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Abstract. This study assesses global landslide susceptibility
(LSS) at the coarse 36 km spatial resolution of global satellite
soil moisture observations to prepare for a subsequent com-
bination of a global LSS map with dynamic satellite-based
soil moisture estimates for landslide modeling. Global LSS
estimation contains uncertainty, arising from errors in the un-
derlying data, the spatial mismatch between landslide events
and predictor information, and large-scale LSS model gen-
eralizations. For a reliable uncertainty assessment, this study
combines methods from the landslide community with com-
mon practices in meteorological modeling to create an en-
semble of global LSS maps. The predictive LSS models are
obtained from a mixed effects logistic regression, associat-
ing hydrologically triggered landslide data from the Global
Landslide Catalog (GLC) with predictor variables describing
the landscape. The latter are taken from the Catchment land
surface modeling system (including input parameters of soil
(hydrological) properties and resulting climatological statis-
tics of water budget estimates), as well as geomorphological
and lithological data. Road network density is introduced as
a random effect to mitigate potential landslide inventory bias.
We use a blocked random cross validation to assess the model
uncertainty that propagates into the LSS maps. To account
for other uncertainty sources, such as input uncertainty, we
also perturb the predictor variables and obtain an ensemble of
LSS maps. The perturbations are optimized so that the total
predicted uncertainty fits the observed discrepancy between
the ensemble average LSS and the landslide presence or ab-
sence from the GLC. We find that the most reliable total un-
certainty estimates are obtained through the inclusion of a
topography-dependent perturbation between 15 % and 20 %
to the predictor variables. The areas with the largest LSS un-

certainty coincide with moderate ensemble average LSS, be-
cause of the asymptotic nature of the LSS model. The spatial
patterns of the average LSS agree well with previous global
studies and yield areas under the receiver operating charac-
teristic between 0.84 and 0.92 for independent regional to
continental landslide inventories.

1 Introduction

Mitigating landslide impacts requires a good understanding
of the spatial and temporal patterns of landslide occurrence.
The spatial likelihood of a landslide is referred to as landslide
susceptibility (LSS) and plays a crucial role in risk assess-
ment and land use planning (Guzzetti et al., 2005; Crozier,
2013; Reichenbach et al., 2018). Regional high-resolution
LSS maps derived from environmental conditions are a fun-
damental tool for informing local population, city planners,
and decision makers both on the immanent landslide like-
lihood but also about secondary effects such as major sed-
iment sources (Crozier, 2013; Maes et al., 2017; Broeckx
et al., 2020). Large-scale low-resolution LSS maps can serve
as background information to be downscaled for the above
applications at the local scale, or they can be used in conjunc-
tion with large-scale satellite data to construct a spatiotempo-
ral estimate of the likelihood for a landslide.

Due to their generalizing nature, LSS models are prone to
uncertainty (Petschko et al., 2014). A large number of LSS
models exists, but most focus on local to regional scales and
typically lack thorough validation or uncertainty assessment
(Reichenbach et al., 2018). Recent advances in computa-
tional power and data availability have fostered the develop-
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ment of LSS maps at continental level (for example Europe,
Wilde et al., 2018, and Van Den Eeckhaut et al., 2012; and
Africa, Broeckx et al., 2018) or at the global scale (for ex-
ample Nadim et al., 2006; Hong et al., 2007; Lin et al., 2017;
Stanley and Kirschbaum, 2017). While information about the
uncertainty would be essential to know how reliable these
large-scale LSS maps are as well as how much variation
can be expected within a mapping unit, only Broeckx et al.
(2018) provide such a measure for their map of Africa and
only to a limited degree. The quantification of LSS uncer-
tainty becomes even more called for yet challenging at the
global scale and with coarser spatial resolution due to neces-
sary generalizations and the increased spatial mismatch be-
tween landslide events and predictor information. A reliable
uncertainty assessment of global LSS estimates is moreover
crucial when subsequently combining them in a statistically
optimal way with, for example, satellite soil moisture prod-
ucts from Soil Moisture and Ocean Salinity (SMOS) or Soil
Moisture Active Passive (SMAP) as used by Felsberg et al.
(2021).

Uncertainty is typically grouped according to its origin
into model uncertainty (here “how correct are the equations
that we use to predict LSS?”) and input uncertainty (here
“how correct is the input to these equations?”). Model uncer-
tainty stems from heuristic choices that are necessary in the
process of model creation, including the choice of the statis-
tical modeling approach, the selection of predictor variables,
training data sampling and training data quality (see for ex-
ample Steger et al., 2015; Pourghasemi and Rossi, 2016;
Zêzere et al., 2017; Depicker et al., 2020; Lima et al., 2021).
In order to estimate some of these model-intrinsic errors for a
chosen modeling approach, cross validation (CV) is a widely
used method where data are divided into a number of sub-
sets, which are subsequently used for training and testing of
the model. How to best sample the CV subsets to retrieve re-
alistic uncertainty estimates is in itself a field of research. For
LSS maps, random sampling is most common (see for exam-
ple Broeckx et al., 2018), while spatial sampling is used less
often for an additional uncertainty estimate (see for example
Steger et al., 2020, or Depicker et al., 2020). However, these
are known to respectively strongly underestimate and possi-
bly overestimate the model uncertainty, and hybrid methods
such as blocked random CV (B-CV) have been suggested
to result in the most reliable uncertainty estimates (Roberts
et al., 2017). CV leads to multiple LSS model equations (one
per CV subset), and the standard deviation of the resulting
LSS values gives an indication of the associated model un-
certainty as shown by Broeckx et al. (2018) for Africa.

Input uncertainty principally results from errors in the en-
vironmental data. To assess how input uncertainty propa-
gates into the total predicted uncertainty, ensemble simula-
tions can be used. Meteorologists, for example, simulate the
weather based on a distribution of initial conditions and pre-
dict an ensemble of equally possible outcomes (ensemble
members). Instead of only one deterministic weather fore-

cast, they use the ensemble average prediction that has been
found to perform better than their deterministic counterpart
(Kalnay et al., 2006). The uncertainty of the final ensemble
average prediction can then be estimated by the variance or
standard deviation among the ensemble members.

The total ensemble uncertainty, resulting from the com-
bination of these methods that account for model and in-
put uncertainty respectively, is assumed to be reliable if it
matches the observed “actual” total uncertainty. The latter is
estimated by comparing the predicted average LSS against
the observed presence and absence of landslides. The gap
between this observed and the predicted total uncertainty can
then be closed by tuning the magnitude of the ensemble in-
put perturbations. Note that this implies that the perturba-
tions might in the end not purely capture the input uncer-
tainty but actually compensate for other sources of uncer-
tainty as well that are not specifically addressed. One such
important source of uncertainty is spatial representativeness
error (Blöschl and Sivapalan, 1995; van Leeuwen, 2015), es-
pecially when evaluating spatially averaged grid cell LSS es-
timates using single landslide observations as reference data.

In this study, we combine CV and an ensemble approach
to create global LSS maps with a reliable total uncertainty
(full ensemble standard deviation). We create multiple LSS
equations as part of CV (weak model constraint) and sub-
sequently perturb the selected predictor variables (input of
the LSS model equations) to retrieve a full ensemble of pos-
sible LSS values. Specifically, we focus on hydrologically
triggered landslides and propose to include long-term clima-
tological statistics of hydrometeorological variables as pre-
dictor variables, in addition to the common geomorphologi-
cal ones. We use a mixed effects logistic regression (MELR)
relying on the strong generalizing capabilities of logistic re-
gression as the basic model structure, and we mitigate the
potential reporting bias of landslide presences in the GLC
with stratified average road network density (RND) as a ran-
dom effect. To limit biases from unreliable and confounding
definitions of landslide absence grid cells for the model cre-
ation, we introduce a novel approach based on a character-
istic distance between landslides. After having taken these
steps to limit the introduced uncertainty, the B-CV is used
to instill model uncertainty via a selection of different pos-
sible predictor variables and associated parameters, and we
further add (and tune) ensemble perturbations to the selected
predictor variables to obtain a reliable total ensemble un-
certainty. This LSS assessment is carried out on the 36 km
Equal-Area Scalable Earth version 2 (EASEv2) grid, in line
with the nominal spatial resolution of satellite soil moisture
estimates from SMOS or SMAP. Producing spatial LSS esti-
mates at this resolution facilitates a subsequent combination
with the satellite-based temporally dynamic data, as well as
calculations of the above-mentioned climatological statistics
and the development of computationally intense ensemble
approaches. To our knowledge, no framework has previously
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been developed for the assessment of the total uncertainty of
LSS predictions.

