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Abstract. Geoelectric time series (TS) has long been studied for its potential for probabilistic earthquake 17 
forecasting, and a recent model (GEMSTIP) directly used the skewness and kurtosis of geoelectric TS to 18 
provide Time of Increased Probabilities (TIPs) for earthquakes in several months in future. We followed 19 
up on this work by applying the Hidden Markov Model (HMM) on the correlation, variance, skewness, 20 
and kurtosis TSs to identify two Hidden States (HSs) with different distributions of these statistical 21 
indexes. More importantly, we tested whether these HSs could separate time periods into times of 22 
higher/lower earthquake probabilities. Using 0.5-Hz geoelectric TS data from 20 stations across Taiwan 23 
over 7 years, we first computed the statistical index TSs, and then applied the Baum-Welch Algorithm 24 
with multiple random initializations to obtain a well-converged HMM and its HS TS for each station. 25 
We then divided the map of Taiwan into a 16-by-16 grid map and quantified the forecasting skill, i.e., 26 
how well the HS TS could separate times of higher/lower earthquake probabilities in each cell in terms 27 
of a discrimination power measure that we defined. Next, we compare the discrimination power of 28 
empirical HS TSs against those of 400 simulated HS TSs, then organized the statistical significance 29 
values from these cellular-level hypothesis testing of the forecasting skill obtained into grid maps of 30 
discrimination reliability. Having found such significance values to be high for many grid cells for all 31 
stations, we proceeded with a statistical hypothesis test of the forecasting skill at the global level, to find 32 
high statistical significance across large parts of the hyperparameter spaces of most stations. We therefore 33 
concluded that geoelectric TSs indeed contain earthquake-related information, and the HMM approach 34 
to be capable at extracting this information for earthquake forecasting.  35 
 36 
 37 
Keywords. Electric properties; statistical methods; time-series analysis; earthquake dynamics; 38 
earthquake early warning; earthquake interaction, forecasting, and prediction.  39 
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1 Introduction 42 
 43 
Earthquakes (EQs) are one of the most destructive natural hazards that can befall us, with the potential 44 
to take many human lives and deal serious damages to economies and environments. On 26 December 45 
2004, an 𝑀!-9.1 (𝑀! is the moment magnitude scale) earthquake struck near Sumatra, Indonesia, and 46 
the subsequent tsunami waves of up to 30 m high resulted in 227,898 people dead or missing. In addition, 47 
1,740,000 people lost their homes to the tsunami in 14 countries (Survey, 2004). This will be remembered 48 
as one of the deadliest earthquakes in recorded human history. On 12 May 2008, an 𝑀!-7.9 earthquake 49 
in Sichuan, China killed over 69,000 people, and injured 374,176. As of July 2008, another 18,222 were 50 
reported missing (Sina-News, 2008). More recently on 12 January 2010, an 𝑀!-7.0 earthquake shook 51 
Haiti. By 24 January, this earthquake, along with over 52 aftershocks with magnitude greater than 4.5, 52 
had caused the death of 160,000 people (Kolbe et al., 2010), and severe damage to or the collapse of 53 
280,000 buildings (Renois, 2010). This disaster brought the country to bankruptcy, and its people 54 
experienced a humanitarian crisis never before encountered. Until we learn how to build earthquake-55 
proof buildings and cities, it is imperative for us to work towards better forecasting/prediction capabilities 56 
against EQs, to inform pre-EQ evacuation, post-EQ relief, as well as expediting critical reinforcement 57 
works for selected buildings and infrastructures. To achieve this goal, the scientific community has done 58 
much work discovering precursors and models that are useful for the forecasting/prediction of EQs.  59 
 60 
First, let us clarify that in the seismological community, the terms “prediction” and “forecast” are often 61 
used interchangeably (Kagan, 1997; Ismail-Zadeh, 2013). When they are distinguished, the term 62 
“prediction” emphasizes the issuing of an alarm with high accuracy and reliability indicating the time, 63 
location, and magnitude of the next large EQ (Geller et al., 1997), whereas the term “forecast” is a 64 
statement about the probability of EQ(s) within the specified spatial-temporal window (Ismail-Zadeh, 65 
2013). Till this day, it is extremely difficult to make accurate and specific EQ predictions (Geller et al., 66 
1997). However, the forecasting of EQs is a far more tractable task: a method that performs better than 67 
random guesses (the null hypothesis) is recognized as having predictive power or predictive skill 68 
(“prediction” and “forecast” used as synonym here) (Kagan, 1997). In this paper, we will also use the 69 
two terms interchangeably.  70 
 71 
If we categorize EQ forecasting methods according to their time scales, we can organize them into three 72 
categories: long-term (decades ahead), intermediate-term (a few years ahead), and short-term (days or a 73 
few months ahead) (Peresan et al., 2005; Kanamori, 2003). EQ forecasting at different time scales serve 74 
different purposes. For a region of interest, a long-term EQ forecasting aims to estimate the probabilities 75 
of large EQs in the next decades or more. In most past studies, the primary input data was the historical 76 
EQ catalog, which allowed statistical modellings of the occurrence times of large and medium sized EQs 77 
(Kagan and Jackson, 1994; Sykes, 1996; Papazachos et al., 1987; Papadimitriou, 1993; Papazachos et 78 
al., 1997), assuming that EQs’ occurrences in the same spatial area follow a Poisson process of relatively 79 
constant rate. One such example is the probabilistic seismic hazard assessment (PSHA) first established 80 
by Cornell in 1968 (Cornell, 1968). This became a popular method for long-term seismic hazard 81 
assessment implemented in many countries (Tavakoli and Ghafory-Ashtiany, 1999; Petersen, 1996; 82 
Meletti et al., 2008; Vilanova and Fonseca, 2007; Nath and Thingbaijam, 2012; Wang et al., 2016). In 83 
this method, we take into account both historical EQ catalog information, as well as ground motion 84 
characteristics for the modelling of energy attenuation over spatial distances, thus providing a map of 85 
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seismic hazard rates that varies across location for the next 50 years. Long-term EQ forecasting such as 86 
PSHA can be valuable for location-specific seismic risk evaluation, thereby providing guidelines or 87 
criteria for local construction projects. For example, a building that is expected to last 100 years must be 88 
able to withstand 10 large EQs of the magnitude that occurs once every 10 years locally. What long-term 89 
EQ forecasting does not do, would be to tell people how to do things differently at any time.  90 
 91 
For intermediate-term EQ forecasting, the aim is to detect deviations of EQ rates from their long-time 92 
values, to assess increased probabilities of EQs within the next one to ten years. For example, if a region 93 
usually has a magnitude-6 EQ every 10 years, and 15 years have passed without one, the region would 94 
be in a state of increased probability. A famous example for the intermediate-term EQ forecasting is the 95 
M8 algorithm (Kossobokov et al., 2002; Peresan et al., 2005; Keilis-Borok, 1996), developed by Healy 96 
et al. (1992). The M8 algorithm used the EQ catalog as input, and returned as output the Time of 97 
Increased Probability (TIP) for EQs of magnitude 7.5 and above for the next one year. Another example 98 
is the CN algorithm (Peresan et al., 2005; Keilis-Borok, 1996) developed by Keilis-Borok and Rotwain 99 
(1990), that also took the EQ catalog as input to produce as output TIP for strong EQs (defined 100 
specifically for different regions) within the next half to a few years. In the literature, we also found the 101 
self-organizing spinodal (SOS) model (Chen, 2003; Rundle et al., 2000), which used the increased 102 
activity of medium-sized EQs as precursors to large EQs that could occur within the next several years 103 
or decades. Finally, one of the more successful methods at this time scale is pattern informatics (Nanjo 104 
et al., 2006), which was demonstrated to be effective at predicting 𝑀 ≥ 5 EQs in Japan between 2000 105 
and 2009. Intermediate-term EQ forecasting can, for example, help local authorities prioritize inspections 106 
and reinforcements of old buildings over the construction of new ones.  107 
 108 
Short-term EQ forecasting use a variety of methods to forecast the time, place, and magnitude of a 109 
specific large EQ. Here we commonly find methods using the EQ catalog as input data, and apply 110 
machine learning approaches (Asim et al., 2017; Reyes et al., 2013), as well as Hidden Markov Model 111 
(HMM) approaches (Yip et al., 2018; Chambers et al., 2012). For example, in (Chambers et al., 2012) an 112 
HMM was trained to track the waiting time between EQs with magnitudes above 4 in southern California 113 
and western Nevada (Yip et al., 2018), giving EQ forecasts for up to ten days in the future. Apart from 114 
using EQ catalog data, there is an increased variety of methods using other data inputs, such as the widely 115 
used Seismic Electric Signals (SESs) (Uyeda et al., 2000; Varotsos et al., 2013; Varotsos et al., 2002; 116 
Varotsos et al., 2017; Varotsos and Lazaridou, 1991; Varotsos et al., 1993), to look for EQ precursors in 117 
the form of abnormal changes to the geoelectric potential. In addition to looking for specific SES-type 118 
precursors, we also found papers using methods such as artificial neural networks (ANNs) (Moustra et 119 
al., 2011), Fisher Information (Telesca et al., 2005a; Telesca et al., 2009), and multi-fractal analysis 120 
(Telesca et al., 2005b) directly on geoelectric time series (TSs) data to make short-term EQ forecasting. 121 
Other data that can be used include the combination of geoelectric and magnetic data (Kamiyama et al., 122 
2016; Sarlis, 2018), GPS crustal movements (Kamiyama et al., 2016; Wang and Bebbington, 2013), 123 
electromagnetics of the atmosphere (Hayakawa and Hobara, 2010), and lithosphere dynamics (Shebalin 124 
et al., 2006). Short-term EQ forecasting can guide emergency responses such as evacuations and pre-125 
emptive relief efforts, although they are usually not reliable enough based on our current level of 126 
understandings.  127 
 128 
Among all these precursors, our recent research interest was on the potential use of geoelectric TSs for 129 
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EQ forecasting (Chen and Chen, 2016; Chen et al., 2020; Jiang et al., 2020; Telesca et al., 2014; Chen et 130 
al., 2017). In 2016 and 2017, Chen and his colleagues (Chen and Chen, 2016; Chen et al., 2017) analyzed 131 
the data of 20 geoelectric stations in Taiwan (Fig. 1) and studied the association between skewness and 132 
kurtosis of the geoelectric data and ML ≥ 5 EQs, where ML is the Richter magnitude scale. Through 133 
statistical analyses, they found significant correlations between geoelectric anomalies and these large 134 
EQs. They then developed an EQ forecasting algorithm named GEMSTIP to extract TIPs for future EQs. 135 
TIPs were identified through differences in the distributions of skewness and kurtosis with those found 136 
during normal periods. Moreover, Jiang et al. (2020) investigated the geoelectric signals before, during, 137 
and after EQs by the shifting correlation method, and found that the lateral and vertical electrical 138 
resistivity variation and subsurface conductors might amplify SESs, which agreed with the findings by 139 
Sarlis (Sarlis et al., 1999) and Huang (Huang and Lin, 2010).  140 
 141 

