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Abstract: Previous tsunami evacuation simulations have mostly been based on arbitrary17

assumptions or inputs adapted from non-emergency situations, but a few studies have used18

empirical behavior data. This study bridges this gap by integrating empirical decision data19

from local evacuation expectations surveys and evacuation drills into an agent-based model20

of evacuation behavior for two Cascadia Subduction Zone (CSZ) communities that would be21

inundated within 20-40 min after a CSZ earthquake. The model also considers the impacts22

of liquefaction and landslides from the earthquake on tsunami evacuation. Furthermore, we23

integrate the slope-speed component from Least-cost-distance to build the simulation model24

that better represents the complex nature of evacuations. The simulation results indicate25

that milling time and evacuation participation rate have significant non-linear impacts on26

tsunami mortality estimates. When people walk faster than 1 m/s, evacuation by foot is27

more effective because it avoids traffic congestion when driving. We also find that evacua-28

tion results are more sensitive to walking speed, milling time, evacuation participation, and29

choosing the closest safe location than to other behavioral variables. Minimum tsunami mor-30

tality results from maximizing the evacuation participation rate, minimizing milling time,31

and choosing the closest safe destination outside of the inundation zone. This study’s com-32

parison of the agent-based model and the Beat-the-Wave (BtW) model finds consistency33

between the two models’ results. By integrating the natural system, built environment,34

and social system, this interdisciplinary model incorporates substantial aspects of the real35

world into the multi-hazard agent-based platform. This model provides a unique opportunity36

for local authorities to prioritize their resources for hazard education, community disaster37

preparedness, and resilience plans.38
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1. Introduction39

Recent devastating earthquakes and tsunamis have placed immense burdens on their affected40

communities, such as the 2011 Tohoku tsunami (Mori et al., 2011), the 2009 American Samoa41

tsunami (Lindell et al., 2015), and the 2018 Indonesia Sulawesi tsunami (Sassa and Takagawa,42

2019). Due to a small evacuation time window between the end of earthquake shaking43

and the arrival of the first tsunami wave, a high level of evacuation efficiency is essential44

for minimizing the loss of life in low-lying coastal communities subject to local tsunamis45

(Wang et al., 2016; Raskin and Wang, 2017). To reduce evacuation clearance time (the46

sum of authorities’ decision time, warning dissemination time, households’ preparation time,47

and evacuation travel time) and thus maximize survival rates during tsunamis, researchers48

and practitioners have developed evacuation simulations to support decision-making, public49

education, and community emergency planning and management.50

1.1. Previous ABMSs for Earthquake and Tsunami Evacuation51

Agent-based modeling and simulation (ABMS), as a type of highly effective computational52

simulation model, has been applied to many research fields (Mas et al., 2013; Mostafizi53

et al., 2019a). The unique characteristics of ABMS include a bottom-up structure and54

ability to model heterogeneous agents and their interactions with other agents. These unique55

characteristics meet the needs of disaster evacuation simulation (Gilbert, 2007). The bottom-56

up structure provides an opportunity to analyze how changes in evacuation behavior affect57

the overall evacuation result. One concern about using ABMS is the computational expense,58

but this is less of an issue as computing costs continue to decrease (Lindell et al., 2019).59

This increase in computational power has allowed disaster researchers to apply ABMS to60

1) simulate evacuation in large-scale communities and 2) integrate different layers of data61

to comprehensively analyze evacuation with consideration of interactions between the nat-62

ural environment, built environment, and social system. Table 1 identifies recent tsunami63

evacuation ABMS studies and their content.64

Table 1: Recent earthquake and tsunami ABMS studies

Author / Year Study Area Mode
Model Components

Tested Variables
Natural Environment Built Environment Social System

Chen and Zhan (2008) San Marcos, TX, USA Car N/A Road network; artificial safe zone
Hypothetical population density;
dynamic routing; car following model

Evacuation strategy

Dawson et al. (2011) Towyn, United Kingdom Car Flood inundation Road network; destination; building
Population distribution; warning time;
driving speed; re-route

Warning time; water depth

Karon and Yeh (2011) Cannon Beach, OR, USA Walk Tsunami inundation Road network; destinations
Warning dissemination; shortest distance;
travel speed

Infrastructure retrofitting strategy

Mas et al. (2012) Arahama village, Japan Car/Walk Tsunami inundation Road network; destinations
Population distribution; evacuation mode;
milling time; speed

Evacuation result compared with
real event; milling time; destination

Mas et al. (2013) La Punta, Peru Car/Walk Tsunami inundation Road network; destinations
Population distribution; social status;
evacuation mode; milling time; speed

Evacuation result; shelter capacity

Wang et al. (2016) Seaside, OR, USA Car/Walk Tsunami inundation Road network; destinations
Population distribution; milling time;
evacuation mode; speed; route choice

Water depth; milling time;
evacuation mode; destination location

Mostafizi et al. (2019a) Seaside, OR, USA Walk Tsunami inundation Road network; destinations Population distribution; milling time; speed Shelter location

In the absence of empirical behavioral data, early-stage evacuation ABMSs were based on65

arbitrary assumptions, as had been the case for large-scale evacuation models (Lindell and66

Perry, 1992; Lindell and Prater, 2007). Chen and Zhan (2008) investigated the effectiveness67

of simultaneous and staged evacuation strategies using an ABMS for San Marcos, Texas.68

Although this study considered evacuees’ car following and dynamic routing behaviors, it69

was based on many arbitrary assumptions about evacuation behavior, such as homogeneous70

milling time within a zone, single evacuation mode, evacuees selecting quickest evacuation71
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route and destination, etc. To reduce reliance on assumptions, Mas et al. (2012) built72

an evacuation ABMS that included more empirical data from the natural system, built73

environment, and social system. In this model, agents are characterized by probabilistic74

distributions of milling time, evacuation mode choice, evacuation destination, and travel75

speed. By comparing the simulation with data from the 2011 Japanese earthquake and76

tsunami, the authors concluded that the results from this simulation are consistent with the77

real event and can be used to analyze evacuation and shelter demand for future events. In78

2013, Mas et al. (2013) expanded this ABMS to the city of La Punta, Peru to conduct a79

vertical and horizontal shelter analysis.80

Practitioners and researchers have relied on similarities between the 2011 Japanese earth-81

quake event and the geologically similar Cascadia Subduction Zone (CSZ) to encourage82

Oregon coastal residents to prepare for local tsunamis. Karon and Yeh (2011) used GIS to83

build an evacuation ABMS by integrating tsunami inundation, warning transmission, and84

travel speed to examine the impact of failures of critical infrastructure in Cannon Beach,85

Oregon. To model heterogeneous agent behaviors, Wang et al. (2016) established a scenario-86

based tsunami evacuation ABMS for Seaside, Oregon. This study examined the impact of87

variance in agent behaviors such as milling time, evacuation mode choice, and travel speed.88

In addition, it also included the impact of a tsunami, but not an earthquake, on the built89

environment such as damage to streets, bridges, and buildings. A later version of this study,90

