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Abstract.    In a study of debris flow susceptibility on the European continent, an analysis of the impact between known 10 

location and a location accuracy offset for 99 debris flows, demonstrates the impact of uncertainty in defining appropriate 

predisposing factors, and consequent analysis for areas of susceptibility. 

 

The dominant predisposing environmental factors, as determined through Maximum Entropy modeling, are presented, and 

analyzed with respect to the values found at debris flow event points versus a buffered distance of locational uncertainty around 15 

each point. 

 

Five Maximum Entropy susceptibility models are developed utilizing the original debris flow inventory of points, randomly 

generated points, and two models utilizing a subset of points with an uncertainty of 5 km, 1 km, and a model utilizing only 

points with a known location of “exact”. The AUCs are 0.891, 0.893, 0.896, 0.921, and 0.93, respectively.  The “exact” model, 20 

with the highest AUC, is ignored in final analyses due to the small number of points, and localized distribution, and hence 

susceptibility results likely non-representational of the continent. 

 

Each model is analyzed with respect to the AUC, highest contributing factors, factor classes, susceptibility impact, and 

comparisons of the susceptibility distributions and susceptibility value differences. 25 

 

Based on model comparisons, geographic extent and context of this study, the models utilizing points with a location 

uncertainty of less than or equal to 5 km best represent debris flow susceptibility of the continent of Europe. A novel 

representation of the uncertainty is expressed, and included in a final susceptibility map, as an overlay of standard deviation 

and mean of susceptibility values for the two best models, providing additional insight for subsequent action. 30 
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1 Introduction 

 

Debris flows, and landslides in general, are worldwide catastrophic phenomena (Brabb et al., 1999; Brighenti et al., 2013; 

Campbell, 1974; Dowling and Santi, 2013).  Due to an expanding population and urbanization trends, the human and economic 35 

impact due to debris flow hazards necessitates broader geographic research. At least 14% of total casualties from natural 

hazards are due to slope failures, and ~49% of natural hazards are landslides (Froude and Petley, 2018). Between 1988-2017 

it is estimated that there were more than 56,000 deaths worldwide due to landslides, more than 4.8 million people affected 

injuriously and/or economically, and about 6 billion euro/year for damages in industrialized countries (Costa, 1984; Highland 

and Bobrowsky, 2008; Froude and Petley, 2018, 2019; Ispra, 2020).  Although it must be pointed out that in Europe, and likely 40 

the world, the number of landslides and their societal and economic impact are grossly underestimated (Gunther et al., 2007).  

With peak flow speeds reaching 10 m/s and volumes approaching 109 km3, debris flows pose a significant hazard to structures 

and lives (Iverson, 1997; Nettleton et al., 2005). 

 

As the world population and urbanization grows in number and geographic coverage (Ritchie and Roser, 2018), we realize the 45 

need to extend our focus, research, and modeling to a continental scale.  Localized field surveys to collect event inventories 

are not a practicable approach in continental hazard susceptibility modeling. Thus, debris flow susceptibility at this scale 

requires data-driven and statistical methodologies which include continental remotely sensed, and aggregated coverages of 

environmental factors which may influence susceptibility.  Susceptibility, in this context, is a qualitative assessment of 

potential areas of instability with respect to debris flows. 50 

 

In a landslide susceptibility analysis, landslide event location accuracy is paramount yet often inaccurately known unless a 

direct field survey is conducted.  Landslide inventories are often constructed based on mapping from aerial imagery, media 

reports, local governmental agencies, witness accounts, and field work by third party sources (Malamud et al., 2004; 

Kirschbaum et al., 2015; Froude and Petley, 2018).    55 

 

Uncertainties are inherent in all spatial data and at all scales (Chrisman, 1989), however when working at a continental scale, 

and in the absence of direct field surveys, the uncertainties are inherently greater (Maffini et al., 1989; Openshaw, 1989). 

