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Landslides are different from other natural hazards. Unlike volcanoes, they do not threaten human 9 

civilization (Papale and Marzocchi, 2019). Unlike tsunamis, they do not affect simultaneously 10 

several thousands of kilometres of coastline – although a submarine landslide in Norway has caused 11 

a tsunami to hit Scotland (Dawson et al., 1988). Unlike floods and earthquakes, they do not cause 12 

hundreds of thousands of casualties in a single event – although a landslide has killed thousands in 13 

Peru (Evans et al., 2009) and debris flows tens of thousands in Colombia (Wieczorek et al., 2001). 14 

But the human toll of landslides is high (Froude and Petley, 2018), and their economic and societal 15 

consequences are largely undetermined. Compared to other hazards, landslides are subtle, often go 16 

unnoticed, and their consequences are underestimated.  17 

As with other hazards, the design and implementation of effective risk reduction strategies depend 18 

on the ability to predict (forecast, project, anticipate) landslides. I have argued that “our ability to 19 

predict landslides and their consequences measures our ability to understand the underlying […] 20 

processes that control or condition landslides, as well as their spatial and temporal occurrence” 21 

(Guzzetti, 2021). This assumes that landslide prediction is possible; something that has not been 22 

demonstrated (or disproved), theoretically. Yet, there is nothing in the literature that prevents 23 

landslide prediction; provided that one clarifies the meaning of “prediction” (Guzzetti, 2021), that 24 

the prediction is scientifically based (Guzzetti, 2015), and that we understand the limits of the 25 

prediction (Wolpert, 2001). Efforts are needed to determine the limits of landslide predictions, for 26 

all landslide types (Hungr et al., 2014) and at all geographic and temporal scales (Figure 1).  27 
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Here, I outline what I consider to be the main problems that need to be addressed in order to 28 

advance our ability to predict landslide hazards and risk. The field is vast, and I limit my perspective 29 

to populations of landslides – that is, the hazards and risk posed by many landslides caused by one 30 

triggering event, or by multiple events in a short period. In this context, predicting landslide hazard 31 

means anticipating where, when, how frequently, how many, and how large populations of 32 

landslides are expected (Guzzetti et al., 2005; Lombardo et al., 2020; Guzzetti, 2021). Predicting 33 

landslide risk is about anticipating the consequences of landslide populations to different 34 

vulnerable elements (Alexander, 2005; Glade et al., 2005; Galli and Guzzetti, 2007; Salvati et al., 35 

2018). 36 

Landslides tend to occur where they have previously occurred (Temme et al., 2020). Therefore, 37 

one way to assess where they are expected is to map past and new landslides. The technology is 38 

mature for regional and even global landslide detection and mapping services based on the 39 

automatic or semi-automatic processing of aerial and satellite imagery; optical, SAR and LiDAR 40 

data (Guzzetti et al., 2012; Mondini et al., 2021). An alternative – and complementary – way is 41 

through susceptibility modelling; an approach for which there is no shortage of data-driven 42 

methods, but rather of suitable environmental and landslide data (Reichenbach et al., 2018). The 43 

increasing availability of satellite imagery, some of which repeated over time and free of charge 44 

(Aschbacher, 2017), opens unprecedented opportunities to prepare event and multi-temporal 45 

inventory maps covering very large areas, which are essential to build space-time prediction models 46 

(Lombardo et al., 2020), to investigate the legacy of old landslides on new ones (Samia et al., 2017; 47 

Temme et al., 2020), to obtain accurate thematic data for susceptibility modelling (Reichenbach et 48 

al., 2018), and to validate geographical landslide early warning systems (Piciullo et al., 2018; 49 

Guzzetti et al., 2020). However, the literature reveals a systematic lack of standards for 50 

constructing, validating, and ranking the quality of landslide maps and prediction models (Guzzetti 51 

et al., 2012; Mondini et al., 2021; Reichenbach et al., 2018). This reduces the credibility of the 52 

maps and models. A gap that urgently needs to be bridged (Guzzetti, 2021). 53 

Predicting when or how frequently landslides will occur can be done for short and for long periods. 54 

For short periods – from hours to weeks – the prediction is obtained through process-based models, 55 

rainfall thresholds, or their combination. Process-based models rely upon the understanding of the 56 

physical laws controlling the slope instability conditions of a landscape forced by a transient trigger 57 
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e.g., a rainfall, snow melt, seismic, or volcanic event (Bogaard and Greco, 2016, 2018). The major 58 

limitation of physically-based models is the scarcity of relevant data, which are hard to obtain for 59 

very large areas. New approaches to obtain relevant, spatially-distributed data are needed, as well 60 

as novel models able to extrapolate what is learned in sample areas to vast territories (Bellugi et 61 

al., 2011; Alvioli and Baum, 2016; Alvioli et al., 2018; Mirus et al., 2020).  62 

Thresholds are empirical or statistical models that link physical quantities (e.g., cumulative rainfall, 63 

rainfall duration) to the occurrence – or lack of occurrence – of known landslides. Reviews of the 64 

literature (Guzzetti et al., 2008; Segoni et al.; 2018) have highlighted conceptual problems with the 65 

definition and use of rainfall thresholds for operational landslide forecasting and early warning 66 

(Piciullo et al., 2018; Guzzetti et al., 2020), including the lack of standards for defining the 67 

thresholds and their associated uncertainty (Melillo et al., 2018), and for the validation of the 68 

threshold models (Piciullo et al., 2017, 2018; Guzzetti et al., 2020). The community needs shared 69 

criteria and algorithms coded into open-source software for the objective definition of rainfall 70 

events, of the rainfall conditions that can result in landslides, of rainfall thresholds (Melillo et al., 71 

