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Abstract. Wildfires are recurrent natural hazards that affect terrestrial ecosystems, the carbon cycle, climate and society.

They are typically hard to predict, as their exact location and occurrence are driven by a variety of factors. Identifying a

selection of dominant controls can ultimately improve predictions and projections of wildfires in both the current and a future

climate.
::::::::::
Data-driven

::::::
models

:::
are

:::::::
suitable

:::
for

::::::::::::
identification

::
of

::::::::
dominant

:::::::
factors

::
of

::::::::
complex

:::
and

::::::
partly

::::::::
unknown

:::::::::
processes,

:::
and

:::
can

:::::
both

::::
help

:::::::
improve

::::::::::::
process-based

::::::
models

::::
and

:::::
work

::
as

:::::::::::
independent

:::::::
models. In this study, we applied a data-driven5

machine learning approach to identify dominant hydrometeorological factors determining fire occurrence over Fennoscandia,

and produced spatiotemporally resolved fire danger probability maps. A random forest learner was applied to predict fire danger

probabilities over space and time, using a monthly
:
(2001–2019

:
) satellite-based fire occurrence dataset at a 0.25◦ spatial grid

as the target variable. The final data-driven model slightly outperformed the established Canadian fire weather index (FWI)

used for comparison. Half of the 30 potential predictors included in the study were automatically selected for the model.10

Shallow volumetric soil water anomaly stood out as the dominant predictor, followed by predictors related to temperature

and deep volumetric soil water. Using a local fire occurrence record for Norway as target data in a separate analysis, the

test set performance increased considerably. This improvement shows
::::::::::
demonstrates

:
the potential of developing reliable data-

driven prediction models for regions with a high quality fire occurrence record, and the limitation of using satellite-based

fire occurrence data in regions subject to small fires not picked up
:::::::
identified

:
by satellites. We conclude that data-driven fire15

prediction
:::::
danger

::::::::::
probability

:
models are promising, both as a tool to identify the dominant predictors and for fire danger

probability mapping. The derived relationships between wildfires and its compound
:::
the

:::::::
selected predictors can further be used

to assess potential changes in fire danger probability under future
::::::
different

:::::::
(future)

:
climate scenarios.

1 Introduction

Boreal ecosystems, covering large parts of northern North America and Eurasia, comprise one of the world’s most extensive20

biomes (Balshi et al., 2009). In the boreal region, which stores approx. 30% of the world’s soil carbon pool, fires are the major

stand-renewing agent and play a major role in carbon storage and emissions (Flannigan et al., 2009). Boreal fires emit up to

9% of global fire carbon emissions and 15% of global fire methane emissions
:::::::
annually

:
(Van der Werf et al., 2017; Flannigan

et al., 2009). The fire season length, fire frequency and burned area have increased in many parts of the boreal region, and
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these changes have been linked to climate change (Tomshin and Solovyev, 2021; Feurdean et al., 2020; Hanes et al., 2019;25

Balshi et al., 2009; Kasischke and Turetsky, 2006). Accordingly, improved knowledge about boreal fires and their occurrence

is of high importance, both in the current and in future projected climates
::::::
climate

::::::::
scenarios. Fires have been extensively stud-

ied in the boreal zones of North America and Russia (e.g. Tomshin and Solovyev, 2021; Hanes et al., 2019; Balshi et al., 2009)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Tomshin and Solovyev, 2021; Hanes et al., 2019; Forkel et al., 2012; Balshi et al., 2009). However, to the best of our knowl-

edge, fire studies of
:::::
within

:
the European boreal zone are limited.30

The European boreal zone covers Fennoscandia, a peninsula comprising Norway, Sweden, Finland, as well as the north-

western part of Russia (Kola Peninsula and Karelia). Fennoscandia is known for its large spatial heterogeneity in hydroclima-

tological characteristics resulting from a high local variability in altitude, soil characteristics and moisture sources over short

distances, to mention a few (Sømme, 1960). Similar to other boreal regions (Skinner et al., 2002), the fire season comprises

the warm and dry period of the year, and is limited by snow during winter. Fires in Fennoscandia are normally small in size,35

and of shorter duration (more quickly distinguished), as compared to boreal regions in North-America and Siberia (Aalto and

Venäläinen, 2021). However, there are recent examples of warm and dry summers where large areas burned, such as the record-

breaking area burned in Sweden in 2018 (Krikken et al., 2021; San-Miguel-Ayanz et al., 2019). Such extreme fires pose the

question of what to expect in the future.

Wildfires are recurrent natural hazards and an integral part of all major biomes (Keywood et al., 2013; Bowman et al.,40

2009). Wildfires both affect and are being affected by climate, emphasising the importance of incorporating fire activity when

investigating the earth system. On both short and long time-scales, wildfires affect regional and global climate by changing

the terrestrial ecosystem composition and functioning, surface energy fluxes, and the water and carbon cycle (Walker et al.,

2019; López-Saldaña et al., 2015; Keywood et al., 2013; Flannigan et al., 2009). Wildfires are complex phenomena, driven by

a combination of available biomass to burn, hydrometeorological conditions suitable for combusting and propagating the fire,45

and a source of ignition (Krawchuk and Moritz, 2011; Krawchuk et al., 2009). The hydrometeorological conditions are the

most variable and largest driver of burned area (Jolly et al., 2015; Abatzoglou and Kolden, 2013; Littell et al., 2009; Flannigan

et al., 2005; Bessie and Johnson, 1995), controlling whether or not an ignition leads to a fire. The hydrometeorological controls

act on both seasonal to annual time scales, for example by controlling the presence of snow, and the moisture content of the

soil and vegetation; and on short time scales, for example by concurrent
:::
hot, dry and windy weather. This makes wildfire50

occurrence a complex hazard that can be caused by a multitude of, typically statistically dependent, external drivers.

Research that explicitly takes into account information of observed fires are typically either large-scale assessments using

satellite-based burned area products, or limited to regions where historical fire records are good and that recently have experi-

enced devastating large wildfires (e.g. Hanes et al., 2019; Kganyago and Shikwambana, 2020; Lizundia-Loiola et al., 2020; Turco et al., 2013; Andela et al., 2017; Aldersley et al., 2011; Kasischke and Turetsky, 2006)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Kuhn-Régnier et al., 2021; Hanes et al., 2019; Kganyago and Shikwambana, 2020; Lizundia-Loiola et al., 2020; Turco et al., 2013; Andela et al., 2017; Aldersley et al., 2011; Kasischke and Turetsky, 2006)55

. Because satellite-based fire information relies on the reflectance changes from medium resolution sensors, such data can be

very different compared to national historical fire recordsthat
:
,
:::::
which

:
are typically of higher resolution. In particular, satellite-

based burned area products suffer from a systematically underestimation of burnt area due to difficulties in detecting small
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fires (Padilla et al., 2015; Randerson et al., 2012). On the other hand, the availability and quality of national fire datasets varies

among countries, whereas satellite products allow for consistent transboundary fire data.60

Several fire characteristics are of interest, such as the fire regime, emissions, burned area, duration and feedbacks with

vegetation. The characteristics all have in common that they rely on the fundamental question of when and where fires are

likely to occur. Fire occurrence, or likelihood thereof (i.e. fire danger probability), can be used for monitoring, forecasting and

projections, and has been investigated using three main approaches: fire weather indices, global fire models, and data-driven

models, as further elaborated below.65

The relation between hydrometeorology and wildfires have traditionally relied on established fire weather indices (e.g.

Van Wagner et al., 1987; Bradshaw, 1984; Noble et al., 1980). These indices are used for fire danger mapping applicable for

monitoring, forecasting and projections. Fire weather
::::::
danger

:::
can

:::
be

::::::
defined

:::
as

:::
the

:::::::
weather

:::::::::
conditions

::::
that

:::
can

::::::
trigger

::::
and

::::::
sustain

:::::::
wildfires

:::::::::::::::::::::
(Ranasinghe et al., 2021),

::::
and

::::
thus

::::::
differs

::::
from

:::::
(and

::
is

:
a
::::::::::
prerequisite

::::
for)

:::
fire

::::::::::
occurrence

:::
that

:::::::::::
additionally

::::::
require

::
an

::::::::
ignition.

::::
Fire

:::::::
weather indices are typically based on empirical and semi-physical equations relating weather ob-70

servations to dryness of fuel, with the aim of determining the fire danger, i. e. the weather conditions that can trigger and

sustain wildfires (Ranasinghe et al., 2021).
:
. Fire weather indices can also be calculated based on large-scale gridded reanalysis

and climate model data (e.g. McElhinny et al., 2020), allowing for spatially continuous estimates. Such estimates are used for

transnational fire monitoring and forecasting (San-Miguel-Ayanz et al., 2012), and assessments of historical and future changes

in fire danger (Sun et al., 2019; Abatzoglou et al., 2019; Jolly et al., 2015; Flannigan et al., 2013). Despite the ,
:::::::
whereas

::::
fire75

::::::
weather

:::::::
indices

::::::::
calculated

:::::
using

:::::::::
numerical

::::::
weather

:::::::
forecast

::::::
models

:::
are

:::::
used

::
for

:::::::::::
transnational

::::
fire

:::::::::
monitoring

:::
and

::::::::::
forecasting

::::::::::::::::::::::::::
(San-Miguel-Ayanz et al., 2012).

:::::::
Despite

::::
their

:
widespread use, fire weather indices are typically developed for specific coun-

tries or biomes, and are thus not necessarily well-suited for all
::::
other

:
regions and climates (Arpaci et al., 2013; Dowdy et al.,

2009).

Over the last two decades, global fire models (fire-enabled dynamic global vegetation models
:::::::
Dynamic

:::::::
Global

:::::::::
Vegetation80

:::::::
Models;

:::::::
DGVMs) that can be coupled with climate models have been developed (Hantson et al., 2016). Most global fire mod-

els are process-based models that estimate fuel load and fuel moisture, based on fire weather indices, or other atmospheric

and simulated moisture conditions. These estimates are subsequently combined with the probability of lightning and/or an-

thropogenic ignition, to determine whether a fire will occur in a grid cell. Lightning rates can be constant in time or based on

statistics, whereas population density is typically used to estimate human ignition probabilities as well as human suppression85

of fires. An advantage of global fire models is that they allow for examining the feedbacks between fire, vegetation and climate

(Hantson et al., 2016). However, this relies on how well the model is able to represent reality. Whereas the global fire models

have shown to reproduce the seasonality in burned area well, they vary in their ability to represent the spatial pattern in burned

area, and are generally unable to represent interannual variations (Hantson et al., 2020).

Finally, data-driven (statistical and machine learning) models have been developed to relate wildfires to environmental90

and meteorological conditions (e.g. Gudmundsson et al., 2014; Aldersley et al., 2011). Unlike process-based approaches (fire

weather indices and global fire models) that are constructed using pre-defined equations to relate a set of drivers to the fire

characteristic of interest; a data-driven model follows a bottom-up approach that starts by considering the fire characteris-
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tic explicitly, and relates that characteristic to the combination of drivers based on the data itself. Many of the data-driven

model studies predict spatial patterns in fire occurrence or burned area (Krawchuk et al., 2009; Parisien and Moritz, 2009;95

Prasad et al., 2008), sometimes over a typical fire season (Bedia et al., 2015; Gudmundsson et al., 2014; Aldersley et al.,

2011). A few studies account for year-to-year variability by predicting the annual burned area (Littell et al., 2009; Balshi

et al., 2009). However, data-driven
::::::::::
Data-driven

:
model studies accounting for both seasonal and inter-annual variability in

fire occurrences are limited.
:::::
Those

::::
that

::::
exist

::::::::
typically

::::::
predict

::::::::
monthly

:::::
global

:::::::
patterns

::
in
:::::::

burned
::::
area

:::::
using

::::::::
predictors

:::::
from

:::::::::::
observational

::::
data

::::::::::::::::
(Forkel et al., 2017)

:
,
:::::::
DGVMs

::::::::::::::::::
(Forkel et al., 2019)

:
or

::
a
:::::::::::
combination

::
of

:::::::::::
observational

::::
and

:::::::::
reanalysis

::::
data100

::::::::::::::::::::::
(Kuhn-Régnier et al., 2021)

:
.

