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Abstract. Myocardial infarctions (MI) are a major cause of death worldwide, and 
temperature extremes, e.g., during heat waves and cold wintersboth high and low 
temperatures (i.e., heat and cold), may increase the risk of MI. The relationship between 
health impacts and climate is complex and is influenced by a multitude of climatic, 
environmental, socio-demographic, and behavioral factors. Here, we present a Machine 
Learning (ML) approach for predicting MI events based on multiple environmental and 
demographic variables. We derived data on MI events from the KORA MI registry dataset for 
Augsburg, Germany between 1998 and 2015. Multivariable predictors include weather and 
climate, air pollution ($\text{PM}_{10}$, $\text{NO}$, $\text{NO}_2$, $\text{SO}_2$, and 
$\text{O}_3$), surrounding vegetation, as well as demographic data. We tested the 
following ML regression algorithms: Decision Tree, Random Forest, Multi-layer Perceptron, 
Gradient Boosting and Ridge Regression. The models are able to predict the total annual 
number of MI reasonably well (adjusted $R^2=0.59-62$--$0.71$). Inter-annual variations 
and long-term trends are captured. Across models the most important predictors are air 
pollution and daily temperatures. Variables not related to environmental conditions, such as 
demographics need to be considered as well. This ML approach provides a promising basis 
to model future MI under changing environmental conditions, as projected by scenarios for 
climate and other environmental changes. 
 
Introduction  
Myocardial infarctions (MI), commonly known as heart attacks, are a major cause of death 
worldwide, responsible for a substantial amount of cardiovascular related mortality and 
morbidity, as well as a major contributor to disability. The estimated prevalence of MI 
worldwide in 2015 was close to 16 million, with 33.,000 years lived with disability attributed 
to the condition \citep{Vos2016}. In light of ageing western societies as well as ongoing 
environmental and climatic changes, which have been identified as important risk factors, 
MI is likely to remain a considerable burden to health systems in the future 
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\citep{Khraishah2022}. It is therefore paramount to deepen the understanding of the 
complex interplay between environmental and other risk factors and their effect on MI, and 
to estimate their expected future development. 
     
Epidemiological research has shown that both high and low air temperatures (i.e. extreme 
heat and cold) can play an important role in triggering acute MI \citep{Chen2019, Wolf2009, 
sun2018}. Most previous studies (e.g. with registry data) have reported significant cold 
effects on MI occurrence This is especially apparent in winter when most of the MI events 
are observed. This is not only linked to the fact that cold temperatures are a known risk 
factor for MI \citep[e.g.,][]{Eurowinter1997, Schwartz2004, Wolf2009, Bhaskaran2010} 
whereas fewer studies have observed increased risk of MI triggered by heat exposures so far 
(Bhaskaran 2012, Madrigano 2013, Chen 2019).  but possibly also to the coincidence of 
respiratory diseases during that time of the year exerting physical stress and increasing 
vulnerability as evidenced by increased clotting activity and inflammatory processes 
\citep{Woodhouse1994}. At the same time, sSevere periods of heat as encountered during 
heat waves are likely to occur with higher frequency, intensity, and duration due to 
anthropogenic climate change, even if limited to warming levels between 1.5\textdegree{} 
and 2\textdegree{} \citep{Sieck2020}. Increasing levels of urbanisation entail higher levels of 
exposure to heat as well as a consequence of, due to the urban heat island effect 
\citep[e.g.,][]{Feng2014, Zhang2009}. Air pollution is another environmental factor known 
to potentially trigger MI after periods of intense short-term exposure \citep[e.g., 
][]{Peters2004, Mmustafic2012} but also to increase the risk in association with elevated 
long-term exposure \citep[][]{Cesaroni2014, Wolf2021, Rajagopalan2018}.. Moreover, the 
elderly are particularly vulnerable to MI, exacerbating the potential adverse effects in light 
of the demographic ageing expected in developed countries, such as in Germany 
\citep{Schmidt2013, Rai2019}. 
     
A key issue in understanding current and future health impacts is the inclusion of a 
multitude of processes and circumstances that influence the health outcomes 
\citep{Roth2020}, , such as MI, in quantitative models. For MI, tThese include environmental 
influences, such as the occurrence of high and low temperature events, air quality, the 
presence of water bodies and vegetation and characteristics of the built environment. 
ButAlthough the relevance of humidity for myocardial infarctions MI has not been 
confirmed \citep[e.g.,][]{Schwartz2004}, it. Humidity is often included as another important 
meteorological variable in when studying human health impacts \citep{Davis2016}. For 
instance, high temperatures are often perceived as more straining stressful under very 
humid conditions, such as in case of sultriness.. Hot and strongly saturated air carries less 
oxygen and interferes with transpiration as one of the main mechanismsmechanism of 
cooling the human body \citep{Havenith2005}. Therefore, the same temperature can be 
perceived more strongly straining if humidity is high as well. CBut the relevance of humidity 
for myocardial infarctions has not been confirmed \citep[e.g.,][]{Schwartz2004}. Changes in 
the exposed population, such as their (age, sex), their health status and underlying diseases 
are important as well. Therefore, future health risks from climate change cannot only be 
explainedestimated from changes in (extreme) weather, however many studies in fact do 
soandbut it is critically important to account also for projecting future health risks under 
climate change and these have been criticised for thisall these other relevant factors 
\citep{Vanos2020}. Finally, health interventions such as heat health action plans, and overall 
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improved better healthcare have been shown to reduce health risks from extreme 
temperatures to a significant extent \citep [see for instance][]{Achebak2019}. But also 
policies related to climate change, such as reduced traffic emissions, are expected to lead to 
better health outcomesa reduction ine disease burden \citep{Laverty2021}. 
 
So, forFor more reliable estimations of potential future risks, multiple variables must be 
incorporated into prediction a ML models. In addition, several of the relations between 
environmental and other factors, and health outcomes are only partially known. This is 
where data-driven approaches are particularly useful, as they can provide accurate 
estimations of complex processes, taking up many variables and also account for complex 
and non-linear relations between those variables.. Machine Learning (ML) approaches are 
now being tested widely for earth system modelling and other environmental studies 
\citep{Reichstein2019}, and they are also increasingly used to estimate the social and 
economic impacts of environmental extremes such as floods and windstorms 
\citep{Merz2013,Wagenaar2017, Wagenaar2021}. ML however, has only recently been 
applied to health impact modeling. Several studies have employed statistical methods as 
well as ML to predict infectious diseases, such as malaria transmissions 
\citep{Zinszer2012,Sewe2017}. \citet{Zhang2014}, studied heat-related mortality, and 
identified relevant temperature and humidity variables using Random Forests. Other studies 
applied ML to evaluate the risk of for MI, or to predict acute MI based on data such as 
patient history, blood markers, or electrocardiogram, but lack an environmental dimension 
\citep[e.g.,][]{Tamarappoo2021,Commandeur2020}. 
 
