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Abstract. Myocardial infarctions (MI) are a major cause of death worldwide, and both high and low temperatures (i.e., heat

and cold) may increase the risk of MI. The relationship between health impacts and climate is complex and influenced by a

multitude of climatic, environmental, socio-demographic, and behavioral factors. Here, we present a Machine Learning (ML)

approach for predicting MI events based on multiple environmental and demographic variables. We derived data on MI events

from the KORA MI registry dataset for Augsburg, Germany between 1998 and 2015. Multivariable predictors include weather5

and climate, air pollution (PM10, NO, NO2, SO2, and O3), surrounding vegetation, as well as demographic data. We tested

the following ML regression algorithms: Decision Tree, Random Forest, Multi-layer Perceptron, Gradient Boosting and Ridge

Regression. The models are able to predict the total annual number of MI reasonably well (adjusted R2 = 0.62–0.71). Inter-

annual variations and long-term trends are captured. Across models the most important predictors are air pollution and daily

temperatures. Variables not related to environmental conditions, such as demographics need to be considered as well. This ML10

approach provides a promising basis to model future MI under changing environmental conditions, as projected by scenarios

for climate and other environmental changes.

1 Introduction

Myocardial infarctions (MI), are a major cause of cardiovascular related mortality and morbidity. The estimated prevalence of

MI worldwide in 2015 was close to 16 million, with 33,000 years lived with disability attributed to the condition (Vos et al.,15

2016). In light of ageing western societies as well as ongoing environmental and climatic changes, which have been identified
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as important risk factors, MI is likely to remain a considerable burden to health systems in the future (e.g., Khraishah et al.,

2022). It is therefore paramount to deepen the understanding of the complex interplay between environmental and other risk

factors and their effect on MI, and to estimate their expected future development.

Epidemiological research has shown that both high and low air temperatures (i.e., extreme cold and heat) temperature20

extremes can play an important role in triggering acute MI (Chen et al., 2019; Wolf et al., 2009; Sun et al., 2018). This is

especially apparent in winter when most of the MI events are observed. Most previous studies (e.g. with registry data) have

reported significant cold effects on MI occurrence (e.g., The Eurowinter Group, 1997; Schwartz et al., 2004; Wolf et al., 2009;

Bhaskaran et al., 2010) whereas fewer studies have observed increased risk of MI triggered by heat exposures so far (e.g.,

Bhaskaran et al., 2012; Madrigano et al., 2013; Chen et al., 2019). Severe periods of heat as encountered during heat waves are25

likely to occur with higher frequency, intensity, and duration due to anthropogenic climate change, even if limited to warming

levels between 1.5° and 2° (Sieck et al., 2020). Increasing levels of urbanisation entail higher levels of exposure to heat as well,

due to the urban heat island effect (e.g., Feng et al., 2014; Zhang et al., 2009). Air pollution is another environmental factor

known to potentially trigger MI after periods of intense short-term exposure (e.g., Peters et al., 2004; Mustafić et al., 2012) but

also to increase the risk in association with elevated long-term exposure (Cesaroni et al., 2014; Wolf et al., 2021; Rajagopalan30

et al., 2018). Moreover, the elderly are particularly vulnerable to MI, exacerbating the potential adverse effects in light of the

demographic ageing expected in developed countries, such as in Germany (Schmidt et al., 2013; Rai et al., 2019).

A key issue in understanding current and future health impacts is the inclusion of a multitude of processes and circumstances

that influence the health outcomes (Roth, 2020), in quantitative models. For MI, these include the occurrence of high and

low temperature events, air quality, the presence of water bodies and vegetation and characteristics of the built environment.35

Although the relevance of humidity for MI has not been confirmed (e.g., Schwartz et al., 2004), it is often included when

studying human health impacts (Davis et al., 2016). For instance, high temperatures are often perceived as more stressful under

very humid conditions. Hot and strongly saturated air carries less oxygen and interferes with transpiration as main mechanism

of cooling the human body (Havenith, 2005). Therefore, the same temperature can be perceived more straining if humidity is

high as well. Changes in the exposed population, such as their age, their health status and underlying diseases are important as40

well. Therefore, future health risks from climate change cannot only be estimated from changes in (extreme) weather, but it is

critically important to account also for all these other relevant factors (Vanos et al., 2020). Finally, health interventions such as

heat health action plans and improved healthcare have been shown to reduce health risks from extreme temperatures (see for

instance Achebak et al., 2019). But also policies related to climate change, such as reduced traffic emissions, are expected to

lead to a reduction in disease burden (Laverty et al., 2021).45

For more reliable estimations of potential future risks, multiple variables must be incorporated into prediction models. In

addition, several of the relations between environmental and other factors, and health outcome are only partially known. This

is where data-driven approaches are particularly useful, as they can provide accurate estimations of complex processes, taking

up many variables and also account for complex and non-linear relations. Machine Learning (ML) approaches are now being

tested widely for environmental studies (Reichstein et al., 2019), and they are also increasingly used to estimate social and50

economic impacts of environmental extremes such as floods and windstorms (Merz et al., 2013; Wagenaar et al., 2017, 2021).
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ML however, has only recently been applied to health impact modeling. Several studies have employed statistical methods as

well as ML to predict infectious diseases, such as malaria transmissions (Zinszer et al., 2012; Sewe et al., 2017). Zhang et al.

(2014) studied heat-related mortality, and identified relevant temperature and humidity variables using Random Forests. Other

studies applied ML to evaluate the risk for MI, or to predict acute MI based on data such as patient history, blood markers, or55

electrocardiogram, but lack an environmental dimension (e.g., Tamarappoo et al., 2021; Commandeur et al., 2020).

