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Abstract 17 

 18 

Soil moisture is a key variable for drought monitoring but soil moisture measurements 19 

networks are very scarce. Land-surface models can provide a valuable alternative to 20 

simulate soil moisture dynamics, but only a few countries have such modelling schemes 21 

implemented for monitoring soil moisture at high spatial resolution. In this study, a soil 22 

moisture accounting model (SMA) was regionalized over the Iberian Peninsula, taking as 23 

a reference the soil moisture simulated by a high-resolution land surface model. To 24 

estimate soil water holding capacity, the sole parameter required to run the SMA model, 25 

two approaches were compared: the direct estimation from European soil maps using 26 

pedotransfer functions, or an indirect estimation by a Machine Learning approach, 27 

Random Forests, using as predictors altitude, temperature, precipitation, potential 28 

evapotranspiration and land use. Results showed that the Random Forest model 29 

estimates are more robust, especially for estimating low soil moisture levels. 30 

Consequently, the proposed approach can provide an efficient way to simulate daily soil 31 

moisture and therefore monitor soil moisture droughts, in contexts where high-resolution 32 

soil maps are not available, as it relies on a set of covariates that can be reliably estimated 33 

from global databases. 34 

 35 
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 41 

1. Introduction 42 

 43 

Soil moisture droughts have strong impacts on vegetation and agricultural production 44 

(Raymond et al., 2019; Tramblay et al., 2020; Vicente-Serrano et al., 2014; Pena-Gallardo 45 

et al., 2019). There is a growing interest for simple indicators to monitor drought events 46 

at short timescales that could be related to impacts (Li et al., 2020; Noguera et al., 2021). 47 

In particular, soil moisture indicators could be more relevant than climatic ones to monitor 48 

potential impacts of droughts on agriculture and natural vegetation (Piedallu et al., 2013). 49 

Since actual soil moisture measurements remain very scarce, soil moisture simulated 50 

from land-surface models are an interesting proxy to develop simplified methodologies 51 

that could be applied on data-sparse regions. Land-surface models (LSM) are valuable 52 

tools for a fine scale monitoring of drought events; however, their implementation requires 53 

accurate forcing data and computational resources (Almendra-Martín et al., 2021; 54 

Quintana-Seguí et al., 2019; Barella-Ortiz and Quintana-Seguí, 2019). Global 55 

implementation also exists but with a coarser resolution and driven by reanalysis data 56 

(Rodell et al., 2004; Muñoz Sabater, 2020) that may not be adequate for local-scale 57 

applications. Only very few countries have land-surface schemes implemented at the 58 

national level to monitor droughts (Habets et al., 2008).  59 

 60 

Remote Sensing is another option which allows monitoring soil moisture (Dorigo et al., 61 

2017; Brocca et al., 2019). Microwave sensors allow monitoring of surface soil moisture 62 

(first 5 cm for L-band based products, skin for C-band based products), without the 63 

interference of clouds. However, surface soil moisture is not enough for most applications, 64 

which require root zone soil moisture, which is the water resource in the soil available to 65 

plants. Furthermore, passive L-band products, such as SMOS (Martínez-Fernández et 66 

al., 2016) or SMAP (Mishra et al., 2017), have a low resolution and active C-band 67 

products, such as Sentinel 1 (Bauer-Marschallinger et al., 2019), which have higher 68 

resolution, suffer from higher noise and are more sensitive to vegetation. Thus, even 69 

though remote sensing is very useful, it still has problems to be surmounted. The 70 

resolution of passive L-band products can be increased using optical data (NDVI, LST), 71 

by means of downscaling algorithms (Merlin et al., 2013; Fang et al., 2021), but then the 72 

resulting product is sensitive to cloud cover. Also, some progress has been made in 73 

deriving root zone soil moisture from surface soil moisture estimations using an 74 

exponential filter (Stefan et al., 2021) calibrated using the SURFEX LSM (Masson et al., 75 