Section 2 introduces the landslide (presence, absence) and
environmental data used to create ensemble LSS maps. The
LSS model construction based on MELR is introduced in
Sect. 3, along with the methods of CV and input predictor
variable perturbations for uncertainty assessment, as well as
methods to evaluate the results. Section 4 presents the result-
ing LSS model structure and selected predictor variables, as
well as the ensemble LSS evaluation for different input per-
turbations. Section 5 discusses various aspects of the results.
The paper closes with a summarizing conclusion.

2 Data

2.1 Landslide data

A first step in creating our LSS models is the creation of
suitable training datasets, indicated in the upper part of the
flowchart in Fig. 1. We use reported hydrologically trig-
gered landslide occurrences from the most recent version
of the GLC (https://landslides.nasa.gov/viewer, last access:
8 February 2021). The GLC is a landslide inventory that con-
tains information about location, date and trigger. It is origi-
nally based on media reports (Kirschbaum et al., 2010, 2015)
but has recently been supplemented with the citizen-science-
based Landslide Reporter Catalog (LRC) data (Juang et al.,
2019); see Stanley et al. (2021) for details. Any reference
to the GLC hereafter refers to this combined data prod-
uct. Despite known English-language and economic biases
(Kirschbaum et al., 2010, 2015), the GLC covers all conti-
nents and landslide hotspots. It has already been used for the
creation of two global LSS maps (Stanley and Kirschbaum,
2017; Lin et al., 2017) and was used to train the newest
version of the Landslide Hazard Assessment for Situational
Awareness (LHASA) model version 2.0 (Stanley et al.,
2021).

For this study, we use 12515 hydrologically triggered
landslides (GLC classifiers “continuous rain”, “downpour”,
“monsoon”, “flooding”, “rain” and “tropical cyclone”) re-
ported mainly between January 2007 and November 2020.
Since LSS informs about the static environmental landslide
likelihood, it is common practice to exclude the temporal as-
pect of landslide occurrence and instead work with landslide
presence and absence locations. Multiple landslides within
the same 36 km EASEv2 grid cell are therefore aggregated
into one landslide presence grid cell, resulting in a total of
NLS =3757 (orange grid cells, Fig. A1). While we acknowl-
edge that grid cells with more frequent landslide reporting
can in general be expected to have a higher LSS, we found
that the information about the frequency of landslide occur-
rence within a grid cell strongly mirrors biases in the land-
slide inventory; e.g., more landslides are reported in English-
speaking countries. The aggregation, on the contrary, reduces

Figure 1. Schematic of methodology used in this study to derive en-
sembles of global landslide susceptibility (LSS) maps. “Ensemble”
refers to a collection of LSS maps. In the course of this study, we
refer to different subsets of the full ensemble (LSS2500), namely the
ensemble from one single blocked random CV application (single
CV ensemble, LSS5), when adding input perturbations to it (par-
tial ensemble, LSS125) or when repeating the underlying landslide
absence subsampling (CV ensemble, LSS100). Subscript numbers
indicate the size of the LSS ensemble. Model fitting performance is
evaluated during the process of cross validation (CV) by calculating
the area under the receiver operating characteristic curve (AUC) for
each model equation of form Eq. (1).

the landslide presence reporting bias of the GLC. To address
the remaining landslide presence bias originating from more
landslide reporting in frequently accessed areas, we use strat-
ified data on the RND (including highways and all types of
roads, ranging from primary to local roads) provided by the
Global Roads Inventory Project (GRIP) (Meijer et al., 2018)
as a random effect, explained in Sect. 3.1.

The creation of realistic statistical LSS models and un-
certainty estimates depends on the knowledge of both land-
slide presences and absences (Roberts et al., 2017; Steger and
Glade, 2017; Knevels et al., 2020; Lucchese et al., 2021).
Usually, an absence grid cell is simply defined as one with-
out a recorded landslide. For local modeling, this might work
when complete and reliable landslide inventories are avail-
able. For large or remote areas, however, no reported land-
slide does not necessarily mean that the site never experi-
enced one. Terrain features show a certain amount of spa-

https://landslides.nasa.gov/viewer
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tial autocorrelation indicating that locations in proximity of
a known landslide are generally prone to instability as well.
The use of grid cells too close to known landslide locations as
an absence reference should therefore be avoided (Brenning,
2005). On the other hand, absence grid cells sampled very far
from the reported landslide locations, in so-called “trivial” or
easily classifiable areas (for example flat areas), might result
in an underrepresentation of stable areas in the vicinity of the
known landslide locations (Steger and Glade, 2017). Addi-
tionally, it might confound the selection process of geomor-
phologically meaningful predictor variables and lead to an
overoptimistic conception of the resulting LSS map’s quality
(Steger and Glade, 2017; Lucchese et al., 2021).

In this study, we therefore adopt a sampling strategy as
used in earlier LSS assessments (Van Den Eeckhaut et al.,
2012; Lin et al., 2017; Zhu et al., 2017; Nowicki Jessee
et al., 2018; Knevels et al., 2020; Lucchese et al., 2021),
where reliable absence grid cells are defined between a min-
imum (buffer) and maximum radius around known landslide
presence grid cells. As a measure of spatial autocorrelation
we derive the characteristic distance between two landslides
from the GLC (for details see Appendix A1). We use this
characteristic distance of 221.43 km (∼ 6 grid cells) as the
buffer radius, and we use 2.5 times this distance (∼ 15 grid
cells) as maximum radius. Absence grid cells are hence se-
lected from grid cells 7 to 15 around a landslide occurrence
(blue grid cells in Fig. A1). This definition still results in
more than 6 times more absence grid cells (NnoLS > 25000)
than landslide presence grid cells (NLS =3757). We there-
fore randomly sample from the absence grid cells with a 1 : 1
ratio (NLS :NnoLS) as is commonly done, for example by
Brenning (2005), Steger and Glade (2017), Nowicki Jessee
et al. (2018), Depicker et al. (2020), Knevels et al. (2020),
Lin et al. (2021) and Lucchese et al. (2021). LSS models
are subsequently constructed based on data from 7514 (ab-
sence+ presence) grid cells, as illustrated in Fig. 1.

2.2 Environmental data

The 77 predictor variables considered in this study are listed
in Table 1 and were selected based on earlier reviews on the
most common predictors used for LSS maps (Pourghasemi
and Rossi, 2016; Reichenbach et al., 2018). In statistical
LSS models, these predictor variables act as proxies for
one or multiple processes underlying a landslide (Whiteley
et al., 2019). Since LSS is referring to the spatial likelihood
of landslides, we only consider predictor variables that are
(quasi-)static in time.

To better represent processes underlying hydrologically
triggered landslides, we include long-term climatological
statistics of soil moisture in different layers, soil surface tem-
perature, runoff, rainfall, evaporation and snow depth as pos-
sible predictor variables. These climatological statistics in-
clude the range (here defined as the difference between per-
centiles 1 and 99), inter-quartile range, mean, median, per-

centile 99 and maximum within the time period 1990–2020,
derived from 36 km simulations with the CLSM (Koster
et al., 2000; Reichle et al., 2019), forced with Modern-Era
Retrospective analysis for Research and Applications, Ver-
sion 2 (MERRA-2) meteorological data, as in Felsberg et al.
(2021).

Most other predictor variables are part of the 36 km in-
put parameters to the CLSM. Of these, elevation and com-
pound topographic index (CTI) stem from the same underly-
ing Shuttle Radar Topography Mission (SRTM) data as the
morphological information on slope from the United States
Geological Survey (USGS), but with different data sources
for the high northern latitudes (Verdin et al., 2007).

We use lithological information from the Global Litholog-
ical Map (GLiM) (Hartmann and Moosdorf, 2012) aggre-
gated to the fraction of a grid cell covered by each of the
13 lithological classes (we exclude the classes “water”, “ice
and glacier”, and “no data”). This produces a dataset with 13
fields, each with a continuous fraction estimate. Peak ground
acceleration (PGA) is the likely level of ground motion from
earthquakes (Giardini et al., 2003). Here, we do not use it as
the likelihood of a seismic landslide trigger but rather as a
proxy for the fracturing and weakening that lithologies have
undergone due to seismic and tectonic activity (Lin et al.,
2017; Vanmaercke et al., 2017; Broeckx et al., 2018). Details
on the aggregation methods are given in Table 1.

