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Abstract. This study assesses global landslide susceptibility (LSS) at the coarse 36-km spatial resolution of global satellite

soil moisture observations, to prepare for a subsequent combination of a global LSS map with dynamic satellite-based soil

moisture estimates for landslide modelling. Global LSS estimation contains uncertainty, arising from errors in the underlying

data, the spatial mismatch between landslide events and predictor information, and large-scale LSS model generalizations.

For a reliable uncertainty assessment, this study combines methods from the landslide community with common practices in5

meteorological modelling to create an ensemble of global LSS maps. The predictive LSS models are obtained from a mixed

effects logistic regression, associating hydrologically-triggered landslide data from the Global Landslide Catalog (GLC) with

predictor variables describing the landscape. The latter are taken from the Catchment land surface modeling system (incl. input

parameters of soil (hydrological) properties and resulting climatological statistics of water budget estimates), geomorphological

and lithological data. Road network density is introduced as a random effect to mitigate potential landslide inventory bias. We10

use a blocked random cross validation to assess the model uncertainty that propagates into the LSS maps. To account for other

uncertainty sources, such as input uncertainty, we also perturb the predictor variables and obtain an ensemble of LSS maps.

The perturbations are optimized so that the total predicted uncertainty fits the observed discrepancy between the ensemble

average LSS and the landslide presence or absence from the GLC. We find that the most reliable total uncertainty estimates are

obtained through the inclusion of a topography-dependent perturbation between 15% and 20% to the predictor variables. The15

areas with the largest LSS uncertainty coincide with moderate ensemble average LSS, because of the asymptotic nature of the

LSS model. The spatial patterns of the average LSS agree well with previous global studies and yield areas under the Receiver

Operating Characteristic between 0.84 and 0.92 for independent regional to continental landslide inventories.

1 Introduction

Mitigating landslide impacts requires a good understanding of the spatial and temporal patterns of landslide occurrence. The20

spatial likelihood of a landslide is referred to as landslide susceptibility (LSS) and plays a crucial role in risk assessment and

land use planning (Guzzetti et al., 2005; Crozier, 2013; Reichenbach et al., 2018). Regional high-resolution LSS maps derived

from environmental conditions are a fundamental tool for informing local population, city planners and decision makers both
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on the immanent landslide likelihood, but also about secondary effects such as major sediment sources (Crozier, 2013; Maes

et al., 2017; Broeckx et al., 2020). Large scale low-resolution LSS maps can serve as background information to be downscaled25

for the above applications at the local scale, or they can be used in conjunction with large-scale satellite data to construct a

spatio-temporal estimate of the likelihood for a landslide.

Due to their generalizing nature, LSS models are prone to uncertainty (Petschko et al., 2014). A large number of LSS models

exists, but most focus on local to regional scales and typically lack thorough validation or uncertainty assessment (Reichenbach

et al., 2018). Recent advances in computational power and data availability have fostered the development of LSS maps at30

continental level (for example Europe: Wilde et al. (2018) and Van Den Eeckhaut et al. (2012), Africa: Broeckx et al. (2018))

or at the global scale (for example Nadim et al. (2006); Hong et al. (2007); Lin et al. (2017); Stanley and Kirschbaum (2017)).

While information about the uncertainty would be essential to know how reliable these large scale LSS maps are as well as

how much variation can be expected within a mapping unit, only Broeckx et al. (2018) provide such a measure for their map

of Africa and only to a limited degree. The quantification of LSS uncertainty becomes even more called for yet challenging35

at the global scale and with coarser spatial resolution due to necessary generalizations and the increased spatial mismatch

between landslide events and predictor information. A reliable uncertainty assessment of global LSS estimates is moreover

crucial when subsequently combining them in a statistically optimal way with, for example, satellite soil moisture products

from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP) as used by Felsberg et al. (2021).

Uncertainty is typically grouped according to its origin into model uncertainty (here: ‘How correct are the equations that40

we use to predict LSS?’) and input uncertainty (here: ‘How correct is the input to these equations?’). Model uncertainty stems

from heuristic choices that are necessary in the process of model creation, including the choice of the statistical modelling

approach, the selection of predictor variables, training data sampling and training data quality (see for example Steger et al.

