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Section A. Handling of Sudden Spikes in V TSs 
 
When we first visualized the geoelectric TSs, we noticed that for many stations, there are sudden 
spikes in the geoelectric TS, such as the NS-direction of FENG station as shown in Fig. S1(a). We 
believe these outliers are due to unknown technical errors and were not correct recordings of the 
actual geoelectric fields. Such spikes lead to similar spikes in the 𝑉 TS, as shown in Fig. S1(c); 
whereas 𝐶, 𝑆, 𝐾 TSs (see Figs S1(b), (d), (e)) are not susceptible to this effect. To improve the 
data quality of the 𝑉 TS, we applied a simple procedure of imposing an artificial upper bound on 
the 𝑉 TS, which is the 99#$ percentile value across the whole 𝑉 TS, and thereafter reduce all 
𝑉 values exceeding this upper bound down to this upper bound value. As a result, the processed 
𝑉 TS in Fig. S1(f) no longer has spikes. We applied this procedure to the 𝑉 TSs for all 20 stations, 
and obtained new 𝑉 TSs for the subsequent k-means clustering and BWA.  
 

 
Figure S1. (a) The geoelectric TS of FENG station, NS direction; (b) the corresponding 𝐶 TS; (c) 
the corresponding 𝑉 TS; (d) the corresponding 𝑆 TS; (e) the corresponding 𝐾 TS; (f) the new 
𝑉 TS after outlier removal.  
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Section B. Simulated Example of a Hidden Markov Model (HMM) and the Baum-Welch 
Algorithm (BWA) 
 
Before illustrating the HMM, we start with an example of a Markov model, which is a toy model 
of local weather conditions described by states: {𝑆!, 𝑆"} = {𝑆𝑢𝑛𝑛𝑦, 𝑅𝑎𝑖𝑛𝑦}, and the transition 
matrix:  

𝑨 =	
𝑆𝑢𝑛𝑛𝑦	𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 𝑅𝑎𝑖𝑛𝑦	𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤

𝑆𝑢𝑛𝑛𝑦 0.9 0.1
𝑅𝑎𝑖𝑛𝑦 0.25 0.75

, 

which tells us that there is a 90% chance of it being sunny tomorrow, if it is sunny today, etc. To 
estimate the transition probability 𝑝%←', we observe the states of the system for a long time, and 
divide the total number of times we find the transition 𝑗 ← 𝑖 by the number of transitions starting 
from 𝑖.  
 
To illustrate how an HMM works using the same example, suppose we are observing a remote 
friend’s daily activity, without knowing the local weather. Suppose each day, he/she only chooses 
between going out and staying home, therefore the observable set {𝑂!, 𝑂"} is {𝑂𝑢𝑡, 𝑆𝑡𝑎𝑦}. We 
call the conditional probability 𝑃(𝑜# = 𝑂(|𝑠# = 𝑆)) of observing 𝑂(  given the HS 𝑆)  at any 
time 𝑡 as the emission probability. The set of all emission probabilities can be organized into an 
emission matrix 𝑩, where 𝑩(𝑙, 𝑘) = 𝑃(𝑜# = 𝑂(|𝑠# = 𝑆)). For this example, we can write the 
emission matrix 𝑩 as: 

𝑩 =	
		𝑂𝑢𝑡		 		𝑆𝑡𝑎𝑦		

𝑆𝑢𝑛𝑛𝑦 0.8 0.2
𝑅𝑎𝑖𝑛𝑦 0.1 0.9

, 

which tells us that if the local weather is sunny, he/she goes out with an 80% chance, etc. 
Additionally, if we know that there is a 20% probability that the first day is rainy, we can write the 
initial state distributions as 𝝅𝟎 = [0.8, 0.2].  
 
With this toy model, we can run a simple simulation of 100 days. This is illustrated in Fig. S2, 
where we show both the HS TS and the observation TS. Visually, we can indeed notice that our 
friend staying home more on rainy days, and going out more on sunny days.  
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Figure S2. A 100-day simulation of the toy weather HMM, showing (a) the HS TS of weather, and 
(b) the observation TS of activity.  
 