3 Model construction and evaluation

This section introduces the methods used in this study for
model construction and evaluation. Section 3.1 introduces
the general principles of logistic regression used to derive
global LSS estimates, before elaborating the predictor vari-
able selection process and the implementation of average
road network density as a random effect. Section 3.2 in-
troduces methods for uncertainty assessment. First, cross
validation is introduced with a detailed explanation of the
blocked random sampling. Second, the methods of input en-
semble perturbations are briefly explained (details are elab-
orated in Appendix A2). LSS results based on the first ap-
proach alone are referred to as “CV ensemble” or LSS100.
Results based on both CV and input ensemble perturbations
are referred to as “full ensemble” or LSS2500. Section 3.3
introduces the methods and data used for the evaluation of
ensemble average LSS and the impact of the extended uncer-
tainty assessment through input perturbations.

3.1 Mixed effects logistic regression (MELR) for model
development

In this study, we create a statistical LSS model using MELR
(Zuur, 2009), as previously also employed by Steger et al.
(2017), Lin et al. (2021) and Lima et al. (2021). Logistic
regression is the most commonly used approach for statis-
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Table 1. Environmental predictor variables used in this study, alongside their data source, original spatial resolution and methods used
for aggregation to the 36 km EASEv2 grid. Apart from slope, lithology, PGA and rainfall, the specified aggregation was not conducted
in this study. Predictor variables that are part of the CLSM parameter set or output do not require any spatial aggregation. Long-term
climatological statistics of all hydrological variables comprise the range (here the difference between 1st and 99th percentile), inter-quartile
range, mean, median, 99th percentile, and maximum between 1990 and 2020. MERRA-2 precipitation is used as input for the calculations
of the hydrological climatological statistics and has been interpolated to the 36 km EASEv2 grid as part of the simulation process. Units are
given for the original data but are removed through the rescaling of the data to the interval (0, 1) (see text).

Predictor variables Data source Original spatial
resolution

Aggregation method
to or within EASEv2,
36 km grid cell

slope (mean, maximum) [◦] USGS: details in Verdin et al.
(2007) based on SRTM DEMa

and GTOPO30b

3′′ (SRTM DEM), 30′′

(GTOPO30)
mean and maximum

elevation (mean, standard deviation) [m a.s.l.] CLSM parameters: details in
Verdin (2013) based on SRTM
DEMa and GMTED2010c

3′′ (SRTM DEM), 7.5′′

(GMTED2010)
mean and standard
deviation

depth to bedrock [m] CLSM parameters: details in
De Lannoy et al. (2014) based on
GSWP-2d

1◦ spatial interpolation

percentage of gravel (0–30 cm) [vol %] CLSM parameters: 30′′ most representative

percentage of clay (0–30 and 0–100 cm) [w %] details in De Lannoy et al. (2014) 30′′ sample

percentage of sand (0–30 and 0–100 cm) [w %] based on STATSGO2e

porosity (0–30 and 0–100 cm) [m3 m−3] and HWSD1.21f

wilting point divided by porosity (0–30 and 0–100 cm) [–]

compound topographic index, CTI (mean, maximum)
= ln(specific catchment area/tan(slope)) [log(m)]

CLSM parameters: details in
Verdin (2013) based on SRTM
DEMa and GMTED2010c

3′′ (SRTM DEM), 7.5′′

(GMTED2010)
mean and maximum

land fraction within grid cell [–] CLSM parameters: HYDRO1k
based on GTOPO30, 1996
(EROS, 2018; Verdin, 2013)

10′′ areal fraction

fraction covered by each of 13 lithological classes [–]: metamorphic
rocks, mixed sedimentary rocks, siliclastic sedimentary rocks, basic
plutonic rocks, acid plutonic rocks, basic volcanic rocks, intermedi-
ate volcanic rocks, carbonate sedimentary rocks, unconsolidated sedi-
ments, intermediate plutonic rocks, pyroclastics, evaporites, acid vol-
canic rocks

GLiM created by Hartmann and
Moosdorf (2012)

polygons areal fraction

peak ground acceleration, PGA [m s−2] due to earthquakes expected
with a return period of 475 years (i.e., 10 % exceedance probability in
50 years)

GSHMg created by GSHAPh (Gi-
ardini et al., 2003)

1◦ nearest neighbor

rainfall climatological statistics [mm] MERRA-2 (Bosilovich et al.,
2016)

0.625◦ long× 0.5◦ lat bilinear interpolation

surface soil moisture climatological statistics (0–5 cm) [m3 m−3] CLSM output EASEv2, 36 km –

root zone soil moisture climatological statistics (0–100 cm) [m3 m−3]

profile soil moisture climatological statistics (0–100 cm) [m3 m−3]

land surface temperature climatological statistics [K]

runoff climatological statistics [mm]

evaporation (incl. transpiration) climatological statistics [mm]

snow depth climatological statistics [mm]
a Shuttle Radar Topography Mission digital elevation model. b USGS global elevation model. c Global Multi-resolution Terrain Elevation Data 2010. d Second Global Soil Wetness Project. e U.S. General Soil
Map. f Harmonized World Soil Database version 1.21. g Global Seismic Hazard Map. h Global Seismic Hazard Assessment Project.
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tical LSS mapping (Reichenbach et al., 2018). It is associ-
ated with strong generalizing capabilities (Brenning, 2005),
which is a necessity when working at the global scale, and it
has proven to be reliable in continental to global LSS assess-
ments (Broeckx et al., 2018; Lin et al., 2017). Within logistic
regression, the LSS, here defined as the probability of a land-
slide presence within a grid cell, P(Y = 1), is given by

P(Y = 1)=
exp(α+

∑n
i=1βixi)

1+ exp(α+
∑n
i=1βixi)

, (1)

with α [–] the intercept, xi [–] the independent predictor vari-
ables, βi [–] the associated coefficient and n the number of
predictor variables. A one unit change in the predictor vari-
able xi results in a multiplicative change by exp(βi) in the
odds of landslide presence, defined as the ratio of P(Y =
1)
/
(1−P(Y = 1))= exp(α+

∑n
i=1βixi). An increase in the

odds of landslide presence is associated with a (nonlinear) in-
crease in LSS. Positive (negative) β values hence indicate an
increase (decrease) in LSS with an increase in the predictor
variable. In this study, we work with rescaled predictor vari-
ables (between their global minimum and maximum) to de-
tach the magnitude of the β values from the magnitude of the
predictor variable. This facilitates subsequent interpretation.

We employ a stepwise forward technique to select five pre-
dictor variables, corresponding to the commonly used num-
ber of predictor variables for LSS assessment at the global
scale (Nadim et al., 2006; Stanley and Kirschbaum, 2017;
Lin et al., 2017; Reichenbach et al., 2018). Based on the
Akaike information criterion (AIC), a measure that is pro-
portional to the sum of squared errors and allows for com-
parison between non-nested models, we determine the best-
performing univariate MELR, i.e., the first predictor variable.
The AIC comparison is subsequently repeated for multivari-
ate MELR with one additional predictor variable at a time.
This stepwise forward selection also allows us to exclude
correlated predictor variables (r > 0.7, following for exam-
ple Dormann et al., 2013), so that largely independent pre-
dictor variables are used in the logistic regression. An analy-
sis of the generated models using the variance inflation fac-
tor (VIF) proved that this approach indeed successfully pre-
vented a logistic regression model construction based on pre-
dictor variables that are too strongly correlated.

The mixed effects approach allows us to include a cate-
gorically scaled variable as a so-called “random effect”, here
the random intercept α, for which we use the average road
network density (RND) stratified into six classes. We sum-
marize all land grid cells where average RND is negligible
(< 1 m km−2) into the first class and use quantiles 20, 40, 60
and 80 of those grid cells with non-negligible RND to divide
the rest into additional five classes. The mixed effects ap-
proach will then result in one global logistic regression equa-
tion that has the same β factors for all grid cells but six dif-
ferent α values according to each grid cell’s RND class. For
model fitting purposes it is assumed that these six α values
come from a normal distribution (Zuur, 2009).