(2015); Pourghasemi and Rossi (2016); Zêzere et al. (2017); Depicker et al. (2020); Lima et al. (2021)). In order to estimate

some of these model-intrinsic errors for a chosen modelling approach, cross validation (CV) is a widely used method where45

data is divided into a number of subsets, that are subsequently used for training and testing of the model. How to best sample

the CV subsets to retrieve realistic uncertainty estimates is in itself a field of research. For LSS maps, random sampling is most

common (see for example Broeckx et al. (2018)), while spatial sampling is used less often for an additional uncertainty estimate

(see for example Steger et al. (2020) or Depicker et al. (2020)). However, these are known to respectively strongly under- and

possibly overestimate the model uncertainty, and hybrid methods such as blocked random CV (B-CV) have been suggested to50

result in the most reliable uncertainty estimates (Roberts et al., 2017). CV leads to multiple LSS model equations (one per CV

subset) and the standard deviation of the resulting LSS values gives an indication of the associated model uncertainty as shown

by Broeckx et al. (2018) for Africa.

Input uncertainty principally results from errors in the environmental data. To assess how input uncertainty propagates into

the total prediction uncertainty, ensemble simulations can be used. Meteorologists, for example, simulate the weather based on55

a distribution of initial conditions and predict an ensemble of equally possible outcomes (ensemble members). Instead of only

one deterministic weather forecast, they use the ensemble average prediction that has been found to perform better than their
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deterministic counterpart (Kalnay et al., 2006). The uncertainty of the final ensemble average prediction can then be estimated

by the variance or standard deviation among the ensemble members.

The total ensemble uncertainty, resulting from the combination of these methods that account for model and input uncer-60

tainty respectively, is assumed to be reliable if it matches the observed ‘actual’ total uncertainty. The latter is estimated by

comparing the predicted average LSS against the observed presence and absence of landslides. The gap between this observed

and the predicted total uncertainty can then be closed by tuning the magnitude of the ensemble input perturbations. Note that

this implies that the perturbations might in the end not purely capture the input uncertainty, but actually compensate for other

sources of uncertainty as well that are not specifically addressed. One such important source of uncertainty is spatial repre-65

sentativeness error (Blöschl and Sivapalan, 1995; van Leeuwen, 2015), especially when evaluating spatially averaged grid cell

LSS estimates using single landslide observations as reference data.

In this study, we combine CV and an ensemble approach to create global LSS maps with a reliable total uncertainty (full

ensemble standard deviation). We create multiple LSS equations as part of CV (‘weak model constraint’), and subsequently

perturb the selected predictor variables (input of the LSS model equations) to retrieve a ‘full ensemble’ of possible LSS values.70

Specifically, we focus on hydrologically-triggered landslides and propose to include long-term climatological statistics of hy-

drometeorological variables as predictor variables, in addition to the common geomorphological ones. We use a mixed effects

logistic regression (MELR) relying on the strong generalizing capabilities of logistic regression as the basic model structure,

and we mitigate the potential reporting bias of landslide presences in the Global Landslide Catalog (GLC) with stratified aver-

age road network density (RND) as a random effect. To limit biases from unreliable and confounding definitions of landslide75

absence grid cells for the model creation, we introduce a novel approach based on a ‘characteristic distance’ between land-

slides. After having taken these steps to limit the introduced uncertainty, the B-CV is used to instill model uncertainty via a

selection of different possible predictor variables and associated parameters, and we further add (and tune) ensemble perturba-

tions to the selected predictor variables to obtain a reliable total ensemble uncertainty. This LSS assessment is carried out on the

36-km Equal-Area Scalable Earth version 2 (EASEv2) grid, in line with the nominal spatial resolution of satellite soil moisture80

estimates from SMOS or SMAP. Producing spatial LSS estimates at this resolution facilitates a subsequent combination with

the satellite-based temporally dynamic data, as well as calculations of the above mentioned climatological statistics and the

development of computationally intense ensemble approaches. To our knowledge, no framework has earlier been developed

for the assessment of the total uncertainty of LSS predictions.

