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Abstract. Myocardial infarctions (MI) are a major cause of death worldwide, and both high 
and low temperatures (i.e., heat and cold) may increase the risk of MI. The relationship 
between health impacts and climate is complex and influenced by a multitude of climatic, 
environmental, socio-demographic, and behavioral factors. Here, we present a Machine 
Learning (ML) approach for predicting MI events based on multiple environmental and 
demographic variables. We derived data on MI events from the KORA MI registry dataset for 
Augsburg, Germany between 1998 and 2015. Multivariable predictors include weather and 
climate, air pollution ($\text{PM}_{10}$, $\text{NO}$, $\text{NO}_2$, $\text{SO}_2$, and 
$\text{O}_3$), surrounding vegetation, as well as demographic data. We tested the 
following ML regression algorithms: Decision Tree, Random Forest, Multi-layer Perceptron, 
Gradient Boosting and Ridge Regression. The models are able to predict the total annual 
number of MI reasonably well (adjusted $R^2=0.62$--$0.71$). Inter-annual variations and 
long-term trends are captured. Across models the most important predictors are air 
pollution and daily temperatures. Variables not related to environmental conditions, such as 
demographics need to be considered as well. This ML approach provides a promising basis 
to model future MI under changing environmental conditions, as projected by scenarios for 
climate and other environmental changes. 
 
Introduction 
Myocardial infarctions (MI) are a major cause of cardiovascular related mortality and 
morbidity. The estimated prevalence of MI worldwide in 2015 was close to 16 million, with 
33,000 years lived with disability attributed to the condition \citep{Vos2016}. In light of 
ageing western societies as well as ongoing environmental and climatic changes, which have 
been identified as important risk factors, MI is likely to remain a considerable burden to 
health systems in the future \citep{Khraishah2022}. It is therefore paramount to deepen the 
understanding of the complex interplay between environmental and other risk factors and 
their effect on MI, and to estimate their expected future development. 
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Epidemiological research has shown that both high and low air temperatures (i.e. extreme 
heat and cold) can play an important role in triggering acute MI \citep{Chen2019, Wolf2009, 
sun2018}. Most previous studies (e.g. with registry data) have reported significant cold 
effects on MI occurrence \citep[e.g.,][]{Eurowinter1997, Schwartz2004, Wolf2009, 
Bhaskaran2010} whereas fewer studies have observed increased risk of MI triggered by heat 
exposures so far (Bhaskaran 2012, Madrigano 2013, Chen 2019). Severe periods of heat as 
encountered during heat waves are likely to occur with higher frequency, intensity, and 
duration due to anthropogenic climate change, even if limited to warming levels between 
1.5\textdegree{} and 2\textdegree{} \citep{Sieck2020}. Increasing levels of urbanisation 
entail higher levels of exposure to heat as well, due to the urban heat island effect 
\citep[e.g.,][]{Feng2014, Zhang2009}. Air pollution is another environmental factor known 
to potentially trigger MI after periods of intense short-term exposure \citep[e.g., 
][]{Peters2004, Mustafic2012} but also to increase the risk in association with elevated long-
term exposure \citep[][]{Cesaroni2014, Wolf2021, Rajagopalan2018}. Moreover, the elderly 
are particularly vulnerable to MI, exacerbating the potential adverse effects in light of the 
demographic ageing expected in developed countries, such as in Germany 
\citep{Schmidt2013, Rai2019}. 
     
A key issue in understanding current and future health impacts is the inclusion of a 
multitude of processes and circumstances that influence the health outcomes 
\citep{Roth2020}, in quantitative models. For MI, these include the occurrence of high and 
low temperature events, air quality, the presence of water bodies and vegetation and 
characteristics of the built environment. Although the relevance of humidity for MI has not 
been confirmed \citep[e.g.,][]{Schwartz2004}, it is often included when studying human 
health impacts \citep{Davis2016}. For instance, high temperatures are often perceived as 
more stressful under very humid conditions. Hot and strongly saturated air carries less 
oxygen and interferes with transpiration as main mechanism of cooling the human body 
\citep{Havenith2005}. Therefore, the same temperature can be perceived more straining if 
humidity is high as well. Changes in the exposed population, such as their age, their health 
status and underlying diseases are important as well. Therefore, future health risks from 
climate change cannot only be estimated from changes in (extreme) weather, but it is 
critically important to account also for all these other relevant factors \citep{Vanos2020}. 
Finally, health interventions such as heat health action plans and improved healthcare have 
been shown to reduce health risks from extreme temperatures \citep [see for 
instance][]{Achebak2019}. But also policies related to climate change, such as reduced 
traffic emissions, are expected to lead to a reduction in disease burden \citep{Laverty2021}. 
 
For more reliable estimations of potential future risks, multiple variables must be 
incorporated into prediction models. In addition, several of the relations between 
environmental and other factors, and health outcome are only partially known. This is 
where data-driven approaches are particularly useful, as they can provide accurate 
estimations of complex processes, taking up many variables and also account for complex 
and non-linear relations. Machine Learning (ML) approaches are now being tested widely 
for environmental studies \citep{Reichstein2019}, and they are also increasingly used to 
estimate social and economic impacts of environmental extremes such as floods and 
windstorms \citep{Merz2013,Wagenaar2017, Wagenaar2021}. ML however, has only 



3 
 

recently been applied to health impact modeling. Several studies have employed statistical 
methods as well as ML to predict infectious diseases, such as malaria transmissions 
\citep{Zinszer2012,Sewe2017}. \citet{Zhang2014}, studied heat-related mortality, and 
identified relevant temperature and humidity variables using Random Forests. Other studies 
applied ML to evaluate the risk for MI, or to predict acute MI based on data such as patient 
history, blood markers, or electrocardiogram, but lack an environmental dimension 
\citep[e.g.,][]{Tamarappoo2021,Commandeur2020}. 
 