2013), but these products are in early stages and are not operational yet. 76 

 77 

Simplified methodologies to estimate and monitor the status of soil moisture, are needed 78 

in contexts where LSM data is not available and where remote sensing products fall short, 79 

such as areas and time periods with dense vegetation, or high soil roughness which may 80 
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affect their accuracy (Escorihuela and Quintana-Seguí, 2016). Different modelling 81 

approaches have been proposed, either with conceptual soil moisture accounting models 82 

or computational variants of the antecedent precipitation index (Willgoose and Perera, 83 

2001; Javelle et al., 2010; Brocca et al., 2014; Zhao et al., 2019; Li et al., 2020). The 84 

general availability of spatial estimates of soil moisture content would help introduce soil 85 

moisture in drought monitoring systems, improving their scope and usefulness. 86 

Furthermore, this would also facilitate the creation of long-term reanalysis, based on 87 

meteorological forcing data, and future climate change studies, without the need of 88 

running LSM models. However, to apply this type of models at regional or national scale, 89 

there is a need to estimate their parameters over the area of interest. For that purpose, 90 

regionalization methods have been employed in hydrology for decades to estimate the 91 

parameters of hydrological models in ungauged basins (Blöschl and Sivapalan, 1995; He 92 

et al., 2011; Hrachowitz et al., 2013). Several methods exist, based either on catchment 93 

similarity or the direct estimation of model parameters using regression techniques with 94 

physiographic attributes. For soil moisture modelling, up to now only very few studies 95 

have considered these approaches to apply soil moisture accounting models at ungauged 96 

locations (Grillakis et al., 2021) or estimate root zone soil moisture using machine learning 97 

methods (Carranza et al., 2021). 98 

 99 

The goal of the present study is to regionalize a simple soil moisture accounting (SMA) 100 

scheme that could be used to monitor soil moisture droughts. The SMA model considered 101 

in the present study requires a single parameter, the maximum soil water holding 102 

capacity. Two different approaches are compared to estimate this parameter regionally: 103 

the direct estimation with soil maps or with a machine learning technique, namely 104 

Random Forests. 105 

 106 

2. Study area and Data 107 

 108 

The study area of this work is the Iberian Peninsula, which is located between the 109 

Mediterranean Sea and the Atlantic Ocean and thus is influenced by both synoptic scale 110 

systems, that often come from the Atlantic side, and mesoscale heavy precipitation 111 

events, that often come from the Mediterranean side. The Iberian Peninsula presents a 112 

marked relief, with a large and high central plateau and different mountain ranges, which 113 

heavily influence the spatial patterns of precipitation, enhancing it windward and 114 

decreasing it leeward, generating areas of high precipitation on the west, north-west and 115 

north, and very dry areas on the central plains and, specially, on the South-east, as a 116 

consequence the Iberian Peninsula has a heterogeneous distribution of average annual 117 

rainfall, with values ranging from 2000 mm/y to less than 100 mm/y. All this has a strong 118 

influence on the spatial and temporal variability of soil moisture and soil moisture regimes, 119 

having wet regimes on the west and north, where the soil is hardly stressed and, and 120 
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semi-arid areas elsewhere, with a wet (energy limited) and a dry (water limited) season, 121 

with a dry down that might be interrupted by convective events. All this makes the 122 

modelling of soil moisture in Iberian a rather challenging task. 123 

 124 

Daily precipitation, temperature and potential evapotranspiration (PET) were retrieved 125 

from the SAFRAN-Spain database (Quintana-Seguí et al., 2017). SAFRAN (Durand et 126 

al., 1993) is a meteorological reanalysis that produces gridded datasets by combining the 127 

outputs of a meteorological model and all available observations using an optimal 128 

interpolation algorithm. It has been implemented over France (Quintana-Seguí et al., 129 

2008) and recently over the Iberian Peninsula (Quintana-Seguí et al., 2017) with a 130 

5kmx5km spatial resolution. The SAFRAN dataset used in this study not only includes 131 

observations from the Spanish part of the Iberian Peninsula, it has also ingested data 132 

from Portugal. The SURFEX LSM (Masson et al., 2013) has been run using SAFRAN-133 

Spain as the meteorological forcing dataset and on the same grid, as it was done in 134 