Section 2 introduces the landslide (presence, absence) and environmental data used to create ensemble LSS maps. The LSS85

model construction based on MELR is introduced in Sect. 3, along with the methods of CV and input predictor variable

perturbations for uncertainty assessment, and methods to evaluate the results. Section 4 presents the resulting LSS model

structure and selected predictor variables, and the ensemble LSS evaluation for different input perturbations. Section 5 discusses

various aspects of the results. The paper closes with a summarizing conclusion.
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2 Data90

2.1 Landslide data

A first step in creating our LSS models is the creation of suitable training datasets, indicated in the upper part of the flowchart

in Fig. 1. We use reported hydrologically-triggered landslide occurrences from the most recent version of the GLC (https://-

landslides.nasa.gov/viewer, accessed 8th February 2021). The GLC is a landslide inventory that contains information about

location, date and trigger. It is originally based on media reports (Kirschbaum et al., 2010, 2015) but has recently been sup-95

plemented with the citizen science-based Landslide Reporter Catalog (LRC) data (Juang et al., 2019), see Stanley et al. (2021)

for details. Any reference to the GLC hereafter refers to this combined data product. Despite known English-language and

economic biases (Kirschbaum et al., 2010, 2015), the GLC covers all continents and landslide hotspots. It has already been

used for the creation of two global LSS maps (Stanley and Kirschbaum, 2017; Lin et al., 2017) and was used to train the newest

version of the Landslide Hazard Assessment for Situational Awareness (LHASA) model version 2.0 (Stanley et al., 2021).100

For this study, we use 12515 hydrologically-triggered landslides (GLC classifiers “continuous rain”, “downpour”, “mon-

soon”, “flooding”, “rain” and “tropical cyclone”) reported mainly between January 2007 and November 2020. Since LSS

informs about the static environmental landslide likelihood, it is common practice to exclude the temporal aspect of landslide

occurrence and instead work with landslide presence and absence locations. Multiple landslides within the same 36-km EA-

SEv2 grid cell are therefore aggregated into one ‘landslide presence grid cell’, resulting in a total of NLS=3757 (orange grid105

cells, Fig. A1). While we acknowledge that grid cells with more frequent landslide reporting can in general be expected to have

a higher LSS, we found that the information about the frequency of landslide occurrence within a grid cell strongly mirrors

biases in the landslide inventory, e.g. more landslides are reported in English-speaking countries. The aggregation, on the con-

trary, reduces the landslide presence reporting bias of the GLC. To address the remaining landslide presence bias originating

from more landslide reporting in frequently accessed areas, we use stratified data on the RND (including highways and all110

types of roads, ranging from primary to local roads) provided by the Global Roads Inventory Project (GRIP) (Meijer et al.,

2018) as a random effect, explained in Sect. 3.1.

The creation of realistic statistical LSS models and uncertainty estimates depends on the knowledge of both landslide pres-

ences and absences (Roberts et al., 2017; Steger and Glade, 2017; Knevels et al., 2020; Lucchese et al., 2021). Usually, an

absence grid cell is simply defined as one without a recorded landslide. For local modelling, this might work when complete115

and reliable landslide inventories are available. For large or remote areas, however, no reported landslide does not necessarily

mean that the site never experienced one. Terrain features show a certain amount of spatial autocorrelation indicating that

locations in proximity of a known landslide are generally prone to instability as well. It should therefore be avoided to use

grid cells too close to known landslide locations as an absence reference (Brenning, 2005). On the other hand, absence grid

cells sampled very far from the reported landslide locations, in so-called ‘trivial’ or easily classifiable areas (for example flat120

areas), might result in an underrepresentation of stable areas in the vicinity of the known landslide locations (Steger and Glade,

2017). Additionally, it might confound the selection process of geomorphologically meaningful predictor variables and lead to

an overoptimistic conception of the resulting LSS map’s quality (Steger and Glade, 2017; Lucchese et al., 2021).
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Figure 1. Schematic of methodology used in this study to derive ensembles of global landslide susceptibility (LSS) maps. ‘Ensemble’ refers

to a collection of LSS maps. In the course of this study, we refer to different subsets of the full ensemble (LSS2500), namely the ensemble

from one single blocked random CV application (single CV ensemble, LSS5), when adding input perturbations to it (partial ensemble,

