of the SMA model ranges from 60 to 250 mm,
depending on the location (Figure 3). There is no significant correlation between A and
mean annual precipitation or the aridity index (P/PET). This highlights the interplays
between soil properties and climate to explain the spatial variability on soil water holding
capacity.

4.2 Regional estimation of the A parameter

The values of the calibrated A parameter are related to the properties of the 5x5km grid
cells using Random Forests. First, an out-of-bag predictor importance estimation by
permutation is applied to compute the overall performance of RF and estimate the relative
influence of each predictor. When using the A out-of-bag estimates in-cress-validation to
run the SMA model, the loss of performance is very small, the decrease in Nash values
in validation is on average equal -0.0019 (with a maximum decrease of -0.04). This is
due to the small sensitivity of the SMA model to the value of A, given that the error in the
estimation of A is in the range of 10 mm (RMSE = 13.18 mm). This type of validation
mimics the case when the estimation at one single location is required, yet since all the
remaining points are used for the estimation, it makes the approach in that case very
robust. The relative importance for each predictor is plotted on Figure 3, indicating that
precipitation and potential evapotranspiration are two most important predictors, followed
by altitude. On the contrary, the land cover attributes for each grid cell are the least
important predictors, and removing them from the RF model does not significantly change
the results._This shewshows the relative importance of climatic variables in the spatial
variability of soil moisture holding capacity.

To estimate the robustness of the method, we applied a split-sample validation into a

testlng and a tralnlng sample la%emhegﬁdreeﬂs{—l—%%&datarpem%s%mmeseieeted#e#

irg—The results
are presented for the testlng set (Flgure 4) The performance in terms of Nash for the
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SMA model with A estimated by Random Forests or soil map is very similar, with mean
Nash equal to 0.86 (median = 0.89) with RF and 0.81 (median = 0.85) with soil maps. The
Nash values in validation (testing set) are low, or even negative, only for mountainous
ranges, as expected. Overall, the spatial patterns of the Nash coefficients obtained with
RF or ESDB are very similar too. There are no significant relationships between model
efficiency and the aridity index or the presence of irrigated areas, as identified in the
ECOCLIMAP2 land cover database.

4.3 Estimation of dry soil conditions

A further validation is made for daily soil moisture below the 10th percentile corresponding
to dry soil conditions. We computed the Probability of Detection (POD), the False Alarm
Ratio (FAR) and the Heidke Skill Score (HSS) summarizing the global efficiency to detect
dry periods. For both approaches to estimate A, the mean POD is very high, close to
97%, while the FAR is close to 3%. But these average results hide some discrepancy in
the different regions (Figure 5-and-6): the efficiency is the highest for the North-Western
region, the wettest areas of Spain, with the most important increase of HSS and POD,
associated with a decrease in FAR, using Random forests, while in the South and Central
parts of Spain the performance is lower on average_and very similar with the two
regionalization approaches. For the wettest parts of the Iberian Peninsula, the POD
remains higher than 94% and the FAR lower than 6% and it is the region where the main
improvements with RF are observed. As shown in Figure 5, the results with Random
forests mostly follow the climate conditions, with improved estimations in the wettest
regions of North and Northwestern part of Spain. For the estimation with EU soil maps,
the results seem related to soil depth and to a lesser extent, land cover. Indeed, higher
scores are found in regions with shallow soils, such as those of plutonic (Galician region,
western parts of the Extremaduran mountainous ranges, Douoro basin) or metamorphic
origins (western Cantabric range, north Iberian range, eastern-central regions and Sierra
Morena in_Andalucia) and also sedimentary regions with shallow limestones (eastern
Cantabric mountains, Basque region, Southern Iberian range). On the opposite, lower
scores are found in regions with the deepest soils (Guadalquivir floodplains, Mid- Tagus
River, upper Duero, piedmonts of Cantabric in Leon and Palencia, most of Middle
Navarra). With the exception of regions such as Bizcaya or coastal Portugal, with a dense
forest cover (mostly Pinus radiata or pinaster) where soil depth is probably overestimated.
On average, the RF estimation method outperforms the approach based on ESDB (Figure
7), with more stable results in terms of HSS since all values obtained with RF are above
0.4 while with ESDB for the grid cells the HSS scores drops to values close to zero.