Data-driven methods are restricted to data-rich regions because observations are required
::::::
regions

:::
and

:::::::::::
applications

::::
that

::::
have

::::::::
sufficient

::::
data to both train the models and validate the performanceof the models

::::
their

:::::::::::
performance. Although there are

multiple examples of the opposite, a data-driven model should always be evaluated using a (part of the) dataset not used in

the construction of the model. This is important to avoid overfitting, i.e. to ensure the model is able to predict the system105

of interest and not only the data points it is trained on. Another challenge is the rare occurrence of forest fires implying a

highly skewed dataset, an imbalance that needs to be accounted for in the training and evaluation of a model. In addition, a

bottom-up approach is typically less straightforward in its data requirements and methodology as compared to the process-

based approaches
:
,
:::::::
because

:
a
:::::::::
bottom-up

::::::::
approach

::
is

:::
not

::::::
limited

:::
by

:::
the

:::::::
physical

::::::::::::
understanding

::
of

:::
the

:::::::
system,

:::
and

:::
the

:::::::
amount

::
of

:::
data

::::
and

:::::::::
algorithms

:::::::::::
implemented

:::
are

::
in

:::::::
principle

:::::::::
unlimited.110

Despite the
::::
these

:
challenges, bottom-up approaches are needed due to their ability to

::::::
valuable

:::
as

::::
they

:
facilitate an ex-

plicit link between climate science and societal or environmental impacts, as emphasised by the compound event framework

among others (Van der Wiel et al., 2020; Zscheischler et al., 2018; Leonard et al., 2014). The approach allows for a high

degree of flexibility in terms of potential drivers, target variables and models. This flexibility allows for both detailed regional

investigation
:::::::::::
investigations, and constructing models transferable to future

:::::::
different

:::::::
(future)

:
climate scenarios (e.g. Goulart115

et al., 2021). As opposed to the fire weather indices and global fire models, data-driven models do not require a priori as-

sumptions of the dominant mechanisms and physical processes controlling fire occurrences (except indirectly in the selection

of potential predictors). This makes data-driven models suitable when the nature of the processes is complex and/or partly

unknown, and when the emphasis is on accurate predictions or identification of dominant controlling mechanisms (Parisien

and Moritz, 2009). Data-driven models can in this way both help improve process-based models, and work as independent120

prediction models. A data-driven approach allows us to pinpoint controlling variables
::::::
identify

:::::::::
controlling

::::::
factors

:
for fire oc-

currences for specific regions. This is especially important for regions such as Fennoscandia, which possess special
:::::
highly

::::::
variable

:
hydroclimatological conditions, and where the current number of (satellite-detected) fires are relatively low as com-

pared to other regions of the world.

In this study, we developed a temporally and spatially explicit data-driven machine learning model for Fennoscandia to reach125

two main objectives:

– Identify the dominant predictors of wildfires
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– Construct monthly fire danger probability maps

A satellite-based burned area product was used to construct the target dataset of fire occurrences over the period 2001–2019

at a monthly time step. We chose a random forest (RF) algorithm to train the model and identify dominant predictors from130

a predefined set of 30 hydrometeorological and land cover based metrics
::::::
indices. To have trust in the model, it was tested on

an independent dataset using the Area Under the Curve of the Receiver Operating Characteristic (ROC-AUC). In addition, we

answered
:::
aim

::
to

::::::
answer

:
the following research questions:

1. How well does the data-driven model perform as compared to the Canadian Fire Weather Index (FWI) , which
:::
that is

developed for similar biomes and latitudes as Fennoscandia?135

2. How well does the data-driven model perform when applied to a
::
an

::::::::::
independent

:
local (Norwegian) fire occurrence

dataset?

3. Does the performance of a data-driven model improve when using a local fire occurrence dataset as target variable for

training the model?

Finally, we performed two additional experiments to challenge the model choices made:140

4. Does the data-driven model outperform
::::::
chosen

:::::::::
outperform

::::
both

::
a
::::::
simpler

::::::::
machine

:::::::
learning

::::::::
algorithm

::::::::
(Decision

::::::
Tree),

::
as

::::
well

::
as a simpler and a more sophisticated

::::::::::
(AdaBoost) machine learning algorithm?

5. What is the effect of not including a dynamical vegetation index?

The paper is structured as follows: Sect. 2 provides a detailed description of the data sources and methods applied. The

results are presented in Sect. 3. A discussion is provided in Sect. 4, followed by concluding remarks given in Sect. 5.
:::
The145

::::::::::
Supplement

::::::::
comprises

::::
Fig.

:::::::
S1–S13.

:

2 Data and methods

A general outline of the data-driven approach
::
for

::::::::::::
Fennoscandia is shown in Fig. 1. Data and pre-processing of the target variable

(fire occurrence) and the potential predictors are summarised in Table 1 and described in Sect. 2.1-2.3. Section 2.4 describes

the data and calculation of the Canadian Fire Weather Index (FWI), which was used as an alternative prediction
:::
fire

::::::
danger150

model. The data-driven model set-up and training is described in Sect. 2.5, followed by Sect. 2.6 describing
:
.
:::::::
Section

:::
2.6

:::::::
describes

:
the selection and evaluation of the final data-driven model

:
,
::::::::
including

:::
the

::::::::
predictor

:::::::::
importance

::::::::
estimate,

::::::::::
comparison

::
of

:::
fire

::::::
danger

:::::::::
probability

:::::
maps

::::::::
produced

:::
by

:::
the

:::::::::
data-driven

::::::
model

:::
and

:::::
FWI,

::::
and

:::::
model

:::::::::
evaluation

:::::
using

:::
the

:::::::::
Norwegian

::::
fire

:::::::::
occurrence

::::::
dataset. Finally, Sect. 2.7 describes the additional experiments challenging the model choices made.

5



Pre-processing

Train set Test set

M
o

d
el

 t
ra

in
in

g Cross-validation for 
complexity tuning and 

predictor selection

Select best model set-up 
based on average cross-

validation results

Define 
machine-
learning 
algorithm

Define 
evaluation 
criterion

Construct final 
data-driven 

prediction model

Evaluate model 
performance 
and predictor 
importance

Compare 
performance of 
model vs FWI

Compare 
performance of model 
vs FWI on Norwegian 

target data

Pre-processing Pre-processing

Select satellite-based 
fire data as target 

variable

M
o

d
el

 e
va

lu
at

io
n

Select Fire Weather 
Index (FWI) as an 

alternative 
prediction model

Select Norwegian 
fire data as an 

alternative target 
variable

Select 
potential 
predictors

Sect. 2.1.1

Sect. 2.1.2

Sect. 2.2–2.3

Sect. 2.4

Sect. 2
.5

.4
–

2
.6

.1

Se
ct

. 2
.5

.2
Se

ct
. 2

.5
.3

Sect. 2.5.1

Sect. 2
.6

.2
–2

.6
.5

Figure 1. Flow chart of the data-driven approach for Fennoscandia. Sections given in the flow chart refer to sections in the text where

detailed descriptions can be found. Grey, green and dark brown boxes represent steps relevant to model training, model evaluation and both,

respectively.

2.1 Data and pre-processing of the target variable155

Two spatiotemporally varying datasets were used as target variables for the analysis, a main satellite-based fire occurrence

dataset (Sect. 2.1.1), and an additional Norwegian fire occurrence dataset (Sect. 2.1.2. The two datasets are fundamentally

different; whereas the satellite-based fire occurrence dataset only captures fires large enough to impact the reflectance captured
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by the satellite, the Norwegian fire occurrence dataset comprises all wildfire occurrences, whereof many cover a rather small

area.160

2.1.1 Satellite-based fire occurrence dataset

Data used for the target variable was the gridded fire burned area European Space Agency Climate Change Initiative (ESA-CCI)

product version 5.1.1cds, downloaded from the Copernicus Data Store (ESA-CCI, 2020). This dataset holds the same informa-

tion as the Fire ECV Climate Change Initiative Project (Fire CCI) burned area product version 5.1, and is based on Terra
:::
the

:::::::::
reflectance

::::::
product

::
of

:::
the Moderate Resolution Imaging Spectroradiometer (MODIS) Reflection information .

::::::
sensor.

:::
The

:::::
main165

:::::::::
reflectance

:::
data

::::
used

:::
are

:::::
daily

::::::
surface

:::::::::
reflectance

::::::::::
information

::
in

::
the

:::
red

::::
and

::::
Near

:::::::
Infrared

:::::
bands

:::::::::::::::::::::::::::::::::::
(more details found in Pettinari et al., 2019)

:
.
::::
Data

:::::::::::
uncertainties

:::
are

::::::
related

::
to

:
a
::::::::
potential

:::::::::::::
underestimation

:::
of

:::
the

:::::
actual

::::::
burned

::::
area

:::
due

:::
to

:::::
cloud

:::::
cover,

::::
haze

:::
or

::::
other

::::
low

::::::
quality

::
of

:::
the

:::::::::::
observations.

:::
The

:::
fire

::::::
burned

::::
area

::::::
dataset

::
is
::::::::
available

::::
both

::
as

:
a
:::::
0.25◦

:::::::::::::::
longitude/latitude

::::::
regular

::::
grid

::::::
product

::::
and

::
as

:
a
:::::
pixel

:::::::
product

::
of

::::
250

::
m

:::::::::
resolution.

:::
We

:::::
chose

:::
to

:::
use

:::
the

::::
grid

:::::::
product

::
to

:::::::::
investigate

::
if

::
a

:::::::::
data-driven

::::::
model

::
is

:::::::::
applicable

::
for

::::
use

::
at

:::
the

:::::
spatial

:::::
scale

::
of

:::
the

::::
state

::
of

:::
the

:::
art

::::::
global

::::::
climate

:::::::
models.

:::::::
Further,

::::::
spatial

::::::::::
dependency

::
of

::::
fires

::::
(e.g.

:::
the

:::::
same

:::
fire170

::::::::
occurring

::
in

:::
two

::
or

:::::
more

:::::
cells)

::
is

::::::
reduced

:::::
when

:::::
using

:::
the

::::::
coarser

:::::
scale

::
of

:::
the

::::
grid

::::::
product

::
as

:::::::::
compared

::
to

:::
the

::::
pixel

:::::::
product.

:

From the global fire burned area dataset, Fennoscandia was selected, and a two-class target variable of fire occurrence

was constructed by classifying each data point as 1 (fire) if the burned area of the data point exceeded zero, and 0 (no-fire)

otherwise. Thus, each data point (i.e. each grid cell for each time step) was independently considered as either a fire occurrence

or not, and no merging was performed for
:
of

:
fires that potentially extended multiple grid cells or months. The original monthly175

time step, period 2001–2019, and 0.25◦ longitude/latitude regular grid of the dataset were kept to have as many data points as

possible. However, the months October to March were omitted each year, as they had less than 20 fire occurrences over the

whole period and all grid cells, which was considered too few occurrences for the analysis. Figure 2 shows the distribution of

the fire occurrences over time and space. There is an extreme imbalance between the two classes (fire and no-fire) in the target

variable, with only 0.3% of the data points classified as fire.180

2.1.2 Norwegian fire occurrence dataset

A national record of historical wildfires in Norway from the Norwegian Directorate for Civil Protection
:::::::::::
(DSB, 2020) was

used to evaluate the model prediction capability using a different target dataset. The Norwegian fire occurrence dataset covers

point location and date of wildfires in Norway from 2016 to near-present.
:::
The

:::::::
dataset

::::::::
comprises

:::
all

::::
fires

::::::::
registered

:::
in

:::::
grass,

::::::::
cultivated

::::
land,

::::::
forests

::::
and

::::::::::
uncultivated

:::::
land,

:::::::::
regardless

::
of

:::::::
ignition

::::::
source.