In this study we employ several ML algorithms in a data-driven setting, using a range of 
meteorological, environmental, demographic and health variables on preceding days. We 
estimate the importance of the predictive variables in the models. We also assess the 
effects on different sub-groups, depending on location (urban/rural) as these may exhibit 
different vulnerabilities \citep{Gabriel2011}, and patient characteristics (age, smoking, and 
diabetes). The ML models that are presented can be used to estimate future health 
outcomes, using a set of scenarios for changes in climatic, environmental and demographic 
variables. Instead of using an approach based on time series modelling \citep[see 
e.g.,][]{armstrong2006, Chen2018}, we employ multivariate ML regression models. These 
models do not require the presupposition of a known exposure-response relationship. Also, 
our study is aimed towards developing models to make long-term projections at climate-
timescales (30 years). At such timescales, underlying statistical properties may change 
gradually which would not be reflected by any prescribed exposure-response function based 
on historic or current data. Contrary to other studies, we also do not account for seasonal 
effects. Instead, we solely rely on a data-driven approach in which we make no a priori 
assumptions about the relationship between features and the health outcome. While this 
does not allow for an explicit decomposition of the time series into, e.g., trend, seasonality 
and random effects, it might generalize better when applied to an ensemble of climate 
simulations in which the statistics of the features may have changed drastically compared to 
the historical training data. 
 
We expect that none of the risk factors that are included in our models is strong enough to 
directly trigger MI in an otherwise healthy person. Instead, these environmental and 
demographic factors must be assumed to increase the statistical likelihood of vulnerability 
to MI over longer periods of time. Many of the risk factors that we cover in this study can 
modify this individual likelihood of suffering from MI. In light of this, we do not expect for 
the models to be able to accurately provide predictions on a daily basis. However, our 
research motivation is to eventually estimate the long-term tendencies in MI due to climate 
change. We therefore decided to aggregate our model results on an annual basis. This 
should allow for some of the inherent randomness to average out and allow a more 
statistical view on MI occurrence over annual and interannual timescales. 
 
In Section 2, we present the methods used to develop the ML models. In Section 3, we 
describe the input data for our data-driven approach. In Section 4 the results of the 
simulations and their performance are given. In Section 5 we discuss the results and give an 
outlook for using the models to project future MI events, and finally in Section 6 we provide 
the conclusions. 
 
Methods 
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In this section, we present the approach to modelling the occurrence of MI events from a 
large variety of data and discuss the ML methods that were applied. We also consider 
correlations among the features and describe how we selected suitable parameters for the 
ML algorithms. 
 
A supervised learning problem for MI events 
ML models can comprise of classification or regression based algorithms. In this study, we 
focus solely on regression methods. The registry data is case-only, i.e., by design each 
participant is bound to have an MI.  
 
The target variable in our case is the time series of daily events of MI observed in the study 
region. In addition, co-occurring environmental variables that have a plausible causal 
relation to this target variable are collected and used as predictors in the training process. 
We use the scikit-learn package for performing the calculations \citep[see][]{scikit-learn, 
scikit-web}. The figures use colors chosen with disability-friendliness in mind 
\citep{crameri2020}. 
 
For any given day $d$ let $y_d$ be the number of MI events and $x_{i,d}$ the value of the 
$i$-th predictive variable on that day (e.g., daily maximum temperature or daily mean 
$\text{PM}_{10}$). To work with standard regression algorithms, a fixed number of features 
must be selected and together with the target value $y_d$ be provided as training input. 
The variables $x_{i,d}$ represent a time series and therefore only a subset of them should 
be selected as a feature of the regression problem, namely the conditions on the day of 
prediction. Past conditions, however, might also have an influence on current events, both 
long and short term. The sliding window method allows for this by selecting the features 
with a lag $n$, referred to as the window size. The merits of allowing for shorter or longer 
memories are difficult to estimate. For instance, the effects of extremely high temperatures 
on MI are generally expected to be short-term \citep{Breitner2014}, ranging from 
immediate effects to up to three weeks lag. The vector of features, i.e., the training (or test) 
instance on day $d$, is then given as: 
 
$$x_d = \left(x_{1,d-n+1}, x_{1,d-n+2}, \ldots, x_{1,d}, x_{2,d-n+1},\ldots, x_{2,d}, x_{m,d-
n+1},\ldots, x_{m,d}\right)$$ 
 
where $n$ is the windows size and $m$ the number of variables. Each predictive variable 
then yields $n$ features and the total number of features for this problem is $n\cdot m$. 
Accumulating the $x_d$ and $y_d$ for all days into a matrix $X$ and a vector $y$ yields 
input that can directly be used with the scikit-learn regression algorithms. We applied the 
five ML methods and associated scikit-learn classes, listed in Table \ref{tab:methods} with 
their abbreviations as used in the remainder of this paper. Note that some features such as 
the slowly changing demographic variables, were not subject to the sliding window and 
instead simply used the value on the day of prediction. For this study, after testing different 
lags between 1 and 21 days, we exclusively used a lag of $n = 3$ days as this resulted in the 
best overall scores. However, in order to account for possibly longer lasting 
\citep[see][]{sun2018} cold effects, we added a predictor using the 21-day rolling mean of 
the minimum temperature. 
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 Note that throughout this paper, we use the terms predictor and feature in an 
interchangeable manner, namely to refer to the features of the supervised learning problem 
derived above: the vector $X$ and its components.  
  