“Uncertainty exists widely in the natural world, and certainty is conditional and relative” (Shi, 2010).  When utilizing methods 

which overlay and correlate multiple datasets, each with their own uncertainty, their derivative products, such as susceptibility 60 

maps, are prone to error propagation of an unknown magnitude (Shi, 2010).    It is not a matter of adding more or better data, 

but rather a “sobering reminder that uncertainty is an irreducible part of sufficiently complex knowledge” (Couclelis, 2003), 
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and thus should be thought of as a natural component of, and addressed in, every project. The presence of data uncertainty 

does not preclude the use of the data, but rather necessitates a methodology for qualitatively or quantitively characterizing and 

conveying the level of uncertainty and modeling the associated uncertainty for the benefit of the end-users of the hazard model.   65 

“Unlike industrial and other products of material processes, knowledge products do not carry with them the evidence of their 

own inadequacy… and the most critical aspects of the quality of its products are often only testable through their indirect and 

sometimes remote consequences.” (Couclelis, 2003). Our aim is to minimize the societal ‘testing’ of an inadequately 

understood susceptibility model.   

 70 

Although there are many factors and attributes associated with debris flow analyses which are prone to uncertainty, such as 

debris flow location, type, volume/size, setting, predisposing factors, triggers, etc. (Carrara et al., 1992; Ardizzone et al., 2002; 

Malamud et al., 2004), for simplicity, in this study, only the uncertainty associated with debris flow event location is 

investigated.  The focus herein is the impact of uncertainty on the determination of principal environmental predisposing 

factors, factor classes, and resulting susceptibility analyses.    75 

  

The debris flow predisposing environmental factors initially employed are those that are commonly associated with debris 

flows (Lorente et al., 2002; Devkota et al., 2012; Grozavu and Patriche, 2013; Dou et al., 2015; Meten et al., 2015; Kornejady 

et al., 2017; Kirschbaum and Stanley, 2018; Nsengiyumva et al., 2018), they are  aridity, climate, depth to bedrock, distance 

to faults, distance to rivers, drainage, elevation, fault density, landcover, landform, lithology, topsoil % clay, precipitation, 80 

slope, soil type, and soil thickness.  The study herein is focused on the European continent, with only a subset of these debris 

flow predisposing factors to demonstrate the issues. The factors further investigated are those with the highest gain 

(contribution) to debris flow susceptibility as defined by Maximum Entropy modelling.  They are precipitation, fault density, 

and soil type. The landside inventory was sourced from NASA (Kirschbaum et al., 2015). This inventory contains 11,033 

landslides of various types (Table 1), and locational uncertainties. It contains 194 debris flows and 2100 mud slides, herein 85 

collectively referred to as “debris flows”, 99 are within the continent of Europe.  Mudslides are included in this study as it is a 

common misnomer for debris flows. It is noteworthy that landslide classification, itself, may be a source of data uncertainty. 

 

The locational accuracy of the global inventory ranges from “exact” to 250 kilometers.  The locational accuracies associated 

with the 99 debris flows in Europe range from an “exact” known location to 50 kilometers (Table 2) , plus six events which 90 

were identified with a location accuracy of “unknown”. Fig. 1 shows the distribution of the training data depicted with 

locational uncertainty buffers for the 93 events with defined locational uncertainties. 
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Landslide Type Frequency 

 <null> 1 

complex 232 

creep 5 

debris flow 194 

earth flow 7 

lahar 7 

landslide 7648 

mudslide 2100 

other 68 

riverbank collapse 37 

rock fall 671 

snow avalanche 15 

topple 1 

translational slide 9 

unknown 38 
Table 1  Landslide type categorization of 

global landslide inventory. 

 

 

Locational 

Accuracy 

Frequency 

Distribution 

% of 

Total 

Events 

% of Total 

minus 

“unknown” 

exact 5 5.1 5.4 

1 km 19 19.2 20.4 

5 km 31 31.3 33.3 

10 km 20 20.2 21.5 

25 km 12 12.1 12.9 

50 km 6 6.0 6.4 

unknown 6 6.0 - 
Table 2   Locational uncertainty associated with 99 European 

debris flows. 

 

 95 

                            

 

 

Figure 1  93 (of 99) European debris flow events with a buffered “known” locational uncertainty. Some larger 

buffers overlap and occlude nearby smaller buffers. Base map is from ArcGIS®, the intellectual property of Esri, used herein under license. 