::::
The

::::
data

::
is

:::::
based

:::
on

:::
the

:::
fire

::::
and

:::::
rescue

:::::::
service185

:::::::
reporting

::::::
system

::
in
:::::::
Norway

:::::::
(brann-

::
og

::::::::::::::::
redningstjenestens

:::::::::::::::::
rapporteringssystem;

::::::
BRIS).

:::::
There

::
is

::
no

:::::
lower

:::::
limit

::
of

::::::
burned

::::
area

::
in

:::
this

:::::::
dataset,

::
as

::
it

::
is

:::::
based

:::
on

:::
fire

::::::::
responses

::
of
::::

the
:::
fire

::::::::::
department.

::::
The

::::
point

::::::::
locations

::
in
::::

the
::::::
dataset

:::
are

:::
the

:::
fire

::::::::
response

:::::::::
attendance

::::::::
locations.

::::::::
Although

:::::
these

::::::::
locations

::::
may

::::
not

::::::
overlap

:::::
with

:::
the

::::::::
locations

:::::
where

::::
the

:::
fire

:::::::
started,

:::
we

:::::::
consider

::::
this

:::::::::
uncertainty

::
of

:::::
minor

::::::::::
importance

::
at

:::
the

:::::
0.25◦

:::::
spatial

::::
grid

:::::::
applied

::
in

:::
the

:::::
study.

Each fire was assigned to the nearest grid cell using the same spatial grid as the satellite-based fire occurrence dataset, and190

to the month of occurrence. All data points were classified as 1 (fire) if one or more fires occurred, and 0 (no-fire) otherwise.
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Figure 2. Distribution of fire occurrences in the satellite-based target variable over a) time (month and year) and b) space (0.25◦ resolution).

Because multiple fires can occur within the same month and grid cell, the total number of fire occurrences is lower for this

variable than the original fire record data. Data for
:::::::
covering

:::
the

:::::
same

::::::
season

:::
and

::::::
period

::
as

:::
the

::::::::::::
satellite-based

:::
fire

::::::::::
occurrence

::::::
dataset

::::
were

:::::::
selected,

:::
i.e.

:
April–September 2016–2019 were selected

:::::::::
2016–2019.

Figure 3 shows the differences in the spatial and temporal distribution of fire data points
::::
(i.e.

:::
grid

:::::
cells

::::
with

:::::::
recorded

::::
fire195

:::::::::
occurrence

::
at

:
a
:::::

given
:::::

time
::::
step)

:
in the Norwegian fire occurrence dataset and the satellite-based fire occurrence dataset for

the spatial and temporal domain of the Norwegian fire occurrence dataset. There are substantial differences between the two

datasets. The Norwegian dataset has in total 800 fire data points, as opposed to 24 in the satellite-based dataset. Whereas the

three months of the highest number of fire data points in the Norwegian dataset are May–July, no fire data points exist for June

and July in the satellite-based dataset. The unusual high number of fires in 2018 is not reflected in the satellite-based dataset.200

Finally, the Norwegian dataset show a higher spread in fire occurrence across Norway as compared to the satellite-based

dataset.

2.2 Criteria for potential predictors

The selection of potential predictors was governed by three criteria: available in most climate models, transferable to future

:::::::
different climate scenarios, and compatible with the spatiotemporal resolution and domain of the target data. In addition, the205

data should be of high quality and the predictor
::::::::
predictors

:
should have a physical interpretation.

By limiting the selection of potential predictors to the two first criteria, we allow for investigations of fire hazard prediction

:::::
danger

::::::::::
probability

:
as modelled by the data-driven model for different potential future climate scenarios. Due to the lack of

human influence variables
:::::
being

::::::::::
represented in many climate models, predictors such as human infrastructure, settlement, and

8



Figure 3. Distribution of fire occurrences in Norway using a) the satellite-based dataset and b) the Norwegian dataset. The figures show the

spatial distribution over Norway (map), and the temporal distribution over the period 2016–2019 (bar plot), as defined by the spatial and

temporal domain of the Norwegian fire occurrence dataset. Note the different y-axes of the two bar plots.

ignition sources were excluded from the analysis. Also lightning were
:::
was

:
excluded, partly due to the lack of such informa-210

tion in most climate models, partly due to the limited information such data can provide at a monthly 0.25◦ resolution, and

partly due to the inconsistency in having only one type of ignition information. Other categories of potential predictors that

were excluded include dynamic vegetation related predictors
::::::::
predictors

::::
that

::::::::
indirectly

::::
hold

:::::::::::::::::
hydrometeorological

::::::::::
information,

such as greenness indices
:::::
month

:::::::
number, as well as predictors that indirectly hold hydrometeorological information

:::::::
dynamic

::::::::
vegetation

::::::
related

:::::::::
predictors, such as month number.

::::::::
greenness

::::::
indices.

::::::::
Dynamic

:::::::::
vegetation

::::::
related

:::::::::
predictors

::::
were

::::::::
excluded215

::::::
because

:::::
most

::::::
climate

::::::
model

:::::::
outputs

:::
are

:::
not

:::::
based

:::
on

::::
runs

:::
for

::::::
which

:::
the

::::::
climate

::::::
model

::
is

:::::::
coupled

::::
with

::
a

::::::::
Dynamic

::::::
Global

:::::::::
Vegetation

:::::
Model

:::::::::
(DGVM),

:::
but

:::::
rather

:::
use

:::::::::
prescribed

:::::::::
vegetation

::::::
cycles.

The third criterion ensured compatibility of all data used in the analysis. In order to carry out the data-driven approach,

all potential predictors needed
:::
need

:
to have the same spatiotemporal domain and resolution as used for the satellite-based

target variable. Thus, all potential predictors were spatially constrained to Fennoscandia using a spatial resolution of 0.25◦,220

and consisted of monthly values from April to September over the period 2001–2019. After the preparation of the potential

predictors, the spatial domain was further limited to the grid cells for which all data (including the target variable) had values

for all time steps, and to grid cells where the fraction of burnable area (fraction_burnable) was greater than zero.
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Figure 4. Statistical dependency of the potential predictors (abbreviations according to Table 1) using the full dataset: a) Spearman rank

correlation and b) hierarchical clustering using Ward’s Method (Ward, 1963).

2.3 Data and pre-processing of potential predictors

The final selection comprised 30 potential predictors, several of which were highly correlated (Fig. 4). The derivation of each225

potential predictor is described in the following sections, ordered by categories as given in Table 1 (first column).

2.3.1 Precipitation, temperature and meteorological drought indices

The precipitation and temperature predictors were calculated based on ensemble mean daily precipitation totals (rr), and daily

minimum, maximum and mean air temperature (tn, tx and tg, respectively) at 0.25◦ longitude/latitude from E-OBS version

23.1e (Cornes et al., 2018). E-OBS is a European dataset based on the European Climate Assessment and Dataset station230

information (ECA&D), with data covering the period 1950 until near-present.

From the daily values, monthly precipitation sums (rr_sum) and monthly means of tn, tx and tg (tn_mean, tx_mean and

tg_mean, respectively) were calculated. The corresponding normalised anomalies (rr_sum_anomaly, tn_mean_anomaly, tx_mean_anomaly

and tg_mean_anomaly) were calculated by subtracting the 1991–2020 mean and dividing by the 1991–2020 standard devia-

tion of each month separately. The reference period 1991–2020 was chosen to follow the most recent normal period (WMO235

guidelines). An additional metric
:::::
index, tx_max, was constructed by extracting the maximum daily tx for each month.

Two meteorological drought indices were included; the Standardized Precipitation Index (SPI; Guttman, 1999; McKee et al.,

1993) and Standardized Precipitation-Evapotranspiration Index (SPEI; Beguería et al., 2014; Vicente-Serrano et al., 2010),

each calculated for a 2, 3, 6 and 9 month accumulation period. The accumulation period is added to the abbreviation, e.g. SPI3
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(representing a 3-month accumulation period). Both SPI and SPEI are indicators of the dryness/wetness of a site as compared240

to normal, and can be compared across locations with different climatology and highly non-normal precipitation distributions

(Stagge et al., 2014). Whereas SPI is an estimate of the precipitation anomaly, SPEI estimates the anomaly in the climatic

water balance defined as precipitation minus potential evapotranspiration (PET). We used the Hargreaves equation (Hargreaves

and Samani, 1985) to estimate PET, following the recommendation by Stagge et al. (2014). The Hargreaves equation estimates

daily PET based on each day’s tg, a proxy for net radiation (tx minus tn), and an estimate of extraterrestrial radiation based245

on the grid latitude and day of the year. To compute the SPI (SPEI), the precipitation (precipitation minus PET) for a given

accumulation period during the reference period is fitted to a parametric distribution, then non-exceedance probabilities from

the distribution is transformed to the standard normal distribution, and finally the standard normal distribution is used to

estimate anomalies in terms of standard deviations over a period of interest. As for the precipitation and temperature anomaly

calculations, 1991–2020 was used as the reference period. Following the recommendations of Stagge et al. (2015), we applied250

the gamma distribution including a “centre of mass” adjustment for zero precipitation for SPI, and the generalised extreme

value distribution for SPEI. All final SPI and SPEI values were limited to the range -3 to 3 due to the uncertainty related to the

extrapolation required for extreme values when based on a limited historical record (Stagge et al., 2015).

2.3.2 Wind speed

Hourly eastward and northward components of 10m wind were derived from ERA5-Land hourly data, which is available255

from 1981 to near-present at a 0.1◦ regular longitude/latitude global grid (Muñoz Sabater, 2019a) . Daily mean values were

calculated, and the eastward and northward components were combined to derive the daily mean wind speed. Further, the data

was remapped using a second order conservative remapping to match the 0.25◦ grid used for the analysis. For each month, the

daily mean wind speed was used to derive the monthly mean wind speed (wpeed_mean), and the 10th and 90th percentile of

daily wind speed (wspeed_p10 and wspeed_p90, respectively).260

2.3.3 Snow and soil moisture

The fractional snow cover and the volumetric soil water in four soil layers were obtained from ERA5-Land monthly averaged

data, which is available from 1981 to near-present at a 0.1◦ regular longitude/latitude global grid (Muñoz Sabater, 2019b). As

for the
:::::::::::
Fennoscandia

:::::
covers

::
a

::::
wide

:::::
range

::
of

:::::::
latitudes

:::
and

::::::::
altitudes,

:::::
snow

:
is
::::
still

::::::
present

::
in

:::
our

::::::
dataset

:::
for

::::
some

:::::::
months

:::
and

::::
grid

::::
cells,

::::::::
although

:::
the

::::::
months

:::::::
analysed

:::::
were

::::::
limited

::
to

::::::::::::
April–October.

::::
The

:::::::::
volumetric

:::
soil

:::::
water

::
is
:::
the

::::::
volume

:::
of

:::::
water

::
in

:
a
:::::
given265

:::
soil

::::
layer

:::
of

::
the

::::::::
ECMWF

:::::::::
Integrated

::::::::::
Forecasting

:::::::
System,

:::
and

::
is

:::::::::
associated

::::
with

:::
the

:::
soil

::::::
texture,

::::
soil

:::::
depth,

::::
and

:::
the

:::::::::
underlying

::::::::::
groundwater

:::::
level.