Mostafizi et al. (2019a), used a similar ABMS platform to identify optimum shelter loca-91

tions considering the population distribution, heterogeneous agent milling time, and walking92

speed. However, as with previous studies, agents were assumed to evacuate to the closest93

shelter, which may not accurately represent people’s destination choices when threatened by94

a tsunami.95

One common limitation of those evacuation models is that they have evacuation assumptions96

about the four evacuation time components – authorities’ decision delay time, households’97

warning receipt and decision time, households’ evacuation preparation time, and households’98

evacuation travel time. Warning receipt time, for example, can vary across communities99

and households. Nagarajan et al. (2012) used an ABMS to test the warning dissemination100

speed through formal channels transmitted by officials and informal channels transmitted101

by neighbors. They found that even a small proportion of people who were willing to warn102

their neighbors has a considerable impact on reducing warning dissemination time. Several103

previous ABMS studies have also assumed arbitrary probability functions for milling time104

to represent the variance in evacuation departure times (Mas et al., 2012; Wang et al., 2016;105

Mostafizi et al., 2019a).106

In addition, some recent evacuation simulations have also employed assumptions about the107

distribution of evacuees’ walking speeds. For instance, Wang et al. (2016) and Mostafizi108

et al. (2019a) assumed a normal distribution of evacuee walking speeds for which the mean109

was built based on a study of pedestrians walking on streets in non-emergency situations110

(Knoblauch et al., 1996). This assumption is likely to underestimate travel speeds in a111

tsunami evacuation and thus overestimate tsunami mortality rates. However, mortality112

rates might not be overestimated if travel speed is actually reduced by additional barriers113

such as landslides, liquefaction, and other earthquake disturbances to the evacuation route114

system.115

Failure to consider “shadow evacuation” by residents of areas outside the tsunami inundation116
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zone can lead to unnecessary evacuation that overwhelms the evacuation route system and117

impedes travel by people in the inundation zone (Lindell et al., 2019). Instead of assigning a118

probabilistic distribution to walking speed, Wood and Schmidtlein (2012) used a determin-119

istic hiking function (Tobler, 1993) to define a least cost distance (LCD) model for tsunami120

evacuation. This hiking function captured the impact of slope on walking speed, but also121

assumed daily walking conditions rather than emergency conditions. Overall, existing evac-122

uation models have assumed that pedestrians’ travel behavior in daily situations represents123

the corresponding behavior in evacuations, but field or experimental data to confirm this124

assumption are needed.125

Most of the aforementioned studies used Census data to identify agents’ evacuation departure126

locations, so the scenarios assumed people were at home. However, a disaster may happen at127

any time of the day. To account for the variance in evacuees’ locations, Dawson et al. (2011)128

developed a flood management ABMS to support flood emergency planning and evaluate129

flood incident management measures. The authors used empirical survey data to integrate130

warning time and used the National Travel Survey to determine people’s locations and travel131

states (e.g., work, home, or school).132

1.2. Other Models for Earthquake and Tsunami Evacuation133

Although scenario-based ABMSs have been employed to support evacuation decision-making134

for entire communities (or large areas), jurisdictions are also interested in the question of how135

quickly people should evacuate from different sub-areas in a community. Geographers used136

the LCD method to build the Beat-the-Wave (BtW) model to estimate the maximum travel137

time that people need to walk out of a tsunami inundation zone (Wood and Schmidtlein,138

2012). This model defined the distance cost by two variables – the evacuation route’s slope139

and its land cover. To determine the walking speed, they employed Tobler’s hiking function140

(Tobler, 1993) and the energy cost of the terrain category (Soule and Goldman, 1972). The141

output of this model provides the spatial distributions of maximum evacuation times to142

“beat the wave”, and can be used for preparedness planning and education. The Oregon143

Department of Geology and Mineral Industries (DOGAMI) has implemented this model144

to identify Oregon coastal communities’ evacuation route maps and to estimate evacuation145

travel times (DOGAMI, 2020; Gabel et al., 2019).146

Although DOGAMI has used the LCD method because it is relatively easy to calculate and147

provides reasonable evacuation time estimates (ETEs), it does have some limitations. First,148

it cannot examine social system variables that influence tsunami evacuation outcomes (such149

as population distribution, milling time, and the choice of transportation mode, evacuation150

route, and evacuation destination). Second, it cannot incorporate dynamic travel costs due151

to crowding or congestion. Agent-based models can overcome those limitations but are152

sometimes criticized as difficult to implement due to the magnitude of data required. As153

noted earlier, those data include the distribution of population locations, evacuees’ behaviors,154

and wave-arrival time. However, the ABMS and LCD approaches are not incompatible so155

a mixed-method approach could be used to better model the complex nature of evacuation156

(Wood and Schmidtlein, 2012).157
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1.3. Research Objectives and Questions158

The preceding literature review has revealed the need for an evacuation ABMS that can159

simultaneously consider the natural environment, built environment, and social system to160

analyze complex evacuation scenarios. Although some studies have incorporated layers from161

those three systems, most of the data inputs were arbitrary assumptions – a problem that162

has plagued large scale evacuation modeling (Lindell et al., 2019). To more completely163

integrate the three systems, this study established an ABMS for tsunami evacuation that164

integrates 1) the natural environment and its disruptions; 2) the built environment and its165

disruptions; and 3) the social system, as defined by people’s protective actions – especially166

their evacuation behavior.167

Specifically, this ABMS integrates human decisions and evacuation logistics into an ABMS168

platform using empirical behavior data that were collected through survey questionnaires169

and evacuation drills from coastal residents facing tsunami threats. This integration opera-170

tionalizes the Protective Action Decision Model (PADM) (Lindell and Perry, 2012) within171

an ABMS by incorporating agents’ heterogeneous behavior in emergencies, such as 1) evac-172

uation participation; 2) choices of transportation mode, evacuation routes and destinations;173

and 3) travel speeds. Furthermore, to accurately model the complex nature of evacuation,174

this ABMS also includes the impact of landslides and liquefaction on the road network dur-175

ing evacuation. Incorporating the essential components of the LCD model (slope and road176

surface) combines the advantages of the ABMS and BtW models (Wood and Schmidtlein,177

2012). ABMS models are implemented for Coos Bay, Oregon and sensitivity analyses are178

conducted in this study to answer the following questions:179

1. How do the evacuation participation rate, milling time, mode choice, destination choice,180

and travel speed affect mortality rates?181

2. Which of these variables have greater impact on mortality rates and which of them182

can be addressed in tsunami evacuation preparedness?183

3. How do the results from the ABMS compare with the results from the BtW model?184

This interdisciplinary ABMS can not only serve as an evacuation planning tool for local185

agencies, but also can be an educational and assessment tool for coastal residents to better186

prepare for the next threat.187

2. Interdisciplinary Tsunami Evacuation ABMS188

2.1. Agent-based Modeling Environment189

Simulating evacuation is a computationally-intensive problem due to the large scale of the190

built and natural environments and the complexity of agent behaviors. Therefore, an ABMS191

typically has a high computational cost when applied to large scale evacuation (Lindell192

et al., 2019). To overcome this issue, the tsunami evacuation ABMS was built using the193