 We also added a random feature to be able to use its importance as a benchmark. 
Predictors less important than the random feature can be assumed to be irrelevant. Finally, 
we added three time variables, namely the day of the week, the day of the year and the 
current month. 
 
TABLE 
 
Scaling and random split 
Different magnitudes of the features can have adverse effects as the results could be biased 
towards those variables given in nominally large units relative to others. To avoid this, we 
apply the sklearn.preprocessing.StandardScaler class to the input, resulting in features that 
are centered around $0$ with unit variance.  
 
Second, we withhold parts of the data from the training to have independent data instances 
for validation. We apply sklearn.model\_selection.train\_test\_split with shuffle, resulting in 
a random $75\%/25\%$ split of the data in training and test portions. The $25\%$ of data 
not used for training the algorithms are used for validation. Splitting the data randomly 
means that the underlying time series lose their natural temporal order. This has 
implications when visualising and interpreting model results that we will cover in a later 
section, but it reduces the likelihood of autocorrelations (e.g., seasonal signals) present in 
the time series that could result in overoptimistic predictions.  
 
In order to split the data randomly, the random number generator has to be initialised with 
a seed. We found that different random seeds can result in significantly different results. To 
avoid reporting results that are strongly dependent on the chosen seed, we repeated all 
calculations with 100 randomly selected seeds. The result with the $R^2$-score closest to 
the average score of the ensemble was then selected as a representative example of model 
capability.  
 
Moreover, as the dependency on the random seed is likely related to unbalanced splits, we 
employed a simple stratification strategy. The data is stratified along the number of MI 
occurrences observed, i.e., data points with the same number of MI are split among test and 
training in a representative way. This is especially important for rare events, such as 5 or 
more MI in one day. The dependency on the random seed was substantially reduced in this 
way, but significant differences between different seeds could still be observed. 
 
Feature Importance 
It is useful to evaluate the relative importance of different features, i.e., to measure the 
contribution a given feature makes to the overall prediction. In this study, we use the built-
in variable importance capabilities provided by scikit-learn package, yielding a number 
between $0$ and $1$ for each feature. The sum of all individual contributions is always 
equal to $1$. For RR we simply relate the magnitude of the trained weights (coefficients) of 
the model to their associated predictors. Here, care must be taken to consider the relative 
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magnitudes of the predictors, but this has been addressed in our study by scaling the input 
data. For DT, RF and GBR the importance is based on the normalized total impurity 
decrease, i.e., a measure of the quality of splits associated with a given feature, aggregated 
across the whole tree or the ensemble of trees respectively. For MLP no variable importance 
is provided by scikit-learn and we therefore constrained this part of the analysis to the four 
aforementioned algorithms. 
 
Feature reduction 
Correlated features can lead to an overemphasis of their influence on the target variable. 
This can be counteracted by choosing only one of the correlated features, usually the one 
that has the strongest correlation with the target variable. In our case, we aimed to include 
as many variables as possible that could reasonably have an effect on MI. The downside is 
that some features, for instance maximum, minimum, and mean temperature, are highly 
correlated on a daily basis. A visualisation of the correlation between the predictors used in 
this study is shown in appendix Figure \ref{fig:feature_corr_matrix}. To address this issue, 
we tested the option of transforming the data to a smaller feature space using principal 
component analysis (PCA). The resulting principal components are uncorrelated to each 
other and the risk of introducing spurious or overly strong relationships into the training 
data is reduced while retaining most of the original information. We used 
sklearn.decomposition.PCA and opted to retain at least $98\%$ of the variance. Having the 
principal components as optional features allowed us to compare predictions with PCA to 
estimate the potential adverse effects of correlations present in our data. The results using 
the PCA data (not shown here) did not improve, suggesting that using the original set of 
features does not introduce spurious relations. Moreover, using PCA leads to a reduction of 
interpretability, as the principal components are linear combinations of the original 
features, without a clear relation to the original variables. 
 
Hyperparameter optimisation 
The ability of the ML algorithms listed in Table \ref{tab:methods} to produce accurate 
predictions is dependent on the selection of appropriate hyperparameters. These 
parameters generally control specific aspects of the underlying methods, such as the 
maximum depth of a decision tree, the number of neurons in a layer, or the strength of 
regularisation. With regularisation, a penalty is added as model complexity increases, which 
helps to avoid overfitting. In this study, we used the sklearn.model\_selection.GridSearchCV 
class to optimise hyperparameters over predefined parameter spaces with 5-fold cross 
validation. 
We used the adjusted $R^2$ as the governing score to make decisions on optimal 
parameters. The parameter set with the best overall score is selected. Using cross-validation 
allows to produce more robust generalisation error estimates without having to reserve a 
dedicated cross-validation set that would not be available for training. Moreover, by using 
folds based only on $75\%$ of the training data, no information from the remaining $25\%$ 
data is used for optimising the models and validation through parameter selection.\\ 
Due to substantial computational expense we only optimised over rather sparse parameter 
spaces and a limited number of the available parameters. Table \ref{table:tuning} shows a 
list of the selected hyperparameters for all the methods used as well as their optimised 
values. To speed up the calculations we used the Intel\textregistered\ extension package for 
scikit-learn, called scikit-learn-intelex. 
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TABLE 
 