The underlying assumption of RND as a random effect
is that the representativeness of the landslide data from the
GLC varies with the RND of the region. We recognize that
RND may also serve as a proxy for human interference or
likelihood of slope cutting and may hence be included as a
predictor variable, as was argued by Stanley and Kirschbaum
(2017). The use of RND as a predictor variable or random ef-
fect can be expected to have similar results if the connected
bias were small. For large biases, however, predictions using
RND as a predictor variable would systematically underesti-
mate the actual LSS of remote areas with strong underreport-
ing of landslides (as was put forward by Steger et al., 2017,
for forested areas). The inclusion of RND as a random ef-
fect favors the selection of natural, physically valid predictor
variables while allowing for locations without roads to also
receive a high predicted LSS. The inclusion of random ef-
fects in a regression model results in unbiased model param-
eter estimates, but it does not inform about the uncertainty
of the predictions (Roberts et al., 2017). We use the glmer
function from the lme4 package (Bates et al., 2015) to cre-
ate MELR models in R version 4.0.3 (R Core Team, 2020)
where the best-fitting parameters are obtained by maximum
likelihood estimation.

3.2 Cross validation (CV) and input perturbations for
reliable uncertainty estimation

In this study, the predicted total ensemble uncertainty results
from the combination of CV techniques and input ensem-
ble perturbations. For CV, the data are separated into five
subsets, which subsequently are used for training and test-
ing the model with the hold-one-out technique, as illustrated
in Fig. 1. We employ a blocked random CV (B-CV), as rec-
ommended by Roberts et al. (2017), which we found to in-
deed yield most realistic error estimates in comparison to
random or spatial sampling (not shown). This means that in-
stead of randomly sampling individual grid cells into the five
subsets for training and testing the model as part of CV, we
randomly sample small groups of grid cells with similar en-
vironmental conditions, so-called “blocks” (see Fig. 1). We
expect that the environmental conditions are similar in neigh-
boring pixels (for example same subcontinent) and for sim-
ilar climate zones. We therefore derive blocks in two steps.
First, the 7514 grid cells selected for model creation are di-
vided according to 10 predefined (sub-)continents. Within
each (sub-)continent, we then derive in a second step 10
blocks through k-means clustering (Lloyd, 1982) of 30-year
average soil surface temperature and rainfall (see Table 1). In
total we retrieve 100 blocks comprising different numbers of
grid cells (median: 55) that are not necessarily located next
to each other. The 100 blocks are then randomly divided into
the five subsets for model creation (20 each).
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Next, the MELR is iteratively trained on four subsets, and
the model fitting performance is tested against the fifth, i.e.,
the hold-one-out subset, using each subset as a test subset
once (see Fig. 1). This results in five different model equa-
tions of form Eq. (1) and corresponding LSS maps. By re-
peating the random absence grid cell subsampling 20 times,
we obtain a total of 100 LSS maps (referred to as CV en-
semble or LSS100; see Fig. 1) that allow for calculations of
an ensemble average LSS (LSS100), as well as a standard de-
viation (σLSS100 ) per grid cell. Note that the definition of the
individual blocks varies between each repetition of absence
grid cell sampling due to the k-means clustering algorithm.

For the input ensemble perturbations, we apply one fitted
model equation to a slightly perturbed set of its predictor
variable values. In total, 24 repetitions of this process are
conducted, resulting in a total ensemble of 25 LSS maps
per model equation (see Fig. 1). In combination with the five
model equations and 20 repetitions for the CV ensemble, this
results in a total amount of 2500 LSS maps (referred to as full
ensemble or LSS2500) with corresponding average (LSS2500)
and standard deviation (σLSS2500 ) per grid cell. The latter is
representative of the total predicted uncertainty.

The aim is to design an LSS model setup so that the pre-
dicted total ensemble uncertainty quantified by the ensem-
ble variance or spread σ 2

LSS matches the discrepancy between
predictions and observations, which we refer to as the actual
uncertainty. A measure of this actual uncertainty is the Brier
score (BS) (Wilks, 2011), which compares the predicted av-
erage LSS (LSS) against landslide observations from the
GLC (o) at different grid cells i (i = 1, . . .,N ):

BS=
1
N

N∑
i=1
(LSS− o)2i , (2)

with o being 1 for landslide presence and 0 for absence grid
cells. This actual uncertainty by design includes model and
input error (LSS), but also error in the reference data (o),
and spatial representativeness error. The perturbations to the
predictor variables are randomly sampled from a normal dis-
tribution with the mean being the original value of the grid
cell. The standard deviation, or perturbation magnitude, is
tuned, so that the resulting total ensemble spread (including
the spread originating from CV) matches the observed actual
uncertainty BS in Eq. (2). For details of the tuning process,
see Appendix A2. We apply the same perturbation magnitude
to all (rescaled) predictor variables. The magnitude is chosen
to increase proportionally to the topographic complexity of
a location from 15 % to 20 %. We use the variation of ele-
vation within a grid cell as a measure of said topographic
complexity and find this perturbation scaling to yield bet-
ter results than a globally constant perturbation magnitude.
Note that these perturbations in xi do not linearly propagate
into the LSS estimates, because the logistic regression (see
Eq. 1) relates xi to LSS via an S-shape LSS curve, with quasi-
linear behavior at the center (i.e., intermediate xi values) and

asymptotic behavior towards the upper or lower limit (i.e.,
for very low or high xi values). Locations of largest pertur-
bation do thus not necessarily coincide with large resulting
ensemble uncertainty.

3.3 Evaluation

To quantify how well a predicted LSS map represents ob-
served landslide presences and absences, a BS can be used
(see Eq. 2). Alternatively, the receiver operating characteris-
tic (ROC) is commonly used as evaluation tool for categor-
ical response values such as landslide presence and absence
(Reichenbach et al., 2018). For the ROC, the true positive
rate of one LSS map is displayed against its false positive rate
for different possible thresholds in the continuous probability
(here LSS) that is predicted. The true positive rate is the pro-
portion of correctly predicted landslide presence grid cells
when applying said threshold (true positives) of all observed
landslide presence grid cells (Wilks, 2011). The false posi-
tive rate is the proportion of erroneously predicted landslide
presence grid cells (false positives) of all observed landslide
absence grid cells. The area under the ROC curve (AUC) is
1 for a perfect representation of the spatial LSS distribution,
whereas an AUC value of 0.5 indicates that the model does
not perform better than a uniform distribution.

Depending on the reference landslide data, the ROC anal-
ysis can be conducted for specific grid cells from a CV
subset (independent data not used in the training) or from
other independent landslide inventories. Here, we use land-
slide presence and absence information from the grid cells
of the fifth CV subset to assess the model fitting perfor-
mance for each LSS ensemble member map on the go. To
evaluate the final prediction performance of the complete en-
semble averages and the corresponding ensemble members,
we use three independent landslide inventories. We obtain
36 km landslide presence grid cells as described for the GLC
in Sect. 2.1 for (i) quarterly reports issued by the Russian
Federation (FSBIH, 2018) with NLS = 56 aggregated from
183 observations; (ii) an inventory for Africa by Broeckx
et al. (2018) with NLS = 649 aggregated from 18 053 obser-
vations; and (iii) FraneItalia, a catalog of recent landslides
in Italy (Calvello and Pecoraro, 2020) with NLS = 309 ag-
gregated from 5438 observations. Since we trust their land-
slide absence reporting to be reliable, we use all other grid
cells within the region in question as landslide absence grid
cells. These validation inventories cover different climatic
zones and hence landslide regimes, stem from (mostly) non-
English-speaking regions (Africa, Russia, Italy), and include
less populated areas (Africa, Russia), which are not well rep-
resented in the GLC data that underlie our LSS estimates.
With Italy being a hotspot of landslide occurrence within
Europe, we are moreover able to assess whether the coarse
spatial resolution hinders realistic regional assessment within
smaller, potentially very susceptible areas.
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The AUC and BS metrics can be computed for individual
ensemble members (of the CV ensemble LSS100 or the full
ensemble LSS2500, yielding a distribution of metrics) or for
ensemble averages (LSS100 and LSS2500). It will be assessed
whether (i) an ensemble average outperforms an individual
member LSS realization and whether (ii) the full ensemble
average with ensemble input perturbations (LSS2500) outper-
forms the CV ensemble average which does not include input
perturbations (LSS100). This would be in line with the expec-
tations for hydrological or meteorological models (Kalnay
et al., 2006).