LSS125) or when repeating the underlying landslide absence subsampling (CV ensemble, LSS100). Subscript numbers indicate the size

of the LSS ensemble. Model fitting performance is evaluated during the process of cross validation (CV) by calculating the area under the

Receiver Operating Characteristic curve (AUC) for each model equation of form Equation 1.
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In this study, we therefore adopt a sampling strategy as used in earlier LSS assessments (Van Den Eeckhaut et al., 2012;

Lin et al., 2017; Zhu et al., 2017; Nowicki Jessee et al., 2018; Knevels et al., 2020; Lucchese et al., 2021), where reliable125

absence grid cells are defined between a minimum (buffer) and maximum radius around known landslide presence grid cells.

As a measure of spatial autocorrelation we derive the ‘characteristic distance’ between two landslides from the GLC (for

details see Appendix A1). We use this characteristic distance of 221.43 km (∼ 6 grid cells) as the buffer radius, and 2.5 times

this distance (∼ 15 grid cells) as maximum radius. Absence grid cells are hence selected from grid cells 7 to 15 around a

landslide occurrence (blue grid cells in Fig. A1). This definition still results in more than six times more absence grid cells130

(NnoLS> 25000) than landslide presence grid cells (NLS=3757). We therefore randomly sample from the absence grid cells

with a 1:1 ratio (NLS :NnoLS) as is commonly done, for example by Brenning (2005), Steger and Glade (2017), Nowicki Jessee

et al. (2018), Depicker et al. (2020), Knevels et al. (2020), Lin et al. (2021) and Lucchese et al. (2021). LSS models are

subsequently constructed based on data from 7514 (absence + presence) grid cells, as illustrated in Fig. 1.

2.2 Environmental data135

The 77 predictor variables considered in this study are listed in Table 1 and were selected based on earlier reviews on the most

common predictors used for LSS maps (Pourghasemi and Rossi, 2016; Reichenbach et al., 2018). In statistical LSS models,

these predictor variables act as proxies for one or multiple processes underlying a landslide (Whiteley et al., 2019). Since LSS

is referring to the spatial likelihood of landslides, we only consider predictor variables that are (quasi) static in time.

To better represent processes underlying hydrologically-triggered landslides, we include long-term climatological statistics140

of soil moisture in different layers, soil surface temperature, runoff, rainfall, evaporation and snow depth as possible predic-

tor variables. These climatological statistics include the range (here defined as the difference between percentiles 1 and 99),

inter-quartile range, mean, median, percentile 99 and maximum within the time period 1990-2020, derived from 36-km simu-

lations with the Catchment Land Surface Model (CLSM) (Koster et al., 2000; Reichle et al., 2019), forced with Modern-Era

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological data, as in Felsberg et al. (2021).145

Most other predictor variables are part of the 36-km input parameters to the CLSM. Of these, elevation and compound

topographic index (CTI) stem from the same underlying Shuttle Radar Topography Mission (SRTM) data as the morphological

information on slope from the United States Geological Survey (USGS), but with different data sources for the high northern

latitudes (Verdin et al., 2007).

We use lithological information from the Global Lithological Map (GLiM) (Hartmann and Moosdorf, 2012) aggregated to150

the fraction of a grid cell covered by each of the 13 lithological classes (we exclude the classes ‘water’, ‘ice and glacier’, and