Julia programming language, which is a just-in-time compiled language, allowing for high194

performance and computational speed (Bezanson et al., 2012). The high speed of the Julia195

language allows researchers to model large communities with detailed heterogeneous agent196

behaviors. This study’s ABMS modeling environment allows users to modify parameters197

for natural, built, and social systems and also allows stochastic inputs. Figure 1 shows the198

ABMS visualization and real-time evacuation monitors. The details of the evacuation model199

environment are discussed in Section 2.3.200
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2.2. Study Area201

A series of CSZ tsunami evacuation studies have used Seaside, OR as a study community202

because of its high level of vulnerability to local tsunamis (Connor, 2005; Wood et al., 2015;203

Wang et al., 2016; Chen et al., 2020, 2021). However, other communities that differ from204

Seaside in their geographic and demographic characteristics should also be examined. This205

study chose the Coos Bay peninsula as a case study due to four features. First, it has a206

distinctly vulnerable geography. As Figure 1 indicates, this peninsula is surrounded by bay207

water on its north, east, and west sides. In addition, its hilly spine in the middle provides208

ready access to higher ground for evacuation destinations. The bay serves as the second209

and the sixth largest estuary in Oregon and on the US west coast, respectively (CLW,210

2015). Second, this community is located on the southern margin of the CSZ, where the211

rupture probability is higher and tsunami wave arrival time is shorter than communities212

farther north (Priest et al., 2014; Chen et al., 2021). Third, the Coos Bay peninsula has213

a total population of about 26,129, which is the largest population among Oregon coastal214

communities (United State Census Bureau, 2020). Moreover, a large proportion of the215

population (about 25%) resides within the inundation zone. Fourth, this community has a216

high level of social vulnerability due to its demographic characteristics. The local population217

has a higher percentage of disabled residents and is poorer and less educated than the overall218

U.S. population (United State Census Bureau, 2020; Chen et al., 2021).219

Residents
Destinations
Pedestrians
Cars
Road Network

Wave depth (ft)

0 60 

Figure 1: Simulation model visualization of Coos Bay, Oregon

2.3. Model Components220

To more accurately model tsunami evacuation, this study proposes an ABMS that integrates221

components of the natural environment, built environment, and social system. Specifically,222

this ABMS includes the components shown in Table 2.223
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Table 2: ABMS components

System Component Description Data sources

Natural environment
Tsunami inundation layer Water depth per 30 sec time frame (m) DOGAMI CSZ near-filed M9 XXL scenario
Elevation and slope Use elevation digital model to calculate slope Oregon 10m Digital Elevation Model (DEM)
Landslide and liquefaction Landslide and liquefaction susceptibility to identify disrupted roads DOGAMI Project O-13-06

Built environment
Road Network Links OpenStreetMap & Google Earth
Non-retrofitted bridges Manually identified by talking with local authorities DOGAMI Project O-19-07

Social System

Population distribution
26,000 agents US Census by census block group, then
randomly generate along transportation network

US Census

Evacuation participation By attributes or proportion (1: evacuate; 0: stay) Survey
Milling time Gamma distributions and a fixed time Survey
Mode choice Proportion, controlled by a parameter Survey

Destination choice
Probability distribution on the distance to shelter and
use soft-max function to calculate the discrete probability

Survey: distance from home to destination
separated by car/foot, gamma distribution

Evacuation speed – car IDM model with parameters and a speed limit Parameter chosen by common scenarios
Evacuation speed – foot Evacuation hiking function based on elevation Evacuation drills
Route choice Shortest distance to the destination that agents chose

Route diversion
If next intersection is blocked, the agent selects another
leg of the intersection, then chooses another destination

2.3.1. Social System and Agent Behavior224

According to the PADM, people make protective action decisions based on environmen-225

tal/social cues and warnings, which are affected by personal characteristics such as pre-226

existing beliefs about the hazard, protective actions, and community stakeholders (Lindell227

and Perry, 2012; Lindell, 2018). The large number of these variables, the difficulty in mea-228

suring them, and their heterogeneity among agents makes it difficult to model this part of the229

evacuation process (Mas et al., 2012). Previous evacuation simulation models (Mas et al.,230

2012; Wang et al., 2016; Mostafizi et al., 2017, 2019b) assumed that residents evacuate in the231

most efficient manner (such as selecting the closest shelter), but ignored the heterogeneity232

in evacuation decisions and actions (Gwynne et al., 1999). One main reason is that these233

models lacked empirical data on evacuation decisions and actions. To fill that gap, the evac-234

uation model in this study integrates data on people’s evacuation decisions and actions that235

were collected from questionnaire surveys and evacuation drills.236

This study employed the PADM as the framework for a mail-based household question-237

naire survey that collected data on household evacuation intentions in the Coos Bay area238

between May and September 2020. There were 258 respondents who returned the ques-239

tionnaire, which covers their evacuation intentions, expected milling process, and choices of240

transportation modes and destinations, as well as psychological variables and demographic241

characteristics. More information can be found in Chen et al. (2021). Probability distribu-242

tions on these variables are utilized to model the heterogeneous evacuation actions from the243

data shown in Table 2.244

The analyses that follow are based on the ETE model in which the time to clear the risk area245

is a function of authorities’ decision time, warning dissemination time, evacuation prepara-246

tion time, and evacuation travel time (Lindell et al., 2019). Evacuation preparation time,247

which is often called “milling” (Wood et al., 2018), has two components – 1) psychological248

preparation, which involves information seeking and processing to make evacuation decisions;249

and 2) logistical preparation, which involves performing essential tasks (e.g., packing bags250

and securing the home) before leaving (Lindell and Perry, 2012). Evacuation travel time251

is a function of evacuees’ choices of transportation mode, evacuation route, and evacuation252

destination.253

Modeling evacuation from a distant tsunami requires data on authorities’ decision time and254

warning receipt time. In the absence of these data, the results of the following analyses255
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do not apply to distant tsunamis. Modeling evacuation from a local tsunami is simpler256

because long and strong earthquake shaking is a reliable environmental cue to tsunami257

onset. Consequently, people who recognize this environmental cue have authorities’ decision258

time and warning dissemination time equal to zero.259

Moreover, the following analyses include sensitivity analyses that examine the impact of a260

plausible range of variation in the input variables on the estimated tsunami mortality rate.261

As discussed below, these sensitivity analyses can provide useful information for decision262

making and emergency planning.263

Evacuation participation (0: stay; 1: leave) is the protective action that an individual264

agent selects in response to earthquake shaking or a tsunami warning in this model. Ac-265

cording to the Coos Bay community survey, 81% of the respondents intend to evacuate,266

regardless of their location inside (“compliant evacuees”) or outside (“shadow evacuees”)267

of the tsunami inundation zone. Thus, 81% is used as the evacuation participation rate in268

this model, with a sensitivity analysis on how a change in this rate would impact tsunami269

mortalities. Evacuees’ origins are determined by their locations when an earthquake occurs270

or a tsunami warning is received. Thus, there is spatial and temporal variability in the dis-271

tribution of population locations based on factors such as time of day, season, and weather272