4 Results

4.1 LSS model structure

This section investigates the different values for the β co-
efficients and intercept α of the 100 MELR models created
following Fig. 1. The landslide absence data, used to train
these models, differ for each of the 20 repetitions, and subse-
quently the definitions of the subsets for B-CV vary as well.
All 100 models result in LSS maps with very high AUC val-
ues above 0.8, with a median of 0.92, for the corresponding
test data.

The values of the intercept α take negative values for
low RND and positive values for high RND (by design, not
shown). The left panel of Fig. 2 shows which predictor vari-
ables were selected how often and during which step of the
selection process (AIC; see Sect. 3.1). The right panel shows
boxplots of the β values for each predictor variable (see
Eq. 1). Whiskers extend from minimum to maximum and
boxes from 25th to 75th quantile, with the median indicated
in between. The first selected predictor variable was always
related to the slope, i.e., either the mean CTI within the grid
cell, the maximum slope or the mean slope. The mean CTI,
also known as a topographic wetness index, was selected as
part of all 100 models. It is inversely proportional to slope
(see Table 1), which is in line with the negative β values, i.e.,
decrease in LSS is expected with increasing CTI. The sec-
ond selected predictor variable is either another slope mea-
sure (maximum slope or standard deviation of the elevation,
i.e., local relief) or, for more than 65 % of the models, related
to the climatologic conditions (median surface soil moisture,
range of evaporation, maximum evaporation or surface soil
moisture). Out of these variables, median surface soil mois-
ture stands out as most frequently being the second predictor
variable (for more than 50 % of the models). Independent of
the selection step, it is part of more than 80 % of the models.
All of these variables are modeled with positive β values;
i.e., the higher the predictor variable, the larger the odds of a
landslide presence and hence the LSS.

The areal fraction of evaporites within the grid cell is the
only lithological class that was selected and only in the final
selection step. The very unrealistic β value associated with

this predictor (−128.65) suggests that this selection is pos-
sibly a statistical artifact. The PGA, treated as a proxy for
lithologic weakening due to regular seismic activity, is dom-
inantly selected in the later variable selection steps but still
part of about 80 % of the models.

4.2 Evaluation of ensemble LSS

Based on these 100 model equations and when perturbing
the input parameters (see Fig. 1), we obtain the full ensem-
ble average LSS (LSS2500) and standard deviation (σLSS2500 )
shown in Fig. 3. The highest LSS2500 can be found in the
large mountain ranges on all continents as well as coastal ar-
eas (especially the islands in Southeast Asia). Very flat areas
or planes, such as central northern Canada, Siberia, the Ti-
betan Plateau, the Arabian Peninsula, large parts of Africa
(especially the Sahara), and central Australia, have very low
LSS2500. Intermediate LSS2500 values are found in the north-
ern Rocky Mountains towards Alaska as well as the Kolyma
Range in Russia, at the northeastern shores of South America
and the western shores of Africa, along the East African Rift,
Scandinavia and India. Figure 4a shows a density scatter plot
of σLSS2500 versus LSS2500. The uncertainty σLSS2500 is large
for areas with intermediate LSS2500, whereas very high or
low LSS2500 typically have a smaller associated σLSS2500 .

Figure 5 illustrates the ensemble LSS2500 distribution
for 20 randomly sampled landslide presence and absence
grid cells. Even though we quantify the uncertainty with a
σLSS2500 , the distributions are mostly non-Gaussian. Most dis-
played landslide presence (absence) grid cells have LSS dis-
tributions ranging at the upper (lower) end of the interval
(0,1). Grid cells 1, 7 and 18, however, exhibit a very wide
distribution that seems disconnected from the absence (1, 17)
or presence (18) of a landslide.

The ROC curves for ensemble average LSS2500 are shown
in Fig. 6, with the curves for Russia (AUC: 0.92) and Italy
(AUC: 0.91) being closest to the upper left corner and that
for Africa being a little further from this optimum (AUC:
0.84). The LSS2500 map hence very well captures the land-
slide patterns over all three regions.

4.3 Impact of input perturbations

The above discussion of the full ensemble LSS2500 includes
perturbations to the predictor variables on top of the CV en-
semble LSS100 obtained by the CV techniques alone. Fig-
ure 4a and b show that the LSS uncertainty is a function of
the average LSS values and that σLSS2500 is typically higher
than σLSS100 . Figure 4d shows that the differences between
σLSS2500 and σLSS100 are smallest for the very high and low
σLSS100 . However, Fig. 4c shows that the ensemble averages
LSS2500 and LSS100 are similar, as expected from the addi-
tional zero-mean predictor variable perturbation. The values
of LSS2500 are slightly smaller than those of LSS100, except
for very small LSS (< 0.1).



A. Felsberg et al.: Estimating global landslide susceptibility 9

Figure 2. (a) Frequency of selected predictor variables and (b) corresponding β values. The five best predictor variables (out of 77; see
Table 1) are determined using stepwise forward selection for each MELR model equation (n= 100). Colors indicate at which selection
step (1–5) the predictor variable was selected. Boxplots for β values are based on the n values of panel (a), independent of the selection step.
Whiskers extend from minimum to maximum β values. Where n= 1, boxplots are replaced by a point.

Figure 3. (a) Ensemble average LSS (LSS2500) and (b) standard deviation (σLSS2500 ) at 36 km resolution. White areas denote missing values
(water bodies, ice). Seemingly larger grid cells in the north are characteristic of the EASEv2 grid projection.

Figure 7 shows boxplots of the AUC values for individual
members of the CV ensemble (LSS100) and the full ensem-
ble (LSS2500) compared against the according CV test sub-
sets, as well as the independent validation inventories. Note
that LSS100 is a subset of LSS2500. The median AUC value
is lower for LSS2500 than for LSS100 for all reference data.
Despite this shift, a number of the LSS2500 ensemble mem-

bers also perform better than any of those from LSS100. The
intention is not for the individual ensemble members to have
the best prediction but rather for the ensemble average LSS to
be best: clearly the ensemble mean performs better than the
majority of the individual ensemble members. We find AUC
values for these LSS2500 and LSS100 (dots on the figure) to
be practically the same (Fig. 4c)
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Figure 4. (a, b) Ensemble standard deviation LSS (σLSS) versus ensemble average (LSS) of (a) the full ensemble (LSS2500) and (b) CV
ensemble (LSS100) with the corresponding marginal distributions. The marginal distributions contain values of the complete set of 112 573
land grid cells for which LSS is estimated and are scaled by their peak for visualization. (c, d) Comparison of the (c) ensemble average and
(d) standard deviation of LSS2500 and LSS100. The one-to-one line (red, dashed) is shown as reference.

5 Discussion

5.1 Selected predictor variables

For the global LSS prediction of this study, the mean CTI per
grid cell is the most important predictor variable. Mean and
maximum slope within a grid cell are selected less often as
the first predictor variable, but one of the two is still included
in nearly every MELR model. We attribute the primary im-
portance of CTI to the fact that our model is trained with
data from hydrologically triggered landslides (Kirschbaum
et al., 2010, 2015), which do not uniquely occur on steep
slopes. The CTI intrinsically contains information on the po-
tential hydrological conditions of the site (through the catch-
ment area) as well as its slope. In line with our study, Em-
berson et al. (2022) found that the CTI is a strong predic-
tor of rainfall-induced landslides for a number of invento-
ries in the tropics and subtropics. Earlier global LSS maps
by Nadim et al. (2006), Hong et al. (2007) and Stanley and
Kirschbaum (2017) primarily used slope information, while
Lin et al. (2017) use relative relief. The latter is comparable

to the standard deviation of elevation, which is selected in
more than 25 % of the models of our study.