In this study we correlate the total number of MI events on a given day to the coinciding and 
preceding environmental hazards. We employ several machine learningML algorithms in a 
data-driven setting, using a range of meteorological, environmental, demographic and 
health variables. Our hypothesis is that the ML algorithm will predict a higher number of MI 
events when temperatures are extremely high or extremely low and/or when other 
environmental conditions deteriorate, for instance when air pollution is high. on preceding 
days. We estimate the importance of the predictive variables in the models. We also assess 
the effects on different sub-groups, depending on location (urban/rural) as these may 
exhibit different vulnerabilities \citep{Gabriel2011}, and patient properties characteristics 
(age, smoking, and diabetes). The ML models that are presented can be used to estimate 
future health outcomes, using a set of scenarios for changes in climatic, environmental and 
demographic variables. Instead of using an approach based on time series modelling 
\citep[see e.g.,][]{armstrong2006, Chen2018}, we employ multivariate ML regression 
models. These models do not require the presupposition of a known exposure-response 
relationship. Also, our study is aimed towards developing models to make long-term 
projections at climate-timescales (30 years). At such timescales, underlying statistical 
properties may change gradually which would not be reflected by any prescribed exposure-
response function based on historic or current data. Contrary to other studies, we also do 
not account for seasonal effects. Instead, we solely rely on a data-driven approach in which 
we make no a priori assumptions about the relationship between features and the health 
outcomes. While this does not allow for an explicit decomposition of the time series into, 
e.g., trend, seasonality and random effects, it might generalize better when applied to an 
ensemble of climate simulations in which the statistics of the features may have changed 
drastically compared to the historical training data. 
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We expect however that none of the risk factors that are included in our models is strong 
enough to directly trigger MI in an otherwise healthy person. Instead, these environmental 
and demographic factors must be assumed to increase the statistical likelihood of 
vulnerability to MI over longer periods of time. Many common root causes of MI, e.g., 
atherosclerosis, are chronic and acquired over time and usually in large part due to lifestyle 
risks such as consumption of alcohol, tobacco, obesity, emotional stress, lack of exercise. 
Some of the risk factors covered in this study, e.g., air pollution or lack of green spaces, can 
also contribute to the development of chronic disease. Once vulnerable, some factors, e.g., 
high ambient temperatures, are thought of as being able to directly trigger an event as well 
\citep{Chen2019}. In light of these considerations, it becomes clear that predicting the exact 
timing of MI events is complex, as they are generally the result of developments that can 
span decades, after which they might be triggered randomly or as a result of otherwise benign 
circumstance, e.g., physical exercise, emotional stress or exposure to air pollution or heat 
stress during summer time. 
 
However manyMany of the risk factors that we cover in this study can still modify thethis 
individual likelihood of suffering from MI. Moreover, our research motivation is to eventually 
estimate the long-term tendencies in MI due to climate change. In light of this, we do not 
expect for the models to be able to accurately provide predictions on a daily basis. Instead, 
weHowever, our research motivation is to eventually estimate the long-term tendencies in 
MI due to climate change. We therefore decided to aggregate our model results on an 
annual basis. This should allow for some of the inherent randomness to average out and 
allow a more statistical view on the developmentsMI occurrence over annual and 
interannual timescales. 
 
In the next Section 2, we present the methods used to develop the ML models. In Section 3, 
we describe the process to derive the input data for our data-driven approach. In Section 4 
the results of the simulations and their performance are given. In Section 5 we discuss the 
results and give an outlook for using the models to project future MI events, and finally in 
Section 6 we provide the conclusions. 
 
Methods 
In this section, we present the approach to modelling the occurrence of MI events from a 
large variety of data and discuss the ML methods that were applied. We also consider 
correlations among the features and describe how we selected suitable parameters for the 
ML algorithms. 
 
A supervised learning problem for MI events 
There are many ways to build ML models from data, e.g.,can comprise of classification or 
regression based algorithms. In this study, we focus solely on regression methods, as the. 
The registry data is case-only, i.e., by design each participant is bound to have an MI. It is 
therefore not possible to build individual risk profiles or estimate the likelihood of suffering 
MI, due to the lack of a healthy control group. The data, however,The data constitutes a very 
good basis for predicting the number of expected MI events with regression. 
 
The target variable, i.e., the data one is interested in learning from or about in our case is the 
time series of daily events of MI observed in the study region. In addition, many of the co-
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occurring environmental variables that have a plausible causal relation to this target 
variable are collected and used as predictors in the training process. 
 
We apply a range of different ML algorithms in order to test the performance of different 
learning approaches for predicting MI events based on the data. We use the scikit-learn 
package for performing the calculations \citep[see][]{scikit-learn, scikit-web}. The figures 
were produced using disability-friendly colormaps \citep{crameri2020}. Before discussing 
the individual regression methods that are applied to the problem, we first describe how the 
supervised learning problem is posed based on the daily time series of MI events and the 
corresponding predictive variables. Here, we use the sliding window method.use colors 
chosen with disability-friendliness in mind \citep{crameri2020}. 
 
For any given day $d$ let $y_d$ be the number of MI events and $x_{i,d}$ the value of the 
$i$-th predictive variable on that day (e.g., daily maximum temperature or daily mean 
$\text{PM}_{10}$). To work with standard regression algorithms, a fixed number of features 
must be selected and together with the target value $y_d$ be provided as training input. 
The variables $x_{i,d}$ represent a time series and therefore only a subset of them should 
be selected as a feature of the regression problem, namely the conditions on the day of 
prediction. Past conditions, however, might also have an influence on current events, both 
long and short term. The sliding window method allows for this by selecting the features 
with a lag $n$, referred to as the window size. The merits of allowing for shorter or longer 
memories are difficult to estimate. For instance, the effects of extremely high temperatures 
on MI are generally expected to be short-term \citep{Breitner2014}, ranging from 
immediate effects to up to twothree weeks lag. The vector of features, i.e., the training (or 
test) instance on day $d$, is then given as: 
 
$$x_d = \left(x_{1,d-n+1}, x_{1,d-n+2}, \ldots, x_{1,d}, x_{2,d-n+1},\ldots, x_{2,d}, x_{m,d-
n+1},\ldots, x_{m,d}\right)$$ 
 
where $n$ is the windows size and $m$ the number of variables. Each predictive variable 
then yields $n$ features and the total number of features for this problem is $n\cdot m$. 
Accumulating the $x_d$ and $y_d$ for all days into a matrix $X$ and a vector $y$ yields 
input that can directly be used with the scikit-learn regression algorithms. We applied the 
five ML methods and associated scikit-learn classes, listed in Table \ref{tab:methods}, 
together} with their abbreviations as used in the remainder of this paper. Note that some 
features, such as the slowly changing demographic variables, were not subject to the sliding 
window and instead simply used the value on the day of prediction. For this study, after 
testing different lags between 1 and 1421 days, we exclusively used a lag of $n = 3$ days as 
this resulted in the best overall scores. However, in order to account for possibly longer 
lasting \citep[see][]{sun2018} cold effects, we added a predictor using the 21-day rolling 
mean of the minimum temperature. 
 