To illustrate the BWA, we applied it on the weather-activity model. Instead of only having 100 
days, this time we simulated the model for 10,000 days to accumulate more data so that BWA can 
work properly. We then ran the BWA for 100 iterations. In the end, the estimated transition matrix 
𝑨N is 

𝑨N = 	
𝑆𝑢𝑛𝑛𝑦	𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤 𝑅𝑎𝑖𝑛𝑦	𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤

𝑆𝑢𝑛𝑛𝑦 0.9172 0.0828
𝑅𝑎𝑖𝑛𝑦 0.2532 0.7468

	, 

and the estimated emission matrix 𝑩N is 

𝑩N =	
		𝑂𝑢𝑡		 		𝑆𝑡𝑎𝑦		

𝑆𝑢𝑛𝑛𝑦 0.7963 0.2038
𝑅𝑎𝑖𝑛𝑦 0.0852 0.9148

	. 

This result agrees well with the actual model parameters. The algorithm also yielded highly-
accurate posterior probabilities 𝑃(𝑟𝑎𝑖𝑛𝑦	𝑎𝑡	𝑡|𝑨N, 𝑩N, 𝝅R𝟎) for 𝑡	 = 	1, 2, … , 100, as shown in Fig. 
S3. The posterior probability is accurate if it is close to 1 for rainy days, and close to 0 for sunny 
days. We see that this is true during those rainy periods that are widely separated by the sunny state, 
and less so during time periods where there are rapid transitions between the sunny and rainy states. 
From this example, we get a feel of the power of the BWA given sufficiently many observations.  
 



 5 

 
Figure S3. The rainy-state posterior probability (orange curve) estimated by the BWA for the first 
100 days of a 10,000-day simulation. In this figure, we also show the actual weather conditions in 
the simulation (blue curve).  
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Section C. Visualizing HMMs’ Posterior Probability TSs of 15 Random BWA Initializations 
 
In this section, we provide visualizations of the outputs of the BWA for 15 random initializations 
for each of the 20 stations in Fig. S4. This information may be useful for readers who want to see 
the complete outputs of the BWA, as well as the posterior probabilities for all 20 stations (the first 
row for each sub-plot). We noticed that it is not uncommon for the BWA to fail with random 
initializations. These are shown as the noisy bottom rows in all stations. However, once the BWA 
manages to converge, it is very likely to yield consistent results. This is supported by the 
observation of almost identical HSs for well-converged models represented by the first several 
rows for each station. Additionally, Fig. S4 also provide a clear visualization of how the frequencies 
of HS transitions differ from station to station. For example, the HSs for LIOQ make rapid 
transitions and never stay the same for more than half a year, while the HSs for DAHU can remain 
unchanged for almost three years.  
 

 
Figure S4. The heatmaps of the 15 HMM models’ posterior probability TSs for S! for all 20 
stations (bright for 0, dark for 1). For each station, TSs are sorted by model score from highest to 
lowest, with the most well-converged model at index 0 (first row), and those failing to converge as 
the bottom rows. (Note: the labelling of 𝑆! and 𝑆" are not synchronized across 20 stations, and 
all subplots are obtained with optimal HMM hyper-parameters as indicated in Fig. 12 of the main 
text.) 
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Section D. Optimal HMMs’ Distribution of (𝑪, 𝑽, 𝑺, 𝑲) Indexes in 𝑺𝟏 and 𝑺𝟐  
 
In Figs S5-S9, we show the distributions of the 4 indexes in HSs 𝑆! and 𝑆" for all 20 stations 
and both directions (NS and EW), for the HMM obtained with optimal hyper-parameters (available 
as Fig. 12 in the main text). We note that 𝐶 and 𝑉 consistently showing different distributions 
for 𝑆! and 𝑆", while the distributions of 𝑆 and 𝐾 in 𝑆! and 𝑆" can occasionally be not so 
different in some stations, such as FENG and CHCH. Nevertheless, from these figures, we can see 
that all four indexes can be useful for the HMM by showing different distributions for 𝑆! and 𝑆".  
 