Copyright © Esri. 
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2 Study Area  100 

 

The study area is the continent of Europe.  The mean elevation of Europe is 300 m above sea level, 31% of the continent is 

depositional plains, 30% erosional plains and plateau in sedimentary rocks, and mountain belts account for 25% (Bridges, 

2012).  The European continent is generally characterized by a temperate climate.  Soils across the continent are diverse with 

twenty-three out of the total of thirty Reference Soil Groups of the world being present (Toth et al., 2008).  It is expected that 105 

the uncertainty and susceptibility impact principles discussed herein, and found to be true in Europe, may be true on any of the 

continents.  

3 Data and Methodology 

 

Determination of the most relevant debris flow conditioning factors, as well as the factor classes, is essential to susceptibility 110 

analyses.  Global coverage of fourteen conditioning factor datasets (aridity, climate, precipitation, elevation, fault density, 

landform, lithology, depth to bedrock, slope, soil thickness, soil type, topsoil % clay, soil drainage, and landcover) were 

acquired from various sources.  A European continent boundary dataset was used to clip each factor and create a Europe-only 

coverage.  Analysis of the predisposing factor contributions, from a Maximum Entropy model of the original 99 events, resulted 

in precipitation, fault density, and soil with the highest relative contributions at 42%, 27.6%, and 8.6%, respectively.  Thus, 115 

for purposes of this study, the location uncertainty impact is analyzed and demonstrated for only these three factors.   

 

Maximum Entropy (MaxEnt) a “presence-only” machine learning algorithm (Phillips and Dudik, 2008) is used due to the 

ambiguity of “absence” in this context; and the dependence on landslide inventories that were not collected through manual 

field surveys and thus without verified locations.  Absence does not necessarily mean that there are or were no debris flows in 120 

an area.  It means we do not know and/or we do not have substantiating data sources or ability to conduct field surveys, 

particularly at a continental scale.     MaxEnt is a widely used technique in biological species distribution modeling with recent 

and growing interest in its use for landslide susceptibility modelling due to its predictive success compared with other 

methodologies in “presence” only scenarios (Convertino et al., 2013; Park, 2014; Lombardo et al., 2016; Kornejady et al., 

2017; Yuan et al., 2017; Gál et al., 2018).  The MaxEnt model renders information for those debris flow predisposing factors 125 

that provide the greatest contribution to the susceptibility analysis.  Since MaxEnt requires the event data input be in point 

format, it alone does not lend itself to assessing the impact using debris flow locational accuracy buffered areas and associated 

‘what if’ scenario representations. Therefore, in addition to MaxEnt software v. 3.4.4 (Phillips et al., 2021) for susceptibility 
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and environmental factor analyses, ArcGIS Pro 2.7 (Esri, 2020) was used for data processing, spatial calculations, statistical 

analyses, and additional scenario representations. All maps presented herein include base maps from ArcGIS® and are the 130 

intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved.  

 

Five models were developed with MaxEnt.  The first model was developed using the original inventory of 99 Europe debris 

flow events with varying locational uncertainties.   This model will subsequently be referred to as “Original”.   The second 

model utilizes a training dataset created from 93 randomly generated points, one randomly located within each of the original 135 

93 locational uncertainty buffers.   This model is referred to as “93 Random”.  The third model utilizes only those original 

inventory event points with known locational uncertainties <= 5km (55 events) as the training data. The “exact” points are 

included.   This is the “LTE 5km” model. The fourth model, “LTE 1km” utilizes only those original inventory event points 

with known locational uncertainties <= 1km (24 events), including “exact” points, as the training data.  The fifth model, 

“Exact”, utilizes only those points identified as having an “exact” known location (five events).  All MaxEnt models include 140 

a test dataset composed of 2743 debris flow events in Europe, with no location accuracy attribute, collected from numerous 

sources.    

 

The “Original” model is the model against which all other models are compared, with the purpose of understanding the 

suitability of such an inventory of events with locational uncertainties, and the option for choosing an alternative set of events 145 

for the best susceptibility representation.    