In this study we employ several ML algorithms in a data-driven setting, using a range of meteorological, environmental,

demographic and health variables on preceding days. We estimate the importance of the predictive variables in the models. We

also assess the effects on different sub-groups, depending on location (urban/rural) as these may exhibit different vulnerabilities

(Gabriel and Endlicher, 2011), and patient characteristics (age, smoking, and diabetes). The ML models that are presented can60

be used to estimate future health outcomes, using a set of scenarios for changes in climatic, environmental and demographic

variables. Instead of using an approach based on time series modelling (see e.g., Armstrong, 2006; Chen et al., 2018), we

employ multivariate ML regression models. These models do not require the presupposition of a known exposure-response

relationship. Also, our study is aimed towards developing models to make long-term projections at climate-timescales (30

years). At such timescales underlying statistical properties may change gradually which would not be reflected by any pre-65

scribed exposure-response function based on historic or current data. Contrary to other studies, we also do not account for

seasonal effects. Instead, we solely rely on a data-driven approach in which we make no a priori assumptions about the rela-

tionship between features and the health outcome. While this does not allow for an explicit decomposition of the time series

into, e.g., trend, seasonality and random effects, it might generalize better when applied to an ensemble of climate simulations

in which the statistics of the features may have changed drastically compared to the historical training data.70

We expect that none of the risk factors that are included in our models is strong enough to directly trigger MI in an otherwise

healthy person. Instead, these environmental and demographic factors must be assumed to increase the statistical likelihood of

vulnerability to MI over longer periods of time. Many of the risk factors that we cover in this study can modify this individual

likelihood of suffering from MI. In light of this, we do not expect for the models to be able to accurately provide predictions on

a daily basis. However, our research motivation is to eventually estimate the long-term tendencies in MI due to climate change.75

We therefore decided to aggregate our model results on an annual basis. This should allow for some of the inherent randomness

to average out and allow a more statistical view on MI occurrence over annual and interannual timescales.

In Section 2, we present the methods used to develop the ML models. In Section 3, we describe the input data for our data-

driven approach. In Section 4 the results of the simulations and their performance are given. In Section 5 we discuss the results

and give an outlook for using the models to project future MI events, and finally in Section 6 we provide the conclusions.80

2 Methods

In this section, we present the approach to modelling the occurrence of MI events from a large variety of data and discuss

the ML methods that were applied. We also consider correlations among the features and describe how we selected suitable

parameters for the ML algorithms.
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2.1 A supervised learning problem for MI events85

ML models can comprise of classification or regression based algorithms. In this study, we focus solely on regression methods.

The registry data is case-only, i.e., by design each participant is bound to have an MI.

The target variable in our case is the time series of daily events of MI observed in the study region. In addition, the co-

occurring environmental variables that have a plausible causal relation to this target variable are collected and used as predictors

in the training process. We use the scikit-learn package for performing the calculations (see Pedregosa et al., 2011; Pedregosa,90

F. et al.). The figures use colors chosen with disability-friendliness in mind (Crameri et al., 2020).

For any given day d let yd be the number of MI events and xi,d the value of the i-th predictive variable on that day (e.g.,

daily maximum temperature or daily mean PM10). To work with standard regression algorithms, a fixed number of features

must be selected and together with the target value yd be provided as training input. The variables xi,d represent a time series

and therefore only a subset of them should be selected as a feature of the regression problem, namely the conditions on the day95

of prediction. Past conditions, however, might also have an influence on current events, both long and short term. The sliding

window method allows for this by selecting the features with a lag n, referred to as the window size. The merits of allowing

for shorter or longer memories are difficult to estimate. For instance, the effects of extremely high temperatures on MI are

generally expected to be short-term (Breitner et al., 2014), ranging from immediate effects to up to three weeks lag. The vector

of features, i.e., the training (or test) instance on day d, is then given as:100

xd = (x1,d−n+1,x1,d−n+2, . . . ,x1,d,x2,d−n+1, . . . ,x2,d,xm,d−n+1, . . . ,xm,d)

where n is the windows size and m the number of variables. Each predictive variable then yields n features and the total

number of features for this problem is n ·m. Accumulating the xd and yd for all days into a matrix X and a vector y yields

input that can directly be used with the scikit-learn regression algorithms. We applied the five ML methods and associated

scikit-learn classes, listed in Table 1 with their abbreviations as used in the remainder of this paper. Note that some features

such as the slowly changing demographic variables, were not subject to the sliding window and instead simply used the value105

on the day of prediction. For this study, after testing different lags between 1 and 21 days, we exclusively used a lag of n= 3

days as this resulted in the best overall scores. However, in order to account for possibly longer lasting (see Sun et al., 2018)

cold effects, we added a predictor using the 21-day rolling mean of the minimum temperature.

Note that throughout this paper, we use the terms predictor and feature in an interchangeable manner, namely to refer to the

features of the supervised learning problem derived above: the vector X and its components.110

We also added a random feature to be able to use its importance as a benchmark. Predictors less important than the random

feature can be assumed to be irrelevant. Finally, we added three time variables, namely the day of the week, the day of the year

and the current month.
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Regression Method Abbreviation scikit-learn Class Version

Decision Tree DTR sklearn.tree.DecisionTreeRegressor 0.23.2

Random Forest RF sklearn.ensemble.RandomForestRegressor 0.23.2

Gradient Boosting GBR sklearn.ensemble.GradientBoostingRegressor 0.23.2

Ridge Regression RR sklearn.linear_model.Ridge 0.23.2

Multi-layer Perceptron MLP sklearn.neural_network.MLPRegressor 0.23.2
Table 1. Regression methods used and associated scikit-learn classes.

2.2 Scaling and random split

Different magnitudes of the features can have adverse effects as the results could be biased towards those variables given in115

nominally large units relative to others. To avoid this, we apply the sklearn.preprocessing.StandardScaler class to the input,

resulting in features that are centered around 0 with unit variance. Second, we withhold parts of the data from the training to

have independent data instances for validation. We apply sklearn.model_selection.train_test_split with shuffle, resulting in a

random 75%/25% split of the data in training and test portions. The 25% of data not used for training the algorithms are used

for validation. Splitting the data randomly means that the underlying time series lose their natural temporal order. This has120

implications when visualising and interpreting model results that we will cover in a later section, but it reduces the likelihood

of autocorrelations (e.g., seasonal signals) present in the time series that could result in overoptimistic predictions. In order

to split the data randomly, the random number generator has to be initialised with a seed. We found that different random

seeds can result in significantly different results. To avoid reporting results that are strongly dependent on the chosen seed, we

repeated all calculations with 100 randomly selected seeds. The result with the R2-score closest to the average score of the125

ensemble was then selected as a representative example of model capability. Moreover, as the dependency on the random seed

is likely related to unbalanced splits, we employed a simple stratification strategy. The data is stratified along the number of

MI occurrences observed, i.e., data points with the same number of MI are split among test and training in a representative

way. This is especially important for rare events, such as 5 or more MI in one day. The dependency on the random seed was

substantially reduced in this way, but significant differences between different seeds could still be observed.130