 
Figure S5. Distributions of indexes (𝐶, 𝑉, 𝑆, 𝐾) in 𝑆! and 𝑆", for HMMs obtained with optimal 
hyper-parameters using geoelectric TSs (both NS and EW) for stations FENG, KUOL, TOCH, and 
LIOQ.  
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Figure S6. Distributions of indexes (𝐶, 𝑉, 𝑆, 𝐾) in 𝑆! and 𝑆", for HMMs obtained with optimal 
hyper-parameters using geoelectric TSs (both NS and EW) for stations YULI, SIHU, PULI, and 
HERM. 
 

 

Figure S7. Distributions of indexes (𝐶, 𝑉, 𝑆, 𝐾) in 𝑆! and 𝑆", for HMMs obtained with optimal 
hyper-parameters using geoelectric TSs (both NS and EW) for stations FENL, CHCH, WANL, and 
SHCH. 
 

 

Figure S8. Distributions of indexes (𝐶, 𝑉, 𝑆, 𝐾) in 𝑆! and 𝑆", for HMMs obtained with optimal 
hyper-parameters using geoelectric TSs (both NS and EW) for stations LISH, KAOH, HUAL, and 
ENAN. 
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Figure S9. Distributions of indexes (𝐶, 𝑉, 𝑆, 𝐾) in 𝑆! and 𝑆", for HMMs obtained with optimal 
hyper-parameters using geoelectric TSs (both NS and EW) for stations DAHU, DABA, RUEY, 
and SHRL. 
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Section E. EQ Frequency Distributions Across Different Magnitudes for Each HS 
 
In Figs S10-S12, we show the log-scale frequency distributions of EQs across different magnitudes 
in both HSs. We do this for all 20 stations, focusing on 3 cells with the most EQs on the EQ grid 
map (Fig. 6 in the main text). For each station and each cell, we call the HS with more EQs the 
‘active state’ and the one with less EQs as the ‘passive state’.  
 
When the number of EQs in the active state is significantly higher than that in the passive state 
(such as Fig. S10: KAOH and ENAN), the active state would also cover most of the larger EQs. 
(𝑀 > 4.5 for KAOH and 𝑀 > 5 for ENAN in Fig. S10). On the other hand, there are also cases 
(PULI, HERM, RUEY in Fig. S10) where the active state failed to cover most of the larger EQs. 
For PULI and RUEY, it is mostly because the active state does not have significantly more EQs 
than the passive state. The only intriguing case is HERM, because the active state has many smaller 
EQs (𝑀 < 5.1) but fail to cover larger EQs. Nevertheless, for most of cases in Figs S10-S12, the 
active states would generally cover more larger EQs. This is a favorable attribute for real-world 
forecasting applications, since a highly passive state would indeed have less EQs across different 
magnitudes.  
 

 

Figure S10. Distribution of log-scale EQ frequency (y-axis) at different magnitudes (x-axis) in 
both HSs for 20 stations, within a cell at longitude 121.58°E-121.91°E, latitude 23.92°N-24.26°N, 
containing 1361EQs.  
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Figure S11. Distribution of log-scale EQ frequency (y-axis) at different magnitudes (x-axis) in 
both HSs for 20 stations, within a cell at longitude 121.91°E-122.25°E, latitude 24.61°N-24.95°N, 
containing 622EQs.  
 

 
Figure S12. Distribution of log-scale EQ frequency (y-axis) at different magnitudes (x-axis) in 
both HSs for 20 stations, within a cell at longitude 121.58°E-121.91°E, latitude 24.26°N-24.61°N, 
containing 561EQs.  
 
 