::::
The

:::::::::
volumetric

::::
soil

:::::
water

::
in

::::
soil

:::::
layer

:
1
::::::::

(0–7cm)
::
is

:::
one

:::
of

:::
the

::::
best

::::::::::
performing

:::::::
datasets

::
of

::::::::::
established

:::::::
satellite-

:::
and

:::::::::::
model-based

:::::::
shallow

::::
soil

:::::::
moisture

::::::::
products

:::::::::::::::
(Beck et al., 2021)

:
.
::
As

:::
for

:::
the

:
wind speed, the data was

::::::::
fractional

::::
snow

:::::
cover

::::
data

:::
and

:::
soil

:::::::::
volumetric

::::
soil

::::
water

::::
data

::::
were

:
remapped to a 0.25◦ grid using a second order conservative remapping.

This resulted in four metrics
::::::
indices: the monthly mean fractional snow cover (snowc) and the monthly mean volumetric soil270

water in soil layer 1 (0–7cm; swvl1), soil layer 2 (7–28cm; swvl2), soil layer 3 (28–100cm; swvl3) and soil layer 4 (100–289cm;

swvl4). Normalised anomalies of the volumetric soil water metrics
::::::
indices (swvl1_anomaly, swvl1_anomaly, swvl3_anomaly
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and swvl4_anomaly) were calculated by subtracting the 1991–2020 mean and dividing by the 1991–2020 standard deviation

of each month separately.

2.3.4 Land cover275

The fraction of burnable area (fraction_burnable) was extracted from the same dataset as used for the satellite-based target

variable (ESA-CCI, 2020). This metric
::::
index

:
represents the fraction of each grid cell that corresponds to vegetated land cover

that could burn, and
::
i.e.

:::::::::
excluding

:::::
water

::::::
bodies,

::::::::::
permanent

:::::
snow

:::
and

::::
ice,

:::::
urban

:::::
areas

::::
and

::::
bare

:::::
areas.

::
It
:

is based on the

Copernicus Climate Change Service (C3S) land cover classes.
::::::
Details

:::
are

:::::
found

::
in

:::::::::::::::::::::::::
Pettinari and Chuvieco (2018).

:

2.4 The Canadian Fire Weather Index (FWI)280

The Canadian Fire Weather Index (FWI; Van Wagner et al., 1987) was used as an alternative prediction
:::
fire

::::::
danger

:
model to

compare the performance of the data-driven model with a process-based fire weather index. We chose FWI because it is de-

veloped for
:::::::::
(Canadian)

:
boreal forests and because it is used for fire danger forecasts in large parts of Fennoscandia (Norway and

Sweden)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Norway and Sweden: Norwegian Meteorological Institute, 2022; Swedish Meteorological and Hydrological Institute, 2022)

. Noon temperature, wind speed, humidity and 24-hour precipitation are used to calculate FWI by estimating the moisture con-285

tent in soil and organic material, fires spread potential and potential heat release in heavier fuel. FWI values are not upper

bounded, and the ranges used for classifying fire danger vary. For example, the European Forest Fire Information System

(EFFIS) fire danger classes based on daily FWI (San-Miguel-Ayanz et al., 2012) are: very low (<5.2), low (5.2–11.2), moder-

ate (11.2–21.3), high (21.3–38.0) and very high (>=38.0).

The FWI data was obtained from the Copernicus Emergency Management Service (CEMS) global data produced for EFFIS290

covering 1979 to near-present at a daily resolution (CEMS, 2020). The original 0.25◦ longitude/latitude grid of the EFFIS

dataset is shifted 0.125◦ as compared to the grid used for the analysis, and a second order conservative remapping was therefore

applied to remap the data. Finally, the FWI metrics monthly mean FWI (FWI_mean) and monthly max FWI (FWI_max) were

calculated from daily FWI values.

2.5 Model set-up and training for Fennoscandia295

The target variable and potential predictors comprised the dataset used for the model training. Although a machine learning

algorithm for constructing the model is automated, several choices have to be made in a model set-up and training procedure.

This section describes these choices and the considerations made, including how to split the dataset into a training and a test

set, and the choice of machine learning algorithm, evaluation criterion, complexity terms to be tuned and training procedure

specifications.300
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2.5.1 Training and test set

The dataset was split into a training and a test set to obtain an independent evaluation of the final model. Due to temporal

dependency in the time series, a fully random selection of data points to the training and test set would likely give a too

optimistic evaluation of the model. Instead, assuming limited dependence between years, whole years were selected for both

the training and test set. Five years (26%) were selected for the test set: 2004, 2011, 2013, 2017 and 2018. The remaining305

14 years (74%) constituted the training set. The years were selected at random, with two exceptions: 1) the year 2018 was

manually chosen to be included in the test set to evaluate the model’s prediction capability in what is considered an extreme

year in terms of hydrometeorological conditions (Bakke et al., 2020), and 2) the year 2017 was randomly chosen for the test

set among the years 2016, 2017 or 2019, to allow
:::
for comparison with the Norwegian fire occurrence dataset (Sect. 2.6.5) for

at least two years (2017 and 2018).310

2.5.2 Machine learning algorithm

The machine learning algorithm was required to 1) have a straightforward way of estimating the importance of the predictors,

2) have the ability to deal with non-linearities, 3) have the ability to deal with extreme imbalanced data, and 4) have the ability

to predict fire danger using probabilities rather than binary classification into fire/no-fire. A random forest classifier (RF) was

chosen as a machine learning algorithm that fulfilled the above requirements. The RF, introduced by Breiman (2001), is a315

model built up of an ensemble of decision tree classifiers (DTs). A DT is a non-parametric supervised learner that builds a

tree by splitting the data multiple times based on predictor thresholds
:::::
values

::::::::::
(thresholds) and performs classification estimates

based on the target variable values in the end nodes. The complexity of a DT is determined by the tree size and number of

predictors. To reduce the variance (instability) of a single DT, an ensemble of DTs can be built based on bootstrap samples

of the data and used for prediction by aggregating the DT estimates (bagging). However, the benefit of aggregating the DT320

estimates is limited by correlation among the DTs. Random Forest is a variant of bagging that meets this shortcoming by

randomly selecting a subset of predictors for each split, hence reducing the correlation among the DTs. The complexity of a

RF is determined by the tree size and number of predictors, as well as the number of trees to build. Whereas an increase in tree

size and number of (irrelevant) predictors can lead to overfitting, the number of trees to build cannot. However, computational

power and computational time limit the number of trees to be built, and the prediction accuracy typically stabilises after a325

certain number of trees.

Here, we applied the random forest classifier method in the Python package scikit learn (Pedregosa et al., 2011). To control

the complexity of the model, the maximum size of each tree (max_depth) and the number of predictors included (Np) were

tuned (ref. Sect. 2.5.4). The number of trees was set to 100. The number of predictors to consider for each split was set

to the square root of the total number of predictors, as recommended for RF classification problems (Hastie et al., 2009).330

To account for the imbalance in the target data, the target classes (fire and no-fire) were weighted inversely proportional to

the class frequencies. Remaining parameters were set to default values given by the classifier method. Instead of hardcoded

classifications based on the majority class of the end node, probability predictions were calculated based on the proportion of

13



each class. Probability predictions allow for flexibility in the classification threshold, and are needed for the evaluation criterion

chosen in this study (Sect. 2.5.3).335

2.5.3 Evaluation criterion

Model evaluation criteria typically consider all target variable classes with equal weight. Consequently, many traditional evalu-

ation criteria are not applicable due to the extreme imbalance between the number of fire and no-fire data points. As an example

for our data, a model predicting no fires at all would have a model accuracy (i.e. proportion of correctly classified data points)

of 99.7%, equalling the proportion of no-fires in the target data. This accuracy indicates a near-perfect model for a model that340

clearly does not meet our objective. Thus, we needed a criterion that is not affected by the extreme imbalance in the target data.

We chose the Area Under the Curve of the Receiver Operating Characteristic (ROC-AUC), which calculates the area under the

curve of true-positive rate (Sensitivity) vs false-positive rate (1-Specificity) for different classification thresholds based on the

probability predictions (Fawcett, 2006). Thus, it tackles imbalanced data and takes into account probability prediction in one

single measure. A ROC-AUC score less than 0.5 indicates a worse than random model, a value of 1 indicates a perfect model.345

The ROC-AUC score is 0.5 for a model predicting no fires at all, a model predicting fires for all data points, and (on average

for) a model predicting a target dataset in which each data point is randomly selected as fire or no-fire.

2.5.4 Training of the model

To avoid overfitting and to make the model as simple as possible without losing prediction capability, the RF complexity

parameter controlling the maximum depth of each tree (max_depth) and the number of predictors (Np) were tuned. The350

max_depth was tuned from values ranging from 1 (the simplest tree structure) to 20 (a complex tree structure). In case of Np,

the model was trained to find the best predictor subset using a backward-stepwise selection procedure. To find the optimal

combination of max_depth and Np, the model was trained using cross-validation (CV).

The training set was split into seven CV folds by grouping two and two years keeping the number of fires as constant as

possible (due to the low number of fires in some years). Full years were selected for the folds to limit the temporal dependency355

(Sect. 2.5.1). For each CV-iteration, the model was trained on each combination of max_depth and Np. A backward-stepwise

selection procedure was implemented to find the best predictor subset for each Np. For each CV iteration and max_depth

value, the backward-stepwise selection procedure was as follows: 1) The model was fitted using all predictors, 2) the model

evaluation criterion was calculated using the left-out fold, 2) predictor importances were estimated based on the left-out fold,

3) the predictor with the lowest predictor importance was omitted from the predictor subset, and 4) repeating from step 1, now360

using the new predictor subset instead of all predictors. We also tested an alternative backward-stepwise selection procedure,

which explicitly accounted for the high correlation between predictors by omitting the least important of the two most correlated

predictors at each step. This method performed less well. A limitation of this method is that predictors with low correlation

with other predictors were
::
are kept regardless of their importance for the model performance.

Predictor importance was estimated using the permutation importance from the python package scikit learn (Pedregosa365

et al., 2011), which estimates the decrease in the model score (here: ROC-AUC score) when one of the predictors is randomly
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shuffled. To increase the robustness of the estimate, the random shuffle was repeated five times, and the mean of the predictor

importance of each reshuffling used as the predictor importance estimate. The predictor importance is typically close to zero

(or even negative due to randomness) for non-important predictors, as well as for highly correlated predictors. In the case

of highly correlated predictors, the predictor importance of one predictor can experience an abrupt increase when a highly370

correlated predictor is omitted. Thus, the elimination criterion in the backward-stepwise selection cannot depend on a static set

of predictor importances (e.g. of the full model; Genuer et al., 2015), but needs to be based on the predictor importances of the

updated model for each predictor subset.

2.6 Final model selection and evaluation for Fennoscandia

This section describes the selection (Sect. 2.6.1), and evaluation (Sect. 2.6.2-2.6.5) of the final data-driven model for Fennoscan-375

dia. The data-driven model performance was evaluated on the test set, and compared with the performance of FWI (Sect. 2.6.2).

Further, the predictor importances were assessed (Sect. 2.6.3), and both the data-driven model and FWI were used to produce

fire danger probability maps (Sect. 2.6.4). Finally, the data-driven model was evaluated on an independent dataset, i.e. the

Norwegian fire occurrence dataset (Sect. 2.6.5).

2.6.1 Selection of a data-driven model380

For each combination of max_depth and Np, the average cross-validation ROC-AUC scores were calculated, and the combi-

nation of max_depth and Np yielding the highest score (max_depth_opt and Np_opt, respectively) was selected for the final

model. The selection of the optimal predictor subset was not trivial, as the Np_opt predictors selected in each cross-validation

iteration could potentially differ due to the varying sub-dataset used as the left-out fold. To select the optimal subset of Np_opt

predictors, the seven-fold cross-validation was performed again using max_depth_opt and Np_opt, and the model fitted to385

each of the predictor subsets selected during the training of the model. The predictor subset yielding the highest average

cross-validation ROC-AUC score was chosen for the final model.