Data 
The dataset used in this study is highly heterogeneous along many dimensions, with 
differences ranging from file format, metadata conventions, spatial coverage (e.g., regional, 
local) and resolution, to temporal frequency (e.g., daily, monthly, annual) and 
representation (e.g., raster, polygon and point data). In this section, we give an overview of 
the data used in this study and describe the workflow applied to homogenise and prepare 
these. Table \ref{table:data_sources} lists all environmental and demographic predictive 
variables that were used for this study in addition to the MI data, as well as the source 
datasets and associated references. 
 
TABLE  
 
KORA MI registry 
The health dataset for our study is the KORA/MONICA MI Registry \citep[see][]{Tunstall-
Pedoe1994, Holle2005}, comprising records of MI events that occurred within the study 
region from 1985 to 2015. These data were collected at the hospitals in the Augsburg 
region. Each record contains the date of the MI occurrence, age and sex of the patient. 
Depending on availability, complementary information is given, such as the patients' 
residential county (Landkreis), their body mass index (BMI), smoking status, and preexisting 
conditions such as diabetes. Although no detailed information is provided on the location of 
the patient during an MI event, they can be assigned to either the urban (City of Augsburg) 
or one of the two rural counties (Landkreise) of the study region (Landkreis Augsburg and 
Aichach-Friedberg). As pointed out earlier, the individual patient-specific data could not be 
used as predictive data due to the nature of the regression approach, which aims to predict 
the gross number of MI in the population. It is, however, possible to use these data to 
confine investigations to subgroups, e.g., to inhabitants of either urban or rural areas, and 
also to the elderly, or to smokers, albeit at the cost of being limited to a smaller subset of 
the overall data. In total the number of recorded MI is $n = 34,618$. Until 2008 the study 
was limited to participants of up to $74$ years of age, with $n = 30,081$ records total in 
that category. Figure \ref{fig:mi_overview} shows the aggregated number of MI per year 
and the mean annual cycle for the population aged under 75. The yearly maximum in MI is 
observed during the winter months, whereas the summer time shows the lowest 
occurrences. To generate the ground truth for our regression problem, we counted the total 
daily number of MI observed in the KORA study and used the resultant time series as input 
for the ML algorithms.  
 
FIGURE 
 
Air temperature and humidity 
Air temperature close to the ground is the most important factor to consider as the most 
direct measure of human exposure to heat and cold. The relatively small spatial scale of the 
study region (1998 $\text{km}^2$) puts high demand on the data in terms of spatial 
resolution and accuracy. At the same time, daily environmental data are required for our 
approach.  



8 
 

 
We opted to derive a 1x1 km grid for the study period between 1985 and 2015 from daily 
data of 22 DWD stations in the vicinity of Augsburg and its neighboring districts. To this end, 
we applied universal Kriging with linear drift to the daily values at the temperature stations 
shown in Figure \ref{fig:all_stations}. The resulting gridded datasets (minimum, maximum 
and mean temperature) were aggregated to the counties comprising the study region. This 
relatively simple approach proved to be accurate enough to obtain realistic aggregated daily 
time series for the study region, as shown by the reasonable predictions in this paper. 
 
We also include humidityfeatures in the models to gauge their relative importance. Relative 
humidity was also gathered from DWD and we applied the same Kriging procedure for 
spatial interpolation, as used for temperature. To account for possible effects of perceived 
heat stress expressed by simultaneous high humidity and high temperatures we included 
apparent temperature. Measures of apparent temperatures relate a given temperature to 
the ambient humidity to account for the perceived temperature differences between dry 
and humid conditions. The specifics of the computation can be found in the Appendix 
\ref{subsec:apparent_temp}. 
 
In a next step, the data was aggregated for the three different counties within the model 
region, the urban and the two rural areas by computing weighted area means. The resulting 
daily time series can be readily used as input to the ML models, as described in Section 
\ref{sec:methods}. 
 
Air quality 
Air pollution is usually a complex mixture but several particulate and gaseous pollutants can 
be considered in investigating its effects on MI \citep[e.g.,][]{Chen2018, Bourdrel2017, 
mustafic2012}. From the "Bavarian Air Hygiene State Monitoring System" (LÜB) database 
\citep{LUB} we collected data on $\text{PM}_{10}$, $\text{NO}$, $\text{NO}_2$, Ozone 
$(\text{O}_3)$, and $\text{SO}_2$ concentrations at multiple stations across Bavaria at daily 
resolution. 
 