2.3 Feature Importance

It is useful to evaluate the relative importance of different features, i.e., to measure the contribution a given feature makes

to the overall prediction. In this study, we use the built-in variable importance capabilities provided by scikit-learn package,

yielding a number between 0 and 1 for each feature. The sum of all individual contributions is always equal to 1. For RR we

simply relate the magnitude of the trained weights (coefficients) of the model to their associated predictors. Here, care must135

be taken to consider the relative magnitudes of the predictors, but this has been addressed in our study by scaling the input

data. For DT, RF and GBR the importance is based on the normalized total impurity decrease, i.e., a measure of the quality

of splits associated with a given feature, aggregated across the whole tree or the ensemble of trees respectively. For MLP no
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variable importance is provided by scikit-learn and we therefore constrained this part of the analysis to the four aforementioned

algorithms.140

2.4 Feature reduction

Correlated features can lead to an overemphasis of their influence on the target variable. This can be counteracted by choosing

only one of the correlated features, usually the one that has the strongest correlation with the target variable. In our case,

we aimed to include as many variables as possible that could reasonably have an effect on MI. The downside is that some

features, for instance maximum, minimum, and mean temperature, are highly correlated on a daily basis. A visualisation of145

the correlation between the predictors used in this study is shown in appendix Figure A8. To address this issue, we tested the

option of transforming the data to a smaller feature space using principal component analysis (PCA). The resulting principal

components are uncorrelated to each other and the risk of introducing spurious or overly strong relationships into the training

data is reduced while retaining most of the original information. We used sklearn.decomposition.PCA and opted to retain at

least 98% of the variance. Having the principal components as optional features allowed us to compare predictions with PCA150

to estimate the potential adverse effects of correlations present in our data. The results using the PCA data (not shown here)

did not improve, suggesting that using the original set of features does not introduce spurious relations. Moreover, using PCA

leads to a reduction of interpretability, as the principal components are linear combinations of the original features, without a

clear relation to the original variables.

2.5 Hyperparameter optimisation155

The ability of the ML algorithms listed in Table 1 to produce accurate predictions is dependent on the selection of appropriate

hyperparameters. These parameters generally control specific aspects of the underlying methods, such as the maximum depth

of a decision tree, the number of neurons in a layer, or the strength of regularisation. With regularisation, a penalty is added as

model complexity increases, which helps to avoid overfitting. In this study, we used the sklearn.model_selection.GridSearchCV

class to optimise hyperparameters over predefined parameter spaces with 5-fold cross validation. We used the adjusted R2 as160

the governing score to make decisions on optimal parameters. The parameter set with the best overall score is selected. Using

cross-validation allows to produce more robust generalisation error estimates without having to reserve a dedicated cross-

validation set that would not be available for training. Moreover, by using folds based only on 75% of the training data, no

information from the remaining 25% data is used for optimising the models and validation through parameter selection.

Due to substantial computational expense, we only optimised over rather sparse parameter spaces and a limited number of the165

available parameters. Table 2 shows a list of the selected hyperparameters for all the methods used as well as their optimised

values. To speed up the calculations we used the Intel® extension package for scikit-learn, called scikit-learn-intelex.
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Hyperparameters random_state max_depth max_features min_sample_leaf min_sample_split n_estimators alpha learning_rate max_iter activation parallel

DTR 429 10 log2 64 2 - - - - - no

RF 371 5 log2 2 5 100 - - - - yes

GBR 357 3 log2 64 2 100 - - - - no

RR 0 - - - - - 5000.0 - - - yes

MLP 419 - - - - - 5.0 constant 2500 logistic yes

Table 2. Optimised hyperparmeters marked with grey cells

3 Data

The dataset used in this study is highly heterogeneous along many dimensions, with differences ranging from file format,

metadata conventions, spatial coverage (e.g., regional, local) and resolution, to temporal frequency (e.g., daily, monthly, annual)170

and representation (e.g., raster, polygon and point data). In this section, we give an overview of the data used in this study and

describe the workflow applied to homogenise and prepare these. Table 3 lists all environmental and demographic predictive

variables that were used for this study in addition to the MI data, as well as the source datasets and associated references.

3.1 KORA MI registry

The health dataset for our study is the KORA/MONICA MI Registry (see Tunstall-Pedoe et al., 1994; Holle et al., 2005),175

comprising records of MI events that occurred within the study region from 1985 to 2015. These data were collected at the

hospitals in the Augsburg region. Each record contains the date of the MI occurrence, age and sex of the patient. Depending

on availability, complementary information is given, such as the patients’ residential county (Landkreis), their body mass

index (BMI), smoking status, and preexisting conditions such as diabetes. Although no detailed information is provided on the

location of the patient during an MI event, they can be assigned to either the urban (City of Augsburg) or one of the two rural180

counties (Landkreise) of the study region (Landkreis Augsburg and Aichach-Friedberg). As pointed out earlier, the individual

patient-specific data could not be used as predictive data due to the nature of the regression approach, which aims to predict

the gross number of MI in the population. It is, however, possible to use these data to confine investigations to subgroups, e.g.,

to inhabitants of either urban or rural areas, and also to the elderly, or to smokers, albeit at the cost of being limited to a smaller

subset of the overall data. In total the number of recorded MI is n= 34,618. Until 2008 the study was limited to participants185

of up to 74 years of age, with n= 30,081 records total in that category. Figure 1 shows the aggregated number of MI per year

and the mean annual cycle for the population aged under 75. The yearly maximum in MI is observed during the winter months,

whereas the summer time shows the lowest occurrences. To generate the ground truth for our regression problem, we counted

the total daily number of MI observed in the KORA study and used the resultant time series as input for the ML algorithms.
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Variable Abbreviation Unit Time period Resolution Dataset Reference

MI events (DONSET) MI # 1985-2015 District, daily KORA Helmholtz Zentrum München

Maximum temperature TXK °C 1985-2015 Station, daily DWD Deutscher Wetterdienst (DWD)

Mean temperature TMK °C 1985-2015 Station, daily DWD Deutscher Wetterdienst (DWD)

Minimum temperature TNK °C 1985-2015 Station, daily DWD Deutscher Wetterdienst (DWD)

21-Day rolling mean minimum temperature TNK21D °C 1985-2015 Grid, daily This study –

Relative humidity UPM % 1985-2015 Station, daily DWD Deutscher Wetterdienst (DWD)

Apparent temperature ATMK °C 1985-2015 Grid, daily This study –

Maximum apparent temperature ATXK °C 1985-2015 Grid, daily This study –

Minimum apparent temperature ATNK °C 1985-2015 Grid, daily This study –

Vegetation index NDVI - 1998-2015 1 km2, 10-daily NDVI v2 Copernicus Global Land Service (CGLS)

Nitrogen oxide NO ppm 1993-2015 Station, daily LÜB Bayerische Landesamt für Umwelt

Nitrogen dioxide NO2 ppm 1993-2015 Station, daily LÜB Bayerische Landesamt für Umwelt