 Note that throughout this paper, we use the terms predictor and feature in an 
interchangeable manner, namely to refer to the features of the supervised learning problem 
derived above (the vector $X$ and its components). The term variable is used when referring 
to data that is not (directly) used as a feature of the learning problem, e.g., MI counts, or 
when addressing predictors in a more general manner. For instance, temperature is a variable 
used in this study, but it is to be differentiated from the mean temperature feature TMK. This 
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differentiation is important as the features depend on the chosen window size, i.e., a window 
size of $n = 3$ results in three individual features, that represent the mean temperature on 
three different days during and preceding the MI event: the vector $X$ and its components.  
 
In addition to the environmental and socio-demographic predictors, we  
 We also added a random feature to be able to use its importance as a benchmark. 
Predictors less important than the random feature can be assumed to be irrelevant. Finally, 
we added three time variables, namely the day of the week, the day of the year and the 
current month. 
 
TABLE  
 
Scaling and random split 
Different magnitudes of the features can have adverse effects as the results could be biased 
towards those variables given in nominally large units relative to others. To avoid this, we 
apply the sklearn.preprocessing.StandardScaler class to the input, resulting in features that 
are centered around $0$ with unit variance.  
 
Second, we withhold parts of the data from the training to have independent data instances 
for validation. We apply sklearn.model\_selection.train\_test\_split with shuffle, resulting in 
a random $75\%/25\%$ split of the data in training and test portions. The $25\%$ of data 
not used for training the algorithms are used for validation. Splitting the data randomly 
means that the underlying time series lose their natural temporal order. This has 
implications when visualising and interpreting model results that we will cover in a later 
section, but it reduces the likelihood of autocorrelations (e.g., seasonal signals) present in 
the time series tothat could result in overoptimistic predictions.  
Note that in 
In order to split the data randomly, the random number generator has to be initialised with 
a seed. We found that different random seeds can result in significantly different results. To 
avoid reporting results that are strongly dependent on the chosen seed, we repeated all 
calculations with 100 randomly selected seeds. The result with the $R^2$-score closest to 
the average score of the ensemble was then selected as a representative example of model 
capability.  
 
Moreover, as the dependency on the random seed is likely related to unbalanced splits, we 
employed a simple stratification strategy. The data is stratified along the number of MI 
occurrences observed, i.e., data points with the same number of MI are split among test and 
training in a representative way. This is especially important for rare events, such as 5 or 
more MI in one day. The dependency on the random seed was substantially reduced in this 
way, but significant differences between different seeds could still be observed. 
 
Feature Importance 
A common concern in the application of ML algorithms is the influence of correlated 
features, where redundancy in the related variablesIt is useful to evaluate the relative 
importance of different features, i.e., to measure the contribution a given feature makes to 
the overall prediction. In this study, we use the built-in variable importance capabilities 
provided by scikit-learn package, yielding a number between $0$ and $1$ for each feature. 
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The sum of all individual contributions is always equal to $1$. For RR we simply relate the 
magnitude of the trained weights (coefficients) of the model to their associated predictors. 
Here, care must be taken to consider the  relative magnitudes of the predictors, but this has 
been addressed in our study by scaling the input data. For DT, RF and GBR the importance is 
based on the normalized total impurity decrease, i.e., a measure of the quality of splits 
associated with a given feature, aggregated across the whole tree or the ensemble of trees 
respectively. For MLP no variable importance is provided by scikit-learn and we therefore 
constrained this part of the analysis to the four aforementioned algorithms. 
 
Feature reduction 
Correlated features can lead to an overemphasis of their influence on the target variable. 
This can be counteracted by choosing only one of the correlated features, usually the one 
that has the strongest correlation with the target variable. In our case, we aimed to include 
as many variables as possible that could reasonably have an effect on MI. The downside is 
that some features, for instance maximum, minimum, and mean temperature, are highly 
correlated on a daily basis. A visualisation of the correlation between the predictors used in 
this study is shown in appendix Figure \ref{fig:feature_corr_matrix}. To address this issue, 
we tested the option of transforming the data to a smaller feature space using principal 
component analysis (PCA). The resulting principal components are uncorrelated to each 
other and the risk of introducing spurious or overly strong relationships into the training 
data is reduced while retaining most of the original information. We used 
sklearn.decomposition.PCA and opted to retain at least $98\%$ of the variance. Having the 
principal components as optional features allowed us to compare predictions with PCA to 
estimate the potential adverse effects of correlations present in our data. The results using 
the PCA data (not shown here) did not improve, suggesting that using the original set of 
features does not introduce spurious relations. Moreover, using PCA leads to a reduction of 
interpretability, as the principal components are linear combinations of the original 
features, without a clear relation to the original variables. 
 
Hyperparameter optimisation 
The ability of the ML algorithms listed in Table \ref{tab:methods} to produce accurate 
predictions is dependent on the selection of appropriate hyperparameters. These 
parameters generally control specific aspects of the underlying methods, such as the 
maximum depth of a decision tree, the number of neurons in a layer, or the strength of 
regularisation. With regularisation, a penalty is added as model complexity increases, which 
helps to avoid overfitting. In this study, we used the sklearn.model\_selection.GridSearchCV 
class to optimise hyperparameters over predefined parameter spaces with 5-fold cross 
validation. 
For this study weWe used the adjusted $R^2$ as the governing score to make decisions on 
optimal parameters. Repeating the procedure for all five possible splits and averaging the 
computed scores yields the final score for the given parameter values. Iterating over the 
hyperparameter space theThe parameter set with the best overall score is selected. Using 
cross-validation allows to produce more robust generalisation error estimates without 
having to reserve a dedicated cross-validation set that would not be available for training. 
Moreover, by using folds based only on $75\%$ of the training data, no information from 
the remaining $25\%$ data is used for optimising the models and validation through 
parameter selection, i.e., leakage is prevented.\\ 



 

8 
 

Ideally, a very comprehensive subset of the available hyperparameters would be optimised 
over a large and dense parameter space. In practice, time and available computing resources 
limit the extent to which an exhaustive optimisation can be carried out. Due to the curse of 
dimensionality, the number of possible combinations of parameters to test can easily become 
prohibitively. This applies even when the individual training process is rather fast and makes 
the optimisation too time-consuming to compute for practical purposes. We therefore 
performed a partial optimisation to circumvent this issue, i.e., we optimised over rather sparse 
parameter spaces and a limited number of the available parameters.  
 