4 Impact Analysis 

4.1 Impact of locational uncertainty on precipitation as a predisposing factor 

 

According to the “Original” MaxEnt model, the monthly average precipitation predisposing factor provided the highest percent 150 

contribution (gain) and was the most significant factor in the jackknife test both in most significance as the only variable, and 

most significant negative impact when removed from the model. In a worldwide study of non-seismic landslide occurrences, 

Froude and Petley (2018)  found a strong correlation between the mean monthly precipitation and landslide events in four of 

five global regions studied.  Table 3 shows the AUC (area under the curve) and the factor percent contribution (gain) for the 

“Original” MaxEnt model, and all factors input to the model.   155 

 

 

 

 

 160 
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Table 4 describes the precipitation value range found by an overlay of the 93 “known” locational uncertainty buffered areas 165 

and the precipitation factor layer.  Two points, events 560 and 6381, each with a 50 km location uncertainty, are selected to 

view the data and impact at a larger scale.  Table 5 and Fig. 2 depict precipitation values and range of values found within their 

buffered areas. 

 

 170 

 

 

Table 3. AUC and factor percent contribution 

for “Original” for MaxEnt susceptibility model.    

 175 

 

         

 

 

 180 

 

 

 

 

 

Variable/Model 

"Original"  

Percent contribution 

(99 points) 

AUC 0.891 

precipitation 42.0 

fault density 27.6 

soil type 8.6 

landcover 4.7 

climate 4.5 

lithology 2.1 

soil thickness 2.4 

landform 4.9 

elevation 0.2 

drainage 2.3 

topsoil % clay 0.1 

depth to bedrock 0 

aridity 0.5 

Maximum number of different precipitation 

values associated within all buffered events 

46 

Maximum value spread in all buffered events 92 mm 

Average number of different precipitation 

values associated with buffered events 

5.8 

Average value spread in buffered events 13.6 mm 

 

Table 4 Range and number of varying precipitation values 

associated with all 93 debris flow event buffered areas. 

Event ID 560 6381 

Precipitation point value 92 mm 73 mm 

Locational uncertainty buffer       50 km     50 km 

Number of different precipitation 

values within buffer  

32 31 

Precipitation range of values within 

buffer 

58-141 mm 49-94 mm 

Table 5  Example impact of uncertain location:  buffered area values vs 

point value on associated  precipitation factor class determination, for 

two sample events, 560 and 6381. 
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                                         185 

 

Figure 2. Map overlay of monthly average precipitation (mm) raster and debris flow event locational uncertainty buffers, 

highlighting event 560 and 6381, both with 50 km locational uncertainty.  Each color cell represents an associated precipitation (mm) 

at that cell. Base map is from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright © Esri. 

 190 

4.2 Impact of locational uncertainty on fault density as a predisposing factor 

 

According to the “Original” MaxEnt model, the fault density environmental layer provided the 2nd highest percent contribution 

(gain), at 27.6%, and was the 2nd most significant factor in the jackknife test with most significance as the only variable.  Fig. 

3(a) depicts the fault density in western Europe with debris flow locational uncertainty buffers.  Table 6 and Fig. 3(b) depict 195 

the point fault density value versus the range of values within sample events 560 and 6381. 
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Event ID 560 6381 

Fault Density point value (km/sq km) .0065-.0084 .000001-.05 

Locational Uncertainty Buffer 50 km 50 km 

Number of different Natural Breaks (Jenks) categories within buffer 7 6 

Fault density range of values within buffer .0050-.0840 0-.059 
Table 6. Example impact of uncertain location buffered area values vs point value of associated fault density factor class   

determination, for sample events 560 and 6381.  200 

 

 

4.3 Impact of locational uncertainty on soil as a predisposing factor 

 

The environmental layer with the 3rd highest percent contribution in the “Original” MaxEnt model is soil type with a gain of 205 

8.6% and tied with fault density as the 2nd most significant factor in the jackknife test with most significance as the only 

variable. 35% of the 93 buffered events had from two to seven different soil types. Fig. 4 depicts the soil types within each 

buffered event in a partial view of western Europe, highlighting sample events 560 and 6381, Table 7 presents their point value 

soil types versus the range of values within their buffered locations.  