‘no data’). This produces a dataset with 13 fields, each with a continuous fraction estimate. Peak ground acceleration (PGA) is

the likely level of ground motion from earthquakes (Giardini et al., 2003). Here, we do not use it as the likelihood of a seismic

landslide trigger, but rather as a proxy for the fracturation and weakening that lithologies have undergone due to seismic and

tectonic activity (Lin et al., 2017; Vanmaercke et al., 2017; Broeckx et al., 2018). Details on the aggregation methods are given155

in Table 1.
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Table 1. Environmental predictor variables used in this study, alongside their data source, original spatial resolution and methods used

for aggregation to the 36 km EASEv2 grid. Apart from slope, lithology, PGA and rainfall, the specified aggregation was not conducted

in this study. Predictor variables that are part of the CLSM parameter set or output do not require any spatial aggregation. Long-term

climatological statistics of all hydrological variables comprise the range (here: difference between 1st and 99th percentile), inter-quartile

range, mean, median, 99th percentile and maximum between 1990 and 2020. MERRA-2 precipitation is used as input for the calculations

of the hydrological climatological statistics and has been interpolated to the 36 km EASEv2 grid as part of the simulation process. Units are

given for the original data, but are removed through the rescaling of the data to the interval (0,1) (see text).

Predictor variables Data source
Original spatial

resolution

Aggregation method

to or within EASEv2,

36 km grid cell

slope (mean, maximum) [◦] USGS: details in Verdin et al. (2007) based

on SRTM DEMa and GTOPO30b

3” (SRTM DEM),

30” (GTOPO30)

mean and maximum

elevation (mean, standard deviation) [m a. s. l.] CLSM parameters: details in Verdin (2013)

based on SRTM DEMa and GMTED2010c

3” (SRTM DEM),

7.5” (GMTED2010)

mean and standard

deviation

depth to bedrock [m] CLSM parameters: details in De Lannoy

et al. (2014) based on GSWP-2d

1◦ spatial interpolation

percentage of gravel (0-30 cm) [vol%] CLSM parameters 30” most representative

percentage of clay (0-30 cm and 0-100 cm) [w%] details in De Lannoy et al. (2014) 30” sample

percentage of sand (0-30 cm and 0-100 cm) [w%] based on STATSGO2e

porosity (0-30 cm and 0-100 cm) [m3/m3] and HWSD1.21f

wilting point divided by porosity (0-30 cm and 0-100 cm) [-]

compound topographic index, CTI (mean, maximum) = ln(specific catch-

ment area/tan(slope)) [log(m)]

CLSM parameters: details in Verdin (2013)

based on SRTM DEMa and GMTED2010c

3” (SRTM DEM),

7.5” (GMTED2010)

mean and maximum

land fraction within grid cell CLSM parameters: HYDRO1k based on

GTOPO30, 1996 (EROS, 2018; Verdin,

2013)

10” areal fraction

fraction covered by each of 13 lithological classes [-]: metamorphic rocks,

mixed sedimentary rocks, siliclastic sedimentary rocks, basic plutonic

rocks, acid plutonic rocks, basic volcanic rocks, intermediate volcanic

rocks, carbonate sedimentary rocks, unconsolidated sediments, interme-

diate plutonic rocks, pyroclastics, evaporites, acid volcanic rocks

GLiM created by Hartmann and Moosdorf

(2012)

polygons areal fraction

peak ground acceleration, PGA [m/s2] due to earthquakes expected with

a return period of 475 years (i.e. 10% exceedance probability in 50 years)

GSHMg created by GSHAPh (Giardini et al.,

2003)

1° nearest neighbour

rainfall climatological statistics [mm] MERRA-2 (Bosilovich, 2015) 0.625° lon x 0.5° lat bilinear interpolation

surface soil moisture climatological statistics (0-5 cm) [m3/m3] CLSM output EASEv2, 36 km -

root zone soil moisture climatological statistics (0-100 cm) [m3/m3]

profile soil moisture climatological statistics (0-100 cm) [m3/m3]

land surface temperature climatological statistics [K]

runoff climatological statistics [mm]

evaporation (incl. transpiration) climatological statistics [mm]

snow depth climatological statistics [mm]

a Shuttle Radar Topography Mission digital elevation model; b USGS global elevation model; c Global Multi-resolution Terrain Elevation Data 2010; d Second Global Soil Wetness Project;

e State Soil Geographic project; f Harmonized World Soil Databank version 1.21; g Global Seismic Hazard Map; h Global Seismic Hazard Assessment Project;
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3 Model construction and evaluation