2.6.2 Model evaluation

The predictability of the final model was evaluated for the test set (i.e. the years not included in the training of the model)

using the ROC-AUC criterion (ref. Sect. 2.5.3). The prediction capability of the data-driven model was then compared with the390

ROC-AUC of the FWI metrics; FWI_mean and FWI_max (Sect. 2.4).

2.6.3 Predictor importance

To estimate the importance of each predictor selected for the final model, we used permutation importance, as described in

Sect. 2.5.4, but now using ten random shuffles. For comparison, the impurity-based importances (from the Python package

scikit learn; Pedregosa et al., 2011) were also estimated. The impurity-based importance estimates the normalised total re-395

duction of the criterion introduced by each predictor. Although it is typically biased towards predictors with high cardinality,
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typically an issue for numerical predictors, this was not considered a problem here because all input data were continuous. The

impurity-based importances sum to 1, and the higher a value, the more important the predictor. As opposed to permutation

importancethat ,
:::::
which

:
can be estimated on any dataset, the impurity-based importance estimates are based on the training set

only, which can be misleading in the case of overfitting. On the other hand, in the case of highly correlated predictors, the400

impurity-based importance may still give a better representation of the importances (as compared to permutation importances)

due to the randomness in the subset of predictors selected for each split in the tree construction. Due to differences in the

computation and the pros and cons of the two predictor importance estimates, we applied both the permutation importance and

the impurity-based importance. Permutation importances were estimated for the training set and test set separately.

2.6.4 Fire danger probability maps405

Fire danger probability maps were produced for each month and year in the test set using the prediction probabilities of the data-

driven model, and plotted together with fire occurrences from the satellite-based fire occurrence dataset. Similar maps based

on FWI_mean and FWI_max were also produced for comparison. In addition, the gridwise Spearman rank correlation between

the model predictions, FWI_mean and FWI_max were calculated to reveal any consistent spatial patterns in the agreement (or

lack thereof) of the
::
fire

::::::
danger

:
predictions.410

2.6.5 Model evaluation using the Norwegian fire occurrence dataset

The Norwegian fire occurrence dataset was included as an independent dataset to evaluate the data-driven model’s ability

to predict a more detailed fire dataset. The two years included in both the test set for Fennoscandia and the Norwegian fire

occurrence dataset (i.e. 2017 and 2018) were used as basis for this evaluation, with Norway as the spatial domain. First, the

model ability to predict the original target data (i.e. the satellite-based fire occurrence dataset) and the independent target data415

(i.e. Norwegian fire occurrence dataset) were compared by computing the ROC-AUC scores. Second, using Norwegian fire

occurrence as target, the ROC-AUC score based on the data-driven model was compared to the ROC-AUC scores based on

FWI_mean and FWI_max.

Finally, we trained a data-driven model on the Norwegian fire occurrence dataset instead of the satellite-based fire occurrence

dataset for Fennoscandia, to get a more “fair” comparison of a data-driven model and the FWI’s ability to predict the Norwegian420

fire occurrence dataset .
:::
(we

::::
note

:::
that

:::
this

::::
step

::
is

:::
not

::::::::
included

::
in

:::
Fig.

:::
1). Because of the relatively short period covered by the

Norwegian dataset, of which 2017 and 2018 were used as test set, only two years (2016 and 2019) constituted the training set.

Therefore, a two-fold cross-validation was applied (instead of the seven-fold used in the main analysis) in which each year

constituted a fold. The remaining training set-up follows the procedure as described in Sect. 2.5.

2.7 Additional experiments425

Two additional experiments were performed to test the effect of: (1) using two alternative machine learning algorithms, and (2)

not including a dynamical vegetation index as a potential predictor. A description of the experiments are given below.
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Two additional, but related, machine learning algorithms were tested to assess the applicability of using the Random Forest

algorithm. First, we tested a Decision Tree model (DT; ref. Sect. 2.5.2) to see if a single tree was sufficient to construct a good

prediction model. The DT was trained using the same procedure as for the RF model (Sect. 2.5), except that all predictors were430

evaluated as candidates for each split. Second, we tested a boosting algorithm called AdaBoost (Freund and Schapire, 1997).

Boosting algorithms are considered one of the most powerful learning ideas introduced in this century (Hastie et al., 2009).

The algorithm makes predictions based on aggregation of results from a selection of constructed weak classifiers (here: DT

classifier with max_depth=1). For each new classifier constructed after the first, the data points are weighted based on previous

misclassifications, in order to give more emphasis on the misclassified observations. AdaBoost was trained using the same435

procedure as for the RF model (Sect 2.5), except that instead of max_depth, the parameter defining the maximum number of

weak classifiers to construct (either 50, 100, 200 or 500) was tuned.

We also carried out a separate experiment in which we included a greenness indicator, the Normalized Difference Vegetation

Index (NDVI), as a potential predictor. This index is not obtainable for
:::::::
possible

::
to

::::::
derive

::::
from

:
climate models, and was

therefore excluded from the main analysis. However, it is a commonly used index to assess the vegetation status (Smith et al.,440

2020) and used for fire forecasting (Michael et al., 2021; Chowdhury and Hassan, 2015; Maselli et al., 2003). NDVI
:::
can

:::
be

::::::
viewed

::
as

:
a
::::::::
potential

:::::::
estimate

::
of

:::::::
burnable

::::::::
biomass,

:::::
which

::
is
::::::
highly

:::::::
variable

::
in

:::
the

::::::
Nordic

:::::::::
landscape.

:::::
NDVI data was obtained

from the monthly Terra MODIS Vegetation Indices (MOD13C2) Global 0.05◦ dataset (Didan, 2015). The data was spatially

averaged to a 0.25◦ resolution. The model training followed the same procedure as described in Sect. 2.5.

3 Results445

3.1 Selection of a data-driven model for Fennoscandia

Based on the average cross-validation (CV) ROC-AUC scores for all combinations of max_depth and number of predictors

(Np), the highest score was found for max_depth=9 and Np=15 (Fig. S1). The CV scores revealed that there were no clear

best-choice of max_depth independent of the selected number of predictors, and vice versa. This emphasises the importance

of testing the combined effect and not fit max_depth and Np separately. For many combinations, the ROC-AUC values were450

similar (varying only on the second decimal), opening for selecting a simpler model without too high cost of prediction

capability. We chose to automatically select the combination yielding the best score, to avoid an extra element of subjectivity.

The max_depth of nine was well within the investigated max_depth values. The degrading scores on both ends (i.e. the lowest

and highest max_depth values investigated) gave trust in that the range of max_depth values investigated was sufficient. Of

the original 30 potential predictors, half remained for the final data-driven model. The number of trees (i.e. 100) used for the455

data-driven model were considered sufficient, as indicated by the stabilisation of the model performance (Fig. S2).

Of the 15 predictors, five were related to volumetric soil water (swvl1, swvl2, swvl3, swvl4 and swvl2_anomaly), three

to temperature (tg_mean, tn_mean and tx_mean), three to wind speed (wspeed_mean, wspeed_p10 and wspeed_p90), two

to precipitation (rr_sum and rr_sum_anomaly), and the two predictors snow cover (snowc) and fraction of burnable area

(fraction_burnable). All meteorological drought indices and temperature anomalies were omitted. For precipitation and soil460
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Figure 5. Test set ROC curve and ROC-AUC score using the data-driven model as compared to using monthly mean FWI (FWI_mean) and

monthly max FWI (FWI_max).

moisture, both monthly mean (or sum) values and monthly anomalies were selected. Notably, many of the selected predictors

were highly correlated (Fig. 4).

3.2 Model evaluation

:::
All

:::::::::
ROC-AUC

:::::
scores

:::::::::
presented

:::
are

::::::::
computed

:::::
based

:::
on

:::
the

:::
test

:::
set.

:
The final data-driven (Random Forest) model ROC-AUC

score was 0.791 (Fig. 5). The data-driven model slightly outperformed the FWI metrics;
:::
had

::
a
::::::
slightly

::::::
higher

:::::::::
ROC-AUC

:::::
score465

::::::::
(differing

::
in

:::
the

::::::
second

::::::::
decimal)

::::::::
compared

::
to
:::

the
:::::

FWI
:::::::
metrics,

:::
i.e.

:
monthly max FWI (FWI_max) and monthly mean FWI

(FWI_mean)as predictors of fire occurrences in the test set. The ROC-AUC scores of FWI_max and FWI_mean were similar

::::
more

:::::::
similar,

:::::::
differing

:::
in

:::
the

::::
third

:::::::
decimal

:
(0.784 and 0.783, respectively). The ROC-AUC score of the data-driven model

using Random Forest was better than
::::::
slightly

:::::::::::
outperformed

:
the two alternative machine learning algorithms tested, Decision

Tree (0.737; Fig. S3a) and AdaBoost (0.747; Fig. S4a), confirming that the Random Forest algorithm was a suitable choice for470

our analysis.

3.3 Predictor importance

Figure 6 shows the importances of the predictors, using the permutation importance estimated for the training and test set

separately, as well as the impurity-based importance estimates. The dominant predictor in all cases was the volumetric soil

water anomaly in soil layer 2 (swvl2_anomaly). The remaining predictors were of significantly less, and similar, importance.475
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In all three algorithms tested, anomaly in shallow volumetric soil water (either in soil layer 1 or 2), monthly mean of daily

maximum temperature and volumetric soil water in soil layer 4 were the top three most important predictors (Fig. 6, S3b and

S4b). The permutation importance estimates of the training set is generally higher than that of the test set. This is expected since

the predictor subset was chosen based on the training set. Differences in the hydrometeorological conditions in the training

set years and test set years may also play a role in explaining the differences in the order and magnitude of the permutation480

importance estimates.

The bivariate and univariate distributions of the most dominant predictor (swvl2_anomaly) and the predicted fire danger

probabilities are shown in Fig. 7. The figure shows a clear distinction between prediction
:::
fire

::::::
danger probabilities for fire and

no-fire data points for the training set (Fig. 7a), and less distinct so in the test set (Fig. 7b). For both the training and test set, most

fire data points occur for swvl2_anomaly values below zero (dryer soil that normal), and there is a weak negative relationship485

between the swvl2_anomaly values and prediction
:::
fire

::::::
danger probabilities. However, a high density of prediction

:::
fire

::::::
danger

probabilities of approx. zero are distributed along a relatively wide range of swvl2_anomaly values (between approx. -1.5 and

1), pointing to the importance of other predictors in minimising the fire danger probabilities for these data points.

In the experiment including NDVI as potential predictor, the test set ROC-AUC score was 0.799 (Fig. S5) compared to

0.791 for the baseline. The most dominant predictor for this experiment was still swvl2_anomaly, with NDVI in second place,490

regardless of the predictor importance estimate. The final model had a more complex tree structure (max_depth=16) and fewer

number of predictors (11) as compared to the model without NDVI. The difference in the
:::::
higher

:
number of predictors

::
in

:::
the

:::::
model

:::::::
without

:::::
NDVI can likely be explained by the fact that other predictors are included to compensate for the lack of NDVI

information about vegetation health.

3.4 Fire danger probability maps495

Fire danger probability maps
::::::::
composed using the data-driven model and (for comparison) the FWI metrics for 2018 are shown

in Fig. 8, and for the remaining test set years in Fig. S6–S9. The maps also include the actual fire occurrences according to the

satellite-based target variable (marked as dots). The year 2018 had one of the highest number of fire occurrences during the

period (Fig. 2), which is reflected in high-end fire danger values covering large parts of the region, in particular in May–July

as well as August in the southeast. By visual inspection, many of the fires occurred in cells of high fire danger predicted by the500

data-driven model as well as by the FWI metrics. On the other hand, several months have high fire danger in areas with no fire

occurrences. This likely reflects either an actual high fire danger but a lack of ignition sources, or a weakness in the
:::
fire

::::::
danger

predictions.