 142 
Figure 1: Map of the spatial distributions of seismicity and geoelectric stations (green triangles) in Taiwan. In 143 
this figure, past EQs with 𝑴𝑳 ≥ 𝟑 are shown as light blue dots while past EQs with 𝑴𝑳 ≥ 𝟔 are shown as 144 
red stars. 145 
 146 
Inspired by these findings, in this paper we wanted to take a closer look at the relationship between the 147 
EQ times and statistical indexes of geoelectric TSs, namely correlation (𝐶), variance (𝑉), skewness (𝑆), 148 
and kurtosis (𝐾). During initial explorations, we computed the TSs of these indexes (see Sect. 2.2 for 149 
computation details) on geoelectric TSs given by the 20 stations over the 7-year period of Jan. 2012 – 150 
Dec. 2018 (see Sect. 2.1 for data details). We then aggregated the distribution of the indexes’ values 151 
within different times-to-failure (TTFs, i.e., time remaining to the next EQ) intervals. In Fig. 2, we show 152 
the normalized frequency distributions of 𝐶, 𝑉, 𝑆, 𝐾 computed from KAOH station at different TTFs 153 
(using 0.9-day intervals) for 𝑀" ≥ 4 EQs within 2 degrees longitude-latitude of KAOH station. In this 154 
figure, we see bands of darker-colored pixels across the TTFs. Specifically, for 𝐶, 𝑉, and 𝑆, there are 155 
sudden shifts in the average position of the bands, suggesting that there are two regimes (short TTFs and 156 
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long TTFs) where the geoelectric fields show qualitatively different behaviors. For all statistical indexes, 157 
we find the darkest pixels concentrated in the long-TTF regime, whereas in the short-TTF regime, the 158 
pixels show a lower variability in their intensities. We suspect that this second phenomenon is the result 159 
of fewer samples at longer TTFs.  160 
 161 

 162 
Figure 2: Heatmaps of normalized probability density functions of 𝑪, 𝑽, 𝑺, 𝑲 at different times-to-failure 163 
(TTFs), for the east-west component of the geoelectric TS. The TTFs are computed using 𝑴𝑳 ≥ 𝟒 EQs within 164 
2 degrees longitude-latitude from station KAOH.  165 
 166 
To overcome this problem, which is created by superimposing the index TSs of different lengths between 167 
EQs, we decided to discover such regimes directly from the geoelectric TSs by using HMMs. The HMM 168 
is well known for being data-driven, enabling us to search and use more general statistical features 169 
beyond limited templates that we currently know (Beyreuther and Wassermann, 2008). Additionally, its 170 
explicit incorporation of the time dimension into the model is a distinct advantage for providing holistic 171 
and time-sensitive representations, especially in the application of EQ forecasting (Beyreuther and 172 
Wassermann, 2008). In our HMM, we defined two hidden states (HSs) as the high-level representations 173 
of geoelectricity, featuring unique distributions of 𝐶, 𝑉, 𝑆, 𝐾. Here we chose to use only two, instead 174 
of more HSs, because 2-state HMM have already been successfully applied to model regimes with 175 
different EQ frequencies using EQ catalogs as the only inputs (Yip et al., 2018; Chambers et al., 2012). 176 
Thereafter, for each monitoring station, we obtained the TS of posterior HS probability, or HS TS, using 177 
the TSs of 𝐶, 𝑉, 𝑆, 𝐾 and the Baum-Welch Algorithm (BWA). We then partitioned the time periods 178 
under study according to the HS TSs, and investigated whether these HS TSs that are obtained purely 179 
from geoelectric data can separate time periods of high versus low EQ (𝑀" ≥ 3) probabilities, with high 180 
statistical confidence.  181 
 182 
The goal of this investigation is to decide whether the HMM-modelling of geoelectric TS could provide 183 
features (i.e., HS TSs) of true forecasting skill for intermediate-term EQ forecasting. Therefore, we are 184 
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more concerned with statistical significance, than with evaluating the exact forecasting accuracy, or the 185 
forecasting of specific EQs. In this regard, we also note that the same HMM approach described in this 186 
paper can be applied to many other geophysical high-frequency time series data, such as geomagnetic or 187 
GPS ground movement data, even though we only used geoelectric data as the input of the HMM, to 188 
show that the underlying seismic dynamics is indeed clearly separable into distinct regimes of higher 189 
versus lower seismic activities (as supported by (Yip et al., 2018; Chambers et al., 2012)).  190 
 191 
For the sake of our readers, we organize our Data and Methods in Sect. 2, Results and Discussions in 192 
Sect. 3, and Conclusions in Sect. 4. In Sect. 2, we provide information on the EQ catalog, the geoelectric 193 
TSs, how we pre-processed the latter, and subsequently computed the index TSs of 𝐶, 𝑉, 𝑆, 𝐾 from 194 
them. We then explain how an HMM and the Baum-Welch Algorithm works, before applying them to 195 
our problem. We also explain why we did not estimate individual HMMs from the index TSs of 𝐶, 𝑉, 196 
𝑆, 𝐾, but one HMM for each station from an observation TS aggregating 𝐶, 𝑉, 𝑆, 𝐾 through k-means 197 
clustering. At the end of this section, we present our procedures to quantify how informative the HSs are 198 
against EQ activities, by defining and analyzing EQ Grid Maps, EQ Frequencies, and EQ Frequency 199 
Ratios (𝑅#). In Sect. 3, we first used the 𝑅# grid map of one of the 20 stations to illustrate how we can 200 
compare a Discrimination Power (𝐷) grid map against 400 simulated grid maps of 𝐷, to obtain the 201 
Discrimination Reliability (𝑅$) grid map, which are cellular-level statistical significances that the HSs 202 
are useful for EQ forecasting. We then performed significance tests to verify that the HSs’ forecasting 203 
power are also significant at the global level, using a metric of Global Confidence Level (𝐺𝐶𝐿) that we 204 
defined. To end Sect. 3, we explored how robust the 𝐺𝐶𝐿 values are across the hyperparameter space 205 
and clarified how we chose the optimal hyperparameters for each station. Finally, we conclude in Sect. 206 
4.  207 
 208 
 209 
2 Data and Methods  210 
 211 
2.1 Data Description 212 
 213 
The 1-Hz geoelectric TSs data used in this paper was provided by the 20 monitoring stations located 214 
across Taiwan (see Fig. 1), which are collectively named Geoelectric Monitoring System (GEMS). The 215 
spacings among stations are generally 50 km. The geoelectric data here is the self-potential data, which 216 
is the natural electric potential differences in the earth, measured by dipoles placed 1–4 km apart within 217 
each station. Each station can output two sets of high-frequency geoelectric TSs, measuring alone the 218 
NS direction and the EW direction. Depending on the spatial constraints of some stations, the azimuths 219 
of the dipoles might deviate from the exact NS or EW directions by 10–40°. For the purpose of this study, 220 
we used the geoelectric TSs provided by the GEMS with the same time span as the EQ catalog data, 221 
which is from January 2012 to December 2018. We down sampled the data to 0.5 Hz, and used these in 222 
subsequent analyses. 223 
 224 
The HMMs that we will show in Sect. 3 partitioned the 20 geoelectric TSs into two HSs, distinguished 225 
by the local statistics of their geoelectric fields. We believe these HSs can also exhibit different 226 
seismicities within their time durations. To check this, we used EQ catalog data compiled by the Central 227 
Weather Bureau (CWB), in charge of monitoring EQs in the region of Taiwan (Shin et al., 2013). The 228 
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CWB seismic network is highly dense and provides an abundant set of waveform data. Due to 229 
considerable EQs recorded, the seismotectonics of Taiwan is well depicted, showing the complicated 230 
subduction between the Philippine Sea plate and Eurasian plate (Kuo-Chen et al., 2012; Yi-Ben, 1986). 231 
Despite the dense seismic network, the EQ catalog was shown to be incomplete at small magnitudes due 232 
to the detection threshold of seismic instruments and the coverage of networks (Fischer and Bachura, 233 
2014; Nanjo et al., 2010; Rydelek and Sacks, 1989). The completeness magnitude (Mc), defined as the 234 
lowest magnitude above which all EQs are reliably detected, in Taiwan is approximately between 2 and 235 
3 (Chen et al., 2012; Mignan et al., 2011). Chen et al. (2012) showed the temporal variation of Mc, while 236 
Mignan et al. (2011) provided the spatial information of that. In this study, for the conservative estimate, 237 
we took the completeness magnitude of 3 and analyzed EQs with 𝑀" ≥ 3, during the period from 238 
January 2012 to December 2018 in the area of 119.5–122.5° E and 21.5–25.5° N, as shown in Fig. 1, in 239 
which the locations of strong events with 𝑀" ≥ 6 are marked. Some of these events were destructive. 240 
For instance, at 03:57 on 6 February 2016 (UTC+8), an 𝑀"-6.6 EQ occurred in the southern part of 241 
Taiwan (120.54° E, 22.92° N). This event struck at a depth of around 14.6 km (Chen et al., 2017; Lee et 242 
al., 2016; Pan et al., 2019). Such a comparatively shallow depth caused more intensities on the surface, 243 
and resulted in wide-spread damage which included 117 deaths and over 500 wounded.  244 
 245 
In the latest update of the GEMSTIP model, Chen et al. (2021) found out that by applying a specific 246 
bandpass filter on the geoelectric TS, the model became better at anticipating EQs using the skewness 247 
and kurtosis TSs. The filter they used is the order-3 Butterworth bandpass filter with lower and higher 248 
cut-off frequencies of 𝑓% = 10&'.) Hz and 𝑓* = 10&%.+, Hz respectively. These lower and upper cut-249 
off frequencies were determined to give the optimal signal-to-noise ratio by Chen et al. (2021).  250 
 251 
Similar to the GEMSTIP model, our HMM modelling also searched for EQ-related information in 252 
skewness and kurtosis TSs computed from the geoelectric TS, we conveniently utilized the insight from 253 
Chen et al. (2021), and applied the same Butterworth filter on our geoelectric TS data before computing 254 
the index TSs. This filter was applied using scipy.signal (v1.4.1) package in Python (v3.6.5), with 255 
instructions from (Scipy-Cookbook, 2012), which also demonstrated a clear working example of the 256 
Butterworth bandpass filter that readers can refer to.  257 
 258 
2.2 Computation of Index TSs of 𝑪, 𝑽, 𝑺,𝑲 259 
 260 
For each station, there are two geoelectric TSs (NS and EW) of frequency 0.5-Hz. Each geoelectric TS 261 
will produce four statistical index TSs (𝐶, 𝑉, 𝑆, 𝐾). For each station, we therefore obtained up to 8 index 262 
TSs, 4 for each direction (NS and EW). Starting from the 0.5-Hz geoelectric TS, we computed one index 263 
point for every non-overlapping time window of length 𝐿! geoelectric TS data points. Later in Sect. 264 
3.5, we will discuss in detail how we chose the optimal 𝐿! individually for each station in parameter 265 
space that we tested: [0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.25] (days). As can be noticed from Fig. 12, 11 266 
out of 20 stations’ optimal choice was 𝐿! = 0.02	or	0.03 days, which we suppose can be a good 267 
compromise between timely monitoring of state shifts and updating at a comfortable frequency for the 268 
human decision makers. Potential decisions that such an update frequency may enable includes the 269 
forward deployment of relief materials such as back-up generators, portable water treatment units, tents, 270 
medical supplies, refresher training of emergency response teams, as well as administrative prioritizing 271 
of re-certification works for buildings and structures in regions where more EQs are expected soon.  272 
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 273 
Next, we present the definitions for each index. Within each time window, let us write the geoelectric 274 
field as {𝑋-}-.%,…,"!. The correlation 𝐶 that we used in this paper is the lag-1 Pearson autocorrelation 275 
of {𝐷- = 𝑋-1% − 𝑋-}-.%,…,"!&%, which is the difference sequence of {𝑋-}-.%,…,"!. Mathematically,  276 