Sulfur dioxide SO2 ppm 1980-2015 Station, daily LÜB Bayerische Landesamt für Umwelt

Ozone O3 ppm 1990-2015 Station, daily LÜB Bayerische Landesamt für Umwelt

Particulate matter PM10 ppm 1980-2015 Station, daily LÜB Bayerische Landesamt für Umwelt

Male population (total) mtotal # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Female population (total) ftotal # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age under 1 u1m, u1f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 1 to 4 1t4m, 1t4f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 5 to 9 5t9m, 5t9f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 10 to 14 10t14m, 10t14f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 15 to 19 15t19m, 15t19f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 20 to 24 20t24m, 20t24f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 25 to 29 25t29m, 25t29f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 30 to 34 30t34m, 30t34f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 35 to 39 35t39m, 35t39f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 40 to 44 40t44m, 40t44f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 45 to 49 45t49m, 45t49f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 50 to 54 50t54m, 50t54f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 55 to 59 55t59m, 55t59f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 60 to 64 60t64m, 60t64f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age 65 to 74 65t74m, 65t74f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Male/female population age over 75 o75m, o75f # 1985-2015 District, annual LfStat Bayerisches Landesamt für Statistik

Random variable RND fractional 1985-2015 Study area, daily This study –

Day of the week DOW 1–7 1985-2015 Study area, daily This study –

Month of the year MOY 1–12 1985-2015 Study area, daily This study –

Day of the year DOY 1–366 1985-2015 Study area, daily This study –

Table 3. Overview of predictive variables, source datasets and their origin.
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Figure 1. Number of annual MI (a) and mean annual cycle (b) in people aged under 75 from 1985 to 2015 for the study region (city of

Augsburg and counties Aichach-Friedberg and Augsburg).

3.2 Air temperature and humidity190

Air temperature close to the ground is the most important factor to consider as the most direct measure of human exposure to

heat and cold. The relatively small spatial scale of the study region (1998 km2) puts high demand on the data in terms of spatial

resolution and accuracy. At the same time, daily environmental data are required for our approach.

We opted to derive a 1x1 km grid for the study period between 1985 and 2015 from daily data of 22 DWD stations in the

vicinity of Augsburg and its neighboring districts. To this end, we applied universal Kriging with linear drift to the daily values195

at the temperature stations shown in Figure 2. The resulting gridded datasets (minimum, maximum and mean temperature)

were aggregated to the counties comprising the study region. This relatively simple approach proved to be accurate enough to

obtain realistic aggregated daily time series for the study region, as shown by the reasonable predictions in this paper.

We also include humidity features in the models to gauge their relative importance. Relative humidity was also gathered

from DWD and we applied the same Kriging procedure for spatial interpolation, as used for temperature. To account for200

possible effects of perceived heat stress expressed by simultaneous high humidity and high temperatures we included apparent

temperature. Measures of apparent temperatures relate a given temperature to the ambient humidity to account for the perceived

temperature differences between dry and humid conditions. The specifics of the computation can be found in the Appendix

A1.

In a next step, the data was aggregated for the three different counties within the model region, the urban and the two rural205

areas by computing weighted area means. The resulting daily time series can be readily used as input to the ML models, as

described in Section 2.

3.3 Air quality

Air pollution is usually a complex mixture but several particulate and gaseous pollutants can be considered in investigating its

effects on MI (e.g., Chen et al., 2018; Bourdrel et al., 2017; ?). From the "Bavarian Air Hygiene State Monitoring System"210

(LÜB) database (Bayerische Landesamt für Umwelt) we collected data on PM10, NO, NO2, Ozone (O3), and SO2 concentra-

tions at multiple stations across Bavaria at daily resolution.
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Table A1 in the Appendix gives an overview of the selected measuring stations and their urban or rural categories, the

corresponding pollutants data and their availability. Figure 2 gives an overview of the selected temperature and air quality mea-

surement stations. We determined the aggregated daily means by calculating the mean values of the aforementioned stations,215

taking into consideration their location proximity to the city centers, traffic-loaded inner-city streets, on industrial areas, on the

outskirts, or the large-scale background pollution.

The map shows that there are only few air quality stations within the study region (five blue circles, and an archived station with

red border circle). Since not all stations have been always active during our study period, we use merely the active stations.

However, if none of the regularly used station in the counties had recorded data on a given day, especially for the surrounding220

counties, alternative stations (light blue dots in Figure 2) with equal proximity settings from outside the study region were

used as replacements for the calculations. This has been achieved through an acceptable 10-15 percent error criterion for the

monthly value of alternative stations compared to the calculated monthly mean value of the county over a span of time provided

by the monitoring system. The calculated monthly mean time series have been provided in the appendix figure A9.

3.4 Vegetation225

The Normalised Difference Vegetation Index (NDVI) is an indicator of the greenness of the natural vegetation and other

vegetation types such as agriculture, parks and gardens. It is widely used for ecosystems monitoring. In this study NDVI

also is used as a proxy for shade as well as potential local cooling effect of vegetation by absorbing sunlight and through

evapotranspiration. The NDVI_v2_1km database of the Copernicus Global Land Service (CGLS) vegetation products is freely

available at a 1x1 km spatial resolution starting on April 1998 measured every ten days. We extracted the NDVI for our region230

and used a cubic spline interpolation to upscale the temporal resolution from 10 days to daily values. Given the very gradual

rate of change in vegetation cover and consequently the NDVI, we assume this interpolation does not produce large errors.

Note that due to lack of availability of NDVI data before 1998, training and testing of the algorithms had to be confined to the

time between April 1998 and December 2015.

3.5 Demographics235

The absolute number of MI does not only depend on various environmental risk factors but also on the size and characteristics

of the population. Disregarding other factors, any change in the absolute number of inhabitants would produce a similar

change in the number of cases of MI as well. Moreover, both age and sex are strongly correlated with health outcomes in

general, and specifically so for MI. Given trends of increasing urbanisation, rural depopulation, and an ageing society, it is

important to account for changes both in number of inhabitants and age stratification of the population over time. In addition,240

domestic migration reflected in relative changes between urban and rural parts, leading to differential changes in exposure to

environmental hazards in the Augsburg region, can be important as well. We collected data from the Bavarian Office of Statistics

that comprise annual values for the total number of inhabitants for each of the three counties, as well as the distribution of sex

and age in the population from 1985 to 2015. Overall, 17 different age groups are accounted for as listed in Table 3. Since the

algorithms require daily input values, a linear interpolation was applied to estimate the development within a given year.245
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Figure 2. Air quality (blue) and temperature (orange) stations in the region of interest (ROI) around Augsburg.