In Fig. 9 a high (>0.8) grid-wise rank correlation in fire predictions
::::::::::
correlations

::
in

::::
fire

::::::
danger

:
between FWI_max and

FWI_mean across Fennoscandia reflect temporal agreement in fire predictions
:::::
danger

:
between the two FWI metrics. However,505

the grid-wise rank correlation between the data-driven model and either of the two FWI metrics are spatially less coherent,

with approx. 90% of the grid-cell correlations ranging between 0.4 and 0.9. The highest correlations (between 0.7 and 0.9)

are found in eastern Fennoscandia (Russia) and along a southwest-northeastern belt from southern Norway, through mid and
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Figure 6. The importances of the predictors selected for the final data-driven model estimated using the permutation importance of the test

and training set separately, as well as the impurity-based feature importance of the training set. The bar height of the permutation importance

represents the mean, and the error-bar represents the standard deviation of ten random shuffles of each predictor.
:::
The

:::
bars

:::
are

::::::
ordered

::
by

:::
the

:::::::::
permutation

::::::::
importance

::
of

:::
the

:::
test

:::
set.

northern Sweden, to northeastern Finland and Norway. Lowest correlations (<0.5) were found in parts of western Norway,

southeastern Sweden and southwestern Finland.510

3.5 Model evaluation using the Norwegian fire occurrence dataset

The ROC-AUC score of the data-driven model prediction of the original (satellite-based) target variable for Fennoscandia

was recalculated for the evaluation period (2017 and 2018) with Norway as the spatial domain. The ROC-AUC score of the

Norwegian fire occurrence dataset was 0.755 as compared to 0.726 for the satellite-based fire occurrence dataset (Fig. S10a).

The pronounced differences
::::::::
difference

:
in number of fires (Fig. 3) are

::
is reflected in the non-smooth ROC-AUC curves of the515

satellite-based as compared to the Norwegian fire predictions. Due to the low number of fire occurrences in the satellite-based

target variable, the corresponding ROC-AUC score must be interpreted with caution.
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Figure 7. The bivariate and univariate distributions of the anomaly in volumetric soil water in soil layer 2 (swvl2_anomaly) and predicted

fire danger probabilities. Results are shown for a) the training set, and b) the test set. The distributions are given separately for the fire data

points (red) and no-fire data points (blue) from the satellite-based target variable. The histograms show the relative frequencies, and the box

plot whiskers define the 5th to 95th percentile range.

Prediction of the Norwegian fire occurrence dataset using the two FWI metrics had notably higher ROC-AUC score (0.851

for FWI_max and 0.867 for FWI_mean) as compared to 0.755 for the data-driven model trained for Fennoscandia (Fig. S10b).

The monthly fire danger prediction maps for Norway jointly showing fire occurrences, reflect the higher prediction performance520

obtained by the FWI metrics, in particular in capturing the fire dense areas in May–July 2018 (Fig. S11–S12). The satellite-

based target variable had a low representation of fire occurrences in Norway; accordingly, we did not expect an equally good

performance of the data-driven model trained for Fennoscandia as for FWI when evaluated for the Norwegian dataset.

A
:::
The

:
separate data-driven model was trained using the Norwegian fire occurrence dataset as the target variable . It

:::::
(Sect.

:::::
2.6.5) resulted in a final model for Norway with max_depth=2 and Np=8, thus representing

:
8.

::::
This

:::::::::
represents a consider-525

ably simpler model compared to the data-driven model trained using the satellite-based fire occurrence dataset for Fennoscan-

dia. This may be explained by the reduced geospatial complexity in the training set. The ROC-AUC score improved from 0.755

to 0.836 for the test set years 2017 and 2018 (Fig. S13a), although still slightly below the FWI performance. As opposed to the

data-driven model trained for Fennoscandia, this model selected monthly maximum temperature and monthly mean of daily

maximum temperature as the two dominant predictors (Fig. S13b). The remaining predictors were of notably lower importance,530

and related to (anomalies in) volumetric soil water, high wind speed, precipitation anomaly and fraction of burnable area.
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Figure 8. Fire danger probability maps for April–September 2018 using a)-f) the data-driven model predictions, g)-l) FWI_mean, and m)-r)

FWI_max. Blue markers show fire occurrences using the satellite-based fire occurrence dataset. Colour axes are truncated at the 5th and 95th

percentile.

Figure 9. Spearman rank correlation of a) the data-driven model and FWI_mean, b) the data-driven model and FWI_max, and c) FWI_mean

and FWI_max. The correlations are calculated using the test set. Hatches indicate regions of effective p-value (i.e. p-value accounting for

autocorrelation) smaller than 0.01.
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4 Discussion

A data-driven model developed on a monthly and 0.25◦ spatial resolution was found suitable for fire danger probability

prediction
:::::::
mapping in Fennoscandia, despite the region’s spatiotemporal heterogeneity in hydroclimatological conditions. In

the following, we discuss the selected predictors, known challenges, the added value of a data-driven model and ways forward.535

4.1 Dominant predictors of Fennoscandian wildfires

The relatively large number of statistically dependent predictors selected for the data-driven model, illustrate
::::::::
illustrates the

complexity of the controlling mechanisms of fires. In the literature, a wildfire is often referred to as a compound hazard as it is

caused by the co-occurrence of several drivers, not necessarily extreme themselves.

The dominant predictor for the data-driven model (both training and test set) was the normalised anomaly of the volumet-540

ric soil water in soil layer 2 (swvl2_anomaly). The bivariate plots point to the importance of dryness in the soil relative to

normal conditions for favourable fire conditions. Anomalies in soil moisture are typically a concurrent or delayed response to

anomalies in precipitation and evapotranspiration, with the delay depending on hydrogeological
:::::::::
subsurface properties such as

soil characteristics and depth to groundwater table. This is reflected in a positive correlation between swvl2_anomaly and the

meteorological drought indices (SPI and SPEI). Previous studies
:::
Soil

::::::::
moisture

:::
has

:::::
been

:::::
found

::
a

:::::
better

::::::::
predictor

:::
for

::::::
burned545

:::
area

::::
than

:::::::::::
precipitation

::::::::
anomalies

::
in
:::::::
another

::::::
Boreal

:::::
region

::::::::::::::::::::::::::::
(Baikal region; Forkel et al., 2012)

:
,
:::::::::
supporting

:::
our

:::::::
findings.

:::::::
Studies

that report SPI or SPEI as important predictors (e.g. Gudmundsson et al., 2014), often do not include soil moisture anomaly

in their study. Our analysis for Fennoscandia finds that soil moisture anomaly is preferred as a predictor over the meteorolog-

ical drought indices. This is likely due to the direct influence of the soil moisture content on the water uptake by plants and

general drying of organic matter, making the biomass more susceptible to combustion.
::::
Thus,

::::
soil

:::::::
moisture

::::
may

:::
be

:::::::::
considered550

::
an

::::::::
indicator

::
of

::::
litter

::::
fuel

:::::::
moisture

::::::::::
conditions. Although swvl2_anomaly stands out as a dominant predictor, the overall weak

relationship between this predictor and the prediction
:::
fire

::::::
danger

:
probability as revealed by the bivariate plot, emphasises the

importance of other predictors in a
:::
the data-driven fire prediction model

:::::
model

:::
for

:::::::::::
Fennoscandia.

Monthly mean daily maximum temperature (tx_mean) and volumetric soil water in the deepest soil layer (swvl4) have

the second and third highest test set permutation importance,
:::::::::::

respectively. Together with anomalies in shallow volumetric555

soil water (soil layer 1 or 2), these predictors were the most dominant also in the additional experiments using Decision

Tree and Adaboost
:
,
:
instead of Random Forest,

:
as the machine learning algorithm. Including NDVI as a potential predictor

still gives swvl2_anomaly as the dominant predictor, with NDVI as the second, and swvl4 and tx_mean as the fourth and

fifth most important according to test set permutation importance. The consistency in terms of predictors chosen between the

experiments emphasise
:::::::::
emphasises

:
the importance of these predictors in predicting fire danger probabilities. Whereas tx_mean560

is the average of the highest daily temperaturesand affects ,
::::::::
affecting

:::
the

:
general evaporative demand and transpiration, swvl4

is related to slowly changing deep soil moisture, which is important for water uptake by plants with deep roots. Thus, both

metrics have separate roles
:::::::::::
Accordingly,

::::
each

:::::
index

:::
has

::
a

:::::::
separate

:::
role

:
in controlling the condition

:::::::::
conditions favourable (or

non-favourable) for fires, roles that also differ from the role of shallow soil moisture anomaly.
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The creation of a data-driven model using the Norwegian fire occurrence dataset as the target variable for the model training,565

gave a somewhat different selection of dominant predictors. A fewer number of predictors were selected, and the highly

correlated tx_max and tx_mean stood out as the two most dominant predictors. We recognise three potential reasons for the

difference between this model and the original model developed for Fennoscandia; a change in target variable, study domain

and period under investigation, whereof the two latter follow from the first. The target variable was based on ten-fold more

fire occurrences for Norway than what was available for the satellite-based dataset for Fennoscandia. It is here worth noting570

the overall difference in size of the fires recorded in each database, with generally larger fires being represented in satellite-

based burned area products than in the Norwegian dataset. Thus, the predictors found for the Norwegian target variable may

be more important for small fires, which is typically not included in the satellite-based dataset. Moreover, the difference may

reflect different dominant controls of fires in Norway as compared to the remaining part of Fennoscandia, and in particular as

compared to the areas with the highest density of fire occurrences in the satellite-based dataset. There is also a likely possibility575

that the reanalysis data do not represent the volumetric soil water conditions as well in Norway compared to other parts of

Fennoscandia. The difference in period used in the model development should also be considered. In the Norwegian model

set-up, only two years were used for training and two for evaluation. These years may not reflect the longer period used for

Fennoscandia. In general, more trust is given to models trained on longer time series, enabling a better representation of the

variability in hydrometeorological conditions.580

Several of the potential predictors derived from ERA5-Land reanalysis (i.e. wind speed, snow cover and soil moisture)

were selected as final predictors. This confirms their relevance for predicting wildfires, despite the fact that they are
:::::::
combine

::::::::::
observations

::::
with

:
modelled data. An advantage of reanalysis products over observational datasets is that they are more closely

linked to climate model outputs. Thus, the inclusion of reanalysis metrics
:::::
based

::::::
indices

:
in the final model for predicting

observed fires, points to the prospective of using modelled data for future climate projections. In addition, we found that all585

ERA5 wind related predictors were selected, while it has been assumed that wind would have a limited impact on
::
at these spatial

scales (e.g. Aldersley et al., 2011).
:::
The

:::::
wind

::::::
related

::::::::
predictors

::::
may

:::::
have

::::
been

:::::::
selected

:::
due

::
to

:::
the

::::::
wind’s

::::
role

::
in

::::::
drying

::
of

:::
the

::::::
ground

:::
and

:::::::::
vegetation

:::
by

:::::::::
increasing

::::::::::::::::
evapotranspiration,

::
its

::::
role

::
in

:::::::::
spreading

:::
the

:::
fire

::
to

::
a
:::
size

:::::::::::
recognisable

:::
for

:::
the

::::::::
satellite,

:::
and

::
its

:::::::
indirect

::::
role

::::::
through

:::
the

::::
link

:::::::
between

:::::
wind

:::
and

:::::::::
dominant

::::::
weather

::::::::
patterns. In short, it

:::
the

:::::::
selection

:::
of

:::::
ERA5

:::::::
derived

::::::::
predictors confirms that the use of reanalysis products is useful for wildfire prediction by data-driven model approaches.590

4.2 Model transferability at the cost of additional potential predictors

Ensuring transferability of the data-driven model to climate projections come at a cost of limiting the type of potential predic-

tors. In the case of predicting fire danger in a stationary climate, several additional metrics
::::::::
predictors are expected to improve

the prediction accuracy. Two such predictors are latitude and month of yearthat
:
,
:::::
which could guide the model to differentiate

between important hydrometeorological predictors depending on the season. For example, it is expected that SPEI3 has a dif-595

ferent effect on fire danger when the three months cover
:::::::::::
accumulation

::::::
period

:::::
covers

:
a snow accumulation period as compared

to the growing season. However, such predictors are not suitable for a non-stationary climate as the snow and growing season
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:::::::::::
characteristics

:
are expected to changein characteristics such as timing and length

:
,
:::
e.g.