This section introduces the methods used in this study for model construction and evaluation. Section 3.1 introduces the general

principles of logistic regression used to derive global LSS estimates, before elaborating the predictor variable selection process

and the implementation of average road network density as a random effect. Section 3.2 introduces methods for uncertainty160

assessment. First, cross validation is introduced with a detailed explanation of the blocked random sampling. Second, the

methods of input ensemble perturbations are briefly explained (details are elaborated in Appendix A2). LSS results based on the

first approach alone are referred to as ‘CV ensemble’ or LSS100. Results based on both CV and input ensemble perturbations

are referred to as ‘full ensemble’ or LSS2500. Section 3.3 introduces the methods and data used for the evaluation of ensemble

average LSS and the impact of the extended uncertainty assessment through input perturbations.165

3.1 Mixed effects logistic regression (MELR) for model development

In this study, we create a statistical LSS model using MELR (Zuur, 2009), as previously also employed by Steger et al. (2017),

Lin et al. (2021) and Lima et al. (2021). Logistic regression is the most commonly used approach for statistical LSS mapping

(Reichenbach et al., 2018). It is associated with strong generalizing capabilities (Brenning, 2005), which is a necessity when

working at the global scale, and it has proven to be reliable in continental to global LSS assessments (Broeckx et al., 2018;170

Lin et al., 2017). Within logistic regression, the LSS, here defined as the probability of a landslide presence within a grid cell,

P (Y = 1), is given by:

P (Y = 1) =
exp(α+

∑n
i=1βixi)

1 + exp(α+
∑n

i=1βixi)
(1)

with α [-] the intercept, xi [-] the independent predictor variables, βi [-] the associated coefficient and n the number of

predictor variables. A one unit change in the predictor variable xi results in a multiplicative change by exp(βi) in the odds175

of landslide presence, defined as the ratio of P (Y = 1)
/

(1−P (Y = 1)) = exp(α+
∑n

i=1βixi). An increase in the odds of

landslide presence is associated with a (non-linear) increase in LSS. Positive (negative) β-values hence indicate an increase

(decrease) in LSS with an increase in the predictor variable. In this study, we work with rescaled predictor variables (between

their global minimum and maximum) to detach the magnitude of the β-values from the magnitude of the predictor variable.

This facilitates subsequent interpretation.180

We employ a stepwise forward technique to select five predictor variables, corresponding to the commonly used number

of predictor variables for LSS assessment at the global scale (Nadim et al., 2006; Stanley and Kirschbaum, 2017; Lin et al.,

2017; Reichenbach et al., 2018). Based on the Akaike information criterion (AIC), a measure that is proportional to the sum of

squared errors and allows for comparison between non-nested models, we determine the best performing univariate MELR, i.e.

the first predictor variable. The AIC comparison is subsequently repeated for multivariate MELR with one additional predictor185

variable at a time. This stepwise forward selection also allows to exclude correlated predictor variables (r > 0.7, following for

example Dormann et al. (2013)), so that largely independent predictor variables are used in the logistic regression. An analysis
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of the generated models using the Variance Inflation Factor (VIF) proved that this approach indeed successfully prevented a

logistic regression model construction based on predictor variables that are too strongly correlated.

The mixed effects approach allows us to include a categorically scaled variable as a so-called ‘random effect’, here the190

random intercept α, for which we use the average road network density (RND) stratified into 6 classes. We summarize all land

grid cells where average RND is negligible (< 1m/km2) into the first class and use quantiles 20, 40, 60 and 80 of those grid

cells with non-negligible RND to divide the rest into additional 5 classes. The mixed effects approach will then result in one

global logistic regression equation that has the same β-factors for all grid cells, but 6 different α-values according to each grid

cell’s RND class. For model fitting purposes it is assumed that these 6 α-values come from a normal distribution (Zuur, 2009).195

The underlying assumption of RND as a random effect is that the representativeness of the landslide data from the GLC

varies with the RND of the region. We recognize that RND may also serve as a proxy for human interference or likelihood of

slope cutting and may hence be included as a predictor variable, as was argued by Stanley and Kirschbaum (2017). The use of