Here, some of the hyperparameters are chosen to optimise the models based on their purpose, 
the importance of what they control, and prevalence between the methods present in this 
paper (see Table \ref{table:tuning}). The listed parameters are used as model optimisation 
variables simultaneously. As an example, in tree-based methods (DTR and RF) the selected 
parameters include the maximum depth of the tree as well as splitting criteria for internal 
nodes. \\ 
On the other hand, the procedure limits the extent to which the exponential growth of the 
parameter space with increasing numbers of parameters or increasing density results in 
prohibitive execution times. This makes the workload more manageable and works as a trade-
off between accuracy and feasibility.Due to substantial computational expense we only 
optimised over rather sparse parameter spaces and a limited number of the available 
parameters. Table \ref{table:tuning} shows a list of the selected hyperparameters for all the 
methods used as well as their optimised values.\\. To speed up the calculations we used the 
Intel\textregistered\ extension package for scikit-learn, called scikit-learn-intelex. 
Fortunately, for most of these models there are parallel implementations of their algorithms to 
speed up the process. Here, we used the Intel\textregistered\ extension package for scikit-
learn, called scikit-learn-intelex. It has been designed to dynamically patch scikit-learn 
estimators making it much faster to optimise the models used in this study with minimal 
changes to the code. It is important to note, however, that the extension does not enhance all 
scikit-learn algorithms, such as the gradient boosting regressor. 
 
TABLE  
 
Data 
The dataset used in this study is highly heterogeneous along many dimensions, with 
differences ranging from file format, metadata conventions, spatial coverage (e.g., regional, 
local) and resolution, to temporal frequency (e.g., daily, monthly, annual) and 
representation (e.g., raster, polygon and point data). The capabilities of ML algorithms 
strongly depend on the quality of the data used. In this section, we give an overview of the 
data used in this study and describe the workflow applied to homogenise and prepare 
these. Table \ref{table:data_sources} lists all environmental and demographic predictive 
variables that were used for this study in addition to the MI data and their characteristics, as 
well as the source datasets and associated references. 
 
TABLE  
 
KORA MI registry 
The health dataset for our study is the KORA/MONICA MI Registry \citep[see][]{Tunstall-
Pedoe1994, Holle2005}, comprising records of MI events that occurred within the study 
region from 1985 to 2015. These data were collected at the hospitals in the Augsburg 
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region. Each record contains the date of the MI occurrence, age and sex of the patient. 
Depending on availability, complementary information is given, such as the patients' 
residential county (Landkreis), their body mass index (BMI), smoking status, and preexisting 
conditions such as diabetes. Although no detailed information is provided on the location of 
the patient during an MI event, they can be assigned to either the urban (City of Augsburg) 
or one of the two rural counties (Landkreise) of the study region (Landkreis Augsburg and 
Aichach-Friedberg). As pointed out earlier, the individual, i.e., participant patient-specific 
information,data could not be used as predictive data due to the nature of the regression 
approach, which aims to predict the gross number of MI in the population, rather than the 
outcomes of specific individuals.. It is, however, possible to use thisthese data to confine 
investigations to subgroups, e.g., to inhabitants of either urban or rural areas, and also to 
the elderly, or to smokers, albeit at the cost of being limited to a smaller subset of the 
overall data. In total the number of recorded MI is $n = 3461834,618$. Until 2008 the study 
was limited to participants of up to $74$ years of age, with $n = 3008130,081$ records total 
in that category. Figure \ref{fig:mi_overview} shows the aggregated number of MI per year 
and the mean annual cycle for the population aged under 75. The yearly maximum in MI is 
observed during the winter months, whereas the summer time shows the lowest 
occurrences. To generate the ground truth for our regression problem, we counted the total 
daily number of MI observed in the KORA study and used the resultant time series as input 
for the ML algorithms.  
 
FIGURE 
 
Air temperature and humidity 
Given the research goal of constructing relations between extreme temperature events and MI 
events, airAir temperature close to the ground is the most important factor to consider as 
the most direct measure of human exposure to heat and cold. The relatively small spatial 
scale of the study region (1998 $\text{km}^2$) puts high demand on the data in terms of 
spatial resolution and accuracy. At the same time, daily environmental data are required for 
our approach.  
 
We opted to derive a 1x1 km grid for the study period between 1985 and 2015 from daily 
data of 22 DWD station datastations in the vicinity of Augsburg and its neighboring districts. 
To this end, we applied universal Kriging with linear drift to the daily values at the 
temperature stations shown in Figure \ref{fig:all_stations}. The resulting gridded datasets 
(minimum, maximum and mean temperature) were aggregated to the counties comprising 
the study region. This relatively simple approach proved to be accurate enough to obtain 
realistic aggregated daily time series for the study region, as shown by the reasonable 
predictions in this paper. 
 
We also include humidity related features in the models to gauge their relative importance 
in the models, despite the fact that humidity is often considered less important.. For this 
project only rRelative humidity was also gathered from the DWD was available. Wand we 
applied the same Kriging procedure for spatial interpolation, as used for temperature. To 
account for possible effects of perceived heat stress expressed by simultaneous high 
humidity and high temperatures we included apparent temperature. Measures of apparent 
temperatures relate a given temperature to the ambient humidity to account for the 
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perceived temperature differences between dry and humid conditions. Here, we applied a 
formula by \citet{Davis2016} to derive the apparent temperature based on temperature and 
humidity data. The specifics of the computation can be found in the Appendix 
\ref{subsec:apparent_temp}. 
 
In a next step, the data was aggregated for the three different counties within the model 
region, the urban and the two rural areas by computing weighted area means. The resulting 
daily time series can be readily used as input to the machine learningML models, as 
described in Section \ref{sec:methods}. 
 