𝐶({𝑋-}) = 𝐴𝐶1({𝐷-}) =
𝔼[(𝐷- − 𝜇$)(𝐷-1% − 𝜇$)]

𝜎$*
, (1) 277 

where 𝔼 is the expectation, 𝜇$ is the mean of {𝐷-}-.%,…,"!&% and 𝜎$ is the standard deviation of 278 
{𝐷-}-.%,…,"!&% . The range of 𝐶  is [−1, 1], and 𝐶  measures how fast the TS relaxes back to the 279 
equilibrium. If 𝐶 is close to 1, 𝑋 would tend to increase or decrease persistently; if 𝐶 is around 0, 280 
𝑋 would be equivalent to random walks; and if 𝐶 is close to −1, every increase in 𝑋 would tend to 281 
be followed by a similar decrease.  282 
 283 
The variance 𝑉 of {𝑋-}-.%,…,"!  is the sequence’s second standard central moment. It is a positive 284 
number that measures how drastically the values in the sequence are different from each other, with 285 
higher values indicating higher difference. It is defined as:  286 

𝑉({𝑋-}) = 𝔼[(𝑋- − 𝜇2)*], (2) 287 
where 𝜇2 is the mean of {𝑋-}-.%,…,"!. Additionally, we observed astronomically extreme values in the 288 
𝑉 TSs for most stations, which were caused by unknown technical errors, and we therefore considered 289 
them outliers that have to be removed for consistent data quality. We discuss how we removed them in 290 
detail in Supporting Information Sect. A. From here onwards, the 𝑉 TSs will always refer to those after 291 
the outlier-removal process.  292 
 293 
The skewness 𝑆 of {𝑋-}-.%,…,"!, or the sequence’s third standard central moment, is defined as:  294 

𝑆({𝑋-}) = 𝔼 IJ
𝑋- − 𝜇2
𝜎2

K
3

L , (3) 295 

where 𝜎2 is the standard deviation of {𝑋-}-.%,…,"!. It is a real number measuring how asymmetric the 296 
distribution of {𝑋-}-.%,…,"! is about the mean. For a perfectly symmetric distribution such as the normal 297 
distribution, the skewness is 0. A positive skewness means the distribution has a longer tail to the right, 298 
and a negative skewness means the distribution has a longer tail to the left.  299 
 300 
The kurtosis 𝐾 of {𝑋-}-.%,…,"!, or the sequence’s fourth standard central moment, is defined as: 301 

𝐾({𝑋-}) = 𝔼 IJ
𝑋- − 𝜇2
𝜎2

K
'

L . (4) 302 

It is a real number measuring how frequently extreme values (values very far from the mean) appear in 303 
the distribution. The higher the number, the more frequently extreme values can be found. As a reference, 304 
the kurtosis of the normal distribution is 𝐾 = 3. If 𝐾 > 3, we say that the distribution is leptokurtic, 305 
meaning the distribution has fatter tails and more frequent extreme values compared to the normal 306 
distribution. If 𝐾 < 3, the distribution is said to be platykurtic, meaning the distribution has thinner tails, 307 
and extreme values appear less frequently compared to the normal distribution.  308 
 309 
2.3 Estimation of HMM Using the Baum-Welch Algorithm  310 
 311 
A Markov model is a stochastic model that can be used to describe a system whose future state 𝑠41% is 312 
drawn from a set of 𝐿 states {𝑆5}5.%,…," with probabilities 𝑝6←8 = 𝑃R𝑠41% = 𝑆6S𝑠4 = 𝑆8T conditioned 313 
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by its current state 𝑠4 . The probabilities 𝑝6←8  can be organized into a transition matrix 𝑨, where 314 
𝑨(𝑖, 𝑗) = 𝑝6←8. The HMM is an extension of the Markov model, with the additional property that the 315 
system state 𝑠4 is not explicitly known, hence the word “hidden” in the name. Instead, what can be 316 
observed from an HMM at any time 𝑡  is an observable 𝑜4  drawn from a size-𝑄  observable set 317 

[𝑂9]9.%,…,: . Just as in a Markov model, the future state 𝑠41%  of an HMM is drawn from the set 318 

{𝑆5}5.%,…,"  with probabilities 𝑝6←8  (similarly conditioned by the current state 𝑠4 ) taken from the 319 
transition matrix 𝑨. At time 𝑡, the observable 𝑜4  is emitted with a probability 𝑃(𝑜4 = 𝑂9|𝑠4 = 𝑆5) 320 
that depends on which HS 𝑠4 = 𝑆5 the system is in. These probabilities can be organized into an	𝐿 × 𝑄 321 
emission matrix 𝑩 , where 𝑩(𝑙, 𝑘) = 𝑃(𝑜4 = 𝑂9|𝑠4 = 𝑆5) . Additionally, we call the HS probability 322 
distributions at the initial time as 𝝅𝟎 = {𝑃(𝑆%), 𝑃(𝑆*), … , 𝑃(𝑆")	}. With this, we have fully specified the 323 

HMM: the sets of HSs {𝑆5}5.%,…," and observations [𝑂9]9.%,…,: as well as the model parameters that 324 

are collectively called 𝜆 = (𝑨,𝑩, 𝝅𝟎). 325 
 326 
In common real-world applications of HMM, the question is to estimate the probability distributions of 327 
the HS TS given the observation TS and the model parameter, namely 𝑃(𝑠4 = 𝑆5|{𝑜4}4.%,…,< , 𝜆). More 328 
often than not, the model parameter 𝜆 is unknown and has to be simultaneously estimated as well. One 329 
of the most common ways to do this is the Baum-Welch Algorithm (BWA) (Zhang et al., 2014; Oudelha 330 
and Ainon, 2010; Yang et al., 1995; Bilmes, 1998), which belongs to the family of Expectation 331 
Maximization methods (Bilmes, 1998). Starting from randomly initialized model parameters 𝜆, the 332 
algorithm runs recursively to maximize the likelihood of the model given the observation TS. When the 333 
algorithm converges, we will obtain a set of estimated model parameters 𝜆f = R𝑨g,𝑩g, 𝝅h𝟎T, as well as a 334 
posterior probability 𝑃(𝑠4 = 𝑆5|{𝑜4}4.%,…,< , 𝜆f) TS. We include more details on the BWA in Sect. 2.5. 335 
Additionally, for readers who want an intuitive demonstration of how HMM and BWA works, we 336 
attached a simulation of a simple HMM and its BWA application in Supporting Information Sect. B.  337 
 338 
HMMs are traditionally applied in fields such as speech recognition (Palaz et al., 2019; Novoa et al., 339 
2018; Chavan and Sable, 2013; Abdel-Hamid and Jiang, 2013), bioinformatics, and anomaly detection 340 
(Qiao et al., 2002; Joshi and Phoha, 2005; Cho and Park, 2003). It has also been used for short-term EQ 341 
forecasting, using observations from EQ catalogs (Yip et al., 2018; Chambers et al., 2012; Ebel et al., 342 
2007), as well as GPS measurements of ground deformations (Wang and Bebbington, 2013). To the best 343 
of our knowledge, there is no past HMM study on geoelectric TSs for EQ forecasting. In this paper, we 344 
argue that the HMM is an objective tool, because the HSs were estimated only from the geoelectric TSs, 345 
and thereafter validated against the EQ catalog. We believe this statistical procedure limits the bias that 346 
we could introduce into our prediction model when we optimized the model. This will be even clearer 347 
by the end of Sect. 2.5 where we summarize the entire procedure.  348 
 349 
2.4 HMM Modelling and Inputs to the BWA 350 
 351 
In the context of this study, we assume for simplicity two seismicity states of the earth crust beneath each 352 
station. These are our HSs {𝑆%, 𝑆*}, since they cannot be directly observed. What we can observe directly 353 
are the geoelectric TSs for each station. Our goal is to reconstruct the HS TSs so that the distributions of 354 
indexes (𝐶, 𝑉, 𝑆, 𝐾) of the geoelectric TSs in 𝑆% and 𝑆* are as different as possible. To do this, we 355 
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computed 4 index TSs each for NS and EW geoelectric fields using the procedure described in Sect. 2.2, 356 
and organized them into a TS of 8-dimensional feature vectors 𝑭4 =357 
j𝐶=>,4 , 𝑉=>,4 , 𝑆=>,4 , 𝐾=>,4 , 𝐶?@,4 , 𝑉?@,4 , 𝑆?@,4 , 𝐾?@,4k. The values of each of the indexes are continuously 358 