Quintana-Seguí et al., (20202019). SURFEX uses the ECOCLIMAP2 (Faroux et al., 135 

2013) physiographic database and it uses the ISBA (Interaction Sol-Biosphère-136 

Atmosphère) scheme (Noilhan and Mahfouf, 1996) for natural surfaces. ISBA has 137 

different options; we have used ISBA-DIF, the multi-layer diffusion version (Boone 2000; 138 

Habets et al. 2003). From this simulation, we have extracted the soil moisture of the first 139 

60 cm of the soil, by performing the weighted average of the soil layers that fall within this 140 

range. This simulated soil moisture over the Iberian Peninsula is considered herein as the 141 

observed reference, in the absence of dense monitoring networks of soil moisture 142 

(Martínez-Fernández et al., 20152016). From the ECOCLIMAP2 database, elevation and 143 

land cover data have also been retrieved and aggregated in the following nine categories:  144 

water, bare, ice/snow, urban, forest, grass, dry crops, irrigated crops, wetlands.  145 

 146 

We also use the European Soil database (ESDB) produced by the European Soil Data 147 

Centre (Panagos et al., 2012). The ESDB contains information on soil characteristics, 148 

including soil depth and texture for topsoil (0-30cm) and subsoil (30-70cm) layers at a 149 

grid resolution of 1 km. The total available water content (TAWC) is a volumetric 150 

parameter describing the water content between field capacity and permanent wilting 151 

point, as a function of available water content, presence of coarse fragments and depth 152 

(Reynolds et al., 2000). In ESDB, water content at field capacity and permanent wilting 153 

point were determined following the equation from (van Genuchten, 1980) to estimate the 154 

soil water retention curve (Hiederer, 2013). The parameters of the equation are provided 155 

by a pedotransfer function (Wösten et al., 1999) for volumetric soil water content 156 

computed from the soil water retention curve. The pedotransfer function uses soil texture, 157 

organic carbon content and bulk density to determine the parameters of the soil water 158 

retention curve (Hiederer, 2013).. 159 

 160 
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3. Methods 161 

 162 

3.1 Soil moisture accounting model 163 

 164 

The soil moisture model considered here has been previously applied in several studies 165 

for applications related to soil moisture monitoring (Anctil et al., 2004; Javelle et al., 2010; 166 

Tramblay et al., 2012, 2014), it consists in the SMA part of the GR4J model  (Perrin et al., 167 

2003), driven by precipitation and PET, that represents a conceptual formulation of the 168 

impact of precipitation and PET on soil water balance, using a soil reservoir of fixed depth, 169 

A. This parameter represents the maximum capacity of that reservoir, that can be 170 

assumed to be equivalent to the soil water holding capacity (Perrin et al., 2003, Javelle 171 

et al., 2010, Tramblay et al., 2014). The soil reservoir has either a net outflow when PET 172 

exceed rainfall: 173 

 174 

 175 

If 𝑃𝑡 ≤ 𝑃𝐸𝑇𝑡 176 

𝑆∗ = 𝑆𝑡−1 −
𝑆𝑡−1(2𝐴−𝑆𝑡−1)𝑡𝑎𝑛ℎ(

𝑃𝐸𝑇𝑡−𝑃𝑡
𝐴 )

𝐴+(𝐴−𝑆𝑡−1)𝑡𝑎𝑛ℎ(
𝑃𝐸𝑇𝑡−𝑃𝑡

𝐴 )
        (1) 177 

 178 

Or net inflow in all the other cases: 179 

 180 

If 𝑃𝑡≤𝑃𝐸𝑇𝑡 181 

𝑆∗ = 𝑆𝑡−1 +
(𝐴²−𝑆𝑡−1

2 )𝑡𝑎𝑛ℎ(
𝑃𝑡−𝑃𝐸𝑇𝑡

𝐴 )

