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Landslides affects the slopes of all continents, and are serious menace to people, property and the 9 

environment. But landslides are different from other natural hazards. Unlike volcanos, landslides 10 

do not threaten human civilization (Papale and Marzocchi, 2019). Unlike tsunamis, they do not 11 

affect simultaneously thousands of kilometres of coastlines – although a submarine landslide in 12 

Norway has caused a tsunami that affected Scotland (Dawson et al., 1988). Unlike floods and 13 

earthquakes, they do not cause hundreds of thousands of casualties in a single event – although a 14 

landslide has killed thousands in Peru (Evans et al., 2009), and a few debris flows tens of thousands 15 

in Colombia (Wieczorek et al., 2001). Compared to other geological and hydrological hazards, 16 

landslides are subtle, they frequently go unnoticed, and their consequences are underestimated. 17 

This hampers the design and implementation of effective risk reduction strategies.  18 

Like for other hazards, the design and implementation of effective risk reduction strategies depend 19 

on the capability to predict (i.e., forecast, anticipate, project) landslides and their consequences. I 20 

have argued that “our ability to predict landslides and their consequences measures our ability to 21 

understand the underlying physical […] processes that control or condition landslides, as well as 22 

their spatial and temporal occurrence” (Guzzetti, 2021). This assumes that landslide prediction is 23 

possible; something that has not been proved (or negated), theoretically. Still, there is nothing in 24 

the literature that prevents landslide prediction; provided that one clarifies the meaning of 25 

“landslide prediction” (Guzzetti, 2021), and the prediction is scientifically based (Guzzetti, 2015).  26 

Given the assumption, I outline what I consider main themes to pursue to advance our collective 27 

ability to predict landslide hazards and risk, at all geographical and temporal scales (Figure 1). The 28 
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field is vast, and I limit my perspective to the hazards and risk posed by populations of landslides 29 

– i.e., many landslides caused by a triggering event, or by multiple events in a period. In this 30 

context, predicting landslide hazard means predicting where, when, how frequently, how many, and 31 

how large landslide populations are expected, and predicting landslide risk consists in anticipating 32 

the consequences of landslide populations to different elements at risk (Alexander, 2005; Glade et 33 

al., 2005; Galli and Guzzetti, 2007; Salvati et al., 2018). 34 

Predicting where landslides will occur is achieved through susceptibility modelling. A review of 35 

data-driven landslide susceptibility studies has shown that there is no shortage of methods for 36 

landslide spatial prediction. Rather, there is a clear lack of accurate environmental and landslide 37 

data, and of standards for the construction, validation, and ranking of the susceptibility models 38 

(Reichenbach et al., 2018). An earlier evaluation and review of landslide mapping methods 39 

(Guzzetti et al., 2012) further revealed the absence of standards for the preparation and the 40 

evaluation of landslide maps. I argue that the absence of standards reduces the credibility and 41 

usefulness of the landslide maps and the prediction modes (Guzzetti, 2021). The increasing 42 

availability of remote-sensing imagery, some of which repeated in time and free of charge, opens 43 

to unprecedented possibilities to prepare landslide maps for very large areas, including event and 44 

multi-temporal inventories, which are essential for the construction of space-time prediction 45 

models (Lombardo et al., 2020), to investigate the heritage of old landslides on new landslides 46 

(Samia et al., 2017), and to obtain accurate environmental data for susceptibility modelling. 47 

Predicting when or how frequently landslides will occur is done for short and for long periods. For 48 

short periods – hours to weeks – the prediction is obtained through process-based models, rainfall 49 

thresholds, or their combination. Process-based models rely upon the understanding of the physical 50 

laws controlling the slope instability conditions of a landscape forced by a transient trigger e.g., a 51 

rainfall, snow melt, seismic, or volcanic event. Thresholds are empirical or statistical models 52 

linking physical quantities (e.g., cumulated rainfall, rainfall duration) to the occurrence – or lack 53 

of occurrence – of known landslides. Reviews of the literature (Guzzetti et al., 2008; Segoni et al.; 54 

2018) have revealed conceptual problems and limitations with the definition and use of rainfall 55 

threshold models for operational landslide forecasting and early warning (Piciullo et al., 2018; 56 

Guzzetti et al., 2020) including e.g., the lack of standards for the definition of the thresholds and 57 

their associated uncertainty (Melillo et al., 2018), and the validation of the threshold models and 58 

of the early warning systems (Piciullo et al., 2017). The projection of the landslide frequency for 59 
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long periods – decades to millennia – is far more difficult and uncertain, as it depends on climatic 60 

and environmental characteristics that are poorly known, and difficult to measure and model 61 

(Gariano and Guzzetti, 2016). The literature on the analysis of historical landslide records remains 62 

meagre (Rossi et al., 2010), but the number of studies projecting the future occurrence of landslides 63 

is increasing.  64 

Predicting how many, and how large landslides are expected means anticipating the size (e.g., area, 65 

volume, length, width, depth) and number of landslides in an area – with size and number related 66 

in a landslide population. The information, essential to evaluate landslide hazard (Guzzetti et al., 67 

2005), is obtained constructing and modelling frequency and probability distributions of landslide 68 

sizes using data obtained from event landslide inventory maps (Malamud et al., 2004). The 69 

literature on the topic is limited, and with differences in the way the statistics are calculated. This 70 

hampers the possibility to compare statistics from different areas. Albeit models have been 71 

proposed to explain the probability size distributions (Katz and Aharanov, 2006; Stark and 72 

Guzzetti, 2009; Klar et al., 2011), further efforts are needed to explain the empirical distributions 73 

of landslide sizes observed in nature, and to evaluate their variability.  74 

By combining probabilistic information on where, when or how frequently, and how many or how 75 

large landslides are, one can evaluate landslide hazards (Guzzetti et al., 2005), for different 76 

landslide types. Assessing landslide hazard is important but, for social applications, what is needed 77 

is the estimation of the landslide consequences, which means assessing the vulnerability to 78 

landslides of various elements at risk (Alexander 1999; Galli and Guzzetti 2007), and evaluating 79 

landslide risk (Cruden and Fell, 1997; Glade et al., 2005; Porter and Morgenstern, 2013), including 80 

risk to the population (Petley, 2012; Froude and Petley, 2018; Salvati et al., 2018; Rossi et al., 81 

2019). Here, the limitation lays in the difficulty in obtaining data on landslide vulnerability, and 82 

reliable records of landslide events and their consequences (Petley, 2012; Froude and Petley, 2018; 83 

Salvati et al. 2018). Where the information is available, comprehensive landslide risk models can 84 

be constructed, and validated (Rossi et al., 2019). 85 

Ultimately, I note that in medicine – a field of science which I consider conceptually close to the 86 

field of landslide hazards and risk (Guzzetti, 2015) – the paradigm of “convergence research” is 87 

emerging (Sharp and Hockfield, 2017), where “convergence comes as a result of the sharing of 88 

methods and ideas … It is the integration of insights and approaches from historically distinct 89 
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scientific and technological disciplines” (Sharp et al., 2016). I maintain that to advance 90 

significantly the ability to predict landslide hazards and their consequences, the scientific 91 

community should embrace the “converge research” paradigm.  92 
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 194 
Figure 1. Space (lower x-axis) – time (y-axes) chart showing main geomorphological and geo-195 

mechanical landslide domains, and typical length-scale of main meteorological and geophysical 196 

triggers and drivers of populations of landslides. Coloured polygons show approximate sub-197 

domains for typical landslide hazards and risk mapping and modelling efforts. Modified after 198 

Guzzetti (2021). 199 
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