Air quality 
Air pollution is usually a complex mixture andbut several particulate and gaseous pollutants 
shouldcan be considered in investigating its effects on MI \citep[e.g.,][]{Chen2018, 
Bourdrel2017, mustafic2012}. From the "Bavarian Air Hygiene State Monitoring System" 
(LÜB) database \citep{LUB} we collected data on $\text{PM}_{10}$, $\text{NO}$, 
$\text{NO}_2$, Ozone $(\text{O}_3)$, and $\text{SO}_2$ concentrations at multiple stations 
across Bavaria inat daily resolution. 
 
Table \ref{table:data_airq} in the Appendix gives an overview of the selected measuring 
stations and their urban- or rural categories, the corresponding pollutants data and their 
availability.  
Figure \ref{fig:all_stations} gives an overview of the selected temperature and air quality 
measurement stations. We determined the aggregated daily means by calculating the mean 
values of the aforementioned stations, taking into consideration their location proximity to 
the city centers, traffic-loaded inner-city streets, on industrial areas, on the outskirts, or the 
large-scale background pollution. Such hot spots of pollution should have large effect on the 
calculated daily mean.\\ 
The map indicatesshows that there are only few air quality stations within the study region 
(five blue circles, and an archived station with red border circle). Moreover, these stations 
have Since not all stations have been always active during our study period,. In this case we 
use merely the active stations. However, if none of the regularly used station in the counties 
had recorded data on a given day, especially for the surrounding counties, alternative 
stations (light blue dots in Figure \ref{fig:all_stations}) with equalsame proximity settings 
from outside the study region were used as replacements for the calculations. This has been 
achieved through an acceptable 10-15 percent error criterion for the monthly value of 
alternative stations compared to the calculated monthly mean value of the county over a 
span of time provided by the monitoring system. Obviously, the alternative stations should 
also have the same proximity setting.  
The calculated monthly mean time series have been provided in the appendix figure 
\ref{fig:airq-timeseries}. 
 
FIGURE 
 
Vegetation 
The Normalised Difference Vegetation Index (NDVI) is an indicator of the greenness of the 
natural vegetation and other vegetation types such as agriculture and, parks and gardens. It 
is widely used for ecosystems monitoring. In this study NDVI also is used as a proxy for 
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shade as well as potential local cooling effect of vegetation by absorbing sunlight and 
through evapotranspiration. The NDVI\_v2\_1km database of the \citet{CGLS} vegetation 
products is freely available at a 1x1 km spatial resolution starting on April 1998 measured 
every ten days. We extracted the NDVI in for our region of interest and used a cubic spline 
interpolation has been used to upscale the temporal resolution from 10 days to daily values. 
Given the very gradual rate of change in vegetation cover and consequently the NDVI, we 
assume this interpolation does not produce large errors. Note that due to lack of availability 
of NDVI data before 1998, training and testing of the algorithms had to be confined to the 
time between April 1998 and December 2015.  
 
Demographics 
The absolute number of MI does not only depend on various environmental risk factors but 
also on the size and characteristics of the population. Disregarding other factors, any change 
in the absolute number of inhabitants would produce a similar change in the number of 
cases of MI as well. Moreover, both age and sex are strongly correlated with health 
outcomes in general, and specifically so for MI. Given trends of increasing urbanisation and , 
rural depopulation, as well as that of  and an ageing society, it is important to account for 
changes both in number of inhabitants and age stratification of the population inover time. 
In addition, domestic migration reflected in relative changes between urban and rural parts, 
leading to differential changes in exposure to environmental hazards in the Augsburg 
region, can be important as well. We collected data from the BavarionBavarian Office of 
Statistics. The data comprises that comprise annual values for the total number of 
inhabitants for each of the three counties, as well as the distribution of sex and age in the 
population from 1985 to 2015. Overall, 17 different age groups are accounted for as listed in 
Table \ref{table:data_sources}. 
Since the algorithms require daily input values, a linear interpolation was applied to 
estimate the development within a given year. 
 
Results 
 
Weekly predictions of MI events 
Our models produce daily predictions of MI events based on the environmental and 
demographic features within the given window size. We found that the models are not able 
to reproduce the daily variability of MI with sufficient accuracy. As an example, we show the 
daily predictions aggregated to 7-day intervals to increase visibility in Figure 
\ref{fig:7day_agg}. The resultant scores are given in Table \ref{tab:7daily_traintest_scores} 
for both training and validation respectively.  
 
FIGURE 
 
TABLE  
     
Although the seven-day predictions fit reasonably wellsuggest some skill for the training 
period, for the testing period the models do not predict 7-day variations (or day-to-day 
predictions) accurately enough. for practical purposes. The predictions are too close to the 
mean and lack the variability displayed by the observations. An overview of average mean, 
standard deviation, minimum and maximum daily predictions across models and for each 
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subgroup considered is given in Table \ref{tab:stats_traintest_subgroups}. This is likely 
related to randomness as well as risk factors that affect MI events that were not considered 
in the models. For instance, the temperature or air quality predictors may not sufficiently 
capture actual local circumstances, but also information about the built environment and 
other conditions that can not be easily accounted for is missing. 
 
Annual predictions of MI events 
Figure \ref{fig:results_annual_general_pop} shows the model performances on both the 
training and test sets as well as the actually observed MI as a reference for the five ML 
models given in Table \ref{tab:methods}. After training the models and performing the daily 
prediction on the test set, the results were aggregated to annual sums. By aggregating the 
model results to an annual basis, some of the inherent randomness is averaged out. Based 
on the annualised prediction results and time series of observed MI, the performance scores 
were derived (see Table \ref{tab:score_traintest_annual_general_pop}). The training scores 
demonstrate that the ML models are able to predict the year-to-year variations quite well, 
with adjusted $R^2$ scores between $0.8687$ and $0.93.94$. The performance on the test 
dataset is relevant for assessing the generalisation error for previously unseen data. In 
contrast to the training data, the results on the test set are less but still reasonably accurate, 
with adjusted $R^2$ scores between $0.5962$ and $0.71,$, showing that inter-annual 
variations and long-term trends are largely captured. The RR and MLP models exhibit the 
best performance, showing that both well-tuned linear models as well as neural networks 
are able to simulate the relations between environmental conditions and MI events. The 
DTR shows the lowest overall performance by comparison. 
 