(𝐴+𝑆𝑡−1)𝑡𝑎𝑛ℎ(
𝑃𝑡−𝑃𝐸𝑇𝑡

𝐴 )
         (2) 182 

 183 

Where S* can never exceed the maximum reservoir capacity. Finally, the outflow from 184 

the storage reservoir due to percolation is taken into account using: 185 

 186 

 𝑆𝑡 = 𝑆∗ [1 + (
4𝑆∗

9𝐴
)

4

]
−

1

4

          (3) 187 
a mis en forme : Police :12 pt

https://www.zotero.org/google-docs/?rPq5WC
https://www.zotero.org/google-docs/?rPq5WC
https://www.zotero.org/google-docs/?r16Pi7
https://www.zotero.org/google-docs/?r16Pi7


6 
 

 188 

The level of the soil reservoir is given by S/A, ranging between 0 and 1, which provides a 189 

soil wetness index (SWI) for the catchment. The outputs of SURFEX soil moisture are 190 

first normalized with the maximum and minimum values, to obtain a SWI consistent with 191 

the SMA model output. Then, the SMA model parameter A is calibrated using this 192 

normalized SURFEX soil moisture as a reference. The SMA model is calibrated for each 193 

grid cell independently using soil moisture simulated with SURFEX covering the full 194 

Iberian Peninsula domain. The Nelder-Mead simplex algorithm is used for the calibration 195 

with the Nash efficiency criterion. To regionally estimate the values of A, two different 196 

methods are compared: the direct estimation of A with TAWC from ESDB soil maps or its 197 

indirect estimation with machine learning methods, namely Random Forests using 198 

5kmx5km grid physiographic and climatic properties. 199 

 200 

3.2 Regionalization with soil maps 201 

 202 

The first approach consists in using the total available water content from the ESDB 203 

database to estimate the A parameter for each grid cell. In the present work, the TAWC 204 

of subsoil and topsoil layers have been added and averaged at the scale of 5km x 5km, 205 

matching the spatial resolution of the SAFRAN grid. Then, these estimates have been 206 

used to set the A parameter of the SMA model. Thus, this regionalization approach is 207 

based on the a priori estimation of the A parameter from soil maps solely. 208 

 209 

3.2 3 Regionalization with Random forests  210 

 211 

Random Forests (Breiman, 2001) belong to the class of Machine Learning techniques. 212 

RF are based on a bootstrap aggregation (Breiman, 1996) of Classification and 213 

Regression Trees (Breiman et al., 2017). It generates a bootstrap sample from the original 214 

data and trains a tree model using this sample. The procedure is repeated many times 215 

and the bagging's prediction is the average of the predictions. Among the many 216 

advantages of RF, they are fast, non-parametric, robust to noise in the predictor variables, 217 

able to capture nonlinear dependencies between predictors and dependent variables and 218 

they can simultaneously incorporate continuous and categorical variables (Tyralis et al., 219 

2019). The drawbacks are they are complex to interpret and they cannot extrapolate 220 

outside the training range. Given their advantages, this algorithm is particularly suited for 221 

the estimation of spatial variables such as soil properties (Booker and Woods, 2014; 222 

Hengl et al., 2018; Gagkas and Lilly, 2019; Stein et al., 2021). In the present work, a RF 223 

model is generated to estimate the values of the A parameter of the SMA model, 224 

representing soil water holding capacity, with the properties of the 5x5km grid cells namely 225 

altitude, land cover, mean annual precipitation, temperature and PET, using Random Forests.  226 

 227 

https://www.zotero.org/google-docs/?C7XoOl
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https://www.zotero.org/google-docs/?R7hDxP
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To estimate the reliability of the method, the 5km x 5km grid cells covering the Iberian 228 

Peninsula have been split randomly into a training sample containing 70% of the cells 229 

(15636 data points) and a testing sample with the 30% remaining cells (6701 data points). 230 

The random selection of the training and testing sets have been performed using a Latin 231 

Hypercube Sampling (McKay et al., 1979) to ensure a homogeneous sampling over the 232 