Table \ref{table:data_airq} in the Appendix gives an overview of the selected measuring 
stations and their urban or rural categories, the corresponding pollutants data and their 
availability.  
Figure \ref{fig:all_stations} gives an overview of the selected temperature and air quality 
measurement stations. We determined the aggregated daily means by calculating the mean 
values of the aforementioned stations, taking into consideration their location proximity to 
the city centers, traffic-loaded inner-city streets, on industrial areas, on the outskirts, or the 
large-scale background pollution.  
The map shows that there are only few air quality stations within the study region (five blue 
circles, and an archived station with red border circle). Since not all stations have been 
always active during our study period, we use merely the active stations. However, if none 
of the regularly used station in the counties had recorded data on a given day, especially for 
the surrounding counties, alternative stations (light blue dots in Figure \ref{fig:all_stations}) 
with equal proximity settings from outside the study region were used as replacements for 
the calculations. This has been achieved through an acceptable 10-15 percent error criterion 
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for the monthly value of alternative stations compared to the calculated monthly mean 
value of the county over a span of time provided by the monitoring system.   
The calculated monthly mean time series have been provided in the appendix figure 
\ref{fig:airq-timeseries}. 
 
FIGURE 
 
Vegetation 
The Normalised Difference Vegetation Index (NDVI) is an indicator of the greenness of the 
natural vegetation and other vegetation types such as agriculture, parks and gardens. It is 
widely used for ecosystems monitoring. In this study NDVI also is used as a proxy for shade 
as well as potential local cooling effect of vegetation by absorbing sunlight and through 
evapotranspiration. The NDVI\_v2\_1km database of the \citet{CGLS} vegetation products is 
freely available at a 1x1 km spatial resolution starting on April 1998 measured every ten 
days. We extracted the NDVI for our region and used a cubic spline interpolation to upscale 
the temporal resolution from 10 days to daily values. Given the very gradual rate of change 
in vegetation cover and consequently the NDVI, we assume this interpolation does not 
produce large errors. Note that due to lack of availability of NDVI data before 1998, training 
and testing of the algorithms had to be confined to the time between April 1998 and 
December 2015.  
 
Demographics 
The absolute number of MI does not only depend on various environmental risk factors but 
also on the size and characteristics of the population. Disregarding other factors, any change 
in the absolute number of inhabitants would produce a similar change in the number of 
cases of MI as well. Moreover, both age and sex are strongly correlated with health 
outcomes in general, and specifically so for MI. Given trends of increasing urbanisation, 
rural depopulation and an ageing society, it is important to account for changes both in 
number of inhabitants and age stratification of the population over time. In addition, 
domestic migration reflected in relative changes between urban and rural parts, leading to 
differential changes in exposure to environmental hazards in the Augsburg region, can be 
important as well. We collected data from the Bavarian Office of Statistics that comprise 
annual values for the total number of inhabitants for each of the three counties, as well as 
the distribution of sex and age in the population from 1985 to 2015. Overall, 17 different 
age groups are accounted for as listed in Table \ref{table:data_sources}. 
Since the algorithms require daily input values, a linear interpolation was applied to 
estimate the development within a given year. 
 
Results 
 
Weekly predictions of MI events 
Our models produce daily predictions of MI events based on the environmental and 
demographic features within the given window size. We found that the models are not able 
to reproduce the daily variability of MI with sufficient accuracy. As an example, we show the 
daily predictions aggregated to 7-day intervals to increase visibility in Figure 
\ref{fig:7day_agg}. The resultant scores are given in Table \ref{tab:7daily_traintest_scores} 
for both training and validation respectively.  
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FIGURE 
 
TABLE  
     
Although the seven-day predictions suggest some skill for the training period, for the testing 
period the models do not predict 7-day variations (or day-to-day predictions) accurately 
enough for practical purposes. The predictions are too close to the mean and lack the 
variability displayed by the observations. An overview of average mean, standard deviation, 
minimum and maximum daily predictions across models and for each subgroup considered 
is given in Table \ref{tab:stats_traintest_subgroups}. This is likely related to randomness as 
well as risk factors that affect MI events that were not considered in the models. For 
instance, the temperature or air quality predictors may not sufficiently capture actual local 
circumstances, but also information about the built environment and other conditions that 
cannot be easily accounted for is missing. 
 
Annual predictions of MI events 
Figure \ref{fig:results_annual_general_pop} shows the model performances on both the 
training and test sets as well as the actually observed MI as a reference for the five ML 
models given in Table \ref{tab:methods}. After training the models and performing the daily 
prediction on the test set, the results were aggregated to annual sums. By aggregating the 
model results to an annual basis, some of the inherent randomness is averaged out. Based 
on the annualised prediction results and time series of observed MI, the performance scores 
were derived (see Table \ref{tab:score_traintest_annual_general_pop}). The training scores 
demonstrate that the ML models are able to predict the year-to-year variations quite well, 
with adjusted $R^2$ scores between $0.87$ and $0.94$. The performance on the test 
dataset is relevant for assessing the generalisation error for previously unseen data. In 
contrast to the training data, the results on the test set are less but still reasonably accurate, 
with adjusted $R^2$ scores between $0.62$ and $0.71$, showing that inter-annual 
variations and long-term trends are largely captured. The RR and MLP models exhibit the 
best performance, showing that both well-tuned linear models as well as neural networks 
are able to simulate the relations between environmental conditions and MI events. The 
DTR shows the lowest overall performance by comparison. 
 
FIGURE 
 
TABLE 
     
Feature importance 
In Figure \ref{fig:importance_short_general_pop} we show a condensed rendition of the 
feature importance where related variables have been grouped together of each model; 
except for the MLP which does not support feature importance within the scikit-learn 
framework. Note that variables subject to the sliding window were aggregated over the 
window length of three days to improve readability.  Moreover, features related to time 
such as the current month number and the day of the week were also aggregated to a single 
group. More detailed plots retaining the differentiation of all features and window days can 
be found in the Appendix (see Figures \ref{fig:importance_grouped_general_pop} and 
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\ref{fig:importance_all_general_pop_all_demo}). The latter Figure also shows that many of 
the original demographic features carry little to no weight. We therefore reduced the 
granularity of the demographic data to the age groups $0-29$, $30-49$, $50-74$ and $>75$, 
generally yielding improved results. 
 