distributed, but the standard BWA requires discrete observations [𝑂9]9.%,…,: as input. In this section, 359 

we discuss possible ways to convert 𝑭4 into discrete observations for the BWA, and why we chose one 360 
particular method for implementation.  361 
 362 
One way to do so would be to model each component of 𝑭4 as samples drawn from known distributions, 363 
such as a normal distribution or a gamma distribution. Unfortunately, as we can see from Fig. 3 364 
(introduced in the next paragraph), none of the known distributions fit the empirical data well. 365 
Alternatively, we can discretize the components of 𝑭4 by binning them. In other words, we represent 366 
the distribution of each component with a histogram, with a specific choice of the number of bins (50 for 367 
example). This will effectively convert the continuous values of each component of 𝑭4 into discrete 368 
values, such as integer labels from 1 to 50 if we use 50 bins. Let us write the discretized 𝑭4 as 𝑭l4 =369 
j𝐶=̿>,4 , 𝑉n=>,4 , �̿�=>,4 , 𝐾l=>,4 , �̿�?@,4 , 𝑉n?@,4 , 𝑆?̿@,4 , 𝐾l?@,4k.  370 
 371 
If we do this for the TSs of individual components, such as the TS of �̿�=>,4, and use them as inputs for 372 
the BWA, we will obtain one HS TSs for each of the 8 components. In Fig. 3, we show (A) the estimated 373 
emission matrix 𝑩g  in Figs 3(a), (c), (e), (g), and (B) the posterior probability TSs in Figs 3(b), (d), (f), 374 
(h) for 4 components: �̿�=>,4 , 𝑉n=>,4 , 𝑆=̿>,4 , 𝐾l=>,4  of KAOH station. These posterior probability TSs are 375 
different, which is not what we desire. Therefore, instead of this, we would like to use all 8 components 376 
in 𝑭l4 as a single input to the BWA, to obtain a single HS TS for each station.  377 
 378 

 379 
Figure 3: The output of BWA: the emission probability, or the probability mass functions, as well as their 380 
posterior HS probability TSs, for 𝑪*𝑵𝑺,𝒕 (a, b), 𝑽*𝑵𝑺,𝒕 (c, d), 𝑺*𝑵𝑺,𝒕 (e, f), and 𝑲*𝑵𝑺,𝒕 (g, h), respectively, using 381 
station KAOH’s geoelectric TS data, with 50 bins.  382 
 383 
The BWA has no problem dealing with high-dimensional problems, provided the inputs are discrete. 384 
However, this method would work well only if the overall number of possible observations is small. If 385 
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we use 50 bins for each of the eight indexes, there would be 𝐷 = 50A ≈ 3.91 × 10%3	 possible 386 
observations, meaning the emission matrix would be of dimension 3.91 × 10%3-by-2. Reducing the 387 
number of bins to just 10 for each index, we still have 𝐷 = 10A possible observations. This latter space 388 
is still too large for the BWA to search through exhaustively in a reasonable amount of time, even though 389 
we feel 10 bins for each index may already be too coarse and likely to miss subtle details. Furthermore, 390 
with so many possible observations, we expect the emission probabilities to be significantly different 391 
from 0 only for a very small subset of the 𝐷 possible observations.  392 
 393 
We do not know a priori what the elements of this very small subset are. They may occur as isolated 394 
points in the search space, or they may occur in groups of closely spaced points. In the continuous feature 395 
space, each of these groups of observations represents a cluster of similar feature vectors. To determine 396 
the number of such clusters, and where they occur in the 8-dimensional continuous feature space, we 397 
mapped similar feature vectors to the same label using the k-means clustering algorithm (Gupta et al., 398 
2010; Wen et al., 2006; Dash et al., 2011), which is commonly used for discretizing continuous vectors 399 
such as 𝑭4. We chose to use the k-means clustering for discretizing 𝑭4 because of its low computational 400 
cost as well as its reliability in grouping similar feature vectors in the feature space. In so doing, we 401 
created a discrete feature space with reasonable size, as high-level labels of different geoelectric 402 
dynamics.  403 
 404 
In the k-means clustering of the set of 𝑁 continuous-valued vectors {𝑾%,𝑾*, … ,𝑾=} , we start by 405 

choosing 𝑄 ≤ 𝑁 clusters: 𝑮 = u𝐺%
()), 𝐺*

()), … , 𝐺:
())v, where cluster 𝐺9

()) is initialized with a random 406 

center 𝝁9
()), and 𝑄 is the number of total clusters we choose for the k-means clustering. We then assign 407 

each vector 𝑾-  to a cluster 𝐺9
()) : 𝐺9

()) ≡ 𝐺9
()) ∪𝑾- , such that the squared Euclidean norm 408 

z𝑾- − 𝝁9
())z

*
 is minimized for 𝑾-. After assigning all vectors in {𝑾%,𝑾*, … ,𝑾=} this way, 𝐺9

()) =409 

u𝑾9,%,𝑾9,*, … ,𝑾9,-"v would contain 𝑛9 feature vectors. We can improve on this initial clustering by 410 

updating the position of the centers by: 411 

𝝁9
(%) =

1
𝑛9
|𝑾9,8

-"

8.%

, (5) 412 

and re-assigning the 𝑁  continuous-valued vectors {𝑾%,𝑾*, … ,𝑾=}  to these new clusters 𝑮 =413 

u𝐺%
(%), 𝐺*

(%), …𝐺:
(%)v with updated centers. After repeating this procedure for enough times, the clusters 414 

will converge to 𝑮∗ = [𝐺%∗, 𝐺*∗, …𝐺:∗ ], where 𝐺9∗ = u𝑾9,%
∗ ,𝑾9,*

∗ , … ,𝑾9,-"∗
∗ v. Ultimately, the k-means 415 

clustering algorithm ensures that the sum of 𝑄 within-cluster sum of squares (WCSS) for each cluster 416 
is minimized, which can be written as:  417 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑮∗

| | z𝑾9,8
∗ − 𝝁9∗z

*

𝑾",%
∗ ∈G"∗

:

9.%

. (6) 418 

 419 
The indexes 𝐶=>,4, 𝑉=>,4 , 𝑆=>,4, 𝐾=>,4 have highly disparate dynamic ranges, and should not be directly 420 
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combined into a feature vector. Therefore, before the clustering, we first standardized our indexes by 421 
dividing them by their respective standard deviations. The purpose of this step is to ensure the weights 422 
associated with each index during the k-means clustering are equal, so as not to bias our search for 423 
features with high dynamic range. Mathematically, the feature vector of standardized indexes at time 424 
𝑡,	𝑭H4 can be written as:  425 

𝑭H4 = I
𝐶=>,4

𝜎R𝐶=>,4T
,
𝑉=>,4

𝜎R𝑉=>,4T
,
𝑆=>,4

𝜎R𝑆=>,4T
,
𝐾=>,4

𝜎R𝐾=>,4T
,
𝐶?@,4

𝜎R𝐶?@,4T
,
𝑉?@,4

𝜎R𝑉?@,4T
,
𝑆?@,4

𝜎R𝑆?@,4T
,
𝐾?@,4

𝜎R𝐾?@,4T
L . (7) 426 

 427 
We then implemented k-means clustering using the Scikit-learn package (v0.23.1) in Python (v3.6.5), on 428 
the sequence of feature vectors 𝑭H4 covering the time period from January 2012 to December 2018. The 429 
choice of the number of clusters 𝑄  was determined as part of the hyperparameter optimization, 430 
described in Sect. 3.5. In this way, we matched each 𝑭H4 to a discrete label 𝑜4 → 𝑂9 (where 𝑞 is an 431 
integer from 1 to 𝑄), to obtain the TS of discrete observations {𝑜%, 𝑜*, … , 𝑜4 , … , 𝑜<} for each station 432 
as its input to the BWA.  433 
 434 
2.5 Implementation of BWA  435 
 436 
In this section, we describe how we implemented the BWA to obtain one HS TS for each station. We start 437 
by describing how we initialized and iterated the BWA, as well as how we delt with local optima in the 438 
BWA results by using multiple initializations.  439 
 440 
The first step of the BWA is to initialize the HMM model parameters (𝑨,𝑩, 𝝅). Since we had no prior 441 
knowledge on the model parameters, we initialized parameters (𝑨𝟎, 𝑩𝟎, 𝝅𝟎) randomly. After this, we 442 
iterated BWA’s expectation maximization steps 30 times, starting with iteration index 𝑖 = 1. Each 443 
iteration comprises of the forward procedure, the backward procedure, and the update.  444 
 445 
At each iteration 𝑖 , the forward procedure computes the probability 𝛼5,48 = 𝑃R𝑜%, 𝑜*, … , 𝑜4 , 𝑠4 =446 
𝑆5|(𝑨𝒊, 𝑩𝒊, 𝝅𝒊)T that the observations up to time 𝑡 are 𝑜%, 𝑜*, … , 𝑜4, and the HS 𝑠4 at time 𝑡 takes on 447 
the value 𝑆5, given the model parameters (𝑨𝒊, 𝑩𝒊, 𝝅𝒊). This is done by setting 𝛼5,)8 = 𝝅𝒍𝑩𝒊(𝑙, 𝑜)), and 448 
computing 𝛼5,41%8 = 𝑩𝒊(𝑙, 𝑜41%) ∑ 𝛼K,48 𝑨𝒊(𝑚, 𝑙)*

K.%  for all 𝑙 and 𝑡. The backward procedure computes 449 
the probability 𝛽5,48 = 𝑃(𝑜41%, … , 𝑜<|𝑠4 = 𝑆5 , (𝑨𝒊, 𝑩𝒊, 𝝅𝒊))  that the rest of the observations are 450 
𝑜41%, … , 𝑜< given that 𝑠4 = 𝑆5 and model parameters (𝑨𝒊, 𝑩𝒊, 𝝅𝒊). This is done by setting 𝛽5,<8 = 1, and 451 
computing 𝛽5,48 = ∑ 𝛽K,41%8 𝑨𝒊(𝑙,𝑚)𝑩𝒊(𝑚, 𝑂41%)*

K.%  for all 𝑙 and 𝑡.  452 
 453 
Finally, we reach the update procedure. We start by calculating the probability 𝛾5,48 = 𝑃(𝑠4 =454 
𝑆5|𝑜%, 𝑜*, … , 𝑜< , (𝑨𝒊, 𝑩𝒊, 𝝅𝒊)), which is the conditional probability of 𝑠4 = 𝑆5 given the full observation 455 
TS and the model parameters (𝑨𝒊, 𝑩𝒊, 𝝅𝒊). This is computed by:  456 