4 Results

4.1 Weekly predictions of MI events

Our models produce daily predictions of MI events based on the environmental and demographic features within the given

window size. We found that the models are not able to reproduce the daily variability of MI with sufficient accuracy. As an

example, we show the daily predictions aggregated to 7-day intervals to increase visibility in Figure 3. The resultant scores are250

given in Table 4 for both training and validation respectively.

Although the seven-day predictions suggest some skill for the training period, for the testing period the models do not

predict 7-day variations (or day-to-day predictions) accurately enough for practical purposes. The predictions are too close to

the mean and lack the variability displayed by the observations. An overview of average mean, standard deviation, minimum

and maximum daily predictions across models and for each subgroup considered is given in Table A8. This is likely related to255
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Figure 3. Daily predictions aggregated to 7-day intervals for all models. Shows predicted (crossed) and observed MI (dotted) for the training

(top) and test (bottom) sets.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adj R2 0.02 -0.22 0.24 -0.19 0.29 -0.26 -0.01 -0.21 0.04 -0.21

R2 0.1 0.06 0.3 0.08 0.35 0.03 0.06 0.07 0.11 0.07

Max-Error 15.8 14.17 13.58 14.26 13.63 15.58 14.95 13.82 15.36 14.03

RMSE 4.44 4.38 3.91 4.33 3.77 4.44 4.52 4.36 4.41 4.37

BIC 2419.29 979.57 2241.72 973.88 2194.26 986.19 2444.85 977.7 2409.56 978.11
Table 4. Training and test scores for 7-day aggregated daily predictions.

randomness as well as risk factors that affect MI events that were not considered in the models. For instance, the temperature or

air quality predictors may not sufficiently capture actual local circumstances, but also information about the built environment

and other conditions that cannot be easily accounted for is missing.

4.2 Annual predictions of MI events

Figure 4 shows the model performances on both the training and test sets as well as the actually observed MI as a reference for260

the five ML models given in Table 1. After training the models and performing the daily prediction on the test set, the results

were aggregated to annual sums. By aggregating the model results to an annual basis, some of the inherent randomness is

averaged out. Based on the annualised prediction results and time series of observed MI, the performance scores were derived

(see Table 5). The training scores demonstrate that the ML models are able to predict the year-to-year variations quite well, with

adjusted R2 scores between 0.87 and 0.94. The performance on the test dataset is relevant for assessing the generalisation error265
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for previously unseen data. In contrast to the training data, the results on the test set are less but still reasonably accurate, with

adjusted R2 scores between 0.62 and 0.71, showing that inter-annual variations and long-term trends are largely captured. The

RR and MLP models exhibit the best performance, showing that both well-tuned linear models as well as neural networks are

able to simulate the relations between environmental conditions and MI events. The DTR shows the lowest overall performance

by comparison.270
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Figure 4. Annually aggregated predictions of MI in the general population for all models. Predicted (solid) and observed MI (dashed) for

training (a) and test (b) sets.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adj R2 0.87 0.62 0.92 0.68 0.94 0.66 0.92 0.7 0.93 0.71

R2 0.87 0.64 0.93 0.69 0.94 0.67 0.92 0.71 0.93 0.72

Max-Error 37.37 41.91 28.09 36.83 23.89 38.33 33.96 36.59 35.21 36.11

RMSE 19.14 17.4 14.71 16.04 12.76 16.48 15.13 15.63 14.47 15.19

BIC 262.34 258.91 252.87 255.99 247.74 256.96 253.89 255.04 252.29 254.03
Table 5. Training and test scores on annual basis for the general population.
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4.3 Feature importance

In Figure 5 we show a condensed rendition of the feature importance where related variables have been grouped together

of each model; except for the MLP which does not support feature importance within the scikit-learn framework. Note that

variables subject to the sliding window were aggregated over the window length of three days to improve readability. Moreover,

features related to time such as the current month number and the day of the week were also aggregated to a single group. More275

detailed plots retaining the differentiation of all features and window days can be found in the Appendix (see Figures A6 and

A7). The latter Figure also shows that many of the original demographic features carry little to no weight. We therefore reduced

the granularity of the demographic data to the age groups 0−29, 30−49, 50−74 and > 75, generally yielding improved results.

While the performance of the models differs, some trends can be observed. Overall, the single most important group is

air quality, closely followed by temperature, demographic and time related predictors. Humidity as well as NDVI exhibit the280

lowest explanatory power. NDVI is ranked very closely to the random feature by all models.
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Figure 5. Aggregated feature importance for predicting MI for the general population. Related features have been grouped thematically.

Larger values indicate higher importance and per model the sum over all features equals one.

Compared to the environmental features that display strong daily variation the demographic predictors are subject to slow,

gradual change only. We therefore also conducted this experiment with all demographic features turned off. The results are

shown in Table A7. As evidenced by the reduction in scores (adj. R2 reduced from 0.67 to 0.62 on average) the demographic

predictors still make a relevant contribution to the overall result despite the lower temporal resolution of the input data.285

4.4 Subgroup analysis

The models were also applied to subgroups of the population, albeit at the expense of a reduced amount of available training

data (see Table 6) for an overview). For this analysis we selected a total of five subgroups: the urban (Augsburg city) and

rural population (two adjacent counties) respectively, the elderly (people aged between 60 and 74), patients with diabetes, and

active smokers. The data was reduced to include only participants with the associated attribute. The training procedure was290

then repeated as detailed for the general case on the resulting subsets. As expected, the validation scores dropped considerably

for all subgroups, likely a consequence of reduced amounts of training data. We refer to the Appendix for detailed results, but
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for the urban and rural subgroups adjusted R2 scores between 0.35 and 0.6 were observed in validation (see Tables A2 and

A3). Both subgroups, being of almost equal size, performed comparably well, with the urban population exhibiting slightly

lower scores however.295

Population n Age

all female male min max mean stdev

General 17134 4330 12804 25.0 74.0 62.34 9.42

Urban 8424 2248 6176 25.0 74.0 62.46 9.46

Rural 8710 2082 6628 25.0 74.0 62.22 9.39

Elderly 11470 3314 8156 60.0 74.0 67.94 4.26

Diabetic 5451 1521 3930 26.0 74.0 64.44 8.07

Smoker 3800 793 3007 26.0 74.0 55.72 9.76
Table 6. Overview of the number of cases as well as age and sex distribution for the different study populations considered.

The validation results for the elderly population (see Figure A3 and Table A4) are more accurate (adjusted R2 between 0.53

and 0.65) than for the urban and rural populations, although the number of training samples is much higher in both of those

cases.