While the performance of the models differs, some trends can be observed. Overall, the 
single most important group is air quality, closely followed by temperature, demographic 
and time related predictors. Humidity as well as NDVI exhibit the lowest explanatory power. 
NDVI is ranked very closely to the random feature by all models.  
 
FIGURE 
 
Compared to the environmental features that display strong daily variation the 
demographic predictors are subject to slow, gradual change only. We therefore also 
conducted this experiment with all demographic features turned off. The results are shown 
in Table \ref{tab:score_traintest_annual_general_pop_no_demo}. As evidenced by the 
reduction in scores (adj. $R^2$ reduced from $0.67$ to $0.62$ on average) the 
demographic predictors still make a relevant contribution to the overall result despite the 
lower temporal resolution of the input data.  
 
Subgroup analysis 
The models were also applied to subgroups of the population, albeit at the expense of a 
reduced amount of available training data (see Table \ref{tab:subgroups_overview}) for an 
overview). For this analysis we selected a total of five subgroups: the urban (Augsburg city) 
and rural population (two adjacent counties) respectively, the elderly (people aged between 
60 and 74), patients with diabetes, and active smokers. The data was reduced to include 
only participants with the associated attribute. The training procedure was then repeated as 
detailed for the general case on the resulting subsets. As expected, the validation scores 
dropped considerably for all subgroups, likely a consequence of reduced amounts of training 
data. We refer to the Appendix for detailed results, but for the urban and rural subgroups 
adjusted $R^2$ scores between $0.35$ and $0.6$ were observed in validation (see Tables 
\ref{tab:score_traintest_annual_urban_pop} and 
\ref{tab:score_traintest_annual_rural_pop}). Both subgroups, being of almost equal size, 
performed comparably well, with the urban population exhibiting slightly lower scores 
however. 
 
TABLE 
 
The validation results for the elderly population (see Figure 
\ref{fig:train_annual_elderly_pop} and Table \ref{tab:score_traintest_annual_elderly_pop}) 
are more accurate (adjusted $R^2$ between $0.53$ and $0.65$) than for the urban and 
rural populations, although the number of training samples is much higher in both of those 
cases.  
 
The results for patients with diabetes are shown in Figure 
\ref{fig:train_annual_diabetic_pop} and Table 
\ref{tab:score_traintest_annual_diabetic_pop}. As observed with the elderly, the scores for 
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patients with diabetes (adjusted $R^2$ between $0.28$ and $0.61$) are comparable to 
those of the (much bigger) rural and urban subgroups, except for DTR which resulted in a 
substantially reduced score. 
 
The results for the smoking population are shown in Figure 
\ref{fig:train_annual_smoker_pop} and the scores are given in Table 
\ref{tab:score_traintest_annual_smoker_pop}. For this group adjusted $R^2$ validation 
scores drop to around $0.42$ on average, indicating a less accurate fit than for all the other 
subgroups. This is consistent with the smoker group being the smallest of the explored 
subgroups resulting in the lowest amount of training data as well.  
 
Overall, the skill of the models is clearly reduced when limited to subsets of the overall data. 
The decrease in performance, however, is quite different between subgroups, especially 
when taking into account their relative sizes. A particularly interesting question is whether 
the variable importance for any one subgroup changes substantially in comparison to the 
general population. Figure \ref{fig:importance_change} shows the difference in variable 
importance for each of the subgroups in relation to that of the general population. To aid 
readability related features have been grouped again. Considerable differences between 
subgroups, models and feature groups can be observed. For instance, most models agree 
that demographics, humidity and NDVI are particularly important for predicting urban MI, 
while giving less weight to the temperature related features. The importance of time related 
indicators reduced consistently over the general population. In some cases the importance 
of the random feature is also reduced, indicating increased robustness of the results.  
 
For the rural population the results suggest slightly increased relevance NDVI compared to 
the overall population. Temperature and air quality mostly align with the results for the 
general population. The demographic indicators are less relevant when compared to the 
general case, as are the time related features.  
 
For the elderly, the models are mostly undecided on air quality, with a slight tendency 
towards increased importance. The weight of the demographic features is emphasized in 
comparison to the general case. Less importance is also attributed to (apparent) 
temperature and humidity.  
 
For patients with diabetes, the models mostly agree that demographic features, NDVI and 
air quality are more important in predicting MI for this group in comparison to the general 
population. On the other hand, (apparent) temperature, humidity and time related features 
are ranked lower.  
 
Lastly, for the group of active smokers the models mostly suggest an increased importance 
of air quality as well as demographic features for the prediction of MI. Humidity as well as 
(apparent) temperature and time-related features are overall considered less important.  
 