(Wang et al., 2016). This study utilized 2020 US Census (United State Census Bureau, 2020)273

data to define the origins of 26,363 agents. The scenario examined in this study assumes274

that all residents are at home, as on a weekend or at night.275

The tsunami evacuation intentions questionnaire asked respondents to report how much time276

they expected it would take them to prepare to evacuate. As shown in equation 1,277

f(x;α, β) =
βαxα−1e−βx

Γ(α)
for x > 0 α, β > 0 (1)

where x means the milling time and f(x) means the probability of having that milling time278

for an individual. Applying maximum likelihood estimation to the survey data produced α279

= 1.659 and β = 6.494 as the estimated parameters of the gamma function for the milling280

time distribution. As Figure 2 indicates, both the Weibull and lognormal distributions281

provided poorer fits (AIC and BIC) to the data.282

Transportation mode choice is a critical factor that affects evacuation success. Agents283

can choose to evacuate either by foot or by personal vehicle in this model (0: car; 1: foot).284

In Coos Bay, 70% of the survey respondents reported that they would evacuate by car and285

only 27% expected to evacuate by foot (Chen et al., 2021).286

Destination choice is also obtained from the survey and a probability of choosing a specific287

destination is assigned to each evacuee based on their distance from the available destina-288

tions. A gamma function yields the best goodness-of-fit statistics among the three candidate289

functions for the destination selection probability, shown in Figure 3. Probability functions290

were developed separately for evacuation by foot and by car, with maximum likelihood esti-291

mation yielding α = 1.920 and β = 500 for evacuation by foot and α = 1.646 and β = 1.745292

for evacuation by car.293

After agents choose their expected evacuation destinations, the model assigns them to the294

shortest route that is calculated by the A* algorithm (Hart et al., 1968) on the road295

network. To simulate the behavior of people who encounter an evacuation impediment such296

as flood on the road while evacuating, agents divert to an alternate route. Specifically, when297

8



 (a)

Time (minutes)

D
en

si
ty

0 10 20 30 40 50 60

0.
00

0.
04

0.
08 Weibull

Lognormal
Gamma

0 20 40 60 80

0
20

40
60

(b)

Model Quantiles

 D
at

a 
Q

ua
nt

ile
s

Weibull
Lognormal
Gamma

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

 (c)

Time (minutes)

P
er

ce
nt

Weibull
Lognormal
Gamma

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

(d)

Model Probabilities

 D
at

a 
P

ro
ba

bi
lit

ie
s

Weibull
Lognormal
Gamma

Figure 2: Expected preparation time from survey data and fitted models: (a) data histogram and probability
density function; (b) Quantiles-Quantiles plot; (c) cumulative density function; (d) Probabilities-Probabilities
plot.

agents observe that the next intersection is (inundated by water or damaged by hazards i.e.298

see section 2.3.3), they select a different leg of the intersection. The model assumes an equal299

probability of choosing each of the unblocked legs.300

The mechanism for assigning a travel speed varies, depending on which transportation301

mode an agent chooses (foot or car). Driving speed is determined by the IDM car following302

model (Treiber et al., 2000) and the vehicle speed limit on that roadway. Pedestrian walking303

speed is determined by the slope of the ground on which the pedestrians are walking, through304

an advanced Hiking Function (Tobler, 1993; Wood and Schmidtlein, 2012). To adjust for305

differences in walking speeds between daily walking and a tsunami evacuation, we modified306

the hiking function based on tsunami evacuation drill data that were collected from 2016-307

2018 (Cramer et al., 2018). In these evacuation drills, 136 evacuees’ trajectory data (source:308

author) were recorded by GNSS embedded mobile devices. The walking speed and slope309

data were used to modify the hiking function; the modified function is shown in Equation 2.310

Speed = 1.65× e(−2.30×abs(Slope−0.004)) (2)

To reduce computational cost and optimize simulation speed, the model assigns an average311

slope to the road segment between each pair of intersections and agents who walk on that312

segment will have the walking speed that is determined by Equation 2. When conduct-313
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Figure 3: Intended evacuation destination from survey data and fitted models.Panels (a) and (c) are prob-
ability density functions; panels (b) and (d) are cumulative distribution functions.

ing sensitivity analyses for different values of walking speed, the modified hiking function314

is disabled when a fixed walking speed is used. Moreover, pedestrian walking speed is re-315

duced based on the conservative value when liquefaction and landslide block a road surface316

(Schmidtlein and Wood, 2015; Gabel et al., 2019). More details are discussed in Section317

2.3.3.318

2.3.2. Built Environment319

The model’s built environment components include the road network and non-retrofitted320

bridges. The transportation network was obtained from OpenStreetMap (OSM, 2021) and321

updated manually by the authors based on the 2020 Google Earth satellite image (Google,322

2021). All roads are considered to be two-way one-lane streets, as a conservative assumption323

(Wang et al., 2016). This model also assumes that all agents, whether as pedestrians or in324

cars, follow the road network to their destinations. Alternative evacuation routes are not325

included in this simulation, such as swimming across streams or cutting through open fields326

or parking lots.327

Non-retrofitted bridges were located using a study by (Gabel et al., 2019). These bridges328

are not expected to survive after an M9 CSZ earthquake (Gabel et al., 2019), so they are329

assumed to be undrivable and unwalkable in this analysis. These bridges are:330

• Virginia Ave. on Pony Creek, (1) in Figure 4331
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• Vermont Ave. on Pony Creek, (2) in Figure 4332

• Broadway Ave. on Pony Creek, (3) in Figure 4333

2.3.3. Natural environment334

Natural Environment components that are integrated in this model include tsunami inun-335

dation, terrain elevation and slope, liquefaction susceptibility, and landslide susceptibility.336

Tsunami inundation layer: This model simulates an M9 CSZ earthquake and tsunami337

using the XXL tsunami inundation model (Witter et al., 2011; Priest et al., 2013). The338

tsunami inundation layer includes variation in the flow depth and velocity every 30 seconds339

for each 15-m grid cell from the time the tsunami is generated to eight hours after it reaches340

the Coos Bay peninsula. The inundation model assumes “bare earth”, so the impact of large341

buildings on water flow was not included.342

Topographical elevation and slope: A 10-m digital elevation model created by U.S.343

Geological Survey (USGS) (Oregon Geospatial Enterprise Office, 2017) is included as the344

surface topographical elevation data. In this simulation, elevation data is utilized to calculate345

the surface slope to inform agents’ walking speed using the modified hiking function shown in346

Equation 2. The slope is calculated by using elevation change (∆y) divided by the Euclidean347

distance (∆x) change between two points, expressed as (Slope = ∆y/∆x).348

Landslides and liquefaction: Evacuation routes can become undrivable and even unwalk-349

able due to liquefaction, rockfalls, and lateral spreading (Gabel et al., 2019). Susceptibility350

to both landslide and liquefaction for Coos Bay (Franczyk et al., 2019) is included in this351

model to estimate which road segments will be disrupted.352

Landslide susceptibility is calculated based on proximity to landslide deposits, susceptible353

geologic units, slope angles, and existing landslide inventory. Areas are classified into four354

susceptibility levels – low, moderate, high, and very high (Burns et al., 2016; Franczyk et al.,355

2019). Liquefaction susceptibility is calculated from the cohesionless sediments, based on356

Youd and Perkins (1978); Madin and Burns (2013). Areas are classified into five susceptibility357

levels – very low, low, moderate, high, and very high. This produces conservative liquefaction358

levels because it assumes relatively shallow groundwater (Madin and Burns, 2013).359

