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Section A. Handling of Sudden Spikes in V TSs

When we first visualized the geoelectric TSs, we noticed that for many stations, there are sudden
spikes in the geoelectric TS, such as the NS-direction of FENG station as shown in Fig. S1(a). We
believe these outliers are due to unknown technical errors and were not correct recordings of the
actual geoelectric fields. Such spikes lead to similar spikes in the V' TS, as shown in Fig. S1(c);
whereas C, S, K TSs (see Figs S1(b), (d), (e)) are not susceptible to this effect. To improve the
data quality of the V TS, we applied a simple procedure of imposing an artificial upper bound on
the V TS, which is the 99" percentile value across the whole V' TS, and thereafter reduce all
V' values exceeding this upper bound down to this upper bound value. As a result, the processed
V' TS in Fig. S1(f) no longer has spikes. We applied this procedure to the V' TSs for all 20 stations,
and obtained new V TSs for the subsequent k-means clustering and BWA.
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Figure S1. (a) The geoelectric TS of FENG station, NS direction; (b) the corresponding C TS; (c)
the corresponding V TS; (d) the corresponding S TS; (e) the corresponding K TS; (f) the new
V TS after outlier removal.



Section B. Simulated Example of a Hidden Markov Model (HMM) and the Baum-Welch
Algorithm (BWA)

Before illustrating the HMM, we start with an example of a Markov model, which is a toy model
of local weather conditions described by states: {S;,S,} = {Sunny, Rainy}, and the transition
matrix:

Sunny tomorrow Rainy tomorrow
A = Sunny 0.9 0.1 ,
Rainy 0.25 0.75
which tells us that there is a 90% chance of it being sunny tomorrow, if it is sunny today, etc. To
estimate the transition probability p;.;, we observe the states of the system for a long time, and
divide the total number of times we find the transition j < i by the number of transitions starting
from 1.

To illustrate how an HMM works using the same example, suppose we are observing a remote
friend’s daily activity, without knowing the local weather. Suppose each day, he/she only chooses
between going out and staying home, therefore the observable set {0,,0,} is {Out, Stay}. We
call the conditional probability P(o; = O4|s; = §;) of observing O, given the HS §; at any
time t as the emission probability. The set of all emission probabilities can be organized into an
emission matrix B, where B(l,k) = P(o; = Oy|s; = S;). For this example, we can write the
emission matrix B as:
Out Stay
B = Sunny 0.8 0.2 ,
Rainy 0.1 0.9

which tells us that if the local weather is sunny, he/she goes out with an 80% chance, etc.
Additionally, if we know that there is a 20% probability that the first day is rainy, we can write the
initial state distributions as 1y = [0.8,0.2].

With this toy model, we can run a simple simulation of 100 days. This is illustrated in Fig. S2,
where we show both the HS TS and the observation TS. Visually, we can indeed notice that our
friend staying home more on rainy days, and going out more on sunny days.
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Figure S2. A 100-day simulation of the toy weather HMM, showing (a) the HS TS of weather, and
(b) the observation TS of activity.

To illustrate the BWA, we applied it on the weather-activity model. Instead of only having 100
days, this time we simulated the model for 10,000 days to accumulate more data so that BWA can
work properly. We then ran the BWA for 100 iterations. In the end, the estimated transition matrix
A is

Sunny tomorrow Rainy tomorrow

A = Sunny 0.9172 0.0828 )
Rainy 0.2532 0.7468

and the estimated emission matrix B is

Out Stay
B = Sunny 0.7963 0.2038.
Rainy 0.0852 0.9148
This result agrees well with the actual model parameters. The algorithm also yielded highly-
accurate posterior probabilities P(rainy at t|4, B, 7,) for t = 1,2,...,100, as shown in Fig.
S3. The posterior probability is accurate if it is close to 1 for rainy days, and close to 0 for sunny
days. We see that this is true during those rainy periods that are widely separated by the sunny state,
and less so during time periods where there are rapid transitions between the sunny and rainy states.
From this example, we get a feel of the power of the BWA given sufficiently many observations.
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Figure S3. The rainy-state posterior probability (orange curve) estimated by the BWA for the first
100 days of a 10,000-day simulation. In this figure, we also show the actual weather conditions in
the simulation (blue curve).