FIGURE 
 
 
Discussion 
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To our knowledge, this is the first study building and testing ML models that include more 
than only weather variables (such as {Zhang2009} for heat mortality) for predicting MI 
prevalence. The developed ML models have varying skill in predicting MI. At the daily to 7-
day time scales, randomness seems too large to produce meaningful predictions. However, 
when predictions are aggregated to annual sums, the models are very well capable of 
reproducing the inter-annual variability of observed MI, as well as the long-term trends, also 
for the validation datasets. This is comparable to the performance of methods used for 
predicting malaria incidence \citep[e.g.,][]{Sewe2017}. In terms of performance scores the 
models achieve very similar outcomes both in training and validation (see Table 
\ref{tab:score_traintest_annual_general_pop}), indicating some robustness of the 
predictions. More qualitative differences emerge, however, when investigating feature 
importance. There are substantial differences between the ML models in terms of some 
features (Figure \ref{fig:importance_short_general_pop}). Most models rank air quality 
variations and temperatures among the most important features, but a large spread 
between models can be observed. This indicates at least some inherent uncertainty.  
 
Classical epidemiological approaches like general linear or additive models are mostly used 
for explaining the direction and corresponding uncertainty of associations between 
environmental risk factors and health outcomes, thereby adjusting for potential 
confounding factors. In case of potential non-linearities, the shape of the exposure-response 
curve is usually modeled as a smooth function. However, the models are limited in case of 
high correlation and/or high-dimensional interactions between the covariates. The 
suggested ML approaches can (partly) handle these issues and offer the possibility to 
compare the importance and predictive performance of a multitude of environmental 
predictors. 
 
The training scores in many cases are close to the maximum, with adjusted $R^2$ values 
greater than $0.85$. This may be indicative of overfitting, possibly opening room for 
improving further on the generalisation by applying stronger regularisation. While the 
models were adjusted by optimising the hyperparameters, not all possible parameter values 
have been explored. For instance, in the case of the tree-based models pruning is an 
effective way to reduce overfitting, which was not applied here. For the MLP and RR models 
regularising parameters were explicitly included in the optimisation, but possibly the ranges 
were not wide enough to achieve the best trade-off between training and validation. 
 
The model results are sensitive to the selection of the random seed that is used in making 
the initial train-test split. We found that changes in the random seed routinely had greater 
impact than the choice of hyperparameters. One way of dealing with this would be to also 
include this random seed in the optimisation process. Currently, only the random seeds 
used for randomly selecting the folds in cross-validation and in initialising the regressors are 
optimised. In light of the strong influence of the initial split, however, we opted to instead 
test over a range of possible seeds and select the results closest to the average performance 
of the models, not to overstate our results. The sensitivity to the initial split may indicate a 
lack of data, but is likely mostly due to unbalanced splits. We reduced this sensitivity by 
employing a simple but effective stratification strategy. This reduced the variation across 
seeds, but does not entirely resolve the issue. Possibly, more intricate stratification 
approaches may reduce the dependency even further. 
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We were able to indicate differences between different geographical regions, i.e., urban and 
rural populations. For instance, humidity, demographics and NDVI become more important 
predictors for the urban population, compared to the overall population, at the expense of 
(apparent) temperature. The models could be further improved by increasing the spatial 
representation, as the environmental predictors also would support this. Increased spatial 
representation would also allow for additional exposure metrics to be established and more 
predictors, such as those related to building structures, their insulation and energy 
efficiency.  
 
An additional area of possible improvement is the environmental data. Some variables such 
as the NDVI and the air quality indicators were not fully available for the period between 
1985 and 2015, effectively limiting analysis to the period from 1998 to 2015. It is also 
possible to reduce the bias in the station data (temperature, air quality), for instance by 
using more sophisticated interpolation methods or additional data sources such as from 
remote sensing. 
 
All ML models results consistently demonstrated the importance of the air quality variables. 
Climate impact studies, especially related to MI, might therefore benefit from carefully 
analysing possible future developments of these variables. Electrification of traffic, 
reduction of fossil fuel and related changes might yield substantial improvements in air 
quality in the future. Instead of just focusing on projected changes in, e.g., temperature and 
humidity, scenarios for air quality need to be considered as well. 
 
Current data availability from climate modelling, and demographic and environmental 
scenario development provide many opportunities to use the developed ML models from 
our research for projecting future health risks. Ensembles of regional climate models 
provide climate projections with the highest spatial resolution. For the study region, EURO-
CORDEX simulations \citep{Jacob2014, Jacob2020} can be considered as they provide the 
largest ensemble at a high spatial (0.11\textdegree, i.e., 12 km) and temporal (daily) 
resolution climate simulations that are available today. Several of the predictors used in this 
study could be derived from the EURO-CORDEX ensemble, namely temperatures and in 
many cases relative humidity, as well as dew-point temperatures. Alternatively, an 
ensemble of convection permitting decadal regional climate simulations at ~3km, both for 
historic and future conditions, has been created within CORDEX FPS \citep[e.g.,][]{Ban2021}. 
Using an ensemble of near-future (2035-2065) climate model simulations allow for scenario 
uncertainty, internal climate variability, and climate model uncertainty to be assessed 
\citep{ Hawkins2011} when comparing the changes in MI to the reference historical 
simulations.  
 