Table 3 shows the landslide and liquefaction susceptibility levels that are used in this simu-360

lation. The spatial areas having a moderate or higher susceptibility level of either landslide361

or liquefaction are assumed to be disrupted after an M9.0 CSZ earthquake. We consider the362

moderate level as a threshold to be conservative and realistic. This threshold also has been363

used by local authorities (Gabel et al., 2019) to build the Coos Bay BtW model. As shown364

in Figure 4, 54% of the transportation network is exposed to at least a moderate level of365

liquefaction-landslide susceptibility and 21% is exposed to at least a high level. Thus, the366

transportation network is likely to be significantly disrupted after an M9.0 earthquake.367

In this simulation, a street that is predicted to be disrupted by landslide or liquefaction368

is assigned a rocky or muddy road surface that prevents evacuees from driving through the369

impediment and makes walking the only feasible transportation mode from that point. Wood370

and Schmidtlein (2012) adapted a speed conservation value from Soule and Goldman (1972),371

which is applied to the travel speed of people walking on muddy or rocky terrain surfaces.372

These values are shown in Table 4.373
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Table 3: Landslide and liquefaction susceptibility for network disruption in ABMS

Landslide Susceptibility
Low (0) Moderate (1) High (1) Very high (1)

Very low (0) 0 1 1 1
Low (0) 0 1 1 1
Moderate (1) 1 1 1 1
High (1) 1 1 1 1

Liquefaction
Susceptibility

Very high (1) 1 1 1 1
Using a disjunctive decision rule, a spatial area with an index value of at least moderate (54%)

or high (21%) level is assumed to be disrupted after an M9 earthquake

        Roads
Non-retrofitted Bridges

Susceptibility Level

High 
Moderate

(1)

(2)

(3)

__

Figure 4: Coos Bay landslide and liquefaction susceptibility
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Table 4: Speed conservation values used in modeling pedestrian walking speed (Wood and Schmidtlein, 2012)

Feature Type Speed Conservation Value
Road (Paved) 1
Unpaved Trails 0.9091
Dune Trails (Packed Sand) 0.5556
Muddy Bog 0.5556
Beach (Loose Sand) 0.476
Speed conservation values adapted from Soule and Goldman (1972)

3. Results and Discussion374

Figure 5 shows the overall visualization of one run of the model from 0 – 60 mins after the375

M9 earthquake. The model assumes that 1) the deformation of subduction zone completes376

and tsunami is triggered at the source when t = 0 mins; 2) people start the milling process377

and evacuate either by foot or car; and 3) the first tsunami wave (the highest in a CSZ M9378

scenario) arrives in the Barview area (due to being the most westward) at t = 15 – 20 mins,379

and starts to inundate to the west shoreline of the peninsula. The first wave arrives at the380

north side around t = 30 mins and the east side of Coos Bay around t = 40 mins. Most381

mortalities are observed on roads located in the west shoreline area, followed by the north382

and east sides.383

Residents
Destinations
Pedestrians
Cars

t = 0 minutes t = 10 minutes t = 20 minutes

t = 30 minutes t = 40 minutes t = 60 minutes

Figure 5: Model screenshot by time

Two scenarios are examined in this study. Scenario 1 assumes that the tsunami is the only384

cause of disaster impacts in the community. Consequently, the road network functions at385

full capacity until it is inundated by the tsunami waves. Thus, Scenario 1 provides a baseline386
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for assessing the sensitivity of the modeling results to a plausible range of variation in the387

values of the input variables. Scenario 2 assumes that an M9 earthquake damages the388

road network and impedes the evacuation process. According to this scenario, driving may389

not be possible due to the heavy disruption of roads in large scale landslides, liquefaction,390

lateral spreading, dropped power lines, debris, and traffic congestion. This assumption has391

also been applied to previous studies of earthquake and tsunami preparedness in Washington392

(WGS, 2021), Oregon (DOGAMI, 2020), and California (Cal OES, 2021).393

3.1. Scenario 1: variable testing with no network disruption394

Sensitivity analysis is applied to examine the impact of variation in each model variable on395

the expected tsunami mortality rate. A Monte Carlo method is employed to capture the396

probabilistic nature of the inputs and to create an interpretive mean.397

3.1.1. Evacuation Decision and Milling Time398

Figure 6 shows the sensitivity analysis for the impact of the evacuation participation rate and399

milling time on mortality rate among the inundation zone population (100% measures only400

the population live in the inundation zone). Consistent with previous studies (Mas et al.,401

2013; Wang et al., 2016), these two variables have a significant impact on the estimated402

mortality rate. The larger the percentage of people who decide to evacuate and the less time403

people delay before departure, the lower the mortality rate will be. However, the impact of404

milling time on mortality rate is complex, which yields two conclusions.405

First, the change in the evacuation participation rate shows a smaller impact when milling406

time increases. For example, there is no decrease in mortality rate when evacuation par-407

ticipation changes from 10% to 100% at 50 mins of milling time, whereas there is a 88%408

mortality rate decrease when evacuation participation changes from 10% to 100% at 5 mins409

of milling time. That is, the effect of decreasing milling time depends on the evacuation410

participation rate.411

Second, the curves that represent high evacuation participation rates in Figure 6 show an “S”412

shape that indicates the rate of change in mortality is much larger in the middle range of the413

x-axis from 15 minutes to 25 minutes. Given that the first tsunami wave will arrive on the414

west side of the Coos Bay peninsula around 15 minutes after the earthquake, the mortality415

rate will increase substantially as milling time increases past that threshold. Conversely,416

when milling time is less than 5 minutes and 100% of people decide to evacuate, the curve417

shows that the mortality rate is extremely low (less than 2%). Thus, the results indicate418

that reducing the milling time is an important objective for tsunami preparedness programs419

but it will be most effective when the evacuation participation rate is high.420

This result confirms the policy of public authorities on the US west coast (WGS, 2021;421

DOGAMI, 2020; Cal OES, 2021) to emphasize “Do Not Wait” in their tsunami educational422

brochures and other outreach products to encourage people to depart as soon as possible423

after earthquake shaking subsides. Although our simulation findings support this recommen-424

dation, gaps remain in the response from local residents. Comparing the survey results of425

the two variables from Coos Bay (gray areas) with the sensitivity analysis curves shows that426

the mortality rate is fairly low if based on residents’ intended milling time, but it can still427

be improved by further decreasing milling time and encouraging more people to evacuate.428