𝛾5,48 =
𝑃R𝑜%, 𝑜*, … , 𝑜< , 𝑠4 = 𝑆5S(𝑨𝒊, 𝑩𝒊, 𝝅𝒊)T

𝑃R𝑜%, 𝑜*, … , 𝑜<S(𝑨𝒊, 𝑩𝒊, 𝝅𝒊)T
=

𝛼5,48 𝛽5,48

∑ 𝛼K,48 𝛽K,48*
K.%

. (8) 457 

Next, we calculate the probability 𝜉5,K,48 = 𝑃(𝑠4 = 𝑆5 , 𝑠41% = 𝑆K|𝑜%, 𝑜*, … , 𝑜< , (𝑨𝒊, 𝑩𝒊, 𝝅𝒊)), which is the 458 
probability of the HS making a transition from 𝑆5 to 𝑆K going from time 𝑡 to 𝑡 + 1, given the full 459 
observation TS and the model parameters (𝑨𝒊, 𝑩𝒊, 𝝅𝒊). This is computed by:  460 

𝜉5,K,48 =
𝑃R𝑜%, 𝑜*, … , 𝑜< , 𝑠4 = 𝑆5 , 𝑠41% = 𝑆KS(𝑨𝒊, 𝑩𝒊, 𝝅𝒊)T

𝑃R𝑜%, 𝑜*, … , 𝑜<S(𝑨𝒊, 𝑩𝒊, 𝝅𝒊)T
 461 
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=
𝛼5,48 𝑨𝒊(𝑙,𝑚)𝛽K,41%8 𝑩𝒊(𝑚, 𝑂41%)

∑ ∑ 𝛼L,48 𝑨𝒊(𝑟, 𝑝)𝛽M,41%8 𝑩𝒊(𝑝, 𝑂41%)*
M.%

*
L.%

. (9) 462 

Now, we can update the new model parameters as: 463 
1) 𝜋81% = 𝛾4.%8 (10) 464 

2) 𝑨𝒊1𝟏(𝑙,𝑚) =
∑ P&,',(

%)*+
(,+
∑ Q&,(

%)*+
(,+

(11) 465 

3) 𝑩𝒊1𝟏R𝑙, 𝑂9T =
∑ %-(,."Q&,(

%)
(,+

∑ Q&,(
%)

(,+
, (12) 466 

where 1R(.S" = �1		𝑖𝑓	𝑜4 = 𝑂9	
	0		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  467 

 468 
As the iteration goes, the BWA improves the likelihood of observing the input observation TS 469 
𝑜%, 𝑜*, … , 𝑜< given the model parameters (𝑨𝒊, 𝑩𝒊, 𝝅𝒊), which converges when the improvements on the 470 
posterior probability 𝑃(𝑜%, 𝑜*, … , 𝑜<|(𝑨𝒊, 𝑩𝒊, 𝝅𝒊))  become minimal. In practice, we found that 30 471 
iterations were long enough for most models to converge. We therefore obtained the estimated model 472 
parameters R𝑨g,𝑩g, 𝝅hT = (𝑨𝟑𝟎, 𝑩𝟑𝟎, 𝝅𝟑𝟎) , as well as the posterior probability TS of 	𝑃(𝑠4 =473 
𝑆5|𝑜%, 𝑜*, … , 𝑜< , 𝑨g, 𝑩g, 𝝅h)  for both HSs and all 𝑡 , which we write in short form as: 𝑷𝟏 =474 
R𝑃(𝑠% = 𝑆%), 𝑃(𝑠* = 𝑆%), … , 𝑃(𝑠< = 𝑆%)T  and 𝑷𝟐 = R𝑃(𝑠% = 𝑆*), 𝑃(𝑠* = 𝑆*), … , 𝑃(𝑠< = 𝑆*)T. Here, 475 
we noted that BWA assigns the indexing of HSs randomly; therefore, the 𝑆%  of one station is not 476 
guaranteed to be equivalent to the 𝑆% of another station.  477 
 478 
We cannot simply do the above BWA estimation once to get R𝑨g,𝑩g, 𝝅hT, because the BWA converges to 479 
local optima instead of the global optimum in the model parameter space (Bilmes, 1998; Yang et al., 480 
2017; Larue et al., 2011). Also, the initial parameters have a significant influence on the local optimum 481 
where the BWA converges. In order to obtain a global optimum result within a reasonable computation 482 
time, we ran 15 BWA estimations in parallel for each station, with different random initial parameters. 483 
For each station, we then chose the model with the highest model score given by 484 

𝑃 �𝑜%, 𝑜*, … , 𝑜<|R𝑨g,𝑩g, 𝝅hT� for subsequent analysis. Later in Fig. 4(a), we also show all 15 HMMs to 485 

demonstrate how consistent the converged models are. We can write the posterior probability TS of this 486 

model as 𝑷g𝟏 = �𝑃(𝑠% = 𝑆%), 𝑃(𝑠* = 𝑆%), … , 𝑃(𝑠< = 𝑆%)|𝑜%, 𝑜*, … , 𝑜< , R𝑨g, 𝑩g, 𝝅hT�.  487 

 488 
For each initial condition, the BWA randomly assigns one HS to be 𝑆%, and the other to be 𝑆*. To show 489 
all 15 HMMs simultaneously in Fig. 4(a), we need to standardize 𝑆% and 𝑆* across all HMMs. For this 490 

purpose, we set 𝑷g𝟏 as the “standard”. For the remaining 14 posterior probabilities [𝑷𝟏𝒊 ]8.*,…,%,, we 491 

checked their Expected Absolute Difference 𝐸𝐴𝐷 = 𝑚𝑒𝑎𝑛R|𝑷g𝟏 −𝑷𝟏𝒊 }T from 𝑷g𝟏, whose value ranges 492 
from 0 and 1. If 𝐸𝐴𝐷 > 0.5, 𝑷𝟏𝒊  is more similar to 𝑷g𝟐 than to 𝑷g𝟏, and we proceed to swap the HS 493 
indexing for the 𝑖4V  HMM by assigning 𝑷𝟏𝒊 (𝒏𝒆𝒘) ≡ 𝑷𝟐𝒊  and 𝑷𝟐𝒊 (𝒏𝒆𝒘) ≡ 𝑷𝟏𝒊 . Otherwise, 𝑷𝟏𝒊  494 
corresponds to the same HS as 𝑷g𝟏, and we leave its HS indexing unchanged. In this way, we standardized 495 
all 15 models so that their 𝑷𝟏 can be visualized together in Fig. 4(a), with the 𝐏g𝟏 TSs sorted by their 496 

model scores 𝑃 �𝑜%, 𝑜*, … , 𝑜<|R𝑨g,𝑩g, 𝝅hT�, and the optimal model at the first row. In Fig. 4(b), we show 497 
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the actual posterior probability TS of this optimal model. The figures of 15 HMMs for all 20 stations are 498 
included in the Supporting Information Sect. C.  499 
 500 

 501 
Figure 4: The step-by-step data visualization for station CHCH, showing (a) a heatmap of the 15 HMM models’ 502 
posterior probability TSs for 𝑺𝟏, sorted by model score from highest to lowest. The posterior probabilities for 503 
the last 4 HMMs are messy, because the BWA estimations do not converge; (b) the optimal model’s posterior 504 
HS probability TS for 𝑺𝟏, 𝑷,𝟏 (obtained using optimal hyperparameters: [𝑳𝒘, 𝑸] = [𝟎. 𝟎𝟐	(𝐝𝐚𝐲), 𝟑𝟎]).  505 
 506 
We summarize the procedures used to obtain 𝑷g𝟏, starting from a pair of geoelectric TSs for each GEMS 507 
station in the form of a flow chart in Fig. 5. It is noteworthy that the full procedure contains essentially 508 
only 2 hyperparameters: 𝑄  and 𝐿! . The figures shown in the results section will use the optimal 509 
hyperparameters, whose identification procedure will be discussed in detail later in Sect. 3.5. 510 
Additionally, for each station’s optimal HMM, we plotted the distribution of indexes (𝐶, 𝑉, 𝑆, 𝐾) at both 511 
HSs in Supporting Information Sect. D.  512 
 513 

 514 
Figure 5: Flow chart summarizing the procedures of obtaining the optimal posterior probability TS 𝑷,𝟏 from 515 
the data of one GEMS station.  516 
 517 
 518 
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2.6 EQ Grid Map, EQ Frequency, and EQ Frequency Ratio 519 
 520 
Up to this point, we did not incorporate any EQ catalog information into 𝑷g𝟏 for each station. Unlike 521 
many past EQ studies looking for specific precursory features within the geoelectric data, we made no 522 
specific assumptions regarding what these EQ precursors might look like. Instead, we let the BWA search 523 
for specific precursory features within the 8-dimensional feature space.  524 
 525 
After the HMM modeling, we then checked locally whether 𝑆% and 𝑆* would effectively partition time 526 
periods with significantly lower EQ probabilities from those with significantly higher EQ probabilities. 527 
We think of one HS as a passive state (with significantly lower EQ probabilities) and the other HS as an 528 
active state (with significantly higher EQ probabilities), but we cannot call the former 𝑆% and the latter 529 
𝑆* because we have not yet standardized these HS labels across the 20 stations. To do so, we need to 530 
match the HS TS of each station to the EQ catalog to determine the EQ frequencies of 𝑆% and 𝑆* for 531 
this station, and use 𝑆% and 𝑆* as the HS labels of the active and passive states respectively (relabeling 532 
when necessary). In the remainder of this section, we describe in detail how this is done.  533 
 534 
For each GEMS station we started from 𝑷g𝟏, and classified time periods across the 7 years as belonging 535 
to two sets 𝑇% and 𝑇*. The time point 𝑡8 was assigned to 𝑇% if 𝑃�4%(𝑆%) > 0.5 and 𝑇* if 𝑃�4%(𝑆*) >536 
0.5. After this is done, we checked how EQs are distributed between 𝑇% and 𝑇* for different regions 537 
across Taiwan. For this task, we first made a 16-by-16 grid map of Taiwan, so that EQs within the same 538 
grid cell (𝑖𝑥, 𝑖𝑦), for 𝑖𝑥 and 𝑖𝑦 in [0,1, … ,15], are grouped together (see Fig. 6).  539 
 540 
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 541 