Demographic predictions until 2039 for the study region at county level can be obtained 
from the \citet{LfStat}. Longer-term projections up until the year 2060, albeit contingent on 
different socio-economic scenarios and at the level of the federal state of Bavaria, could be 
obtained from the \citet{Destatis} and be used to estimate the local projected 
demographics in the study area. These projections would provide a robust basis to estimate 
potential developments of the local population in the near-future. 
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For vegetation changes, as represented by NDVI, it can be reasonably assumed that the 
potential for increased greenness in the inner city is limited. Likewise, the potential for 
substantial effects from added green in the rural surroundings of Augsburg is low, as it is 
already ubiquitous there. We therefore believe that moderate up- or downscaling of NDVI 
patterns observed in the past and present may suffice to yield suitable estimates of possible 
future developments, such as adaptation measures of increasing vegetation to reduce the 
urban heat island effect. 
 
Air quality projections are related to the emission scenarios used by global climate models. 
For the CMIP6 climate models, estimates of regional surface air quality are available at the 
global model scale \cite{Turnock2020}. These projections could be used to scale the 
observed daily air quality observations, but more exhaustive and local projection data would 
be preferred. To date, however, regional climate models do not feature the necessary 
complex chemical models to accurately model the transport, dispersion and diffusion of 
pollutants. A pragmatic up- or downscaling of the observed patterns  
from the global to the local level currently appears as the most convenient approach. 
 
Conclusions  
We have developed an approach for predicting MI events using multi-variable ML methods, 
based on environmental and demographic data. Given that health outcomes depend on a 
multitude of factors, we applied a data-driven approach to establish relevant relationships. 
We acquired data on MI events from the KORA MI registry in Augsburg, Germany, as well as 
weather, environmental and demographic data from various sources to create a meaningful 
and consistent daily time series of the predictive features and the target variable. 
 
Starting from these time series, a supervised learning problem for MI was formulated, 
accounting for lagged effects. Five different regression algorithms were trained on this data, 
based on random $75/25$ train-test splits for the period between April 1998 and December 
2015. Various hyperparameters were used to optimise the performance of the algorithms, 
based on 5-fold cross validation with respect to the $R^2$ scores. 
 
Applying the trained models on the unseen test data allowed an estimation of the 
generalisation error of the models. We found that the daily or weekly results do not yield 
meaningful and accurate predictions of MI events. We found that the annually aggregated 
predictions agree well with the observed MI events, accurately reflecting observed trends 
and inter-annual variability of MI. The match between observations and the model 
predictions is supported by the observed validation scores, with adjusted $R^2$ scores 
ranging between $0.62$ and $0.71$. Overall, the models displayed comparable skill, but the 
Ridge Regression (RR) and Multi-layer Perceptron (MLP) models slightly outperformed the 
tree-based methods. The least accurate results were produced by the Decision Tree (DTR) 
model. The feature importance showed that despite similar overall scores, the relative 
weight can vary substantially between the models. This emphasised the necessity to 
consider ensembles of models, as it allows to gauge the model spread and estimate 
inherent uncertainty. In this study, air quality tends to be the most important feature to 
predict MI, closely followed by temperature, demographics, and apparent temperature.  
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We also applied the models to various vulnerable subgroups, such as the elderly or patients 
with diabetes, resulting in only slightly reduced skill scores due to the reduced amounts of 
training data. 
 
Possibilities to improve the current approach are manifold, including increasing the variety 
and quality of the predictor data. Further analysis of the data, including accounting for 
trends over time, may further increase robustness of the results to prevent the attribution 
of exogenous effects not considered in the model to the existing features. Also, different ML 
approaches could be explored, such as density estimation and Bayesian methods, yielding 
estimates of relative risk of different groups to suffer MI. Such estimates could be more 
readily compared with commonly used epidemiological models than the regression models 
presented here. 
Overall, the models’ capacity to give reasonable estimates of possible future developments 
of MI based on the predictive features appears robust. In a next step, the trained models 
can be applied to scenarios of future climatic, environmental and demographic conditions. 
This will allow estimating future changes in MI taking into account climatic, as well as other 
environmental and demographic factors expanding on limitations of earlier studies. These 
changes could also include further improvements in air quality, or increased 'greening' of 
urban environments with vegetation. Such estimates will enable to gauge the sensitivity of 
the complex health-environment interactions, and benefits of proposed environmental and 
health interventions in urban areas. 
 
%% The following commands are for the statements about the availability of data sets 
and/or software code corresponding to the manuscript. 
%% It is strongly recommended to make use of these sections in case data sets and/or 
software code have been part of your research the article is based on. 
 
Appendix 
 
Derivation of apparent temperature 
 
We have computed the apparent temperature according to: 
$$ T_a = -2.653 + 0.994T + 0.01537T_d^2 $$ 
where $T_a$ is the apparent temperature, $T$ the near-surface mean temperature and 
$T_d$ the near surface dewpoint temperature \citep[see][]{Davis2016}. Dewpoint 
temperature, however, was not available for this study. To facilitate estimating the apparent 
temperature we therefore first derived another humidity related quantity: vapour pressure. 
Applying again universal Kriging with linear drift, we arrived at 1x1 km gridded data for 
vapour pressure, applying the Magnus formula to estimate the dewpoint temperature: 
$$ T_d = \frac{b\cdot v}{a-v} $$ 
where $a = 7.5$, $b = 237.3$, $v = \log_{10}\left(\frac{p_v}{6.1078}\right)$ with $p_v$ the 
vapour pressure. 
 
Applying these formulas to the gridded temperature and humidity data derived before 
yields a 1x1 km grid for apparent temperature. Note that the formulas were independently 
applied to mean, maximum and minimum temperature. Subsequent aggregation over the 
model region then completed the preparation of apparent temperature as input feature. 
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