The results for patients with diabetes are shown in Figure A4 and Table A5. As observed with the elderly, the scores for

patients with diabetes (adjusted R2 between 0.28 and 0.61) are comparable to those of the (much bigger) rural and urban300

subgroups, except for DTR which resulted in a substantially reduced score.

The results for the smoking population are shown in Figure A5 and the scores are given in Table A6. For this group adjusted

R2 validation scores drop to around 0.42 on average, indicating a less accurate fit than for all the other subgroups. This is

consistent with the smoker group being the smallest of the explored subgroups resulting in the lowest amount of training data

as well.305

Overall, the skill of the models is clearly reduced when limited to subsets of the overall data. The decrease in performance,

however, is quite different between subgroups, especially when taking into account their relative sizes. A particularly inter-

esting question is whether the variable importance for any one subgroup changes substantially in comparison to the general

population. Figure 6 shows the difference in variable importance for each of the subgroups in relation to that of the general

population. To aid readability related features have been grouped again. Considerable differences between subgroups, models310

and feature groups can be observed. For instance, most models agree that demographics, humidity and NDVI are particularly

important for predicting urban MI, while giving less weight to the temperature related features. The importance of time related

indicators reduced consistently over the general population. In some cases the importance of the random feature is also reduced,

indicating increased robustness of the results.

For the rural population the results suggest slightly increased relevance NDVI compared to the overall population. Tempera-315

ture and air quality mostly align with the results for the general population. The demographic indicators are less relevant when

compared to the general case, as are the time related features.
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For the elderly, the models are mostly undecided on air quality, with a slight tendency towards increased importance. The

weight of the demographic features is emphasized in comparison to the general case. Less importance is also attributed to

(apparent) temperature and humidity.320

For patients with diabetes, the models mostly agree that demographic features, NDVI and air quality are more important in

predicting MI for this group in comparison to the general population. On the other hand, (apparent) temperature, humidity and

time related features are ranked lower.

Lastly, for the group of active smokers the models mostly suggest an increased importance of air quality as well as demo-

graphic features for the prediction of MI. Humidity as well as (apparent) temperature and time-related features are overall325

considered less important.
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Figure 6. Change of feature importance for predicting MI in percent relative to the general population for every subgroup considered. Related

features have been grouped thematically.

5 Discussion

To our knowledge, this is the first study building and testing ML models that include more than only weather variables (such as

Zhang2009 for heat mortality) for predicting MI prevalence. The developed ML models have varying skill in predicting MI. At
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the daily to 7-day time scales, randomness seems too large to produce meaningful predictions. However, when predictions are330

aggregated to annual sums, the models are very well capable of reproducing the inter-annual variability of observed MI, as well

as the long-term trends, also for the validation datasets. This is comparable to the performance of methods used for predicting

malaria incidence (e.g., Sewe et al., 2017). In terms of performance scores the models achieve very similar outcomes both

in training and validation (see Table 5), indicating some robustness of the predictions. More qualitative differences emerge,

however, when investigating feature importance. There are substantial differences between the ML models in terms of some335

features (Figure 5). Most models rank air quality variations and temperatures among the most important features, but a large

spread between models can be observed. This indicates at least some inherent uncertainty.

Classical epidemiological approaches like general linear or additive models are mostly used for explaining the direction

and corresponding uncertainty of associations between environmental risk factors and health outcomes, thereby adjusting

for potential confounding factors. In case of potential non-linearities, the shape of the exposure-response curve is usually340

modeled as a smooth function. However, the models are limited in case of high correlation and/or high-dimensional interactions

between the covariates. The suggested ML approaches can (partly) handle these issues and offer the possibility to compare the

importance and predictive performance of a multitude of environmental predictors.

The training scores in many cases are close to the maximum, with adjusted R2 values greater than 0.85. This may be

indicative of overfitting, possibly opening room for improving further on the generalisation by applying stronger regularisation.345

While the models were adjusted by optimising the hyperparameters, not all possible parameter values have been explored. For

instance, in the case of the tree-based models pruning is an effective way to reduce overfitting, which was not applied here. For

the MLP and RR models regularising parameters were explicitly included in the optimisation, but possibly the ranges were not

wide enough to achieve the best trade-off between training and validation.

The model results are sensitive to the selection of the random seed that is used in making the initial train-test split. We350

found that changes in the random seed routinely had greater impact than the choice of hyperparameters. One way of dealing

with this would be to also include this random seed in the optimisation process. Currently, only the random seeds used for

randomly selecting the folds in cross-validation and in initialising the regressors are optimised. In light of the strong influence

of the initial split, however, we opted to instead test over a range of possible seeds and select the results closest to the average

performance of the models, not to overstate our results. The sensitivity to the initial split may indicate a lack of data, but is355

likely mostly due to unbalanced splits. We reduced this sensitivity by employing a simple but effective stratification strategy.

This reduced the variation across seeds, but does not entirely resolve the issue. Possibly, more intricate stratification approaches

may reduce the dependency even further.

We were able to indicate differences between different geographical regions, i.e., urban and rural populations. For instance,

humidity, demographics and NDVI become more important predictors for the urban population, compared to the overall popu-360

lation, at the expense of (apparent) temperature. The models could be further improved by increasing the spatial representation,

as the environmental predictors also would support this. Increased spatial representation would also allow for additional ex-

posure metrics to be established and more predictors, such as those related to building structures, their insulation and energy

efficiency.
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An additional area of possible improvement is the environmental data. Some variables such as the NDVI and the air quality365

indicators were not fully available for the period between 1985 and 2015, effectively limiting analysis to the period from

1998 to 2015. It is also possible to reduce the bias in the station data (temperature, air quality), for instance by using more

sophisticated interpolation methods or additional data sources such as from remote sensing.

All ML models results consistently demonstrated the importance of the air quality variables. Climate impact studies, espe-

cially related to MI, might therefore benefit from carefully analysing possible future developments of these variables. Electri-370

fication of traffic, reduction of fossil fuel and related changes might yield substantial improvements in air quality in the future.

Instead of just focusing on projected changes in, e.g., temperature and humidity, scenarios for air quality need to be considered

as well.