Figure 6: A sample EQ Grid Map with 16-by-16 divisions, in which each cell measures 𝟎. 𝟑𝟑𝟑𝟎°(longitude)-542 
by-𝟎. 𝟑𝟒𝟏𝟖°(latitude). All EQs of 𝑴𝑳 ≥ 𝟑 are labeled with blue circles, with the radius of each circle being 543 
proportional to the natural exponential of EQ’s magnitude.  544 
 545 
For each grid cell (𝑖𝑥, 𝑖𝑦), we defined the EQ Frequencies for HSs 𝑆% and 𝑆* as:  546 

𝐹?:,% =
𝑁%
|𝑇%|

, 𝐹?:,* =
𝑁*
|𝑇*|

, (13) 547 

where 𝑁% is the number of EQs occurring within 𝑇%, 𝑁* is the number of EQs occurring within 𝑇*, 548 
|𝑇%| is the total duration of 𝑇% time periods, and |𝑇*| is the total duration of 𝑇* time periods. From 549 
Fig. 6, we see that the spatial distribution of EQs is highly heterogeneous, so we may find a grid cell with 550 
about 10 EQs but also another grid cell with about 1000 EQs. This tells us that we should not directly 551 
compare the EQ frequencies, but should instead compare the EQ Frequency’s Ratio, defined as: 552 

𝑅# =
𝐹?:,%

𝐹?:,% + 𝐹?:,*
. (14) 553 

For any cell containing at least one EQ, the range of its 𝑅# is [0,1]. Intuitively, any cell with 𝑅# < 0.5 554 
is a region having lower EQ frequency in 𝑆% compared to 𝑆*; and any cell with 𝑅# > 0.5 is a region 555 
having a higher EQ frequency in 𝑆% compared to 𝑆*. For example, for a cell with 𝑅# = 0.2, 𝐹?:,% is 556 
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only 1/4 of 𝐹?:,*. The 𝑅# value quantifies how one HS has a higher or lower EQ frequency than the 557 
other. In Sect. 3, we will present how we deep dived into the spatial-temporal correlations between HS 558 
TSs (𝑷g𝟏) and EQ activities for all 20 stations, starting from 20 grid maps of 𝑅# values.  559 
 560 
 561 
3 Results and Discussions  562 
 563 
In this section, we present the results obtained for all 20 stations, as well as additional treatments that we 564 
felt are necessary to investigate whether the HS TSs have significant forecasting power for EQs.  565 
 566 
3.1 EQ Frequency’s Ratio (𝑹𝑭) Grid Maps  567 
 568 
Once we obtained the 𝑷g𝟏 TS for each station, the natural first step of our analysis was to examine the 569 
𝑅# values for all cells in the 16-by-16 grid map. We show this procedure for CHCH station in Fig. 7, 570 
where we visualize the grid maps for 𝑁% and 𝑁* in Figs 7(a) and (b) respectively, to clearly show how 571 
many EQs occurred during 𝑇% and 𝑇*. The resulting 𝑅# grid map is shown in Fig. 7(c), where there 572 
are cells with values close to 0.5 (white-color cells) and cells with values far from 0.5 (red for close 573 
to 0; green for close to 1). White-color cells are regions whose EQ activities are weakly correlated with 574 
the HSs, since the time periods of 𝑆% and 𝑆* are not very different in terms of EQ frequency; whereas 575 
red/green cells are regions with significantly lower/higher EQ frequencies in 𝑆%.  576 
 577 

 578 
Figure 7: The step-by-step data visualization for station CHCH, showing (a) the grid map showing the number 579 
of 𝑴𝑳 ≥ 𝟑 EQs during 𝑺𝟏’s time periods, 𝑵𝟏; (b) the grid map showing the number of 𝑴𝑳 ≥ 𝟑 EQs during 580 
𝑺𝟐’s time periods, 𝑵𝟐; and (c) the grid map showing the EQ Frequency Ratio, 𝑹𝑭	(× 𝟎. 𝟎𝟏). Results were 581 
obtained using optimal hyperparameters: [𝑳𝒘, 𝑸] = [𝟎. 𝟎𝟐	(𝐝𝐚𝐲), 𝟑𝟎]. 582 
 583 
As can be seen in Fig. 7(c), for different regions the HS with higher EQ activities can be either 𝑆% or 584 
𝑆*. This is true not only for CHCH station, but also for all 20 stations, whose 𝑅# grid maps are shown 585 
in Fig. 8. Although there is no consistent pattern of any state corresponding to higher EQ activities 586 
globally, we see in Fig. 8 that there are regions whose 𝑅# values are far from 0.5 across many stations. 587 
This means that statistically speaking, one of the HSs has higher EQ activities than the other. In fact, if 588 
the active HS has a lot more EQs than the passive HS, it is also likely that the active HS cover most of 589 
the larger EQs (e.g., 𝑀 > 5), which is a good attribute for potential EQ forecasting applications. This 590 
phenomenon is shown in Supporting Information Sect. E, where we visualized the EQ frequency 591 
distributions across different magnitudes for both HSs, for three selected cells with most EQ events.  592 
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 593 

 594 
Figure 8: The grid maps of EQ Frequency’s Ratio 𝑹𝑭	(× 𝟎. 𝟎𝟏) for 20 stations (obtained using optimal 595 
hyperparameters individually specified for each station in Fig. 12).  596 
 597 
All in all, the findings in this section is important, but we cannot directly decide 𝑆% or 𝑆* to be the 598 
proxy for increased EQ probabilities, because they cannot be associated consistently with the active or 599 
the passive state. Instead, we should understand 𝑆% and 𝑆* as two high-level, fuzzy labels for tectonic 600 
dynamics related to EQ activities in different regions. There can be elements such as rock and soil 601 
formations, the underground water system, and fault lines, forming a complex dynamical system that 602 
influences where and when EQs become active. A concrete mapping between EQ activities and specific 603 
elements of the complex dynamical system would be very difficult, as this will involve high-resolution 604 
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subterrain surveys. Nevertheless, we can still measure how well 𝑆%  and 𝑆*  can partition the time 605 
periods so that one HS can have significantly more EQs than the other. To show this more clearly, we 606 
created grid maps of discrimination power 𝐷 and present them in the next section.  607 
 608 
3.2 Discrimination Power (𝑫) Grid Maps 609 
 610 
We defined the discrimination power 𝐷 for each cell as:  611 

𝐷 = |𝑅# − 0.5|. (15) 612 
The value of 𝐷 ranges from 0 to 0.5, with 0.5 being the most discriminative since all EQs are found 613 
in one HS, and 0 being the least discriminative since EQ frequencies are identical between the two HSs. 614 
We show the grid maps of 𝐷 for 20 stations in Fig. 9, which are easier to interpret compared to the grid 615 
maps in Fig. 8 where we had to use two different colors. Intuitively, for a region with 𝐷 = 0.25 (not 616 
uncommon), one of its HSs would have an EQ frequency three times that of the other HS. It can be noted 617 
that cells around the edge of the map tend to have very high 𝐷 values, because there are very few EQ 618 
events in these cells. This is not a problem, as we will take the number of EQs into account later in Sect. 619 
3.3.  620 
 621 
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 622 
Figure 9: The grid map of discrimination power 𝑫	(× 𝟎. 𝟎𝟏)  for 20 stations (obtained using optimal 623 
hyperparameters individually specified for each station in Fig. 12). 624 
 625 
In some cells, we find 𝐷 values close to 0.5, which seems to suggest that the seismicity associated with 626 
𝑆% is very different from that associated with 𝑆*. However, looking at Fig. 9, we see large variations in 627 
𝐷 values across the cells, and more importantly among some neighboring cells. We therefore wonder 628 
whether regions with high 𝐷 values are statistically significant, or the products of random temporal 629 
clustering of EQs (Dieterich, 1994; Frohlich, 1987; Holbrook et al., 2006; Batac and Kantz, 2014). For 630 
example, if all EQs in a cell occurred within a single day in the 7-year period, any random assignment 631 
of HSs would produce the highest 𝐷  value of 0.5 . To address this concern, we investigated the 632 
significance of the grid maps of 𝐷 through statistical tests in the next section.  633 
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 634 
3.3 Cellular-level Significance Tests of the Forecasting Power  635 
 636 
Since we had the optimal HMMs for the 20 stations, we can test cellular statistical significance levels 637 
that their HSs can indeed separate time periods of higher/lower EQ probabilities, using 𝐷 grid maps 638 
shown in Fig. 9. Specifically, for each grid cell and an empirical HS TS we carried out a statistical 639 
hypothesis testing using the following null hypothesis: any random HS TS would achieve the same or 640 
higher performance (in terms of 𝐷 value). To create random HS TSs for the hypothesis testing, we chose 641 
to directly simulate the HMM using the same model parameters R𝑨g,𝑩g, 𝝅hT as the empirical HMM of the 642 
corresponding station. For each hypothesis testing of an empirical HS TS (actual HS TS obtained for 643 
each station), we created 400 simulated HS TSs, which were then used to create 400 grid maps of the 644 
Discrimination Power 𝐷. In Fig. 10, we show the empirical HS TSs alongside a random sample of 10 645 
simulated HS TSs for YULI, SHRL, CHCH, and SIHU to illustrate the simulated counterparts. After this, 646 
in each cell, we had one empirical value of 𝐷  that we can compare against a distribution of 400 647 
simulated values of 𝐷. This allows us to compute for each cell the probability that its empirical 𝐷 value 648 
is higher than its simulated counterparts. We named this quantity the Discrimination Reliability 𝑅$, 649 
defined for each cell in the grid map as:  650 

𝑅$ =
#	(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝐷 < 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	𝐷)

400 . (16) 651 

In the language of statistical hypothesis testing, the p-value for the test is given by 𝑝 = 1 − 𝑅$. The 652 
value of 𝑅$ ranges from 0 to 1. If 𝑅$ is close to 1, we are confident that the discrimination power 653 
of the empirical HS TS is statistically significantly high; otherwise, we have no such confidence.  654 
 655 