5. Summary and conclusions
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In this study, a simple model allowing the monitoring of the soil moisture conditions
saturation-level was regionalized over the entire Iberian Peninsula, taking as a reference
the soil moisture simulated by a high-resolution land surface model. Two different
regionalization methods have been compared, either the direct estimation of soil water
holding capacity from european soil maps or by Random Forests, using covariates such
as altitude, temperature, precipitation, potential evapotranspiration and land cover.
Results have shown that the estimation by Random Forest is more robust notably to
estimate low soil moisture levels. Despite similar average performance between the two
methods, the use of soil maps to set the water holding capacity reveals less stable results
in some cases, most probably related to the uncertainties in the pedo-transfer functions
used. While these pedo-transfer functions are process-based predictive functions of
certain soil properties, Random Forest are not based on physical processes and are
tailored to provide the best estimates in a statistical sense. Therefore, they provide a
valuable alternative in contexts where high-resolution soil maps are not available since
they rely on a set of covariates that can be reliably estimated from global databases, such
as satellite or reanalysis products (Funk et al., 2015; Hersbach et al., 2020; Mufioz
Sabater, 2020).

It should be noted that the results presented herein are highly dependent on the quality
of land surface simulations, in the absence of dense monitoring networks of in situ soll
moisture data, thus these results suffer from the same limitations as LSMs, notably, the
lack of human processes (irrigation). However, new remote sensing irrigation estimates
are being developed (Massari et al., 2021), as a consequence, once the RF model is
trained, irrigation estimations could be added to the precipitation forcing data in order to
include the human impacts on soil moisture estimations. The results show that this
approach allows us to cheaply extend the value of high resolution LSM simulations to
areas where no LSM is implemented (ie. north Africa), as long as the climate conditions
belong to the range of values used to train the model, mostly in terms of precipitation and
potential evapotranspiration ranges. Thus, the model train over the Iberian Peninsula
could be applied to other similar areas such as North Africa, Italy or Greece. As a
perspective, other simulations from countries where high resolution LSM simulations are
available, such as France or the USA, could be added to the database in order to expand
the coverage over different physiographic and climate contexts (Ma et al.,, 2021).
Consequently, the benefits of LSM simulations of soil moisture could be expanded to
other areas, provided that suitable forcing datasets are available. Furthermore, if public
meteorological and hydrological organizations were to create soil moisture observation
networks, cleverly designed to cover the most relevant climates of their countries, this
approach could be used to train the model using these observations and then regionalize
the results to the rest of the territory, thus, converting an in-situ observation dataset into
a gridded dataset with a much greater spatial coverage.
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TABLE

Table 1: Contingency table of the comparison between forecasts and observations or
any two analyses. The symbols a—d are the different numbers of cases observed to
occur in each category.

Observations
Forecast 1 0
1 a (hit) b (false alarm)
0 ¢ (miss) d (correct rejection)
FIGURES
o SMA modul sMiciuncy g Grid cults whare Nssh <0 3

Maw aFmncy coafinest |
Dt |7y

& o 4 2

Figure 1: Efficiency of the SMA model to reproduce soil moisture from SURFEX
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Figure 2: Map of the calibrated values of the A parameter of the SMA model
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Figure 3: Relative importance of each predictor (Alt= altitude, P= precipitation, PET=

potential evapotranspiration, T=temperature, LC=land cover classes) in the Random
Forest method
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Figure 4: Nash efficiency coefficient obtained for the testing set, with the A parameter of
the SMA model estimated by RF (left) or ESDB (right)
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Figure 5: Validation results in terms of HSS, POD and FAR with A estimated with either
Random Forests or European soil database.
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Figure 6: Boxplot of the HSS obtained with RF or EU soil maps. The limits of the box
represent the 25th and 75 percentiles, the line in the middle refers to the median, and

the limits of the whiskers extend to the minimum and maximum values.

21