Long-term median surface soil moisture was most fre-
quently selected as the second predictor variable and part of
more than 80 % of all models. The positive connection to
LSS reflects the fact that hydrologically triggered landslides
mostly occur in humid regions where the soil is often wet and
rainfall can more easily destabilize a slope. The close rela-
tion between surface soil moisture and rainfall characteristics
is probably the reason for its preferred selection compared
to deeper layer soil moisture variables. The high correlation
between surface soil moisture and both rainfall and deeper
layer soil moisture variables prevents the latter two from
being selected during one model creation (see Sect. 3.2).
The preference for median surface soil moisture over aver-
age rainfall might be due to the less extreme values in soil
moisture (quasi-normal distribution) compared to the highly
non-normal distribution of rainfall but could also reflect that
surface soil moisture intrinsically contains additional infor-
mation on the soil characteristics. It can be interpreted as a
proxy or integrator of rainfall patterns, soil, and possibly also
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Figure 5. Distribution of ensemble member LSS values (LSS2500) within sample grid cells for select landslide presence (light orange triangle
on map) and absence (blue circle on map) grid cells. Please note that the distributions (top) all contain 2500 LSS ensemble members and are
merely scaled by their peak to avoid overlaying (large peak) or invisible (small peak but wide distribution) curves.

Figure 6. ROC curves of full ensemble average LSS (LSS2500) for
validation inventories from Russia, Italy and Africa. Corresponding
AUC values are denoted in brackets.

vegetation characteristics. Similar to surface soil moisture, a
positive relation of LSS is found for the (inter-quartile) range
of evaporation. This accounts for regions with strong season-
ality in rainfall and in the associated evaporation over wet
soils.

In earlier global LSS maps, Nadim et al. (2006) and Lin
et al. (2017) included information on the soil moisture in
the form of a soil moisture index by Willmott and Fed-
dema (1992) that distinguishes wet and dry climates. Lin
et al. (2017) found this index to be the most important pre-
dictor variable. Broeckx et al. (2018) include climatologi-
cal average annual rainfall as a predictor variable for LSS
over Africa. At the global scale, the use of climatological
statistics of hydrometeorological variables for LSS has not
been tested before. It is important to note that such long-term
statistics are meant to remain constant in time for global LSS
estimation (by definition), but they also offer the possibility
to recompute and refine LSS estimates in an era of climate
change.

We did not find significant contributions of lithological
predictor variables. For Africa, Broeckx et al. (2018) found
a (limited) impact of the presence of unconsolidated sedi-
ments and siliclastic sedimentary rocks on LSS. Stanley et al.
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Figure 7. Distribution of AUC for model fitting performance (test
data) and model prediction performance (based on independent
validation inventories from Russia, Italy and Africa). Boxplots
are shown for CV ensemble members (LSS100) and full ensem-
ble members (LSS2500, including CV ensemble members), with
whiskers extending from minimum to maximum AUC. AUC val-
ues for ensemble averages are displayed as points (black: LSS100;
colored: LSS2500). The latter correspond to the ROC curves shown
in Fig. 6.

(2021) found the lithology (regrouped from GLiM) to be the
least important factor. While local lithology plays a vital role
for landslide occurrence, the large data uncertainty and often
very broad definitions (as for example elaborated by Camp-
forts et al., 2020, in a different context) hinder meaningful
contributions to LSS assessment, even for smaller-scale stud-
ies. This might also explain why, instead, PGA was favored
as a proxy for structural weakening during the variable se-
lection. The one-time selection of the fraction of land within
a grid cell, with a negative β value assigned, reflects that
coastal or shore areas with a low land fraction are more prone
to landslides (higher LSS).

Overall, the selected predictor variables and the assigned
β values are in line with general geomorphologic understand-
ing and previous studies. We acknowledge, however, that not
all possible predictors for landslides were included in the
analysis. For example, land cover and land use were not ex-
plicitly included (although they are implicitly included in the
climatological statistics of soil moisture, runoff and evapo-
ration). Forest has been found to be less susceptible to land-
slides than non-forested areas in some regional studies (Si-
dle and Bogaard, 2016; Knevels et al., 2021; Depicker et al.,
2021; Steger et al., 2020), although Stanley and Kirschbaum
(2017) pointed out that landslides are also simply more eas-
ily observed in non-forested areas. Land cover and land use
change, e.g., deforestation and urbanization (possible slope
undercutting and changes in the natural drainage system of

hillslopes), are also known to increase propensity for land-
slides (Dille et al., 2019; Depicker et al., 2021). Stanley and
Kirschbaum (2017) include forest loss and presence of roads
as predictor variables for their global susceptibility map.
With the expanding human presence, such predictor variables
would require temporal updates and need further research for
global applications.

5.2 Full ensemble results

The spatial patterns of the full ensemble average LSS
(LSS2500; see Fig. 3) agree well with those of the categor-
ical LSS maps by Stanley and Kirschbaum (2017) at 1 km
resolution and Lin et al. (2017) at 0.5◦ resolution, shown in
Fig. 8a and b. Figure 8 c and d show the distribution of the
continuous 36 km LSS2500 per LSS class of these two ref-
erence maps. In comparing the maps, we find a larger area
covered by high LSS2500 for example in the Eastern United
States, Latin America, Mediterranean Europe, India, South-
east Asia and New Zealand. At the same time, LSS2500 shows
much less variation than the map by Stanley and Kirschbaum
(2017) within large deserts (Sahara, Arabian Peninsula and
central Australia). This might be a result of the coarser spatial
resolution but is also attributable to the fact that LSS2500 is
strongly governed by hydrological predictor variables apart
from the typical geomorphological ones. With a very large
proportion of the lowest LSS class, Lin et al. (2017) have
even less variation within these areas than LSS2500.

These realistic spatial distributions of LSS2500 are sup-
ported by the AUC values calculated for this ensemble av-
erage (dots in Fig. 7). The lower AUC value for Africa can
be attributed to the fact that the inventory comprises also very
old landslides from very different climatic conditions. In gen-
eral though, these AUC values are in line with those of Stan-
ley and Kirschbaum (2017), who reported AUC between 0.6
and 0.9, and Lin et al. (2017), who reported AUC around 0.9.

Figure 5 shows that the distributions of LSS ensemble
members within one grid cell could have a very wide range.
Even though in this figure we only selected locations within
English-speaking countries and excluded unreliable absence
grid cells (see Sect. 2.1), it is still possible that an absence
grid cell could experience a landslide, even if none has been
reported in the GLC. Prominent examples of this are absence
grid cells 1 and 7, located in the East African Rift and India,
respectively. Both grid cells have no reported landslide but
very wide LSS distributions, with relatively high LSS val-
ues. This discrepancy between prediction and observation
could indicate the need to visit this location for landslide
research. At the same time, landslide presence grid cell 18
also has a very wide LSS distribution with a rather low av-
erage. This could either indicate that a non-hydrological pro-
cess caused the landslide (misclassification) or that specific
unrepresented features are present within the grid cell area.
Overall, we find an average LSS2500 of 0.18 (0.82) for land-
slide absence (presence) grid cells (as displayed in Fig. A1),
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Figure 8. Comparison of LSS2500 against existing global categorical LSS maps by (a) Stanley and Kirschbaum (2017) and (b) Lin et al.
(2017). Boxplots show LSS2500 values extracted from the nearest 36 km grid cell for each (c) 1 km and (d) 0.5◦ grid cell in the reference map
per LSS class. Whiskers extend from minimum to maximum LSS2500. Boxplots are underlain with the fractions of the reference map LSS
classes (grey). Note that both reference maps start off from continuous LSS values but use very different thresholds for the class definitions:
Stanley and Kirschbaum (2017) set breakpoints at [0.11, 0.49, 0.67, 0.75], defined so that each category contains twice as many grid cells as
the next highest, whereas Lin et al. (2017) set breakpoints at [0.4, 0.6, 0.7, 0.9], following Guzzetti et al. (2006) and Van Den Eeckhaut et al.
(2012).

which makes us confident in our classification of these grid
cells.