 210 

Figure 3  Fault density (km/sq. km) overlay and debris flow event locational uncertainty buffers. (a) Fault densities in 

western Europe. (b) Fault density (Natural Break (Jenks) classification – 10 breaks) and debris flow event locational 

uncertainty buffers, highlighting events 560 and 6381, both with 50 km location uncertainties. Base maps and imagery are 

from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright © Esri. 

(a) (b) 
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Event ID 560 6381 

Soil type point value  Podzol Cambisol 

Locational 

Uncertainty Buffer 

50 km 50 km 

Number of different 

soil classes within 

buffer  

5 7 

Soil classes within 

buffer 

Cambisol, Gleysol, 

Lithosol, Podzol, 

Rendzina 

Cambisol, Gleysol, 

Lithosol, Luvisol, 

Planosol, Podzol, 

Rendzina 

Table 7. Example impact of location uncertainty (buffered area) values 

vs point values in soil class determination, sample events #560 and 6831.  

Figure 4. Events #560 and 6381 buffered by location  

uncertainty, with soil overlay within each buffer. Base map  215 
is from ArcGIS®, the intellectual property of Esri, used herein  

under license. Copyright © Esri. 

 

 

4.4 Impact of factor uncertainties on susceptibility results 220 

 

Susceptibility maps were generated by MaxEnt for the models, “Original”, “93 Random”, “LTE 5km”, and “LTE 1km”, Fig. 

5A, 5B, 5C, 5D, respectively.  

 

 225 

 

A B 
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  230 

   

Figure 5. Debris flow susceptibility maps.  A. “Original” B. “93 Random” C. “LTE 5Km” D. “LTE 1Km”. Warmer colors represent 

higher susceptibilities.  Base maps are from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright © Esri. 

 

There is close agreement in AUC and the most significant factor contributions (precipitation, fault density, soil type) in the 235 

first three models (“Original”, “93 Random”, and “LTE 5 Km’), Table 8. “LTE 1 Km” and “Exact” are significantly different 

than the others with respect to both the AUC and factors with highest percent contribution.  It is noteworthy that the “Original” 

model does not perform as well as a model built on randomly generated locations. Although the “Exact” model has verified 

locations and the highest AUC, results cannot be used to represent the European continent due to the statistically small number 

of such events (five) and their localized distribution, Fig. 6, hence the “Exact” model is not further considered. 240 

 

 

 

 

 245 
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Variable/Model 

"Original" 

Percent 

contribution 

(99 events) 

"93 Random" 

Percent 

contribution 

(93 events) 

"LTE 5 Km" 

Percent 

contribution 

(55 events) 

"LTE 1 Km" 

Percent 

contribution 

(24 events) 

"EXACT" 

Percent 

contribution 

 (5 events) 

AUC 0.891 0.893 0.896 0.921 0.93 

precipitation 42 37.4 30.2 11.9 3 

fault density 27.6 29.7 24.8 10.3 0.1 

soil type 8.6 10.5 13.6 25.8 75.3 

landcover 4.7 7.9 8.9 18.8 2.3 

climate 4.5 2.8 8.1 11.1 1.4 

lithology 2.1 1.6 4.1 3.1 0.5 

soil thickness 2.4 1.8 3.3 4 13.3 

landform 4.9 3.2 3.1 10.4 2.2 

elevation 0.2 1.6 2.1 1.1 1.5 

drainage 2.3 2.9 1.6 1.5 0.2 

topsoil % clay 0.1 0.2 0.1 1.5 0.2 

depth to bedrock 0 0.1 0.1 0.4 0 

aridity 0.5 0.3 0.1 0.1 0 
Table 8. AUC and factor contributions for each of the five MaxEnt models.  

 

        

Figure 6. Distribution of the five European debris flow events with a location accuracy of “exact”. 
Base map is from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright © Esri. 255 
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For precipitation, soil type, soil thickness, topsoil % clay, and landform factors there is concurrence in the factor classes 

associated with susceptibility among the four models, within a reasonable margin.  There are significant differences for fault 

density, landcover, climate, elevation, drainage, depth to bedrock, and aridity.  In most of these cases there is reasonable 260 

agreement in three of the four models, Table 9. 