The same holds true for Crescent City, CA (Chen et al., 2021).429
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Figure 6: Estimated mortality rate of the inundation zone population

as a function of milling time and evacuation participation

3.1.2. Mode Choice and Walking Speed430

Coastal authorities in the CSZ advise evacuating by foot if possible, not only because of431

potential traffic congestion, but because the road network is likely to be so disrupted that432

driving may not be feasible to evacuate from a local tsunami. Of course, roads could be433

flooded by a distant tsunami for which no earthquake shaking could be felt. However, distant434

tsunamis such as those from the 1964 Alaska and 2011 Japanese tsunamis will take hours to435

reach the Oregon coast. Consequently, people will have the option of driving when distant436

tsunamis threaten. Thus, research is needed to examine authorities’ recommendation to437

evacuate by foot and help emergency managers decide when to advise pedestrian evacuation438

instead of vehicular evacuation. This section analyzes the impact of mode choice and walking439

speed during evacuation from a local tsunami, and answers the question: Can walking beat440

driving? If so, in what situations?441

Figure 7 shows how walking speed and mode choice influence tsunami mortality estimates. As442

walking speed increases beyond 1 m/s, the estimated mortality rate decreases as the walking443

percentage increases. Conversely, as walking speed decreases below 1 m/s, the estimated444

mortality rate decreases as fewer people choose to walk. This result indicates that if everyone445

can walk faster than 1 m/s, it is beneficial for more people to evacuate on foot. Given that446

0.91 m/s is a slow walking speed and 1.22 m/s is a moderate walking speed threshold for447

unimpaired adults (Knoblauch et al., 1996; Langlois et al., 1997; Wood and Schmidtlein,448
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Figure 7: Mortality rate changes by mode choice and walking speed

2012; Fraser et al., 2014), it follows that evacuating on foot is better than evacuating by car449

if people can walk faster than the slow walking speed threshold. This finding also implies that450

if people who can walk faster than 1 m/s choose to walk, road network capacity can be saved451

for mobility impaired people so they can avoid traffic congestion during their evacuation.452

This is consistent with the finding that 30% evacuation by car and 70% evacuation by foot is453

the critical threshold for tsunami evacuation in Seaside (Mostafizi et al., 2019b). Similarly,454

vehicular traffic capacity can be saved for those 30% of the risk area population so they can455

reach safety in time. However, the question remains: Who should evacuate by car? Even456

though our finding suggests that most unimpaired people should walk to save traffic capacity457

for the vulnerable population, risk area residents may behave differently. The survey results458

show that only 21% of the respondents (95% C.I. 16%–27%) expect to evacuate by foot in459

Coos Bay (Chen et al., 2021), even though Oregon authorities encourage everyone to do so460

(DOGAMI, 2020). It is unclear whether this disparity is due to people not having received461

this recommendation or if they have received it and have chosen not to comply with it.462

It should be noted that the results shown in Figure 7 describe the overall picture of evacuation463

in Coos Bay, but the situation may be different for people living in unique areas that are464

a long distance from safety, so smaller-scale ABMS or BtW analyses are needed. However,465

given that the high ground spine in the middle of the Coos Bay peninsula provides a nearby466

evacuation destination, few people are likely to be in that situation.467

3.1.3. Other Variables and Combinations of Variables468

Many variables may vary during the evacuation and local authorities need to prioritize469

resources by deciding which variables or combinations of variables have the greatest impact470
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25

Figure 8: Impact range of model variables

on expected mortalities. Figure 8 shows the impact on mortality rate of variation in the471

plausible range of single and multiple variables. The estimated mortality rate for the Coos472

Bay inundation zone is just over 57% if all of the variables are at their most probable473

values (the vertical line in the center of the figure) and the bottom bar shows that there474

is almost no variation in mortality rate as car speed varies from its plausible lower bound475

(15 mph) to its plausible upper bound (35 mph), whereas it ranges from 45–85% if milling476

time ranges from 0–20 mins. However, the results show that variation in Milling Time and477

Evacuation Decision have the greatest impact on expected mortality when these variables478

are analyzed individually. This result is consistent with the discussion for Figures 6 and479

7 and previous simulation research (Mas et al., 2013; Mostafizi et al., 2019b). Variation480

in Distance to Destination also has a relatively large impact range. Specifically, the lowest481

mortality occurs when evacuees choose the closest destination and increases when they choose482

farther destinations. This is because agents tend to spend more time traveling on the roads483

within the inundation area when they choose farther destinations. This is especially true for484

residents living on the west coastal shoreline where the Cape Arago Highway stretches along485

the shoreline in the inundation zone as the only major road to connect this area to other486

regions in Coos Bay. When a tsunami strikes, some people who lack knowledge about the487
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inundation area and first wave arrival time may travel on this highway to seek safety farther488

inland. We observed this “overshooting” behavior in the survey data from both Coos Bay489

and Crescent City (Chen et al., 2021). The maximum car speed has the lowest impact (2% on490

mortality rate) of all variables, which is consistent with findings from Mostafizi et al. (2019b)491

showing the impact range of max car speed is about 2.5 percentage points from 15–35 mph.492

This finding confirms that driving travel speed is not determined by the maximum speed one493

can drive at any moment but, rather, by overall road capacity and traffic conditions, which494

are well-described in traffic flow theory.495

The upper panel in Figure 8 shows the impact range of simultaneously changing two or more496

variables to their lowest plausible levels. Although Decision + Distance andWalking Speed +497

Decision have the largest ranges of impact for any pair of variables, there is a similar impact498

range for other pairs. However, the results show even greater reductions in mortality esti-499

mates when more than two variables are at their lowest plausible levels. For example, when500

optimizing evacuation participation, milling time, and removing destinations in inundation501

zone, the estimated mortality rate shrinks to less than 20%. When optimizing evacuation502

participation, milling time, and choosing closest destinations outside of the inundation zone503

(the second to the top bar), the results show that almost all residents can be saved. More-504

over, increasing walking speed from 1.3 m/s to 5 m/s in addition to four other factors (the505

top bar) produces a similar result. This result indicates that even evacuees who walk slowly506

are very likely to reach safety in time if they leave immediately for a destination outside of507

the inundation zone by shortest route. Local authorities should emphasize this finding when508

deciding what information to communicate in their tsunami preparedness programs.509

3.2. Scenario 2: considering network disruption when only walking is available510

This section analyzes how network disruptions impact tsunami mortalities when walking is511

the only option due to road network disruption of the type described in Section 2.3.3. Three512

scenarios are included in this analysis: 1) when areas with at least moderate landslide-513

liquefaction susceptibility are disrupted; 2) when only areas with at least high landslide-514

liquefaction susceptibility are disrupted; and 3) when there is no network disruption.515

As Figure 9 indicates, there is a nonlinear decrease in estimated mortality as walking speed516

increases for all three scenarios. That the slopes of the lines decrease as walking speed517

increases indicates that the marginal effect of changing walking speed on estimated mortality518

is larger in the lower part of the range. For example, an increase from 0.5 m/s (slow walk)519

to 1 m/s (normal walk) would yield a 24 percentage point decrease in estimated mortality.520