Calculating the ensemble standard deviation of these dis-
tributions (σLSS2500 ) is a good measure of total predicted un-
certainty associated with the LSS2500 for one grid cell. The
σLSS2500 is typically small for distributions at either end of the
LSS interval (0, 1), resulting in the parabolic pattern as dis-
played in Fig. 4a–b. This pattern has also been found for local
assessments (Guzzetti et al., 2006; Depicker et al., 2020) and
holds for Broeckx et al. (2018) over Africa as well (visual
comparison of two maps). The reasons for this relationship
between LSS2500 and σLSS2500 are twofold: (i) the classifica-
tion algorithm works best for extreme environmental condi-
tions, such as very steep slope or completely flat areas and
has a strongly nonlinear, asymptotic behavior (logistic re-
gression), and (ii) the predictions are limited to the inter-
val (0, 1), restraining the opportunity for deviations at the
extremes to one side. A comparison of σLSS2500 with inde-
pendent global estimates is currently not possible for lack of
uncertainty estimates (Nadim et al., 2006; Hong et al., 2007;
Stanley and Kirschbaum, 2017; Lin et al., 2017). However, a
comparison with the standard deviations retrieved during the
process of blocked random CV for the continental LSS map

of Africa by Broeckx et al. (2018) (i.e., not accounting for
the total uncertainty) reveals that the patterns are very simi-
lar but with less (more) variation in σLSS2500 for the very arid
(humid) regions.

5.3 Impact of input perturbations

In this study, we add predictor variable perturbations to the
CV approach in order to obtain a more reliable estimate of
the total predicted uncertainty from the resulting full ensem-
ble. By design, the zero-mean input perturbation does only
marginally affect the ensemble LSS (see Fig. 4). Slightly in-
creased (decreased) LSS2500 at the lower (upper) limits can
be attributed to the resampling of predictor variable values if
they exceed the definition interval of rescaled predictor vari-
ables (0, 1). Overall, this introduced bias remains small.

The AUC analysis (Fig. 7) shows that the ensemble av-
erages perform much better than individual ensemble mem-
bers and that LSS2500 and LSS100 perform equally well. Not
shown is that the BS (Eq. 2) decreases (i.e., improves) for
LSS2500 in comparison to LSS100 where LSS is not very
close to the observation already (landslide presence and ab-
sence). This effect is, however, not visible in the AUC com-
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parison (spatial accuracy) for the validation data in Russia,
Africa and Italy because the grid cells with BS improve-
ment only make up for ∼ 8 %, ∼ 9 % and ∼ 18 % respec-
tively. The AUC values of ensemble averages remain prac-
tically the same, and an LSS model without predictor pertur-
bations would hence suffice for a general insight in the global
spatial LSS pattern.

That the individual ensemble member LSS maps of
LSS2500 (based on perturbed variables) have lower median
AUC values than LSS100 is logical: the model equations are
tailored to the original predictor variable values so that they
are optimally combined into an LSS prediction. Any change
of these variables could deteriorate the outcome. This is,
however, not a lack in quality of the ensemble but rather a
side effect. We do not use the individual ensemble members
but their average as an LSS prediction, for which we find
practically unchanged spatial accuracy between CV ensem-
ble and full ensemble.

By tuning the predictor variable perturbations to match the
total ensemble predicted uncertainty to the observed actual
uncertainty, we are able to provide statistically reliable uncer-
tainty estimates for the predicted average LSS, even in places
where landslide observations are unavailable. As stated be-
fore, this optimized spread is introduced to the input vari-
ables but does not actually reflect the input errors only: it also
compensates for other uncertainty sources that are not specif-
ically addressed, including spatial representativeness error,
and uncertainties introduced by heuristic decisions along the
way, such as the choice of the statistical model. Explicitly
accounting for these error sources would require dedicated
analyses (as for example conducted by Depicker et al., 2020).
Because Zêzere et al. (2017) found that the choice of spa-
tial mapping unit influences LSS estimates stronger than the
choice of statistical model, we do not expect that our re-
sults would fundamentally change for approaches other than
MELR. Future research could explore the additional infor-
mation, such as landslide sizes, types or the frequency of oc-
currence per grid cell instead of reducing the data to landslide
presence and absence. For the latter, one would need to find
ways to counteract the English-language and economic bias
of the GLC, which is more pronounced when using the actual
number of reports instead of the presence–absence method
chosen in this study.

6 Conclusions

This study presents the first global landslide susceptibility
(LSS) map directly developed to be compatible with satel-
lite soil moisture products retrieved from passive microwave
sensors, i.e., at a spatial resolution of 36 km. The novel
method of combining B-CV and predictor variable pertur-
bations results in a reasonable assessment of the associated
total predicted uncertainty. For each grid cell, we estimate
2500 individual LSS values (full ensemble) that are sum-

marized by the ensemble average LSS (LSS) and standard
deviation (σLSS, i.e., the uncertainty). Together, these LSS
statistics can provide unprecedented information for subse-
quent global probabilistic spatiotemporal landslide modeling
and statistical combination of the LSS and soil moisture esti-
mates, each with their respective uncertainties. Furthermore,
the LSS maps have the potential to discern areas that deserve
more attention for landslide detection.

A mixed effects logistic regression (MELR) is used as the
model structure to relate environmental predictor variables
to spatial landslide likelihoods. The objectively selected pre-
dictor variables are mainly related to slope and hydrology, in
line with the expectations for hydrologically triggered land-
slides. The odds of landslide occurrence were found to (i) de-
crease with increasing compound topographic index (CTI),
which depends on the ratio of catchment area and slope, and
(ii) increase with increasing slope, peak ground acceleration
(PGA), and long-term climatological statistics of surface soil
moisture (median and 99th percentile) or range of evapora-
tion. The inclusion of long-term statistics of hydrometeoro-
logical variables enables future investigations into possible
shifts in LSS due to climate change.

The map of the full ensemble LSS reproduces global pat-
terns of LSS as presented in previous global studies well. The
performance assessment yields area under the ROC curve
(AUC) values of 0.92, 0.91 and 0.84 for independent data
from Russia, Italy and Africa, respectively. The uncertainty
σLSS is largest for intermediate LSS. High predicted LSS at
(reliable) landslide absence grid cells might furthermore in-
dicate regions that could benefit from future landslide detec-
tion and research.

For the ensemble perturbations of the selected predictor
variables we use a perturbation magnitude of 15 % to 20 %,
linearly proportional to the variation of elevation within a
grid cell. The magnitude is chosen to match the total pre-
dicted ensemble uncertainty with the observed actual uncer-
tainty relative to data from the Global Landslide Catalog
(GLC). Adding these perturbations does not linearly prop-
agate into the ensemble spread due to the asymptotic nature
of logistic regression. It increases the ensemble spread for
locations of intermediate LSS while having negligible im-
pact where LSS is close to its lower or upper limit. The en-
semble LSS and its spatial accuracy (AUC) remain practi-
cally unchanged by the ensemble perturbations, but AUC val-
ues of these average predictions are always much better than
that of individual ensemble realizations. In short, these novel
methods explicitly focus on the uncertainty quantification.
The availability of global reliable uncertainty estimates is an
unprecedented new contribution to the suite of global LSS
maps, and it will support stochastic landslide hazard model-
ing.
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Appendix A

A1 Landslide absence sampling

Figure A1. Spatial distribution of landslide presence (shade of orange) and absence (shade of blue) grid cells at 36 km resolution, for English-
speaking countries (light orange and dark blue) and non-English-speaking countries (dark orange and light blue). White indicates grid cells
that are excluded during the model creation process (buffer and maximum radius around landslide location; see Sect. 2.1). The numbers are
the sum of each subgroup of grid cells.

Figure A1 shows the NLS = 3757 landslide locations
based on data from the GLC aggregated to the 36 km EA-
SEv2 (Sect. 2.1). Landslide absence grid cells are sampled
between a minimum (buffer) and maximum distance around
known landslide locations (NnoLS = 25 417). These distances
can be based on either heuristic choices (Van Den Eeckhaut
et al., 2012; Lin et al., 2017; Knevels et al., 2020) or empiri-
cal approaches (Zhu et al., 2017; Nowicki Jessee et al., 2018;
Lucchese et al., 2021).

Figure A2. Histogram of distances [km] between landslides within
a k-means cluster (for 100 clusters across the globe) of the GLC
(grey) and Poisson exponential fit (black line) to retrieve the char-
acteristic landslide distance (red). The red dashed line indicates me-
dian characteristic landslide distance from 50 repetitions of the k-
means clustering, with the smallest and largest characteristic dis-
tance indicated by the light red bar and numbers at top.