 

Factor /Model "Original" "93 Random" "LTE 5 km" “LTE 1 Km" 

precipitation 

(monthly average 

mm 1970-2000) 

275-300 300-325 260-280 275-300 

fault density (km/sq 

km) 

0.02-0.14 0.01-0.02 0.13-0.14 0.01-0.14 

soil type Gleysol Fluvisol, 

Gleysol 

Fluvisol, Gleysol Gleysol 

landcover urban urban urban sparse vegetation 

Climate (Köppen-

Geiger) 

Dfa - hot 

summer humid 

continental 

climate 

BSk - semi 

arid steppe 

Csa - Mediterranean 

hot summer climate 

and Cfc - subpolar 

oceanic climate 

Csa - Mediterranean 

hot summer climate 

lithology unconsolidated 

sedimentary (su)  

intermediate 

volcanic (vi) 

unconsolidated 

sedimentary (su)  

basic plutonic (pb) 

soil thickness (m) 0-2.5  0-1 0-2 0-2.5 

landform Plains on 

sedimentary 

lithology 

Humid plains 

on sedimentary 

lithology 

Plains on 

sedimentary lithology 

Plains in alpine 

system 

elevation (m) 3250-3500 3200-3500 0-500 3250-5000 

drainage "Very poor" "Imperfectly" "Imperfectly" "Moderately well" 

topsoil %clay 5-18 20 20 0-22 

depth to bedrock 

(cm) 

0 114 0 0-2000 

aridity 

(dimensionless 

index) 

~1300 (Arid) ~1300 (Arid) >= 60000 (Humid) ~15000 (Humid) 

Table 9.   Comparison of factor classes with highest significance to susceptibility in four models.  Italicized factors are those with 

closest agreement among. 

 265 

Next, three pairwise comparison maps were produced with pixel differencing of the susceptibility values. The first comparison 

is the “Original” model minus “93 Random”, the second comparison is the “Original” model minus “LTE 5Km”, and the third 

is “Original” minus “LTE 1Km”, Fig. 7A, 7B, and 7C, respectively. The results of each map are displayed with a ten-break 

Natural Break (Jenks) classification.  

 270 
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Figure 7. Model susceptibility differences.   A. Pixel difference between “Original” and “93 Random” models.  B. Pixel difference 

between “Original” and “LTE 5Km” models.  C.  Pixel difference between “Original” and “LTE 1Km” models. Warmer colors 

represent areas of higher susceptibility values in “Original” model.  D.  Map 9B zoomed into area around the Italian Alps for visual 275 
enhancement of susceptibility disparities. Base maps are from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright © Esri. 

 

5 Discussion 

 

Determining the most relevant debris flow factors and factor classes are essential to producing reliable debris flow 280 

susceptibility maps, at any scale.  However, due to event location uncertainties, noteworthy differences arise in factor and 

factor class determinations and susceptibility results among five MaxEnt models.  Within their buffered areas, 35% of the 

A B 

C 
D 
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events had from two to seven different soil types, an average of 5.8 different precipitation values, and fault densities with high 

values from 1.75 to 4.2 times the low values within a buffered event. 

 285 

The “Original” model with the most uncertainty, and the “Exact” model with no uncertainty, provide end limits on a spectrum 

for model comparisons. Of the five models, “Original” model has the largest “high” susceptibility area (Fig. 5A and Table 10), 

five times larger than the “Exact” model, and the lowest AUC (0.891). “LTE 1Km (24 points with good distribution) has the 

smallest “high” susceptibility area (Fig. 5D and Table 10), with the same percentage coverage as the “Exact” model, and the 

2nd highest AUC (0.921).  The “LTE 5km” model, with 55 points well distributed across the continent, has an intermediate 290 

AUC (0.896) and an intermediate areal coverage of high susceptibility (Fig. 5C, Table 10), two times larger than the “Exact” 

model.  The “93 Random” model has a slightly higher AUC (0.893) than the “Original” model, and an area of high 

susceptibility three times the size of the “Exact” model.   