 656 
Figure 10: The empirical HS TS and 10 simulated HS TSs, for stations (a) YULI, (b) SHRL, (c) CHCH, and 657 
(d) SIHU. The simulated HS TSs have HS transition frequencies and HS total durations similar to the 658 
empirical HS TS, but have none of the temporal correlations in the empirical HS TS. Results are obtained 659 
using optimal hyperparameters individually specified for each station in Fig. 12.  660 
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 661 
In Fig. 11, we show the grid maps of 𝑅$ values (in percentage) for all 20 stations. Dark-red cells are 662 
regions with 𝑅$ close to 1, and white-pink cells are regions with 𝑅$ close to 0. From these grid maps, 663 
we can better appreciate the utility of HS TSs across the grid map, since the 𝑅$ value is a statistical 664 
significance measure of the HS-EQ correlation, unlike the discrimination power 𝐷. To explain this, let 665 
us take the example of station LIOQ (upper left of Fig. 11), whose physical location is marked by the 666 
blue star, within a dark-red grid cell of 𝑅$ = 0.992. This means that the empirical HS TS performs 667 
better than random guesses (i.e., simulated HS TSs) at separating time periods of low/high EQ 668 
frequencies, with a statistical significance of 𝑝 = 0.008. This means that it is improbable for a simulated 669 
HS TS to have such a high 𝐷, and therefore the empirical HS TS is unlikely to be a product of random 670 
chance. This is a very strong demonstration of the mutual information between the HS TS obtained from 671 
geoelectric TS, and the EQ catalog that was not used to train the HMM.  672 
 673 
In the proximity of station LIOQ located within 22.55–23.58°	𝑁, we can see a clear pattern of cells 674 
with 𝑅$ ≥ 0.9 (dark-red color), while 𝑅$ ≥ 0.9 occasionally for most cells outside this general region. 675 
This pattern suggests the geoelectric information from station LIOQ is approximately local. This is 676 
consistent with the logical requirement for direct/indirect structural relation between station LIOQ and 677 
region X, such as being close to the same subterrain fault line, for the information at station LIOQ to be 678 
useful for region X. As a corollary, information given by station LIOQ is less likely to be useful for far 679 
away regions, as they are less likely to have such structural relations with station LIOQ. In application 680 
scenarios, this means that the state of EQ probabilities of region X can be estimated using stations closer 681 
to the region. Last but not least, it is also worth mentioning that most cells at the edge of the map seldom 682 
have high 𝑅$ values. This is consistent with the fact that these cells typically have very few EQ events 683 
to provide high statistical significance.  684 
 685 
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 686 
Figure 11: The grid map of Discrimination Reliability 𝑹𝑫	(× 𝟎. 𝟎𝟏) for 20 stations (obtained using optimal 687 
hyperparameters individually specified for each station in Fig. 12).  688 
 689 
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Based on our discoveries on the HS-EQ correlations so far, it is clear that the HS TSs can provide usable 690 
EQ forecasts for real-world applications. For example, in a high-performance grid cell such as the one 691 
where LIOQ is situated, the corresponding HS TS can tell us confidently (𝑝 = 0.008) whether the current 692 
time is within the “active state” featuring more frequent EQs or the “passive state” featuring less frequent 693 
EQs. Let us note that the above statement is about how the EQ frequency deviates from its long-term 694 
value. Since the regime switches after every few months to every few years (e.g., CHCH in Fig. 10), 695 
what we have is therefore an intermediate-term EQ forecasting method. For grid cells with high 𝑅$, the 696 
corresponding HS TS alone is sufficient to make such intermediate-term EQ forecasts. However, we also 697 
have grid cells where none of the 20 stations provide sufficiently high 𝑅$ value for intermediate-term 698 
EQ forecasting on their own. These could still be useful if we combine all 20 HS TSs as input features, 699 
for higher-level forecasting algorithms trained individually for each grid cell. For example, for any region 700 
(grid cell), if we want to decide whether it currently belongs to the active regime or the passive regime, 701 
an algorithm use the input from all 20 stations to decide the “local” HS for the given grid cell. This high-702 
level algorithm can for example be weight-based model averaging (Marzocchi et al., 2012) or decision 703 
trees (Asim et al., 2016). Additionally, the value of 𝑅$ can be helpful for the algorithm to decide how 704 
to weigh the information given by all 20 stations. For example, we can consider only stations with 𝑅$ ≥705 
𝑅$_K8- at the given grid cell. The user-defined threshold 𝑅$_K8- can take on constant values (e.g., 0.9) 706 
across the grid map, or be location specific, such as being lower (e.g., 0.8) for grid cells where few of 707 
the 20 stations have 𝑅$ ≥ 0.9. We hope to explore this in future works. 708 
 709 
Due to the nature of our HSs, we cannot use them to forecast specific EQs or issue evacuation alarms. 710 
What the HSs can do, however, is to provide information with forecasting skill to decision makers, in 711 
regions where the HS switched from the passive state to the active state convincingly (i.e., the observed 712 
active state is persistent and not a temporary fluctuation), to take courses of action that can lower the 713 
potential damage with minimal costs. For example, in the passive state, the building inspection authority 714 
can prioritize the inspection and issuing safety permits to new projects over re-inspections of old 715 
buildings. With the arrival of an active state that might last a few months to a few years, local authorities 716 
would have the incentive to clear up pending re-inspection works, so that fewer old buildings are exposed 717 
to potential EQ damage. Other than the re-inspection of old buildings, local authorities could also 718 
increase the frequency of safety education and drills to vulnerable groups such as students and 719 
construction workers, to reduce potential injuries or fatalities due to panic or lack of understanding. 720 
Additionally, disaster relief services may use the HS’s information to re-deploy the stockpile of relief 721 
materials such as food, clothing, tents, and first-aid kits, whenever necessary. In doing so, the stockpile 722 
of relief materials can be brought closer to high-risk regions within a convincing active state, to be 723 
distributed to victims more cost-effectively after a major EQ.  724 
 725 
3.4 Global-level Significance Tests of the Forecasting Power 726 
 727 
From Fig. 11 alone, we have demonstrated the HS TSs are able to separate time periods of low/high EQ 728 
probabilities for regions (cells in the grid map) with high 𝑅$ values. While the forecasting power of HS 729 
TSs in each of these cells is statistically significant, the more critical among us may wonder whether 730 
some of these cells can be significant purely by chance, even though there is in reality no persistent 731 
correlation between EQs and HSs. For example, any simulated HS TS in Fig. 10 would have at least a 732 
few cells with high 𝑅$ values. Therefore, in this next section, we will answer the question of “whether 733 
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these HS TSs indeed contain useful information about EQs, or the number of ‘significant’ cells can be 734 
explained by a random null model where the EQs and HSs are mutually uninformative, because we test 735 
a large number of cells assuming that they are statistically independent.” 736 
 737 
In order to answer this question, we need to define a performance metric that can quantify the 738 
performance of each station with a single value, instead of a grid map of 𝑅$  values. We start by 739 
assuming that all stations have zero forecasting skill, but as a result of our statistical test, some cells may 740 
still end up with high 𝑅$ by chance. A truly informative station should have significantly more cells 741 
with high 𝑅$ than random guesses. Taking the number of EQs into the consideration, we further propose 742 
that a truly informative station should have significantly higher EQs counts located in high-performing 743 
cells. On the grid map, let us define cells with 𝑅$ ≥ 𝑅$_K8-  as satisfactory cells, and the rest as 744 
unsatisfactory cells, where 𝑅$_K8-  is the user-defined threshold that determine how high the 𝑅$ 745 
should be in order to be considered “high-performing”. As mentioned earlier, it is possible to work out 746 
schemes that allow for regionally acceptable 𝑅$_K8-. Here for simplicity let us consider a scheme with 747 
a uniform 𝑅$_K8- across all cells in the grid map. With this setting we can proceed to define the single-748 
value performance metric for each station, as the ratio of EQs in satisfactory cells, or 𝑅?:> as:  749 

𝑅?:> =
∑ 𝑁?:YZ48Y[Z\4RL]	\_55Y

∑ 𝑁?:Z55	\_55Y
, (17) 750 

where 𝑁?: is the number of EQs in each cell. This ratio of EQs in satisfactory cells takes on values 751 
0 ≤ 𝑅?:> ≤ 1. Intuitively, if 𝑅?:> = 0.4, it means that given the 𝑅$_K8- value, 40% of all EQs are 752 
located within satisfactory cells, and are therefore “forecasted” by the station to the level required by the 753 
user (i.e., 𝑅$_K8-). Therefore, to show that a station has more forecasting power than random guesses, 754 
we proceed to test a given station against the null hypothesis is that a random guess (simulated HS TS) 755 
can have the same or higher 𝑅?:> than the empirical HS TS.  756 
 757 
We carried out this hypothesis test station by station, by first computing the 𝑅?:> values of its empirical 758 
HS TS as well as for 400 HS TSs simulated using the HMM parameters for the given station. We then 759 
defined the global confidence level as: 760 

𝐺𝐶𝐿 =
#	(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑅?:> < 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙	𝑅?:>)

400 . (18) 761 

Similar to the p-value for the cellular-level hypothesis test, the p-value for this global-level hypothesis 762 
test is given by 𝑝 = 1 − 𝐺𝐶𝐿 , where 𝐺𝐶𝐿  ranges from [0,1] , and gives the probability that the 763 
empirical HS TSs having higher 𝑅?:> than its simulated counterparts. For example, if a station has 764 
𝐺𝐶𝐿 = 0.99, we can say that given the specified 𝑅$_K8-, we are 99% confident that the empirical HS 765 
TS yields higher 𝑅?:> than its simulated counterparts.  766 
 767 
In Fig. 12, we show the results of our global-level significance tests, for a choice of 𝑅$_K8- = 0.95, in 768 
the form of histograms of the 400 simulated 𝑅?:> values, compared against the empirical 𝑅?:> values. 769 
Except for LIOQ and LISH stations, we can see from Fig. 12 that all the other stations have 𝐺𝐶𝐿 values 770 
close to 1. This tells us that the empirical 𝑅?:> values of the 18 stations are statistically significant. We 771 
also observed that for 𝑅$_K8- = 0.95, the simulated 𝑅?:> values are mostly around (or below) 0.05, 772 
meaning that only 5% of EQs are located in satisfactory cells by chance. In contrast, the empirical 𝑅?:> 773 
values are mostly above 0.2, except for TOCH, LIOQ, PULI, HERM, and LISH. This is an important 774 
finding, as it shows the HS TSs’ EQ forecasting utility to be significant at the global level, through the 775 
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use of 𝑅?:> and its significance level 𝐺𝐶𝐿. 776 
 777 
Last but not least, the histograms for each station in Fig. 12 are created with individually optimized 778 
hyperparameters, namely 𝐿! (length of time window to compute indices 𝐶, 𝑉, 𝑆, and 𝐾, in days) and 779 
𝑄 (number of clusters for the k-means clustering). The optimal hyperparameter values for each station 780 
are indicated in the titles for each station. Let us discuss the details of this optimization process in the 781 
next section.  782 
 783 