:::
the

::::::
timing

:::
and

:::::::
duration, and the relation

to hydrometeorological variables in the current climate,
::::::
indices

::::
may

:::
thus

:
no longer be valid.

Without the criterion of transferability to climate models, several potential predictors would be of relevance to include
:::::::
Remotely600

:::::
sensed

:::::::::
vegetation

::::::::::::
characteristics

::::
have

::::::
proved

:::::
useful

:::
for

::::::::
predicting

::::::
burned

::::
area

::
on

:
a
::::::
global

::::
scale

::::::::::::::::::::::::::::::::::::::
(Kuhn-Régnier et al., 2021; Forkel et al., 2017)

. One such predictor is the NDVI, which improved the model to some degree when tested in a separate analysis. Other time

varying vegetation or fuel volume indices are expected to further improve the prediction accuracy. However, such data are

:
is
:

not always available as continuous spatiotemporal fields, but cover a smaller area over a limited period of time.
:::::::
Climate

::::::
models

:::
that

:::
are

:::::::
coupled

::::
with

::::::::
DGVMs

::::
allow

:::
for

::
a
:::::
wider

:::::::
selection

:::
of

:::::::
dynamic

:::::::::
vegetation

:::::::::
predictors.

:::::::::
Vegetation

::::::::::::
characteristics605

::
are

::::::
found

::
to

::::
have

::
a

:::::
strong

::::::::::
relationship

::::
with

::::::
burned

::::
area

::
in

:::::::::
fire-prone

:::::::::
ecosystems

:::::::::::::::::
(Forkel et al., 2019),

::::
and

:::
we

::::::::
anticipate

::::
that

::
the

::::::::
inclusion

::
of

:::::::::
vegetation

::::::::::::
characteristics

::::::::
available

::
in

:::::::
DGVMs

::::::
would

::::
have

::::::::
improved

:::
our

::::::
model

:::
for

::::::::::::
Fennoscandia.

Other predictors that are expected to improve the fire prediction, are predictors related to sources of ignition. Lightning,

sparks from trains, and humans are all important fire starters, and lightning data as well as maps of infrastructure and closeness

to human settlement are therefore expected to improve the model predictions. Including
::
A

::::
link

:::::::
between

::::::
human

::::::::
settlement

::::
and610

:::
fires

::
is
::::

not
::::
clear

:::::
from

:::
the

::::::::::::
satellite-based

::::
fire

:::::::::
occurrence

::::::
dataset

:::::
(Fig.

::::
2b).

::::::::
However,

:::
the

::::::::::
Norwegian

:::
fire

:::::::::
occurrence

:::::::
dataset

::::
(Fig.

:::
3b)

:::::::
suggests

::
a
::::
link

:::::::
between

:::::::
wildfire

::::::::::
occurrences

:::
and

:::::::::
population

:::::::
centres.

::::
This

::::
may

:::::
partly

:::
be

:::
due

::
to
:::::::

humans
::::
and

::::::
human

:::::::::::
infrastructure

:::::
being

:::
fire

:::::::
starters,

:::
and

:::::
partly

:::::::::
reflecting

::
an

::::::
overlap

::::::::
between

::::::
human

::::::::
settlement

::
in
:::::::

Norway
::::
and

:::::::
burnable

::::::
areas.

::
In

:::::::
addition,

:::
the

::::::::
inclusion

::
of

:
ignition sources would also make

::::
have

:::::
made the model more in line with the target variable (fire

occurrences), as the target variable implicitly includes the ignition aspect.615

A fire prediction model constructed for the use in model simulated climate projections will be
::::::::
integration

:::::
with

:
a
:::::::
climate

:::::
model

::::
used

:::
for

:::::::::
estimating

:::
fire

:::::::::
probability

:::::
under

:::::::
different

::::::
climate

:::::::::
scenarios,

:
is
:
different from a fire prediction model constructed

for monitoring/forecasting near-real-time fire occurrences. The two have different application purposes. A fire prediction model

constructed for monitoring/forecasting near-real-time fire occurrences can give a prediction of higher accuracy for short-term

preparedness, whereas fire prediction model
:::::
models

:
applicable for use in model-simulated climate projections are valuable for620

long-term planning and mitigation strategies.

4.3 The effect of the type of fire data chosen as target variable

In this study, we selected a satellite-based fire occurrence dataset as the target variable for the main analysis, and a national

fire occurrence record as an alternative target variable for comparison. The lack of small fires in the satellite-based dataset was

particularly notable when compared with the Norwegian dataset for April–September 2018 (Fig. 3). During 2018, Norway625

experienced a record high number of grass and forest fires (DSB, 2019). However, many of these fires were small and rather

quickly extinguished, and thus not captured by the satellite. FWI outperformed the data-driven model trained on the satellite-

based target variable, in predicting the Norwegian fire occurrence dataset. This was unsurprising
::
not

:::::::::
surprising, as the data-

driven model was not trained on the Norwegian dataset, small fires in general, and for most of Norway, no fires at all. A

data-driven model trained on small fires in Norway considerably improved the prediction ability, despite that only two years630

were available for model training.
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It is not given which of the data sources for fire occurrence is better to use as target variable. A benefit of national records

is that they typically have registered most fire occurrences, including small fires. However, the recording procedures and

information logged may have changed over time, and vary from country to country (e.g. Aalto and Venäläinen, 2021). In

addition, there are large differences among countries in the period coverage of historical fire recording, and the availability635

of such datasets, limiting transnational studies. Satellite-based burned area products are typically readily available, consistent

across country boundaries and exist for longer periods than what can be found for many national recordings. They also have a

global spatial coverage, which allows for a global
:::::::::
large-scale application of the proposed methodology, such as an analysis of

different drivers in different regions.

::
As

:::
an

:::::::::
alternative

::
to

::::::
burned

::::
area,

::::::::::::
satellite-based

::::::
active

:::
fire

:::::::
products

::::
can

::
be

::::
used

::
to
::::::::

construct
::
a
:::
fire

:::::::::
occurrence

:::::::
dataset.

::::
The640

:::::
active

:::
fire

:::::::
products

::::::
detect

:::::::
burning

::
at

:::
the

::::
time

::
of

::::::::
overpass

::::
given

:::::::::
relatively

::::::::
cloud-free

::::::::::
conditions,

:::::
which

::::
can

::
be

::
a

:::::::
problem

:::
for

::::::
regions

::::::
within

:::::::::::
Fennoscandia

::::
that

:::
are

::::::
seldom

::::::::::
cloud-free.

:::
We

:::::
chose

::
to

:::::
apply

:::
the

::::::
burned

::::
area

:::::::
product

:::::::
because

::
it

:
is
::::::::::

considered

:::
less

:::::::
sensitive

:::
to

::::::::::
cloud-cover.

:::::::
Further,

:::
the

::::::
burned

::::
area

:::::::
product

::::
have

:
a
:::::
more

:::::
direct

::::::::
relevance

::
to

::::::::::::::
climate-relevant

::::::::::::
consequences,

::::
such

::
as

::::::
albedo

:::
and

:::::::::
ecosystem

::::::::::
functioning.

::
In

::::::::
addition,

::
an

:::::::::::
independent

:::::
target

::::::
dataset

:::
was

::::::::
included

:::
for

::::::::::
comparison,

:::
i.e.

:
a
:::::
local

:::
fire

:::::
record

::
of

::::::::
Norway.645

Whether or not the lack of small fires in the satellite-based products is a limitation or not, depends on the objective. For

example for forecasting, monitoring or projections used for fire preparedness planning in Norway, capturing small fires is vital

::
as

:::::
small

::::
fires

::::
have

:::
the

:::::::
potential

:::
to

::::::
develop

::::
into

:::::
large

::::
fires

::::
with

:::::::::
devastating

:::::::
impacts. It is worth noting that small fires are not

necessarily small following natural conditions, but may be so following the wildfire preparedness and suppression in the area.

Thus, predicting small and large fires may be of similar importance for a region. However, small fires can be
:::
fires

::::
that

::::
stay650

:::::
small,

:::
are of less importance for objectives related to projected changes in fire occurrences relevant to

:
in

:::::
terms

:::
of large-scale

changes in emissions, albedo or
:::
and ecosystem functioning.

4.4 Fire danger probability mapping

To our knowledge, our study is (one of) the first in which a data-driven fire prediction model is developed
::
for

:::::::::::::
Fennoscandian

::::::
wildfire

::::::
danger, by means of training on transnational datasets derived from satellite imagery over multiple years at a sub-655

yearly time step. The spatial and temporal resolution of the data-driven model presented in this paper takes into account the

variable hydrometeorology over the region, seasons, and years, which is necessary in order to make use of the model to produce

fire danger probability maps.

The present study confirms that both the FWI and our data-driven model are skilful models for fire danger probability

mapping in Fennoscandia. The ROC-AUC scores were relatively high for both; especially given the lack of ignition in both660

models. The good performance was reflected in the general ability of the fire danger probability maps to predict high fire

danger in regions were fires occurred. The spatially varying correlation between FWI and
::::
High

:::
fire

::::::
danger

:::::::::::
probabilities

:::
are

:::
also

::::::
found

::
in

::::
data

:::::
points

:::::::
without

::::
fire

::::::::::
occurrence.

::::
This

::::
was

::::::::
expected,

::
as

:::::::
ignition

::
is

::::::
needed

:::
for

::
a
:::
fire

:::
to

:::::
occur.

::::
The

:::::::
varying

::::::::
grid-wise

::::
rank

:::::::::
correlation

:::::::
between the data-driven

:::::
model

:::
and

::::
each

::
of

:::
the

:::
two

:::::
FWI

::::::
metrics

::::
(Fig.

::
9)

::::::::::
underscores

::::
that

:::
fire

::::::
danger

:::::::::
probability

:::::
maps

::::::::
produced

::
by

:::
the

::::
two

:::::::
different

::::::::::
approaches

:::
are

:::::::
different

::::::
despite

::::
their

::::::
similar

::::
and

::::::
skilful

::::::
overall

:::::::::::
performance.665
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::
An

::::::::::
interesting

:::::
spatial

:::::::
pattern,

::
is

:::
the

:::::::
notable

::::::::
difference

:::
in

:::::::::
correlation

::::::
closely

::::::::
following

::::
the

:::::::::::::
Russian-Finnish

::::::
border,

:::::
with

:::
the

:::::
higher

::::::::::
correlations

:::::
found

:::
in

::::::
Russia.

::
A

:::::
likely

::::::
reason

:::
for

::::
this

::
is

:::
the

:::
fact

::::
that

:::
the

::::::::::
data-driven model

:
is
:::::
better

::::::
tuned

::
to

:::::::
Russian

::::::::
conditions

:::
as

::::::::
compared

:::
to

::::::
Finnish

:::::::::
conditions

::::
due

::
to

:::
the

:::::::::
relatively

::::::
higher

::::::
number

:::
of

::::
fires

::
in

::::::
Russia

:
(Fig. 9), indicates the

::
2),

:::::::
whereas

::::
the

::::
FWI

:::::::::::
performance

::
is

::::::::::
independent

:::
of

:::
the

:::
fire

::::::::::
occurrence

:::::::
density.