Section C. Visualizing HMMSs’ Posterior Probability TSs of 15 Random BWA Initializations

In this section, we provide visualizations of the outputs of the BWA for 15 random initializations
for each of the 20 stations in Fig. S4. This information may be useful for readers who want to see
the complete outputs of the BWA, as well as the posterior probabilities for all 20 stations (the first
row for each sub-plot). We noticed that it is not uncommon for the BWA to fail with random
initializations. These are shown as the noisy bottom rows in all stations. However, once the BWA
manages to converge, it is very likely to yield consistent results. This is supported by the
observation of almost identical HSs for well-converged models represented by the first several
rows for each station. Additionally, Fig. S4 also provide a clear visualization of how the frequencies
of HS transitions differ from station to station. For example, the HSs for LIOQ make rapid
transitions and never stay the same for more than half a year, while the HSs for DAHU can remain
unchanged for almost three years.
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Figure S4. The heatmaps of the 15 HMM models’ posterior probability TSs for S; for all 20
stations (bright for 0, dark for 1). For each station, TSs are sorted by model score from highest to
lowest, with the most well-converged model at index 0 (first row), and those failing to converge as
the bottom rows. (Note: the labelling of S; and S, are not synchronized across 20 stations, and
all subplots are obtained with optimal HMM hyper-parameters as indicated in Fig. 12 of the main
text.)



Section D. Optimal HMMs’ Distribution of (C,V, S, K) Indexes in S; and S,

In Figs S5-S9, we show the distributions of the 4 indexes in HSs §; and S, for all 20 stations
and both directions (NS and EW), for the HMM obtained with optimal hyper-parameters (available
as Fig. 12 in the main text). We note that € and V consistently showing different distributions
for S; and S,, while the distributions of S and K in §; and S, can occasionally be not so
different in some stations, such as FENG and CHCH. Nevertheless, from these figures, we can see
that all four indexes can be useful for the HMM by showing different distributions for S; and S,.
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Figure S5. Distributions of indexes (C,V,S,K) in S; and S,, for HMMs obtained with optimal
hyper-parameters using geoelectric TSs (both NS and EW) for stations FENG, KUOL, TOCH, and
LIOQ.
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Figure S6. Distributions of indexes (C,V,S,K) in S; and S,, for HMMs obtained with optimal
hyper-parameters using geoelectric TSs (both NS and EW) for stations YULI, SIHU, PULI, and
HERM.
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Figure S7. Distributions of indexes (C,V,S,K) in S; and S,, for HMMs obtained with optimal
hyper-parameters using geoelectric TSs (both NS and EW) for stations FENL, CHCH, WANL, and
SHCH.
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Figure S8. Distributions of indexes (C,V,S,K) in S; and S,, for HMMs obtained with optimal
hyper-parameters using geoelectric TSs (both NS and EW) for stations LISH, KAOH, HUAL, and
ENAN.
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Figure S9. Distributions of indexes (C,V,S,K) in S; and S,, for HMMs obtained with optimal
hyper-parameters using geoelectric TSs (both NS and EW) for stations DAHU, DABA, RUEY,
and SHRL.



Section E. EQ Frequency Distributions Across Different Magnitudes for Each HS

In Figs S10-S12, we show the log-scale frequency distributions of EQs across different magnitudes
in both HSs. We do this for all 20 stations, focusing on 3 cells with the most EQs on the EQ grid
map (Fig. 6 in the main text). For each station and each cell, we call the HS with more EQs the
‘active state’ and the one with less EQs as the ‘passive state’.

When the number of EQs in the active state is significantly higher than that in the passive state
(such as Fig. S10: KAOH and ENAN), the active state would also cover most of the larger EQs.
(M > 4.5 for KAOHand M > 5 for ENAN in Fig. S10). On the other hand, there are also cases
(PULL HERM, RUEY in Fig. S10) where the active state failed to cover most of the larger EQs.
For PULI and RUEY, it is mostly because the active state does not have significantly more EQs
than the passive state. The only intriguing case is HERM, because the active state has many smaller
EQs (M < 5.1) but fail to cover larger EQs. Nevertheless, for most of cases in Figs S10-S12, the
active states would generally cover more larger EQs. This is a favorable attribute for real-world
forecasting applications, since a highly passive state would indeed have less EQs across different
magnitudes.
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Figure S10. Distribution of log-scale EQ frequency (y-axis) at different magnitudes (x-axis) in
both HSs for 20 stations, within a cell at longitude 121.58°E-121.91°E, latitude 23.92°N-24.26°N,

containing 1361EQs.
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Figure S11. Distribution of log-scale EQ frequency (y-axis) at different magnitudes (x-axis) in
both HSs for 20 stations, within a cell at longitude 121.91°E-122.25°E, latitude 24.61°N-24.95°N,
containing 622EQs.
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Figure S12. Distribution of log-scale EQ frequency (y-axis) at different magnitudes (x-axis) in
both HSs for 20 stations, within a cell at longitude 121.58°E-121.91°E, latitude 24.26°N-24.61°N,
containing 561 EQs.
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