Current data availability from climate modelling, and demographic and environmental scenario development provide many

opportunities to use the developed ML models from our research for projecting future health risks. Ensembles of regional375

climate models provide climate projections with the highest spatial resolution. For the study region, EURO-CORDEX sim-

ulations (Jacob et al., 2014, 2020) can be considered as they provide the largest ensemble at a high spatial (0.11°, i.e., 12

km) and temporal (daily) resolution climate simulations that are available today. Several of the predictors used in this study

could be derived from the EURO-CORDEX ensemble, namely temperatures and in many cases relative humidity, as well as

dew-point temperatures. Alternatively, an ensemble of convection permitting decadal regional climate simulations at 3km,380

both for historic and future conditions, has been created within CORDEX FPS (e.g., Ban et al., 2021). Using an ensemble

of near-future (2035-2065) climate model simulations allow for scenario uncertainty, internal climate variability, and climate

model uncertainty to be assessed (Hawkins and Sutton, 2011) when comparing the changes in MI to the reference historical

simulations.

Demographic predictions until 2039 for the study region at county level can be obtained from the Bayerisches Landesamt385

für Statistik. Longer-term projections up until the year 2060, albeit contingent on different socio-economic scenarios and at

the level of the federal state of Bavaria, could be obtained from the Statistisches Bundesamt and be used to estimate the local

projected demographics in the study area. These projections would provide a robust basis to estimate potential developments

of the local population in the near-future.

For vegetation changes, as represented by NDVI, it can be reasonably assumed that the potential for increased greenness in390

the inner city is limited. Likewise, the potential for substantial effects from added green in the rural surroundings of Augsburg

is low, as it is already ubiquitous there. We therefore believe that moderate up- or downscaling of NDVI patterns observed in

the past and present may suffice to yield suitable estimates of possible future developments, such as adaptation measures of

increasing vegetation to reduce the urban heat island effect.

Air quality projections are related to the emission scenarios used by global climate models. For the CMIP6 climate models,395

estimates of regional surface air quality are available at the global model scale Turnock et al. (2020). These projections could

be used to scale the observed daily air quality observations, but more exhaustive and local projection data would be preferred.

To date, however, regional climate models do not feature the necessary complex chemical models to accurately model the
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transport, dispersion and diffusion of pollutants. A pragmatic up- or downscaling of the observed patterns from the global to

the local level currently appears as the most convenient approach.400

6 Conclusions

We have developed an approach for predicting MI events using multi-variable ML methods, based on environmental and

demographic data. Given that health outcomes depend on a multitude of factors, we applied a data-driven approach to establish

relevant relationships. We acquired data on MI events from the KORA MI registry in Augsburg, Germany, as well as weather,

environmental and demographic data from various sources to create a meaningful and consistent daily time series of the405

predictive features and the target variable.

Starting from these time series, a supervised learning problem for MI was formulated, accounting for lagged effects. Five

different regression algorithms were trained on this data, based on random 75/25 train-test splits for the period between April

1998 and December 2015. Various hyperparameters were used to optimise the performance of the algorithms, based on 5-fold

cross validation with respect to the R2 scores.410

Applying the trained models on the unseen test data allowed an estimation of the generalisation error of the models. We found

that the daily or weekly results do not meaningful and accurate predictions of MI events. We found that the annually aggregated

predictions agree well with the observed MI events, accurately reflecting observed trends and inter-annual variability of MI.

The match between observations and the model predictions is supported by the observed validation scores, with adjusted R2

scores ranging between 0.62 and 0.71. Overall, the models displayed comparable skill, but the Ridge Regression (RR) and415

Multi-layer Perceptron (MLP) models slightly outperformed the tree-based methods. The least accurate results were produced

by the Decision Tree (DTR) model. The feature importance showed that despite similar overall scores, the relative weight

can vary substantially between the models. This emphasised the necessity to consider ensembles of models, as it allows to

gauge the model spread and estimate inherent uncertainty. In this study, air quality tends to be the most important feature to

predict MI, closely followed by temperature, demographics, and apparent temperature. We also applied the models to various420

vulnerable subgroups, such as the elderly or patients with diabetes, resulting in only slightly reduced skill scores due to the

reduced amounts of training data.

Possibilities to improve the current approach are manifold, including the quality of the predictor data, e.g. Also, different ML

approaches could be explored, such as density estimation and Bayesian methods, yielding estimates of relative risk of different

groups to suffer MI. Such estimates could be more readily compared with commonly used epidemiological models than the425

regression models presented here. Overall, the models’ capacity to give reasonable estimates of possible future developments

of MI based on the predictive features appears robust. In a next step, the trained models can be applied to scenarios of future

climatic, environmental and demographic conditions. This will allow estimating future changes in MI taking into account

climatic, as well as other environmental and demographic expanding on limitations of earlier studies. These changes could also

include further improvements in air quality, or increased ’greening’ of urban environments with vegetation. Such estimates430
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will enable to gauge the sensitivity of the complex health-environment interactions, and benefits of proposed environmental

and health interventions in urban areas.

Appendix A

A1 Derivation of apparent temperature

We have computed the apparent temperature according to:

Ta =−2.653+0.994T +0.01537T 2
d

where Ta is the apparent temperature, T the near-surface mean temperature and Td the near surface dewpoint temperature

(see Davis et al., 2016). Dewpoint temperature, however, was not available for this study. To facilitate estimating the apparent

temperature we therefore first derived another humidity related quantity: vapour pressure. Applying again universal Kriging

with linear drift, we arrived at 1x1 km gridded data for vapour pressure, applying the Magnus formula to estimate the dewpoint

temperature:

Td =
b · v
a− v

where a= 7.5, b= 237.3, v = log10
(

pv

6.1078

)
with pv the vapour pressure.435

Applying these formulas to the gridded temperature and humidity data derived before yields a 1x1 km grid for apparent

temperature. Note that the formulas were independently applied to mean, maximum and minimum temperature. Subsequent

aggregation over the model region then completed the preparation of apparent temperature as input feature.

A2 Detailed subgroup and feature importance results
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Figure A1. Annually aggregated predictions of MI in the urban population for all models. Predicted (solid) and observed MI (dashed) for

training (a) and test (b) sets.
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Figure A2. Annually aggregated predictions of MI in the rural population for all models. Predicted (solid) and observed MI (dashed) for

training (a) and test (b) sets.
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Figure A3. Annually aggregated predictions of MI in the elderly population for all models. Predicted (solid) and observed MI (dashed) for

training (a) and test (b) sets.
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Figure A4. Annually aggregated predictions of MI in the diabetic population for all models. Predicted (solid) and observed MI (dashed) for

training (a) and test (b) sets.
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Figure A5. Annually aggregated predictions of MI in the smoking population for all models. Predicted (solid) and observed MI (dashed) for

training (a) and test (b) sets.
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Figure A6. Feature importance for predicting MI in the general population. Larger values indicate higher importance and per model the sum

over all features equals one.
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Stations:
Augsburg/Königsplatz

Time period(resolution)

Augsburg/BourgesPlatz

Time period(resolution)