Iberian Peninsula. Given that the RF trees cannot be interpreted directly, as for example 233 

the weights in a linear regression, we additionally implemented an out-of-bag predictor 234 

importance estimation by permutation (Loh and Shih, 1997), to measure how influential 235 

the predictor variables in the model are at predicting the response. The influence of a 236 

predictor increases with the value of this measure. If a predictor is influential in prediction, 237 

then permuting its values should affect the model error. If a predictor is not influential, 238 

then permuting its values should have little to no effect on the model error. 239 

 240 

3.3 Validation on the ability to detect dry soil moisture conditions 241 

 242 

To compare the efficiency of the two methods compared to estimate the A parameter of 243 

the SMA model, the SMA model was run using the two methods and all daily values of 244 

soil moisture below the 10th percentile were extracted, corresponding to dry soil 245 

conditions. Only the grid cells in the testing sample were considered for this validation. 246 

We computed different verification scores to assess the relative efficiency of the two 247 

methods to reproduce daily soil moisture below the 10th percentile using the ISBA 248 

simulated soil moisture as a benchmark; the Probability of Detection (POD), the False 249 

Alarm Ratio (FAR) and the Heidke Skill Score (HSS) summarizing the global efficiency to 250 

detect dry periods (Jolliffe and Stephenson, 2011). These scores are based on the 251 

contingency table between forecasts (or simulated values in the case of the present 252 

study) and observations (Table 1).  253 

 254 

POD is the probability of detection (equation 1), FAR is the number of false alarms per 255 

the total number of warnings or alarms (equation 2) and HSS is a skill score ranging from 256 

-∞ to 1 (equation 3), for categorical forecasts where the proportion of correct measure is 257 

scaled with the reference value from correct forecasts due to chance. 258 

 259 

𝑃𝑂𝐷 =  𝑎 / (𝑎 + 𝑐)                                                                                                 eq.1(4) 260 

 261 

𝐹𝐴𝑅 =  𝑏 /(𝑎 + 𝑏)                                                                                                  eq.2(5) 262 

 263 

𝐻𝑆𝑆 = 2 (𝑎𝑑 −  𝑏𝑐) / (𝑎 +  𝑏)(𝑏 +  𝑑)  +  (𝑎 + 𝑐)(𝑐 + 𝑑)                                        eq.3(6) 264 

 265 

 266 

4. Results 267 

https://www.zotero.org/google-docs/?o0BlPL
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 268 

4.1 Calibration of the SMA model 269 

 270 

The calibration results of the SMA model against SURFEX soil moisture provide very 271 

good model performance, with a mean Nash coefficient equal to 0.94, indicating its ability 272 

to reproduce the soil moisture dynamics as simulated by SURFEX. Nash values below 273 

0.5 are found for 1.21 % of grid cells (n= 273), only for areas located in the mountainous 274 

range affected by snow processes, above 1500 m.a.s.l. (Figure 1). This outcome is 275 

expected, since the SMA model does not include a snow-module it cannot reproduce 276 

snow dynamics in these areas. However, high-elevation areas with seasonal snow cover 277 

are not the area’s most at risk of soil moisture droughts for agricultural activities in Spain. 278 

The calibrated values of the A parameter of the SMA model ranges from 60 to 250 mm, 279 

depending on the location (Figure 3). There is no significant correlation between A and 280 

mean annual precipitation or the aridity index (P/PET). This highlights the interplays 281 

between soil properties and climate to explain the spatial variability on soil water holding 282 

capacity.  283 

 284 

4.2 Regional estimation of the A parameter 285 

 286 

The values of the calibrated A parameter are related to the properties of the 5x5km grid 287 

cells using Random Forests. First, an out-of-bag predictor importance estimation by 288 

permutation is applied to compute the overall performance of RF and estimate the relative 289 

influence of each predictor. When using the A out-of-bag estimates in cross-validation to 290 

run the SMA model, the loss of performance is very small, the decrease in Nash values 291 

in validation is on average equal -0.0019 (with a maximum decrease of -0.04).  This is 292 

due to the small sensitivity of the SMA model to the value of A, given that the error in the 293 

estimation of A is in the range of 10 mm (RMSE = 13.18 mm). This type of validation 294 

mimics the case when the estimation at one single location is required, yet since all the 295 