However, when areas of the road network with at least moderate susceptibility are disrupted,521

the model shows an increase of 9 percentage points in estimated mortality for all walking522

speeds in the 0.25–1.5 m/s range, compared with the results for no disruption. When only523

areas with a high level of susceptibility are disrupted, there is only a slight decrease in524

estimated mortality, compared with the results for moderate disruption. When walking speed525

increases to 1.5 m/s (fast walk), the impact of network disruption is minimal and almost all526

people can successfully evacuate. Previous research on Seaside (Wang et al., 2016) found a527

similar decrease to the one shown in Figure 9. In their study, estimated mortality decreased528

to zero when walking speed increased to 2 m/s when there was no disruption. This similarity529

suggests that similar results would be found in communities whose inundation zones have530

similarly ready access to high ground.531
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The results from the ABMS is consistent with the results from the BtW model established532

for Coos Bay (Gabel et al., 2019) with slight differences shown in Figure 9. The similarity533

between the two models is likely due to the similar input parameters. For example, the survey534

data from Coos Bay suggest a gamma distribution (α = 1.66, β = 6.49) to model milling535

time with mean = 10.77 mins; this distribution is used in the ABMS to define agents’ milling536

time, whereas the BtW model assumes a 10 min fixed milling time (Gabel et al., 2019). The537

slight differences between the two results are also due to the inputs of the two models: the538

parameters are stochastic in the ABMS but fixed in the BtW model, even though they have539

similar means. The resulting similarities provide convergent validation of the two models, so540

that jurisdictions can choose either one depending on the purpose of study. The two models541

should not be considered mutually exclusive; a mixed-method model could be applied to542

more accurately assess evacuation results (Wood and Schmidtlein, 2012). However, the543

convergence is based on the assumption that the survey respondents have accurate estimates544

of the time it takes them to prepare to leave. This is probably the case for those who545

have “grab and go” kits but is less likely for those who do not. In particular, research on546

the planning fallacy suggests that the survey data are underestimates for some respondents547

(Buehler et al., 2010).548

Figure 9: Network disruption impact: ABMS and BtW model result comparison

4. Conclusion549

Although previous tsunami evacuation simulations have considered the natural environment,550

built environment, and social system in their models, many data inputs were arbitrary551

assumptions or adapted from studies of non-emergency situations, so the simulation results552

may not accurately reflect what would happen in a tsunami evacuation. The present study553

addressed this limitation by integrating behavioral data from community surveys into an554
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ABMS for a CSZ community. Four distinct contributions of this study are: 1) using the555

PADM as a guide for collecting data on people’s expected evacuation behavior and the556

integration of these data into the ABMS; 2) using empirical data from evacuation drills to557

refine people’s evacuation walking speeds; 3) considering the impact of earthquake-caused558

landslides and liquefaction on tsunami evacuation as a substantial aspect of the multi-hazard559

situation; and 4) integrating the LCD component from the Wood and Schmidtlein (2012)560

BtW model – walking speed conservation by surface terrain and slope. By integrating561

the natural environment, built environment, and social system, this model incorporates562

substantial aspects of the real world into a multi-hazard ABMS. The simulation results563

indicate that milling time and evacuation participation have significant non-linear impacts564

on tsunami mortality estimates, which is consistent with Wang et al. (2016). The impact565

of milling time on the mortality rate shows an “S” curve, so the impact of milling time566

on estimated mortality varies the most when evacuation participation is highest. When567

comparing which transportation mode people should take, the model result shows that more568

people can reach safety in time when they choose to walk and are able to walk faster than 1569

m/s (slow walk). These findings support an important point for tsunami education programs570

in CSZ communities. Since the majority of Coos Bay respondents expected to evacuate by571

car instead of on foot, local authorities need to emphasize the need for pedestrian evacuation572

in their tsunami education programs.573

This study also makes a significant contribution to understanding the impact of different574

variables on tsunami mortality estimates. Evacuation success is more sensitive to walking575

speed, milling time, evacuation participation, and choice of the closest safe location than576

to other variables. Consistent with previous research, car speed has little impact on evac-577

uation results. Further, this study also compared the sensitivities of different combinations578

of variables. Tsunami mortality estimates are minimized when maximizing evacuation par-579

ticipation, minimizing milling time, and choosing the closest safe destination outside of the580

inundation zone. Furthermore, to validate this model, this study compared the ABMS re-581

sults with the BtW model results from Gabel et al. (2019) for Coos Bay. Even though the582

BtW model relies on a Geographical Information System rather than an ABMS, this study’s583

preliminary comparison indicates a good match between results from the two models.584

Finally, every study has limitations, as does this one. The agent decision and behavior is585

based on survey data and drill data, rather than data from an actual tsunami evacuation, so586

the results might not accurately predict the response to an actual tsunami. Future research587

should investigate 1) the impact of more complex agent-agent interactions, such as leader-588

follower behaviors and grouping behaviors (Chen et al., 2020), as well as car abandonment589

(Wang et al., 2016); 2) the impact of building damage from earthquake before tsunami590

(Gomez-Zapata et al., 2021); 3) authorities’ decision and warning dissemination processes for591

distant tsunamis; and 4) validation of the model using data from actual tsunami evacuations.592
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J. (eds) Handbooks of sociology and social research, 2nd Edition. New York: Springer,702

pp. 449–477.703

Lindell, M. K., Murray-Tuite, P., Wolshon, B., Baker, E. J., 2019. Large-Scale Evacuation:704

The Analysis, Modeling, and Management of Emergency Relocation from Harzardous705

Areas. Routledge, p. 22.706

23



Lindell, M. K., Perry, R. W., 1992. Behavioral foundations of community emergency707

planning. Behavioral foundations of community emergency planning. Hemisphere708

Publishing Corp, Washington, DC, US, pages: xi, 309.709

Lindell, M. K., Perry, R. W., Apr. 2012. Theoretical modifications and additional evidence:710

the protective action decision model. Risk Analysis 32 (4), 616–632.711

URL http://doi.wiley.com/10.1111/j.1539-6924.2011.01647.x712

Lindell, M. K., Prater, C. S., Mar. 2007. Critical Behavioral Assumptions in Evacuation713

Time Estimate Analysis for Private Vehicles: Examples from Hurricane Research and714

Planning. Journal of Urban Planning and Development 133 (1), 18–29.715

URL http://ascelibrary.org/doi/10.1061/%28ASCE%290733-716

9488%282007%29133%3A1%2818%29717

Lindell, M. K., Prater, C. S., Gregg, C. E., Apatu, E. J., Huang, S.-K., Wu, H. C., Jun.718

2015. Households’ immediate responses to the 2009 American Samoa earthquake and719

tsunami. International Journal of Disaster Risk Reduction 12, 328–340.720

URL https://linkinghub.elsevier.com/retrieve/pii/S2212420915000266721

Madin, I. P., Burns, W. J., 2013. Ground motion, ground deformation, tsunami inundation,722

coseismic subsidence, and damage potential maps for the 2012 Oregon Resilience Plan723

for Cascadia Subduction Zone Earthquakes. Tech. Rep. REPORT O-13-06.724

URL https://www.oregongeology.org/pubs/ofr/p-O-13-06.htm725

Mas, E., Adriano, B., Koshimura, S., Mar. 2013. An integrated simulation of tsunami726

hazard and human evacuation in La Punta, Peru. Journal of Disaster Research 8 (2),727

285–295.728

URL https://www.fujipress.jp/jdr/dr/dsstr000800020285729

Mas, E., Suppasri, A., Imamura, F., Koshimura, S., 2012. Agent-based simulation of the730

2011 Great East Japan Earthquake/Tsunami evacuation: An integrated model of731

tsunami inundation and evacuation. Journal of Natural Disaster Science 34 (1), 41–57.732