::::
The

:::::::
spatially

:::::::
varying

:::::::::
correlation

::::::::
between

::::
FWI

:::
and

:::
the

::::::::::
data-driven

::::::
model,

::::::::
highlights

:::
the

:
benefit of including different types of models to improve our knowledge of the670

uncertainties related to fire dangerpredictions. Thus, we do not suggest replacing current process-based models with data-driven

models, but recommend using them jointly in assessments of fire occurrences (or probability thereof).

4.5 Added values of a data-driven model and ways forward

A data-driven (statistical/machine learning) model differs fundamentally from a process-based global fire model or fire weather

index. Process-based models use established or assumed relationships between various metrics
::::::
indices and fire occurrence to675

construct fire danger or fire occurrence models. While a data-driven model is also based on process understanding in the

selection of metrics
::::::
indices

:
tested as potential predictors, it differs by explicitly accounting for fire occurrences in relation to

the state of the predictors when constructing the
::
the

:::::::::::
construction

:::
the model.

There are several benefits of a data-driven approach for the application of fire prediction
:::::::
mapping

::::
fire

::::::
danger

:::::::::
probability.

First, a data-driven model can be applied as an additional and independent prediction model, as already mentioned in Sect. 4.4.680

It can either be fire danger probability mapping as exemplified in this study, or it can be combined with ignition and/or spread,

for example in a similar way as is done in process-based global fire models. Depending on the construction of the model, it can

be applied jointly with both fire weather indices and process-based global fire models. Assessments using multiple models of

fundamentally different construction can improve the trust in the predictions, and the knowledge of the inevitable prediction

uncertainties.685

Second, a data-driven approach can automatically sort out the metrics that are important predictors, and omit the remaining.

In this way, they can provide useful new insight into which metrics
:::::
indices

:
one should consider when analysing the probability

of fire occurrence.
::
For

::::::::
example,

::::
soil

::::::::
moisture

::::
data

::
is

::::::
usually

:::
not

::::::::::
considered

::
in

:::
fire

::::::::
weather

::::::
indices

::::
such

:::
as

::::
FWI,

::::::::
whereas

::::::
shallow

:::
soil

::::::::
moisture

:::::::
anomaly

::::
was

:::::
found

:::
the

::::
most

::::::::
dominant

::::::::
predictor

::
by

:::
the

::::::::::
data-driven

:::::
model

:::
for

::::::::::::
Fennoscandia. New insight

into relevant predictors can help improve the process-based models. One can also investigate the important predictorsusing690

different
:
’
:::::::::
sensitivity

::
to spatial and temporal resolutions as long as the potential predictors and target variable allow it. A finer

spatiotemporal resolution may reveal other (fine-scale) metrics
::::::
indices, such as altitude and local wind, as dominant predictors,

as compared to a coarser resolution where such metrics
:::::
indices

:
are averaged out.

A benefit of a data-driven model as developed here, is that the approach can easily be transferred to other regions. This is in

opposition to FWI, which is developed for boreal forests, and should be used with caution when applied for other biomes (Bedia695

et al., 2018; Dowdy et al., 2009). In this work we used a satellite derived fire dataset and globally available hydrometeorological

variables, which can all be obtained for other regions around the world. This would only require additional training on the local

settings, but would not require a new workflow or model implementation. This regional transferability can be combined with

the flexibility of implementing different sets of potential predictors and target variables, allowing for regional and application
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specific analysis. This was exemplified by the present study, in which a data-driven approach was applied for fire prediction700

::::::::
predicting

:::
fire

::::::
danger

:::::::::::
probabilities on a understudied region of the boreal region with special

:::::
highly

:::::::
varying hydroclimatology.

A notable improvement was found when using the local fire occurrence dataset to train the model, illustrating the potential

of high-performing data-driven models adapted to local conditions, when high-quality target data is available. The difference

in the selection of dominant predictors between the data-driven model constructed for Fennoscandia and Norway, exemplified

that certain relationships are more important in some regions than others. The flexibility in spatial domain and predictors also705

allows for large-scale analysis, more in line with process-based global fire models in terms of constructing regional-independent

relationships between drivers and fires.

By limiting the potential predictors to those available in most climate model when developing the data-driven model, the

final model allows for analyses of future changes in fire danger probabilities given different climate scenarios. Although outside

of the scope of this study, using
:::::::
applying

:
our model in future climate scenarios can give valuable new insight into

::
as

:
what to710

expect of future changes in fire danger probability in Fennoscandia
:::::
under

:::::
future

::::::
climate

::::::::
scenarios.

In summary, our study has demonstrated the value of a data-driven model as an independent prediction model
:::::
model

:::
for

::::::::::
constructing

:::::::
monthly

:::
fire

::::::
danger

:::::::::
probability

::::::
maps, and as a tool for identifying dominant predictors. Data-driven models have

a high degree of flexibility to make them applicable for specific domains
::::::
making

::::
them

:::::::
suitable

:::
for

:::::::::
adaptation

::
to

::::
other

:::::::
regions

and applications. Thus, we regard data-driven models as valuable contributions in a wide range of applications related to fire715

monitoring, forecasting and projections.

5 Conclusions

The data-driven approach was found suitable to identify dominant predictors for fire occurrence and to construct spatiotemporal

resolved fire danger probability maps in Fennoscandia. Anomalies in the volumetric soil water in soil layer 2 (7–28 cm) were

found to be the dominant predictor, followed by monthly mean of daily maximum temperature and volumetric soil water in720

the deepest soil layer (layer 4; 100–289 cm). Other selected predictors were related to wind speed, precipitation, snow cover

and fraction of burnable area. The selected predictors emphasise the importance of other predictors than weather alone, as has

traditionally been used for fire weather indices. In addition, the variation in the type of predictors emphasises the complexity

in driving mechanisms for fire occurrence and the value of a bottom-up approach to automatically identify the most important

predictors.725

The following concludes our research questions presented in the introduction:

1. The data-driven model for Fennoscandia was comparable
:
to

:
(and slightly outperforming) the Canadian Fire Weather

Index (FWI), which is
:::
was

:
developed for similar biomes and latitudes as Fennoscandia. The temporal rank correlations

of the fire danger probability maps produced by the two approaches showed large spatial variability, pointing to the value

of including more than one approach when mapping fire danger.730
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2. The data-driven model performance decreased, and was outperformed by the FWI, when used to predict a local fire

occurrence dataset for Norway. This can be explained by the lack of fire occurrences in Norway in the satellite-based

target variable used for model training.

3. When using the Norwegian fire occurrence dataset as target variable in the training, the model performance increased

to
:::
and

:::::::
reached a similar performance as for FWI. Even higher performance may be obtained if more than

:
,
::::::
despite

::::
that735

::::
only two years were available for the model training.

4. The Random Forest algorithm used in the main analysis outperformed the simpler (Decision Tree) and more sophisticated

(AdaBoost) machine learning algorithm. The Random Forest algorithm was therefore found suitable for the objective

of this study. Nevertheless, we acknowledge the potential of yet other machine learning algorithms not tested here, to

improve the predictions further.740

5. There was a minor decrease in the model performance when NDVI was not included as a potential predictor. Thus, most

of the effect of NDVI for fire occurrence is compensated for by other hydrometeorological conditions
::::::::
predictors. In a

monitoring situation or similar
:
or

::::::::::
forecasting

:::::::
situation, where the transferability to climate models is not important, the

inclusion of NDVI can be useful.

The selection of potential predictors was limited to predictors available in most climate models and transferable to future745

:::::::
different climate scenarios. Accordingly, our model allows for analyses of future changes in fire occurrence characteristics,

which would be a natural next step. This can preferably be done jointly together with process-based approaches, in order to

evaluate the agreement and spread among different and independent
:::
the

:::::::
different

:::::
types

::
of

:
models. The approach presented in

this study can also easily be adapted to other regions and with the inclusion of other potential predictors, e. g. to make it more

applicable for a monitoring situation.
:
.750

Finally, we want to make a general remark on the importance of user-made choices in data-driven approaches. Even though

the machine learning (or statistical) algorithm in itself is automated, the model construction and estimated performance can

be highly sensitive to user-made choices. Examples include choices of the machine learning algorithm, training procedure,

selection of target variable and potential predictors, predictor subset selection, evaluation criterion (in particular in the case

of extreme imbalance), and the importance of testing the model on a dataset independent of the model construction. In the755

present study, we aimed to make all user-made choices transparent and justified, and we tested for alternative options for

several of the choices. In conclusion, a data-driven approach has proven an important tool to identify dominant predictors of

fire occurrence and as an alternative fire prediction
:::::
danger

:::::::::
probability

:
model to already established process-based models, as

this study demonstrates.

Code availability. Code is available upon reasonable request to the corresponding author. Command line Climate Data Operators (CDO;760

Schulzweida, 2021) and the Python package xarray (Hoyer and Hamman, 2017) were used for processing the NetCDF files. SPI and SPEI

calculations were performed using the SCI package in R (Gudmundsson and Stagge, 2016). The remaining calculations and visualisations
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Table 1. Target variable (fire occurrence), and potential predictors included in the main analysis. All normalised anomalies are calculated

based on each corresponding month’s mean and standard deviation from the reference period 1991–2020. The same reference period was

used when calculating SPI and SPEI.

Category Name Unit Description Source dataset

Fire occurrence

Satellite-based fire

occurrence
Class

Target variable of the main analysis. Classification

of burned area: class 1 (fire) if burned area>0,

otherwise 0 (no-fire)

v5.1.1cds

0.25◦ lon/lat

Norwegian fire

occurrence
Class

Target variable for comparison. Classification of fire

record: class 1 (fire) if fire occurred, otherwise 0

(no-fire)

Norwegian record

point-based

Precipitation
rr_sum [mm] Monthly precipitation sum

EOBS v23.1e

0.25◦ lon/lat

rr_sum_anomaly [-] Anomalies of rr_sum

Temperature

tg_mean, tn_mean and

tx_mean
[°C]

Monthly mean of daily mean, daily minimum and

daily maximum temperature

tx_max [°C] Monthly maximum of daily maximum temperature

tg_mean_anomaly,

tn_mean_anomaly and

tx_mean_anomaly

[-] Anomalies of tg_mean, tn_mean and tx_mean

Meteorological

drought

SPI2, SPI3, SPI6 and

SPI9
[-]

SPI {-3,3} over 2, 3, 6 and 9 months, calculated

from rr_sum

SPEI2, SPEI3, SPEI6

and SPEI9
[-]

SPEI {-3,3} over 2, 3, 6 and 9 months, calculated

from rr_sum minus monthly potential

evapotranspiration, calculated based on tg, tn and tx

Wind speed
wspeed_mean [m/s] Monthly mean 10m wind speed. ERA5-Land

hourly

0.1◦ lon/lat
wspeed_p10 and

wspeed_p90
[m/s]

Monthly 10th and 90th percentile of daily 10m wind

speed.

Snow snowc [-]
Monthly average fraction of grid cell occupied by

snow.
ERA5-Land

monthly

0.1◦ lon/lat

Soil moisture

swvl1, swvl2, swvl3

and swvl4
[m3/m3]

Monthly mean volumetric soil water in soil layer 1

(0–7 cm), layer 2 (7–28 cm), layer 3 (28–100 cm)

and layer 4 (100–289 cm)

swvl1_anomaly,

swvl2_anomaly,

swvl3_anomaly and

swvl4_anomaly

[-] Anomalies of swvl1, swvl2, swvl3 and swvl4

Land cover fraction_ burnable [-]
Fraction of the cell corresponding to vegetated land

covers that could burn.

v5.1.1cds

0.25◦ lon/lat
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