 

SUMMARY OF HIGHEST SUSCEPTIBILITY RANGE  

Susceptibility = 0.777479 - 0.97184 

from 5 Natural Break (Jenks)     

Model # Events #Pixels % AUC 

 "Original" 99 8442 0.5 0.891 

"93 Random" 93 4531 0.3 0.893 

"LTE 5Km" 55 3550 0.2 0.896 

"LTE 1Km" 24 1693 0.1 0.921 

"Exact" 5 1700 0.1 0.930 

              Table 10.  Number of pixels and % area of susceptibility 295 
               in the highest break of a five-break Natural Break (Jenks)  

              categorization, for each of five models 

 

Due to the small number of points in the “Exact” model (five) and localized distribution, this model is not further considered 

as a viable model.   As an enhanced view on susceptibility model choices, and with an attempt to better convey the 300 

‘uncertainties’ to model users, mean and standard deviation maps were produced based on a combination of the two best 

models, “LTE 5Km” and “LTE 1Km”, as input (Fig. 8).  This result set provides the end user with a novel representation of 

uncertainty and the ability to select areas for further detailed study based on areas with a high mean and low standard deviation, 

from two models with the least location uncertainty, high AUC, and a sufficient and well-distributed sampling size. 

 305 
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Figure 8.  Overlay of susceptibility standard deviation and mean for two    combined models (“LTE 5Km” and “LTE 1Km”). 

Standard deviation is represented by a scalar (blue arrows), small arrows = low values, etc.   Warmers colors represent higher 

mean susceptibility      Base map is from ArcGIS®, the intellectual property of Esri, used herein under license. Copyright © Esri. 

6 Conclusion   

 

88.8% of this study’s Europe debris flow inventory has a locational uncertainty from 1 to 50 km, with 6% defined as 

“unknown”.  82.5% of the complete inventory (all continents, all landslide types) have a locational uncertainty from 1 to 250 

km, with 4.9% unknown (Table 11).   It is believed these types of locational uncertainties may be representational of any 310 

landslide inventory whose data is gathered by means other than direct field survey or detailed remote sensing identification 

tools with a known significance level of accuracy, and ground control. 
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Locational 

Uncertainty 

Radius (km) 

Frequency 

Distribution 

(Europe 

Debris 

Flows) 

% of 

Total 

Debris 

Flow 

Events 

Cum 

% 

 Frequency 

Distribution 

(World 

Debris 

Flows)  

% of 

Total 

Debris 

Flow 

Events 

Cum 

% 

 Frequency 

Distribution 

(World All 

Landslide 

Types) 

% of 

Total 

Landslide 

Events  

Cum 

% 

exact 5 5.1 5.1  174 7.6 7.6  1386 12.6 12.6 

1 19 19.2 24.3  620 27.0 34.6  2185 19.8 32.4 

5 31 31.3 55.6  763 33.3 67.9  3178 28.8 61.2 

10 20 20.2 75.8  277 12.1 79.9  1435 13.0 74.2 

25 12 12.1 87.9  240 10.5 90.4  1470 13.3 87.5 

50 6 6.1 93.9  125 5.4 95.9  794 7.2 94.7 

100 0    9 0.4 96.3  25 0.2 94.9 

250 0    4 0.2 96.4  16 0.1 95.1 

“unknown” 6 6.1 99.9  82 3.6 100.0  544 4.9 100.0 

<null>         2   

Total 99    2294    11033   

Table 11.  Locational uncertainty frequency distribution of inventory: Europe debris flows (left), world debris flows (center), and 315 
world - all landslide types (right). 

 

Identifying specific factor classes (e.g., Cambisol soil class) which have a dominant association with past debris flow events 

is essential in preparing debris flow susceptibility maps across an area of study (Meten et al., 2015).  The impact of locational 

uncertainty in accurately selecting those predisposing factor classes varies depending on the scale at which one is performing 320 

the analysis, the resolution of the factor itself, the extent of location uncertainty of the debris flow events being used to train a 

susceptibility model, and the risk associated with an incorrect model (Carrara et al., 1992; Ardizzone et al., 2002).   