Augsburg/LfU

Time period(resolution)

Augsburg/Karlstraße

Time period(resolution)

Augsburg/Haunstetten

Time period(resolution)

Andechs/Rothenfeld

Time period(resolution)

Kempten/Westendstraße

Time period(resolution)

Urban-Rural categories: Urban Rural

PM10

1980-1985 (daily)

1986-2004(3hr)

2005-2018(1hr)

1986-2004(3hr)

2005-2018(1hr)

2013-2014 missing

2000-2004(3hr)

2005-2018(1hr)

2010-2016 missing

2003-2004(3hr)

2005-2018(1hr)
-

2003-2004(3hr)

2005-2018(1hr)

1980-1985 (daily)

1986-2004(3hr)

2005-2015(1hr)

2015-2018 missing

PM2.5 - 2008-2018(1hr)
2008-2018(1hr)

2010-2016 missing
- - 2012-2018(1hr) 2014-2018(1hr)

NO 1980-2018(1hr) 1986-2018(1hr)
2000-2018(1hr)

2012-2013 missing
2003-2018(1hr) - 2003-2018(1hr) 1993-2018(1hr)

NO2 1980-2018(1hr) 1986-2018(1hr)
2000-2018(1hr)

2012-2013 missing
2003-2018(1hr) - 2003-2018(1hr) 1993-2018(1hr)

Ozone

(O3)
1980-1985(1hr) 2012-2018(1hr) 2000-2018(1hr) - 1985-1999(1hr) 2003-2018(1hr) 1990-2018(1hr)

CO
1980-1999(1hr)

only 2018(1hr)
1987-1999(1hr) only 2018(1hr) only 2018(1hr) 1980-1999(1hr) - 1980-1999(1hr)

SO2 1980-2018(1hr) 1986-2018(1hr)
2000-2018(1hr)

2012-2013 missing
2003-2018(1hr) - 2003-2018(1hr) 1993-2018(1hr)

BTX 1980-2018(1hr) 1986-2018(1hr)
2000-2018(1hr)

2012-2013 missing
2003-2018(1hr) - 2003-2018(1hr) 1993-2018(1hr)

Table A1. Air quality stations data availability and categories
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Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adj R2 0.67 0.35 0.8 0.48 0.87 0.45 0.69 0.5 0.57 0.47

R2 0.67 0.37 0.81 0.49 0.87 0.47 0.69 0.51 0.58 0.49

Max-Error 30.59 24.88 20.29 21.83 19.03 21.39 27.91 21.33 32.91 23.44

RMSE 16.69 12.7 12.84 11.38 10.39 11.68 16.12 11.15 18.93 11.43

BIC 257.41 247.59 247.97 243.61 240.34 244.55 256.17 242.9 261.94 243.78
Table A2. Training and test scores on annual basis for the urban population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adj R2 0.62 0.43 0.8 0.59 0.85 0.6 0.79 0.59 0.67 0.55

R2 0.62 0.45 0.8 0.6 0.85 0.61 0.79 0.6 0.68 0.57

Max-Error 40.97 19.97 25.12 23.09 28.21 21.38 29.16 22.84 42.1 25.38

RMSE 19.04 10.57 13.72 8.97 11.84 8.87 14.1 9.02 17.67 9.39

BIC 262.15 240.98 250.35 235.05 245.06 234.64 251.35 235.26 259.47 236.72
Table A3. Training and test scores on annual basis for the rural population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adj R2 0.88 0.53 0.93 0.65 0.94 0.61 0.9 0.65 0.89 0.64

R2 0.88 0.54 0.93 0.66 0.94 0.62 0.9 0.66 0.89 0.65

Max-Error 28.76 30.37 20.63 27.66 21.31 26.74 20.93 28.16 22.54 28.13

RMSE 13.7 12.94 10.54 11.21 9.93 11.75 12.6 11.19 13.39 11.34

BIC 250.3 248.24 240.87 243.1 238.74 244.78 247.29 243.03 249.48 243.51
Table A4. Training and test scores on annual basis for the elderly population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adj R2 0.93 0.28 0.87 0.59 0.92 0.5 0.79 0.61 0.63 0.54

R2 0.93 0.31 0.87 0.6 0.92 0.51 0.79 0.63 0.63 0.56

Max-Error 16.0 41.4 23.24 31.92 20.59 35.94 27.67 29.99 39.45 27.9

RMSE 8.16 12.55 11.06 9.53 8.58 10.5 13.79 9.22 18.49 10.03

BIC 231.64 247.15 242.61 237.24 233.44 240.73 250.55 236.04 261.1 239.08
Table A5. Training and test scores on annual basis for the diabetic population.
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Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adj R2 0.91 0.37 0.85 0.53 0.87 0.48 0.74 0.5 0.41 0.22

R2 0.91 0.39 0.85 0.55 0.87 0.5 0.74 0.51 0.41 0.25

Max-Error 14.43 13.3 20.14 14.42 18.04 14.08 23.77 15.78 39.55 23.37

RMSE 7.42 7.35 9.5 6.37 8.69 6.68 12.54 6.6 18.79 8.18

BIC 228.25 227.91 237.14 222.72 233.91 224.45 247.11 224.0 261.69 231.74
Table A6. Training and test scores on annual basis for the smoker population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adj R2 0.83 0.67 0.81 0.63 0.9 0.63 0.74 0.59 0.74 0.57

R2 0.83 0.68 0.81 0.63 0.9 0.64 0.74 0.6 0.74 0.58

Max-Error 39.97 34.42 47.65 38.81 28.72 38.79 56.42 40.22 53.93 40.96

RMSE 22.01 16.35 23.38 17.42 16.81 17.22 27.51 18.18 27.34 18.59

BIC 238.47 227.76 240.65 230.04 228.77 229.64 246.5 231.58 246.28 232.39
Table A7. Training and test scores on annual basis for the general population with demographic features turned off.

Subgroup Mean Stdev Min Max

Score Train Test Train Test Train Test Train Test

General Population 2.64 2.63 0.26 0.26 1.91 1.92 3.64 3.58

Urban 1.29 1.29 0.15 0.15 0.91 0.93 1.99 1.84

Rural 1.34 1.33 0.13 0.13 0.94 1.0 1.86 1.76

Elderly 1.77 1.76 0.21 0.21 1.15 1.23 2.77 2.51

Diabetic 0.85 0.85 0.13 0.12 0.5 0.53 1.4 1.28

Smoker 0.59 0.59 0.09 0.09 0.38 0.37 0.99 0.85
Table A8. Daily mean, standard deviation, minimum and maximum predictions across models for each subgroup.
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