FIGURE 
 
TABLE  
     
Feature importance 
In Figure \ref{fig:importance_short_general_pop} we show a condensed rendition of the 
feature importance where related variables have been grouped together of each model; 
except for the MLP which does not support feature importance within the scikit-learn 
framework. Note that variables subject to the sliding window were aggregated over the 
window length of three days to improve readability.  Moreover, features related to time 
such as the current year ormonth number and the day of the week were also aggregated to 
a single group. More detailed plots retaining the differentiation of all features and window 
days can be found in the Appendix (see Figures \ref{fig:importance_grouped_general_pop} 
and \ref{fig:importance_all_general_pop_all_demo}). The latter Figure also shows that 
many of the original demographic features carry little to no weight. We therefore reduced 
the granularity of the demographic data to the age groups $0-29$, $30-49$, $50-74$ and 
$>75$, generally yielding improved results. 
 
While the performance of the models differs, some trends can be observed. Overall, the 
single most important group is air quality, closely followed by temperature and, 
demographic and time related predictors. In contrast to apparent temperature humidity only 
exhibits low importance across all models. Time related featuresHumidity as well as NDVI 
exhibit the lowest explanatory power. NDVI is ranked very closely to the random feature  by 
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all models, and in some cases even slightly lower. All other features are consistently ranked 
above the random feature, indicating that they have relevance in predicting MI occurrence.by 
all models.  
 
FIGURE 
 
Compared to the environmental features that display strong daily variation the 
demographic predictors are subject to slow, gradual change only. We therefore also 
conducted this experiment with all demographic features turned off. The results are shown 
in Table \ref{tab:score_traintest_annual_general_pop_no_demo}. As evidenced by the 
reduction in scores (adj. $R^2$ reduced from $0.67$ to $0.62$ on average) the 
demographic predictors still make a relevant contribution to the overall result despite the 
lower temporal resolution of the input data.  
 
Subgroup analysis 
The models were also applied to subgroups of the population, albeit at the expense of a 
reduced amount of available training data (see Table \ref{tab:subgroups_overview}) for an 
overview). For this analysis we selected a total of 5five subgroups: the urban (Augsburg city) 
and rural population (two adjacent counties) respectively, the elderly (people aged between 
60 and 74), patients with diabetesdiabetics, and active smokers. The data was reduced to 
include only participants with the associated attribute. The training procedure was then 
repeated as detailed for the general case on the resulting subsets. As expected, the 
validation scores dropped considerably for all subgroups, likely a consequence of reduced 
amounts of training data. We refer to the Appendix for detailed results, but for the urban 
and rural subgroups adjusted $R^2$ scores between $0.635$ and $0.376$ were observed in 
validation (see Tables \ref{tab:score_traintest_annual_urban_pop} and 
\ref{tab:score_traintest_annual_rural_pop}). Both subgroups, being of almost equal size, 
performed comparably well, with the urban population exhibiting slightly lower scores 
however. 
 
TABLE 
 
The validation results for the elderly population (see Figure 
\ref{fig:train_annual_elderly_pop} and Table \ref{tab:score_traintest_annual_elderly_pop}) 
are more accurate (adjusted $R^2$ between $0.553$ and $0.68)65$) than for the urban and 
rural populations, although the number of training samples is much higher in both of those 
cases.  
 
The results for patients with diabetesthe diabetic population are shown in Figure 
\ref{fig:train_annual_diabetic_pop} and Table 
\ref{tab:score_traintest_annual_diabetic_pop}. As observed with the elderly, the scores for 
patients with diabetes the diabetic part of the population (adjusted $R^2$ between 
$0.4428$ and $0.55)61$) are comparable to those of the (much bigger) rural and urban 
subgroups, albeit slightly lowerexcept for DTR which resulted in a substantially reduced 
score. 
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The results for the smoking population are shown in Figure 
\ref{fig:train_annual_smoker_pop} and the scores are given in Table 
\ref{tab:score_traintest_annual_smoker_pop}. For this group adjusted $R^2$ validation 
scores drop to around $0.42$ on average, indicating a less accurate fit than for all the other 
subgroups. This is consistent with the smoker group being the smallest of the explored 
subgroups resulting in the lowest amount of training data as well.  
 
Overall, the skill of the models is clearly reduced when limited to subsets of the overall data. 
The decrease in performance, however, is quite different between subgroups, especially 
when taking into account their relative sizes. A particularly interesting question is whether 
the variable importance for any one subgroup changes substantially in comparison to the 
general population. Figure \ref{fig:importance_change} shows the difference in variable 
importance for each of the subgroups in relation to that of the general population. To aid 
readability related features have been grouped again. Considerable differences between 
subgroups, models and feature groups can be observed. For instance, three out of fourmost 
models agree that air qualitydemographics, humidity and demographicsNDVI are particularly 
important for predicting urban MI, while giving less weight to the temperature related 
features. The importance of time related indicators reduced consistently over the general 
population. In mostsome cases the importance of the random feature is also reduced, 
indicating increased robustness of the results. NDVI exhibits mostly increased importance, 
but with considerable inter-model spread. 
 
For the rural population the results suggest slightly increased relevance of air quality, and a 
bit more pronounced increases in humidity and NDVI.NDVI compared to the overall 
population. Temperature and apparent temperatureair quality mostly align with the results 
for the general population. The demographic indicators are less relevant when compared to 
the general case, as are the time related features. The random feature is mostly ranked as 
less important.  
 
For the elderly, the models are mostly undecided on air quality, with a slight tendency 
towards reducedincreased importance. On the other hand, theThe weight of the 
demographic features is emphasized in comparison to the general case. Less importance is 
also attributed to relative humidity and apparent temperature. On both temperature and time 
related features, as well as the random feature the models are undecided, whereas NDVI is 
mostly found to be more important(apparent) temperature and humidity.  
 
For the patients with diabetesdiabetic population, the models mostly agree that 
demographic features, NDVI and temperatureair quality are more important in predicting MI 
for this group in comparison to the general population. On the other hand, 
relative(apparent) temperature, humidity, and time related features and the random feature 
are ranked lower. NDVI is mostly considered to be more important overall. Only for the air 
quality group and the apparent temperature are the models undecided, with a tendency 
towards decreased importance in both cases. 
 
Lastly, for the group of active smokers the models mostly suggest an increased importance 
of air quality as well as demographic features and NDVI for the prediction of MI. Relative 
humidityHumidity as well as (apparent) temperature and time-related features are overall 
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considered less important. The models are undecided on temperature but with a tendency of 
increased relevance. The same holds true for the random feature, albeit with the opposite 
tendency. 
 