2015, 2018), and for the validation of the threshold models (Piciullo et al., 2017). This will not 72 

only provide reliable and comparable thresholds, allowing for regional and global studies (Guzzetti 73 

et al., 2008; Segoni et al.; 2018), but also increase the credibility of early warning systems based 74 

on rainfall threshold models (Guzzetti et al., 2020). 75 

The projection of landslide frequency for long periods – decades to millennia – is much more 76 

difficult and uncertain, as it depends on climatic and environmental characteristics that are poorly 77 

know and difficult to measure and model (Crozier, 2010; Gariano and Guzzetti, 2016), as well as 78 

on the inherent incompleteness of the historical landslide records (Rossi et al., 2010). The literature 79 

on the analysis of historical landslide records remains scarce, but the number of studies projecting 80 

the future occurrence of landslides is increasing (Gariano et al., 2017; Peres and Cancelliere, 2018; 81 

Schlögl and Matulla, 2018; Patton et al., 2019; Schlögel et al., 2020; Gariano and Guzzetti, 2021). 82 

In this field, studies will be relevant if they compare analyses and validation methods in different 83 

areas. This requires the exchange of data and information. 84 

Predicting how many and how large landslides are expected means anticipating the size (e.g., area, 85 

volume, length, width, depth) and number of landslides in an area – with size and number correlated 86 
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in a population of landslides. This information is obtained by constructing and modelling 87 

probability distributions of landslide sizes obtained typically from landslide event inventory maps 88 

(Stark and Hovius, 2011; Malamud et al., 2004). The literature on the topic is limited, and with 89 

differences in the way the distributions are modelled. This hampers comparisons from different 90 

areas. Although models have been proposed to explain the probability size distributions (Katz and 91 

Aharanov, 2006; Stark and Guzzetti, 2009; Klar et al., 2011; Bellugi et al., 2021), further efforts 92 

are needed to explain the observed distributions of landslide sizes, and to evaluate their variability 93 

and uncertainty.  94 

By combining probabilistic information on where, when or how frequently, and how many or how 95 

large landslides are, one can evaluate landslide hazards for different landslide types. However, the 96 

existing models are crude, they work under assumptions that are difficult to prove (Guzzetti et al., 97 

2005), and the possibility to export them in different areas is limited, or untested. Novel efforts are 98 

needed to prepare reliable landslide hazard models (Lombardo et al., 2020; Guzzetti, 2021). 99 

Assessing landslide hazard is important but, for social applications what is needed is the estimation 100 

of the landslide consequences, which means assessing the vulnerability to landslides of various 101 

elements at risk (Alexander 1999; Galli and Guzzetti 2007), and evaluating landslide risk (Cruden 102 

and Fell, 1997; Glade et al., 2005; Porter and Morgenstern, 2013), including risk to the population 103 

(Petley, 2012; Froude and Petley, 2018; Salvati et al., 2018; Rossi et al., 2019). Here, the main 104 

limitation is the difficulty to obtain data on landslide vulnerability, and reliable records of landslide 105 

events and their consequences (Petley, 2012; Froude and Petley, 2018; Salvati et al. 2018). Where 106 

the information is available, comprehensive landslide risk models can be constructed, and validated 107 

(Rossi et al., 2019). It is important that efforts are made to collect reliable records of landslides and 108 

their consequences, and that the records are shared to test different risk models. 109 

Of the various factors governing landslide hazard the most uncertain and the one requiring more 110 

urgent efforts is the time prediction (when, how frequently), followed by the prediction of the size 111 

and number of expected failures. For both, multi-temporal inventories and landslide catalogues are 112 

essential to build innovative predictive models. To construct the records, systematic efforts are 113 

needed for landslide detection and mapping (Mondini et al., 2021). For susceptibility (where), the 114 

challenge is to prepare reliable regional, continental, or global assessments (Stanley and 115 
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Kirschbaum, 2017; Broeckx et al., 2018; Wilde et al., 2018; Mirus et al., 2020). Critical are also 116 

novel modelling frameworks combining the hazard factors (Lombardo et al., 2020). But the goal 117 

is to reduce risk (Glade et al., 2005). For that, vulnerability studies, improved early warning 118 

capabilities, quantification of the benefits of prevention, and better risk communication strategies 119 

are crucial (Guzzetti, 2018). Much work is needed on these largely unexplored subjects. 120 

Ultimately, I note that in medicine – a field of science conceptually close to the field of landslide 121 

hazard assessment and risk mitigation (Guzzetti, 2015) – the paradigm of “convergence research” 122 

is emerging (Sharp and Hockfield, 2017), where “convergence comes as a result of the sharing of 123 

methods and ideas … It is the integration of insights and approaches from historically distinct 124 

scientific and technological disciplines” (Sharp et al., 2016). The community of landslide scientists 125 

should embrace the paradigm of “converge research”, exploiting the vast amount of data, 126 

measurements, and observations that are available and will be collected, expanding the making and 127 

use of predictions, assessing the economic and social costs of landslides, designing sustainable 128 

mitigation and adaptation strategies, and addressing the ethical issues posed by natural hazards, 129 

including landslides (Bohle, 2019). I am persuaded that this will contribute to advancing 130 

knowledge and building a safer society (Guzzetti, 2018).  131 
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Figure 1. Space (lower x-axis) – time (y-axes) chart showing main geomorphological and geo-308 

mechanical landslide domains, and typical length-scale of main meteorological and geophysical 309 

triggers and drivers of populations of landslides. Coloured polygons show approximate sub-310 

domains for typical landslide hazards and risk mapping and modelling efforts. Modified after 311 

Guzzetti (2021). 312 
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