 

In this study, five MaxEnt models were developed, each based on a level of location uncertainty in the training data.  The 

predisposing factors (precipitation, fault density, soil class), with highest contribution to the susceptibility results of three of 325 

the five models, were investigated to identify and demonstrate the scope and impact of uncertainty on factor class 

determinations.  First the variances in factor classes within an event’s locational uncertainty buffer were compared to the values 

associated with the event point location to expose the problem.  Then models were developed based on event location 

uncertainty and evaluated on AUC, and model comparisons of susceptibility mean and standard deviation across two of the 

best performing models.  The purpose of a study, and the risks associated with the results, will guide a determination as to 330 

whether an error of commission (maximizing susceptibility area) or error of omission (minimizing susceptibility area) is 

favored.    In the context of this study, a debris flow susceptibility of the continent of Europe, where susceptible areas can be 

further investigated through a drill-down to a larger scale study, the error of commission may be preferable. 

 

 335 

https://doi.org/10.5194/nhess-2021-364
Preprint. Discussion started: 15 December 2021
c© Author(s) 2021. CC BY 4.0 License.



18 

 

 

The result of this research primarily demonstrates the importance of event location accuracy and shows that there is not a 

single definitive solution to the uncertainty problem.  Including all data uncertainties (in addition to locational) may help refine 

the results but is a much more comprehensive and complex model.   

 340 

Utilizing the MaxEnt statistical results, a model can be chosen which may best meet the context, scope, and objectives of a 

European continent debris flow susceptibility study, given the inventory of historic datapoints. The “LTE 5Km” model 

provides a good intermediate result, utilizing fifty-five points, about half of the original data, fairly well distributed across the 

study area, includes data with a relatively small geographic locational uncertainty from 1 to 5 km, and includes the “exact” 

known points.  This model is an intermediate compromise slightly favoring error of commission over error of omission.   345 

Furthermore, by developing susceptibility maps of the mean and standard deviation derived from the two best models (“LTE 

5km”, “LTE 1km”) provides additional tools for the end user to choose sites (areas of high susceptibility mean and low standard 

deviation) for further investigation.    

 

The cause, nature, and handling of mapping errors (uncertainties) has been the subject of extensive research (Maffini et al., 350 

1989; Openshaw, 1989; Hunter and Goodchild, 1996; Hunter, 1999; Wechsler, 1999; Ardizzone et al., 2002; Shi, 2010; Zufle 

et al., 2017).  Uncertainty and uncertainty handling is context dependent.  The combination of uncertainties in data, analytical 

methods, and the overlay processes, may be additive, multiplicative, and non-linear (Veregin, 1989).  If a susceptibility map, 

at any scale, is to be used to direct further research or mitigation efforts, a confidence level associated with the results is 

desirable (Soma, 2018).  This confidence will be dependent upon many facets of the model, one of which is the reliability of 355 

the location of the events used to train the model.  

 

Increasingly, dataset producers are including accuracy (uncertainty) attributions, such as the ‘location accuracy’ attribute in 

the NASA landslide inventory (Kirschbaum et al., 2015), and the ‘epistemic quality’ and ‘activity confidence’ attributes of the 

GEM Active Faults data (Styron and Pagani, 2020).  Utilizing these attributes, when available, provides the researcher with 360 

insight as to how or if to utilize the data and/or the uncertainty, based on the context of their project.   

 

Although this project is singularly focused on the impact of landslide inventory locational uncertainty, additional sources of 

data uncertainty may be inherent in other attributes of the inventory, as well as uncertainties associated both with the spatial 

assignment and attributes of the environmental factors.  The impact of the locational uncertainty will vary according to the 365 

scale of the study area and to the size of the locational uncertainty buffer vis-à-vis the scale of lateral change for a factor class.   

It would be ideal to create susceptibility maps with an attribute and graphical representation of certainty, but not practicable 

due to the array, complexity, and relationship of all uncertainties, without modeling across all these variables.  According to 

Goodchild et al 1993 as cited in (Hunter et al., 1994) there are three options for handling uncertainty: (1) omit all reference to 
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it; (2) attach a descriptor to the output; and (3) show samples from the range of possible maps.  The latter approach is chosen 370 

in this study, that is, to present different models of the susceptibility and choose that which is most reasonable for the project 

at-hand.   
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