FIGURE 
 
 
Discussion 
To our knowledge, this is the first study building and testing machine learningML models 
that include more than only weather variables (such as {Zhang2009} for heat mortality) for 
predicting MI incidenceprevalence. The developed ML models have varying skill in 
predicting MI. At the daily to 7-day time scales, randomness seems too large to produce 
meaningful predictions. However, when the predictionpredictions are aggregated to annual 
sums, the models are very well capable of reproducing the inter-annual variability of 
observed MI, as well as the long-term trends, also for the validation datasets. This is 
comparable to the performance of methods used for predicting malaria incidence 
\citep[e.g.,][]{Sewe2017}. In terms of performance scores the models achieve very similar 
outcomes both in training and validation (see Table 
\ref{tab:score_traintest_annual_general_pop}), indicating some robustness of the 
predictions. More qualitative differences emerge, however, when investigating feature 
importance. There are substantial differences between the ML models in terms of some 
features (Figure \ref{fig:importance_short_general_pop}). Most models rank air quality 
variations and temperatures among the most important features, but a large spread 
between models can be observed for humidity (UPM) and the time-related features.. This 
indicates at least some inherent uncertainty. The feature importance for the MLP model, 
which had the highest performance, was not assessed in this study, due to limitations within 
the scikit-learn framework.  
 
Classical epidemiological approaches like general linear or additive models are mostly 
interested inused for explaining the direction and corresponding uncertainty of an 
associationassociations between one or several (environmental) risk factors and health 
outcomes, thereby adjusting for potential confounding factors. In case of potential non-
linearities, the shape of the exposure-response curve is usually modeled as a smooth 
function. However, the models are limited in case of high correlation and/or high-
dimensional interactions between the covariates. The suggested ML approaches can (partly) 
handle these issues and offer the possibility to compare the importance and predictive 
performance of a multitude of environmental predictors. 
 
The training scores in many cases are close to the maximum, with adjusted $R^2$ values 
greater than $0.85.$. This may be indicative of overfitting, possibly opening room for 
improving further on the generalisation by applying stronger regularisation. While the 
models were adjusted by optimising the hyperparameters, not all possible parameter values 
have been explored. For instance, in the case of the tree-based models pruning is an 
effective way to reduce overfitting. We did not apply pruning, because this is a very time-
consuming approach and we had to limit the extent to which we could perform an exhaustive 
optimisation., which was not applied here. For the MLP and RR models regularising 
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parameters were explicitly included in the optimisation, but possibly the ranges were not 
wide enough to achieve the best trade-off between training and validation. 
 
The model results are sensitive to the selection of the random seed that is used in making 
the initial train-test split. We found that changes in the random seed routinely had greater 
impact than the choice of hyperparameters. One way of dealing with this would be to also 
include this random seed in the optimisation process. Currently, only the random seeds 
used for randomly selecting the folds in cross-validation and in initialising the regressors are 
optimised. In light of the strong influence of the initial split, however, we opted to instead 
test over a range of possible seeds and select the results closest to the average performance 
of the models, not to overstate our results. The sensitivity to the initial split may indicate a 
lack of data, but is likely mostly due to unbalanced splits. We reduced this sensitivity by 
employing a simple but effective stratification strategy. This reduced the variation across 
seeds, but does not entirely resolve the issue. Possibly, more intricate stratification 
approaches may reduce the dependency even further. 
 
We were already able to indicate differences between different geographical regions, i.e.g.., 
urban and rural populations. For instance, humidity, demographics and air quality areNDVI 
become more important predictors for the urban population, compared to the overall 
population, at the expense of (apparent) temperature. The models could be further 
improved by increasing the spatial representation, as the environmental predictors also 
would support this. Increased spatial representation would also allow for additional 
exposure metrics to be established and more predictors, such as those related to building 
structures, their insulation and energy efficiency.  
 
We used a sliding window of three days to allow for lagged effects. Depending on the 
variable, however, longer windows might be more appropriate such as for cold exposure in 
winter. Ideally every predictor would have its own individual window length, derived as part 
of the optimisation process. 
 
An additional area of possible improvement is the environmental data. Some variables such 
as the NDVI and the air quality indicators were not fully available for the period between 
1985 and 2015, effectively limiting the data availableanalysis to the period from 1998 to 
2015. Many variables were also derived from station networks after cleaning and applying a 
simple Kriging method. It is also possible that reducing to reduce the bias in these data,the 
station data (temperature, air quality), for instance by using more sophisticated 
interpolation methods or additional data sources such as from remote sensing, could further 
improve the results. 
 
Finally, it could also be worthwhile to study the direction of the change related to a given 
feature as to get a better grasp on the qualitative relationships between predictors and MI 
events in theAll ML models. It should be noted, however, that other than RR all methods used 
are nonlinear and may therefore not exhibit simple directional effects. 
 
All models results consistently stresseddemonstrated the importance of the air quality 
variables. Climate impact studies, especially related to MI, might therefore benefit from 
carefully analysing possible future developments of these variables. Electrification of traffic, 
reduction of fossil fuel and related changes might yield substantial improvements in air 
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quality in the future. Instead of just focusing on projected changes in, e.g., temperature and 
humidity, scenarios for air quality need to be considered as well, to gain more precise insight 
into possible impacts of climate change on health and possible strategies to reduce these. 
 
Current research and data availability in the fields offrom climate modelling, and 
demographic and environmental scenario development provide many opportunities to use 
the developed ML models from our research for projecting future health risks. Ensembles of 
regional climate models provide climate projections with the highest spatial resolution. For 
the study region, EURO-CORDEX simulations \citep{Jacob2014, Jacob2020} can be 
considered as they provide the largest ensemble at a high spatial (0.11\textdegree, i.e., 12 
km) and temporal (daily) resolution climate simulations that are available today. Several of 
the predictors used in this study could be derived from the EURO-CORDEX ensemble, 
namely temperatures and in many cases relative humidity, as well as dew-point 
temperatures and therefore also apparent temperatures. Alternatively, an ensemble of 
convection permitting decadal regional climate simulations at roughly ~3km, both for 
historic and future conditions, has been created within CORDEX FPS \citep[e.g.,][]{Ban2021}. 
Using an ensemble of near-future (2035-2065) climate model simulations allow for scenario 
uncertainty, internal climate variability, and climate model uncertainty to be assessed 
\citep{ Hawkins2011} when comparing the changes in MI to the reference historical 
simulations.  
 
Demographic predictions until 2039 for the study region at county level can be obtained 
from the \citet{LfStat}. Longer-term projections up until the year 2060, albeit contingent on 
different socio-economic scenarios and at the level of the federal state of Bavaria, could be 
obtained from the \citet{Destatis} and be used to estimate the local projected 
demographics in the study area. These projections would provide a robust basis to estimate 
potential developments of the local population in the near-future. 
 