remaining points are used for the estimation, it makes the approach in that case very 296 

robust. The relative importance for each predictor is plotted on Figure 3, indicating that 297 

precipitation and potential evapotranspiration are two most important predictors, followed 298 

by altitude. On the contrary, the land cover attributes for each grid cell are the least 299 

important predictors, and removing them from the RF model does not significantly change 300 

the results. This showshows the relative importance of climatic variables in the spatial 301 

variability of soil moisture holding capacity. 302 

 303 

To estimate the robustness of the method, we applied a split-sample validation into a 304 

testing and a training sample. 70% of the grid cells (15636 data points) were selected for 305 

training the RF model, and the remaining 30% (6701 data points) for testing. The results 306 

are presented for the testing set (Figure 4). The performance in terms of Nash for the 307 
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SMA model with A estimated by Random Forests or soil map is very similar, with mean 308 

Nash equal to 0.86 (median = 0.89) with RF and 0.81 (median = 0.85) with soil maps. The 309 

Nash values in validation (testing set) are low, or even negative, only for mountainous 310 

ranges, as expected. Overall, the spatial patterns of the Nash coefficients obtained with 311 

RF or ESDB are very similar too. There are no significant relationships between model 312 

efficiency and the aridity index or the presence of irrigated areas, as identified in the 313 

ECOCLIMAP2 land cover database.  314 

 315 

4.3 Estimation of dry soil conditions 316 

 317 

A further validation is made for daily soil moisture below the 10th percentile corresponding 318 

to dry soil conditions. We computed the Probability of Detection (POD), the False Alarm 319 

Ratio (FAR) and the Heidke Skill Score (HSS) summarizing the global efficiency to detect 320 

dry periods. For both approaches to estimate A, the mean POD is very high, close to 321 

97%, while the FAR is close to 3%. But these average results hide some discrepancy in 322 

the different regions (Figure 5 and 6): the efficiency is the highest for the North-Western 323 

region, the wettest areas of Spain, with the most important increase of HSS and POD, 324 

associated with a decrease in FAR, using Random forests, while in the South and Central 325 

parts of Spain the performance is lower on average and very similar with the two 326 

regionalization approaches. For the wettest parts of the Iberian Peninsula, the POD 327 

remains higher than 94% and the FAR lower than 6% and it is the region where the main 328 

improvements with RF are observed. As shown in Figure 5, the results with Random 329 

forests mostly follow the climate conditions, with improved estimations in the wettest 330 

regions of North and Northwestern part of Spain. For the estimation with EU soil maps, 331 

the results seem related to soil depth and to a lesser extent, land cover. Indeed, higher 332 

scores are found in regions with shallow soils, such as those of plutonic (Galician region, 333 

western parts of the Extremaduran mountainous ranges, Douoro basin) or metamorphic 334 

origins (western Cantabric range, north Iberian range, eastern-central regions and Sierra 335 

Morena in Andalucia) and also sedimentary regions with shallow limestones (eastern 336 

Cantabric mountains, Basque region, Southern Iberian range). On the opposite, lower 337 

scores are found in regions with the deepest soils (Guadalquivir floodplains, Mid- Tagus 338 

River, upper Duero, piedmonts of Cantabric in Leon and Palencia, most of Middle 339 

Navarra). With the exception of regions such as Bizcaya or coastal Portugal, with a dense 340 

forest cover (mostly Pinus radiata or pinaster) where soil depth is probably overestimated. 341 

On average, the RF estimation method outperforms the approach based on ESDB (Figure 342 

7), with more stable results in terms of HSS since all values obtained with RF are above 343 

0.4 while with ESDB for the grid cells the HSS scores drops to values close to zero. 344 

 345 

5. Summary and conclusions 346 

 347 
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In this study, a simple model allowing the monitoring of the soil moisture conditions 348 

saturation level was regionalized over the entire Iberian Peninsula, taking as a reference 349 

the soil moisture simulated by a high-resolution land surface model. Two different 350 

regionalization methods have been compared, either the direct estimation of soil water 351 

holding capacity from european soil maps or by Random Forests, using covariates such 352 

as altitude, temperature, precipitation, potential evapotranspiration and land cover. 353 