 784 
Figure 12: Histograms (blue) of 400 simulated 𝑹𝑬𝑸𝑺  values compared against the empirical 𝑹𝑬𝑸𝑺  (red 785 
vertical line) for 20 stations and 𝑹𝑫_𝒎𝒊𝒏 = 𝟎. 𝟗𝟓, with the 𝑮𝑪𝑳 values in the legends. The hyperparameters 786 
of [𝑳𝒘, 𝑸] optimized for each station are shown at each subplot’s titles.  787 
 788 
3.5 Significance Levels Across the Hyperparameter Space 789 
 790 
Typically, a forecasting model’s performance may be sensitive to our choice of hyperparameters. If 791 
possible, we would like to choose hyperparameters that make the model the most predictive. If there are 792 
too many hyperparameters, this optimization would be challenging in the high-dimensional search space. 793 
Fortunately, there are only two hyperparameters needed to obtain the HS TS: [𝐿! , 𝑄]. In this section, we 794 
show how the model performance (𝐺𝐶𝐿) will vary across the tested hyperparameter space, as well as 795 
how we chose the hyperparameters [𝐿! , 𝑄], for each station. Due to the high computational cost to test 796 
each combination of [𝐿! , 𝑄]  (about 40 mins per station on a desktop with 4-GHz quad-core i7 797 
processors, 16-GB of RAM, running macOS Mojave 10.14.6), we performed a coarse grid search over 798 
28 points in the parameter space, consisting of 7 different 𝐿!  values: 799 
[0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.25] days (or [28.8, 43.2, 57.6, 72, 144, 288, 360] mins) and 4 different 800 
𝑄 values: [30, 40, 60, 80]. We decided on this search space based on our experience during the model 801 
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development stage. For real-world applications, where more computational resources can be invested, 802 
this hyperparameter optimization can be done over a larger and finer grid, in which case better results 803 
can be expected.  804 
 805 
For each choice of station and hyperparameter, we followed the same procedure of computing 1+400 806 
𝑅?:> values, as well as the resulting 𝐺𝐶𝐿 value. In Figs 13 and 14, we show the 20 heatmaps of 𝑅?:> 807 
and 𝐺𝐶𝐿 across the hyperparameter space, respectively for 𝑅$_K8- = 0.95. The results shown in Fig. 808 
14 are more intuitive, where we found that for many stations, the 𝐺𝐶𝐿 values approach 1 across broad 809 
regions of the hyperparameter space. This can for example be the full hyperparameter space for YULI 810 
station, or a patch within the hyperparameter space for KUOL station. There is just one station (LISH) 811 
with poor 𝐺𝐶𝐿 values everywhere in the hyperparameter space, indicating that there might be exclusive 812 
factors that severely limit station LISH’s forecasting power. For all other 19 stations, the 𝐺𝐶𝐿 values 813 
are close to 1 either across a large area of the parameter space, or almost the entire parameter space (e.g., 814 
YULI, WANL, ENAN, DABA). This result is compelling, and is exactly what we needed for our goal: 815 
to demonstrate the forecasting skill of the HS TS, which does not depend on highly optimized 816 
hyperparameters, but is valid over a broad range of hyperparameters.  817 
 818 

 819 
Figure 13: Heatmaps of 𝑹𝑬𝑸𝑺 values for all 20 stations across tested hyperparameter space, given 𝑹𝑫_𝒎𝒊𝒏 =820 
𝟎. 𝟗𝟓. 821 
 822 
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 823 
Figure 14: Heatmaps of 𝑮𝑪𝑳 values for all 20 stations across tested hyperparameter space, given 𝑹𝑫_𝒎𝒊𝒏 =824 
𝟎. 𝟗𝟓.  825 
 826 
To wrap up this section, let us describe how to select the optimal hyperparameter for each station. We 827 
did this in two steps: first, we selected the hyperparameters with highest 𝐺𝐶𝐿 values (1 for many 828 
stations); next, in case of ties, we chose the hyperparameter with the highest 𝑅?:> as the winner. For 829 
example, for WANL station in Fig. 14, there are many cells with 𝐺𝐶𝐿 = 1. We therefore proceeded to 830 
check the heatmap for station WANL in Fig. 13, and identified the hyperparameter combination 𝐿! =831 
0.03 and 𝑄 = 80 as optimal, since it has the highest 𝑅?:> value. Using this selection procedure, we 832 
identified the optimal hyperparameter for each station, and used these individually optimal 833 
hyperparameters to create Figs 7 to 12. This selection procedure could also be adapted for real-world 834 
applications, when more historical data and computational power are available, to provide even better 835 
model performances.  836 
 837 
 838 
4 Conclusions 839 
 840 
EQ forecasting is an important research topic, because of the potential devastation EQs can cause. As 841 
pointed out by many past studies, there is a correlation between features within geoelectric TSs and 842 
individual large EQs. In those studies, different features of geoelectric TSs were explored for their use 843 
of EQ forecasting, among which the GEMSTIP model was the first one to directly use statistic index TSs 844 
of geoelectric TSs to produce TIPs for EQ forecasting. Inspired by this, we took a second look at the 845 
relationship between these statistic indexes and the timing of EQs, and found out that there is an abrupt 846 
shift of the indexes’ distribution along the TTF axis. This suggested that there are at least two distinct 847 
geoelectric regimes, which can be modeled and identified using a 2-state HMM. This motivation is 848 
further backed by the knowledge that there can be drastic tectonic configuration changes before and after 849 
a large EQ, one important aspect of which being the telluric changes identified in the region around the 850 
epicenter of the EQ (Sornette and Sornette, 1990; Tong-En et al., 1999; Orihara et al., 2012; Kinoshita 851 
et al., 1989; Nomikos et al., 1997). Therefore, should there be two higher-level tectonic regimes featuring 852 
higher/lower EQ frequencies, we would expect to also find two matching geoelectric regimes with 853 
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contrasting statistical properties, which can be of good utility for EQ forecasting.  854 
 855 
Specifically, we modeled the earth crust system as having two HSs identifiable with distinctive 856 
geoelectric features encoded by 8 index TSs from each station. To obtain the HMM for each station, we 857 
needed to run the BWA, which is most convenient to use with a discrete observation TS input. Therefore, 858 
we used the k-means clustering to convert the continuous TS of 8-dimensional index vectors into a 859 
discrete observation TS, and subsequently obtained a converged HMM for each station. We then 860 
investigated whether these HS TSs provide informative partitions of EQs, i.e., one of the HS can be 861 
interpreted as a passive state with less frequent EQs, while the other one as an active state with more 862 
frequent EQs. For this task, we defined the EQ frequency’s ratio (𝑅#), which is the frequency of EQs in 863 
one of the HSs divided by the total frequency of the EQs. Using 𝑅#  we further defined the 864 
discrimination power (𝐷), to measure how differently one HS is from the other HS in terms of the EQ 865 
frequency. We then plotted 16-by-16 grid maps of 𝑅# and 𝐷 for all 20 stations, and tested the statistical 866 
significance of 𝐷 in each cell, by comparing the empirical value against the distribution of 𝐷 from 400 867 
simulated HS TSs, to end up with the grid maps of discrimination reliability (𝑅$) for all 20 stations. To 868 
further investigate the statistical significance level at the global scale, we defined 𝑅?:> to measure the 869 
percentage of total EQs located within satisfactory cells, i.e., cells having 𝑅$ ≥ 𝑅$_K8-  for a user-870 
specified 𝑅$_K8- value. This 𝑅$_K8- value can be easily customized for different cells, but in this paper, 871 
we used a constant 𝑅$_K8- value across the grid map for demonstration. By comparing the 𝑅?:> value 872 
of the empirical model against those of 400 simulated models, we obtained one global significance value 873 
for each station, namely the global confidence level (𝐺𝐶𝐿). This tells us how confident we can be that 874 
information contained in the empirical HS TSs can be used for EQ forecasting.  875 
 876 
Finally, we showed how we optimized the 𝐺𝐶𝐿 values through a grid-search in the 2-dimensional 877 
hyperparameter space and obtained the optimal combination of [𝐿! , 𝑄] individually for each station. 878 
As a result, among the 20 stations with optimized hyperparameters, there are 19 stations with 𝐺𝐶𝐿 >879 
0.95, 15 of which having 𝐺𝐶𝐿 > 0.99. Additionally, the confidence levels are also robust across the 880 
hyperparameter space for most stations. Based on these positive results, the Hidden Markov Modelling 881 
of the index TSs computed from geoelectric TSs is indeed a viable way to extract information that can 882 
be useful for EQ forecasting. As discussed in greater detail in Sect. 3.3, in real-world scenarios, the HS 883 
TSs can be useful for intermediate-term EQ forecasting either directly (for high 𝑅$ cells) or as input 884 
features for higher-level algorithms that take information from all 20 stations (for low 𝑅$ cells). Beyond 885 
our demonstration of extracting EQ-related information from geoelectric TSs, the HMM approach 886 
described in this paper can also be explored on other high-frequency geophysical data, such as those 887 
from geomagnetic, geochemical, hydrological, and GPS measurements, for EQ forecasting.  888 
 889 
At this point, we would like to address the issue of out-of-sample testing (or cross-validation) to support 890 
the validity of our model. There are two ways to do this: (1) split a long time series into a training data 891 
set to calibrate the model, and a testing data set to validate the model; and (2) use whatever time series 892 
data is available to calibrate the model, before collecting more data to validate the model. If the model is 893 
statistically stationary (its parameters do not change with time), both approaches are acceptable. However, 894 
many would agree that an out-of-sample test with freshly collected data (approach (2)) is more 895 
impressive, especially if it is done in real time. We would certainly like to try this, and are writing a grant 896 
application to fund such a validation study. For this paper, however, we were not even able to use 897 
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approach (1), because our geoelectric time series are not long enough. This is especially so if we require 898 
(A) the validation data is always temporally after the training data; and (B) the validation data is also 899 
intermediate-term for intermediate-term EQ forecasting. These two requirements cannot be fulfilled on 900 
our limited 7-year data, if we want to have a significant number (e.g., 10 times) of validations to produce 901 
confident claims. Therefore, in this paper, we limited our scope to demonstrating that our model has 902 
forecasting skill, without quantifying its exact forecasting accuracy. We argue that we have indeed 903 
achieved this, without the use of out-of-sample testing, because in Sect. 3.5, we showed the forecasting 904 
skill is statistically significant regardless of the choice of the hyperparameters, for 19 out of the 20 905 
stations that we tested. Furthermore, the statistical hypothesis test has the advantage of giving rigorous 906 
p-value with moderate computation cost, through simulating the HMM for multiple null-hypothesis tests. 907 
 908 
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