Projections ofFor vegetation changes, as represented by NDVI, at the required spatial scale 
are not readily available. On the other hand, it can be reasonably assumed that the potential 
for increased greenness in the inner city is limited. Likewise, the potential for substantial 
effects from added green in the rural surroundings of Augsburg is low, as it is already 
ubiquitous there. We therefore believe that moderate up- or downscaling of NDVI patterns 
observed in the past and present may suffice to yield suitable estimates of possible future 
developments, such as adaptation measures of increasing vegetation to reduce the urban 
heat island effect or offset impacts from overall warming due to anthropogenic climate 
change. 
 
The airAir quality projections are related to the emission scenarios used by global climate 
models. For the CMIP6 climate models, estimates of regional surface air quality are available 
at the global model scale \cite{Turnock2020}. These projections could be used to scale the 
observed daily air quality observations, but more exhaustive and local projection data would 
be preferred. To date, however, regional climate models do not feature the necessary 
complex chemical models to accurately model the transport, dispersion and diffusion of 
pollutants. Here, we also excite aA pragmatic up- or downscaling (depending on related 
socioeconomic scenarios, e.g., fossil fuels vs. electrification of traffic) of the observed 
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patterns to bridge the gap between the projections of future air pollution at the global level 
(from the global climate models) to the local level. 
from the global to the local level currently appears as the most convenient approach. 
 
Conclusions  
We have developed an approach for predicting MI events using multi-variable Machine 
LearningML methods, based on environmental and demographic data for a case in 
Augsburg, Germany.. Given that health outcomes depend on a multitude of factors, we 
applied thisa data-driven approach to establish relevant relationships, and collected several 
different variable datasets.. We acquired heterogeneous data on MI events from the KORA MI 
registry in Augsburg, Germany, as well as weather, environmental and demographic data 
from various sources to create a meaningful and consistent daily time series of the 
predictive features and the target variable. 
 
Starting from these time series, a supervised learning problem for MI was formulated, 
accounting for lagged effects of up to three days.. Five different regression algorithms were 
trained on this data, based on random $75/25$ train-test splits for the period between April 
1998 and December 2015. An extensive effort has been carried out to optimise a selection of 
the variousVarious hyperparameters modifying were used to optimise the performance of 
the behaviour of the regressorsalgorithms, based on 5-fold cross validation with respect to 
the $R^2$ scores. 
 
Applying the trained models on the unseen test data allowed an estimation of the 
generalisation error of the models. We found that the daily predictionsor weekly results do 
not showyield meaningful and accurate predictions of MI events. We found that the 
annually aggregated predictions agree moderately well with the observed MI events, 
accurately reflecting observed trends and inter-annual variability of MI. The match between 
observations and the model predictions is supported by the observed validation scores, with 
adjusted $R^2$ scores ranging between $0.5962$ and $0.71.$. Overall, the models 
displayed comparable skill, but the Ridge Regression (RR) and Multi-layer Perceptron (MLP) 
models slightly outperformed the tree-based methods. The least accurate results were 
produced by the Decision Tree (DTR) model. Moreover, analysing theThe feature importance 
where possible, we foundshowed that despite similar overall scores, the relative weight put 
into different features can vary substantially between the models. This emphasised the 
necessity to consider ensembles of models, as it allows to gauge the model spread and 
estimate inherent uncertainty. In this study, all models explored show that air quality istends 
to be the most important feature to predict MI, closely followed by absolutetemperature, 
demographics, and apparent temperatures, the latter including humiditytemperature.  
We also applied the models to various vulnerable subgroups, such as the elderly or patients 
with diabetesdiabetic patients, resulting in only slightly reduced skill scores due to the 
reduced amounts of training data. 
 
Possibilities to improve the current approach are manifold. One aspect is to improve on, 
including the quality of the predictive predictor data, e.g., by using more advanced point to 
space methods rather than ordinary Kriging as was used in this study. Given the relatively 
good performance of MLP in this study more complex and potent neural networks could be 
explored to possibly improve on this further. Moreover. Also, different ML approaches could 
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be explored, such as density estimation  and Bayesian methods, yielding estimates of 
relative risk of different groups to suffer MI. Such estimates could be more readily 
compared with commonly used epidemiological models than the regression models 
presented here. 
Overall, the models’ capacity to give reasonable estimates of possible future developments 
of MI based on the predictive features appears robust. In a next step we aim to apply, the 
trained models can be applied to scenarios of future climatic, environmental and 
demographic conditions. This will allow estimating future changes in MI taking into account 
climatic, as well as other environmental and demographic changes that has most often not 
been done.expanding on limitations of earlier studies. These changes could also include 
further improvements in air quality, or increased 'greening' of urban environments with 
vegetation. New estimates of changes in MI can be based on these ML methods, using 
ensembles of projected climate change, demographic scenarios including ageing population, 
and environmental scenarios contingent on societal transformation (e.g., electrification of 
traffic, greening of cities). Such estimates will enable to gauge the sensitivity of the complex 
health-environment interactions, and benefits of proposed environmental and health 
interventions in urban areas. 
 
%% The following commands are for the statements about the availability of data sets 
and/or software code corresponding to the manuscript. 
%% It is strongly recommended to make use of these sections in case data sets and/or 
software code have been part of your research the article is based on. 
 
Appendix 
 
Derivation of apparent temperature 
 
We have computed the apparent temperature according to: 
$$ T_a = -2.653 + 0.994T + 0.01537T_d^2 $$ 
where $T_a$ is the apparent temperature, $T$ the near-surface mean temperature and 
$T_d$ the near surface dewpoint temperature. \citep[see][]{Davis2016}. Dewpoint 
temperature, however, was not available for this study. To facilitate estimating the apparent 
temperature we therefore first derived another humidity related quantity: vapour pressure. 
Applying again universal Kriging with linear drift, we arrived at 1x1 km gridded data for 
vapour pressure, applying the Magnus formula to estimate the dewpoint temperature: 
$$ T_d = \frac{b\cdot v}{a-v} $$ 
where $a = 7.5$, $b = 237.3$, $v = \log_{10}\left(\frac{p_v}{6.1078}\right)$ with $p_v$ the 
vapour pressure. 
 
Applying these formulas to the gridded temperature and humidity data derived before 
yields a 1x1 km grid for apparent temperature. Note that the formulas were independently 
applied to mean, maximum and minimum temperature. Subsequent aggregation over the 
model region then completed the preparation of apparent temperature as input feature. 
 \subsection{Detailed subgroup and feature importance result 