For our global study, we set a buffer based on the proba-
bility for any two landslide locations from the GLC to be
reported within a specific distance interval for 100 spatially
defined clusters (k-means clustering Lloyd, 1982, on latitude
and longitude). Figure A2 shows that the frequency of en-
countering two landslide locations decreases for larger dis-
tances and can be characterized by a Poisson exponential fit.
In line with the definition of autocorrelation length (Gaspari
and Cohn, 1999), we define the “characteristic distance” be-
tween two landslides as the distance where the probability
to meet another landslide drops by 1/e. We use this char-
acteristic distance of 221.43 km or ca. six 36 km grid cells
(median of characteristic distances retrieved for 50 repeti-
tions of the clustering) as a buffer around landslide locations.
The maximum distance around a landslide is subsequently
defined as 2.5 times this characteristic distance (553.58 km,
∼ 15 grid cells), borrowing from the data assimilation com-
munity where 2.5 times the autocorrelation length is a mea-
sure for absence of correlation (Gaspari and Cohn, 1999;
De Lannoy, 2006; De Lannoy et al., 2010).

Landslide absence grid cells are hence selected from 7 to
15 grid cells around a landslide presence grid cell (blue grid
cells in Fig. A1). These distances are inevitably much larger
than those found in literature for finer-scale studies, because
autocorrelation lengths are scale-dependent and the retrieved
characteristic distance is influenced by the spatial extent, or
the definition of the clusters in our case.

A2 Input perturbation and optimization

For a reliable assessment, the total ensemble predicted un-
certainty of the obtained ensemble average LSS map ide-



16 A. Felsberg et al.: Estimating global landslide susceptibility

ally should match the observed actual uncertainty. The first
can be defined for a single location by the standard devi-
ation (σ ) among the LSS ensemble members (LSSi , with
i = 1, . . .,Nens), as also displayed in Sect. 4 and Fig. 3. Sim-
ilarly, it is possible to assess the according variance (σ 2), re-
ferred to as ensemble spread (ensp):

ensp=
1
Nens

Nens∑
i=1
(LSSi −LSS)2. (A1)

The observed actual uncertainty at a single location is de-
fined as the difference between LSS and the aggregated land-
slide observations from the GLC (o), referred to as the en-
semble skill (ensk):

ensk= (LSS− o)2, (A2)

where o is 1 (0) in case of a landslide presence (absence)
grid cell. The smaller ensk, the closer the predicted LSS to
the observation. This is essentially a Brier score (see Eq. 2)
for one single grid cell. (Wilks, 2011).

The optimization of the uncertainty estimates entails tun-
ing of ensp to match ensk. In this study, this is done by vary-
ing the perturbation magnitude that is added to the input vari-
ables (see Sect. 3.2). Talagrand et al. (1997) defined spread–
skill relationships that allow us to verify the statistical consis-
tency between the assumed uncertainty (chosen perturbation)
and the actual observed uncertainty based on the ergodicity
principle. Over a large number of realizations, i.e., for large
enough ensembles, 〈ensk− ensp〉 → 0 or

〈ensk〉
〈ensp〉

→ 1⇔ log
(
〈ensk〉
〈ensp〉

)
→ 0, (A3)

where 〈.〉 denotes the average. In most hydrological or me-
teorological applications, this is the temporal average within
one grid cell. As this is not applicable for the static LSS data,
we consider (i) spatial averages 〈ensk〉/〈ensp〉 per LSS in-
terval as well as (ii) the distribution of individual ensk/ensp
per grid cell. Both should only be performed over grid cells
with reliable information about landslide presence or absence
(see Appendix A1). Note that this definition of 〈ensk〉 corre-
sponds to the definition of the BS as given in Sect. 3.2.

We tested various magnitudes of perturbations to the
rescaled predictor variables either by using (i) a glob-
ally constant standard deviation or (ii) a standard devia-
tion proportional to the topographic complexity (i.e., the
variation within a grid cell, here the standard deviation of
elevation). A range of possible perturbation options was
tested for a partial ensemble (LSS125, i.e., no repetition of
landslide absence sampling as illustrated in Fig. 1). Fig-
ure A3 shows log(〈enskLSS125〉/〈enspLSS125

〉) for 10 inter-
vals of LSS125 and two examples of constant and linear
perturbations. Adding any of the four perturbations brings
log(〈enskLSS125〉/〈enspLSS125

〉) values closer to zero, i.e., im-
proves the spread–skill relationship, compared to results

Figure A3. Spread–skill relationship log(〈ensk〉/〈ensp〉), stratified
per ensemble average LSS (LSS125). The optimum of 0 is indicated
by the red dashed line. Shapes indicate the type and colors the mag-
nitude (constant) and interval (linear) of perturbation.

without a perturbation (LSS5, single CV ensemble). Lin-
ear perturbations introduce larger spread in areas of higher
LSS125 resulting in log(〈enskLSS125〉/〈enspLSS125

〉) closer to
zero than constant perturbations and are therefore preferred
here.

We further analyze the distribution of individual ensp and
ensk across all grid cells in Fig. A4 (top), stratified for land-
slide presence and absence. Ideally, ensp versus ensk should
stay close to the one-to-one line. Adding a perturbation to
the predictor variables (Fig. A4 c in comparison to a) nudges
the distribution in this direction but fails to do so for large
ensk: a large ensk results from a large difference between
LSS125 and landslide observation (o), and it often coincides
with very small ensp. This can be attributed in part to the
incompleteness of the GLC (missing observations in a very
susceptible area) and the coarse spatial resolution of this
study (one very susceptible location surrounded by domi-
nantly non-susceptible area within grid cell). Note also that
the logistic regression (see Eq. 1) does not linearly propagate
the perturbations of predictor variables into the resulting LSS
values, especially not at the edges of the definition interval (0,
1). Accepting this tail of the distribution as an unavoidable
characteristic, we further analyze the histogram of grid-cell-
wise log(ensk/ensp) as displayed in Fig. A4b and d. An opti-
mal perturbation would result in median log(ensk/ensp) close
to zero and a small inter-quartile range (IQR). We therefore
define the optimal perturbation for a minimum Euclidean dis-
tance (d) between the point (median|IQR) and (0|0), aver-
aged over the distribution of observed landslide presences
and absences (o= 0,1):

d =
1
2

∑
o=0,1

(median2
+ IQR2)o. (A4)
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The d for a range of possible linear perturbation op-
tions for LSS125 is summarized in Fig. A4e. The optimal
perturbation (smallest d) scales the applied standard devi-
ation according to topographic complexity, represented by
the standard deviation of elevation within a grid cell, be-
tween (0.15,0.2), i.e., between 15 % and 20 %. Fine tuning
of the standard deviation is left for future work but could in-
volve other variables or transformations thereof or different
amounts of perturbations per predictor variable.

Figure A4. Spread–skill relationship per grid cell with the optimum
indicated by the red dashed lines: (a, c) scatter plots of ensk against
ensp; (b, d) histograms of log(ensk/ensp), stratified for landslide
presence and absence (between buffer and maximum distance).
(e) Summary of the average Euclidean distance d for all applied
linear perturbations with the optimum framed in red. Shown are re-
sults for panels (a)–(b) without perturbation of predictor variables
(LSS5) and panels (c)–(d) for linear perturbation of predictor vari-
ables within the interval (0.15, 0.2) (LSS125). In other words, pan-
els (a)–(b) account for model uncertainty alone, whereas panels (c)–
(d) account for the total uncertainty (see Fig. 1).

Abbreviations
AIC Akaike information criterion
AUC area under the ROC curve
B-CV blocked random CV
BS Brier score
CLSM Catchment Land Surface Model
CTI compound topographic index
CV cross validation
DEM digital elevation model
EASEv2 Equal-Area Scalable Earth version 2
ensk ensemble skill
ensp ensemble spread
GLC Global Landslide Catalog
GLiM Global Lithological Map
GRIP Global Roads Inventory Project
IQR inter-quartile range
LHASA Landslide Hazard Assessment for

Situational Awareness
LRC Landslide Reporter Catalog
LSS landslide susceptibility
MELR mixed effects logistic regression
MERRA-2 Modern-Era Retrospective analysis

for Research and Applications, Version 2
NLS number of landslide locations,

i.e., landslide presence grid cells
NnoLS number of landslide absence grid cells
PGA peak ground acceleration
RND average road network density
ROC receiver operating characteristic
SMAP Soil Moisture Active Passive
SMOS Soil Moisture and Ocean Salinity
SRTM Shuttle Radar Topography Mission
USGS United States Geological Survey
VIF variance inflation factor
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