URL733

https://www.jstage.jst.go.jp/article/jnds/34/1/34_41/_article/-char/ja/734

Mori, N., Takahashi, T., Yasuda, T., Yanagisawa, H., Apr. 2011. Survey of 2011 Tohoku735

earthquake tsunami inundation and run-up. Geophysical Research Letters 38 (7),736

n/a–n/a.737

URL http://doi.wiley.com/10.1029/2011GL049210738

Mostafizi, A., Wang, H., Cox, D., Cramer, L. A., Dong, S., Sep. 2017. Agent-based tsunami739

evacuation modeling of unplanned network disruptions for evidence-driven resource740

allocation and retrofitting strategies. Natural Hazards 88 (3), 1347–1372.741

URL http://link.springer.com/10.1007/s11069-017-2927-y742

Mostafizi, A., Wang, H., Cox, D., Dong, S., Mar. 2019a. An agent-based vertical evacuation743

model for a near-field tsunami: Choice behavior, logical shelter locations, and life safety.744

24



International Journal of Disaster Risk Reduction 34, 467–479.745

URL https://linkinghub.elsevier.com/retrieve/pii/S221242091830918X746

Mostafizi, A., Wang, H., Dong, S., Nov. 2019b. Understanding the multimodal evacuation747

behavior for a near-field tsunami. Transportation Research Record 2673 (11), 480–492.748

URL http://journals.sagepub.com/doi/10.1177/0361198119837511749

Nagarajan, M., Shaw, D., Albores, P., Aug. 2012. Disseminating a warning message to750

evacuate: A simulation study of the behaviour of neighbours. European Journal of751

Operational Research 220 (3), 810–819.752

URL https://linkinghub.elsevier.com/retrieve/pii/S0377221712001580753

Oregon Geospatial Enterprise Office, 2017. Oregon 10m Digital Elevation Model (DEM).754

URL https://spatialdata.oregonexplorer.info/geoportal/details;id=755

7a82c1be50504f56a9d49d13c7b4d9aa756

OSM, 2021. OpenStreetMap.757

URL https://www.openstreetmap.org/758

Priest, G. R., Witter, R. C., Zhang, Y. J., Wang, K., Goldfinger, C., Stimely, L. L.,759

English, J. T., Pickner, S. G., Hughes, K. L. B., Wille, T. E., Smith, R. L., 2013.760

Tsunami inundation scenarios for Oregon. Tech. Rep. Open file Report O-13-19, Oregon761

Department of Geology and Mineral Industries.762

URL https://www.oregongeology.org/pubs/ofr/O-13-19.pdf763

Priest, G. R., Zhang, Y., Witter, R. C., Wang, K., Goldfinger, C., Stimely, L., Jun. 2014.764

Tsunami impact to Washington and northern Oregon from segment ruptures on the765

southern Cascadia Subduction Zone. Natural Hazards 72 (2), 849–870.766

URL http://link.springer.com/10.1007/s11069-014-1041-7767

Raskin, J., Wang, Y., Feb. 2017. Fifty-Year Resilience Strategies for Coastal Communities768

at Risk for Tsunamis. Natural Hazards Review 18 (1), B4016003.769

URL http://ascelibrary.org/doi/10.1061/%28ASCE%29NH.1527-6996.0000220770

Sassa, S., Takagawa, T., Jan. 2019. Liquefied gravity flow-induced tsunami: first evidence771

and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters.772

Landslides 16 (1), 195–200.773

URL http://link.springer.com/10.1007/s10346-018-1114-x774

Schmidtlein, M. C., Wood, N. J., Jan. 2015. Sensitivity of tsunami evacuation modeling to775

direction and land cover assumptions. Applied Geography 56, 154–163.776

URL https://linkinghub.elsevier.com/retrieve/pii/S0143622814002690777

Soule, R. G., Goldman, R. F., May 1972. Terrain coefficients for energy cost prediction.778

Journal of Applied Physiology 32 (5), 706–708.779

URL https://www.physiology.org/doi/10.1152/jappl.1972.32.5.706780

25



Tobler, W., 1993. Three Presentations on Geographical Analysis and Modeling: Non-781

Isotropic Geographic Modeling; Speculations on the Geometry of Geography; and Global782

Spatial Analysis (93-1). University of California at Santa Barbara: National Center for783

Geographic Information and Analysis., 26.784

URL https://escholarship.org/uc/item/05r820mz785

Treiber, M., Hennecke, A., Helbing, D., Aug. 2000. Congested traffic states in empirical786

observations and microscopic simulations. Physical Review E 62 (2), 1805–1824.787

URL https://link.aps.org/doi/10.1103/PhysRevE.62.1805788

United State Census Bureau, 2020. QuickFacts: United States; Crescent City city,789

California; North Bend city, Oregon; Coos Bay city, Oregon. Tech. rep.790

URL https://www.census.gov/quickfacts/fact/table/US,791

crescentcitycitycalifornia,northbendcityoregon,coosbaycityoregon/PST045219792

Wang, H., Mostafizi, A., Cramer, L. A., Cox, D., Park, H., Mar. 2016. An agent-based793

model of a multimodal near-field tsunami evacuation: Decision-making and life safety.794

Transportation Research Part C: Emerging Technologies 64, 86–100.795

URL https://linkinghub.elsevier.com/retrieve/pii/S0968090X15004106796

WGS, 2021. Tsunami Hazards in Washington State. Tech. rep., Washtington Geological797

Survey, Washington State Department of Natural Resources.798

URL https://www.dnr.wa.gov/publications/ger_tsunami_hazards_brochure.pdf799

Witter, R. C., Zhang, Y., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L. L., English,800

J. T., Ferro, P. A., 2011. Simulating tsunami inundation at Bandon, Coos County,801

Oregon, using hypothetical Cascadia and Alaska earthquake scenarios. Tech. Rep.802

Special Paper 43, Oregon Department of Geology and Mineral Industries.803

URL https://www.oregongeology.org/tsuclearinghouse/resources/sp-43/SP-804

43_onscreen144dpi.pdf805

Wood, M. M., Mileti, D. S., Bean, H., Liu, B. F., Sutton, J., Madden, S., Jun. 2018.806

Milling and public warnings. Environment and Behavior 50 (5), 535–566.807

URL http://journals.sagepub.com/doi/10.1177/0013916517709561808

Wood, N. J., Jones, J., Spielman, S., Schmidtlein, M. C., Apr. 2015. Community clusters of809

tsunami vulnerability in the US Pacific Northwest. Proceedings of the National Academy810

of Sciences 112 (17), 5354–5359.811

URL http://www.pnas.org/lookup/doi/10.1073/pnas.1420309112812

Wood, N. J., Schmidtlein, M. C., Jun. 2012. Anisotropic path modeling to assess813

pedestrian-evacuation potential from Cascadia-related tsunamis in the US Pacific814

Northwest. Natural Hazards 62 (2), 275–300.815

URL http://link.springer.com/10.1007/s11069-011-9994-2816

Youd, T. L., Perkins, D. M., Apr. 1978. Mapping Liquefaction-Induced Ground Failure817

Potential. Journal of the Geotechnical Engineering Division 104 (4), 433–446.818

URL http://ascelibrary.org/doi/10.1061/AJGEB6.0000612819

26