Results have shown that the estimation by Random Forest is more robust notably to 354 

estimate low soil moisture levels. Despite similar average performance between the two 355 

methods, the use of soil maps to set the water holding capacity reveals less stable results 356 

in some cases, most probably related to the uncertainties in the pedo-transfer functions 357 

used. While these pedo-transfer functions are process-based predictive functions of 358 

certain soil properties, Random Forest are not based on physical processes and are 359 

tailored to provide the best estimates in a statistical sense. Therefore, they provide a 360 

valuable alternative in contexts where high-resolution soil maps are not available since 361 

they rely on a set of covariates that can be reliably estimated from global databases, such 362 

as satellite or reanalysis products (Funk et al., 2015; Hersbach et al., 2020; Muñoz 363 

Sabater, 2020).  364 

 365 

It should be noted that the results presented herein are highly dependent on the quality 366 

of land surface simulations, in the absence of dense monitoring networks of in situ soil 367 

moisture data, thus these results suffer from the same limitations as LSMs, notably, the 368 

lack of human processes (irrigation). However, new remote sensing irrigation estimates 369 

are being developed (Massari et al., 2021), as a consequence, once the RF model is 370 

trained, irrigation estimations could be added to the precipitation forcing data in order to 371 

include the human impacts on soil moisture estimations. The results show that this 372 

approach allows us to cheaply extend the value of high resolution LSM simulations to 373 

areas where no LSM is implemented (ie. north Africa), as long as the climate conditions 374 

belong to the range of values used to train the model, mostly in terms of precipitation and 375 

potential evapotranspiration ranges. Thus, the model train over the Iberian Peninsula 376 

could be applied to other similar areas such as North Africa, Italy or Greece. As a 377 

perspective, other simulations from countries where high resolution LSM simulations are 378 

available, such as France or the USA, could be added to the database in order to expand 379 

the coverage over different physiographic and climate contexts (Ma et al., 2021). 380 

Consequently, the benefits of LSM simulations of soil moisture could be expanded to 381 

other areas, provided that suitable forcing datasets are available. Furthermore, if public 382 

meteorological and hydrological organizations were to create soil moisture observation 383 

networks, cleverly designed to cover the most relevant climates of their countries, this 384 

approach could be used to train the model using these observations and then regionalize 385 

the results to the rest of the territory, thus, converting an in-situ observation dataset into 386 

a gridded dataset with a much greater spatial coverage. 387 
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TABLE 698 

 699 

Table 1: Contingency table of the comparison between forecasts and observations or 700 

any two analyses. The symbols a–d are the different numbers of cases observed to 701 

occur in each category. 702 

 703 

 Observations 

Forecast 1 0 

1 a (hit) b (false alarm) 

0 c (miss) d (correct rejection) 

 704 

FIGURES 705 

 706 

 707 

 708 

 Figure 1: Efficiency of the SMA model to reproduce soil moisture from SURFEX  709 

 710 

 711 

 712 
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 713 

Figure 2: Map of the calibrated values of the A parameter of the SMA model 714 

 715 

 716 

 717 

Figure 3: Relative importance of each predictor (Alt= altitude, P= precipitation, PET= 718 

potential evapotranspiration, T=temperature, LC=land cover classes) in the Random 719 

Forest method 720 

 721 
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 722 

 723 

 724 

Figure 4: Nash efficiency coefficient obtained for the testing set, with the A parameter of 725 

the SMA model estimated by RF (left) or ESDB (right) 726 

 727 

 728 

 729 

 730 

Figure 5: Validation results in terms of HSS, POD and FAR with A estimated with either 731 

Random Forests or European soil database.  732 
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 733 

 734 

 735 

 736 

Figure 6: Boxplot of the HSS obtained with RF or EU soil maps. The limits of the box 737 

represent the 25th and 75 percentiles, the line in the middle refers to the median, and 738 

the limits of the whiskers extend to the minimum and maximum values.  739 

 740 

 741 
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