RND as a predictor variable or random effect can be expected to have similar results were the connected bias small. For large

biases, however, predictions using RND as a predictor variable would systematically underestimate the actual LSS of remote200

areas with strong underreporting of landslides (as was put forward by Steger et al. (2017) for forested areas). The inclusion

of RND as a random effect favours the selection of natural, physically valid predictor variables while allowing for locations

without roads to also receive a high predicted LSS. The inclusion of random effects in a regression model results in unbiased

model parameter estimates, but it does not inform about the uncertainty of the predictions (Roberts et al., 2017). We use the

glmer function from the lme4 package (Bates et al., 2015) to create MELR models in R version 4.0.3 (R Core Team, 2020)205

where the best fitting parameters are obtained by maximum likelihood estimation.

3.2 Cross validation (CV) and input perturbations for reliable uncertainty estimation

In this study, the predicted total ensemble uncertainty results from the combination of CV techniques and input ensemble

perturbations. For CV, the data is separated into 5 subsets, which subsequently are used for training and testing the model with

the hold-one-out technique, as illustrated in Fig. 1. We employ a blocked random CV (B-CV), as recommended by Roberts210

et al. (2017), which we found to indeed yield most realistic error estimates in comparison to random or spatial sampling (not

shown). This means that instead of randomly sampling individual grid cells into the 5 subsets for training and testing the model

as part of CV, we randomly sample small groups of grid cells with similar environmental conditions, so-called ‘blocks’ (see

Fig. 1). We expect that the environmental conditions are similar in neighbouring pixels (for example same subcontinent) and

for similar climate zones. We therefore derive blocks in 2 steps. First, the 7514 grid cells selected for model creation are divided215

according to 10 predefined (sub-) continents. Within each (sub-) continent, we then derive in a second step 10 blocks through

kmeans clustering (Lloyd, 1982) of 30-year average soil surface temperature and rainfall (see Table 1). In total we retrieve 100

blocks comprising different numbers of grid cells (median: 55) that are not necessarily located next to each other. The 100

blocks are then randomly divided into the 5 subsets for model creation (20 each).

Next, the MELR is iteratively trained on 4 subsets and the model fitting performance is tested against the 5th, i.e. the220

hold-one-out subset, using each subset as a test-subset once (see Fig. 1). This results in 5 different model equations of form
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Equation 1 and corresponding LSS maps. By repeating the random absence grid cell sub-sampling 20 times, we obtain a total

of 100 LSS maps (referred to as CV ensemble or LSS100, see Fig. 1) that allow for calculations of an ensemble average

LSS (LSS100), as well as a standard deviation (σLSS100) per grid cell. Note that the definition of the individual blocks varies

between each repetition of absence grid cell sampling due to the kmeans clustering algorithm.225

For the input ensemble perturbations, we apply one fitted model equation to a slightly perturbed set of its predictor variable

values. In total, 24 repetitions of this process are conducted, resulting in a total ensemble of 25 LSS maps per model equation

(see Fig. 1). In combination with the 5 model equations and 20 repetitions for the CV ensemble, this results in a total amount

of 2500 LSS maps (referred to as full ensemble or LSS2500) with corresponding average (LSS2500) and standard deviation

(σLSS2500
) per grid cell. The latter is representative of the total prediction uncertainty.230

The aim is to design an LSS model setup so that the predicted total ensemble uncertainty, quantified by the ensemble variance

or spread σ2
LSS matches the discrepancy between predictions and observations which we refer to as the ‘actual’ uncertainty.

A measure of this actual uncertainty is the Brier Score (BS) (Wilks, 2011) which compares the predicted average LSS (LSS)

against landslide observations from the GLC (o) at different grid cells i (i= 1, ...,N ):

BS =
1

N

N∑
i=1

(LSS− o)2i (2)235

with o being 1 for landslide presence and 0 for absence grid cells. This actual uncertainty by design includes model and input

error (LSS), but also error in the reference data (o), and spatial representativeness error. The perturbations to the predictor

variables are randomly sampled from a normal distribution with the mean being the original value of the grid cell. The standard

deviation, or perturbation magnitude, is tuned, so that the resulting total ensemble spread (including the spread originating

from CV) matches the observed actual uncertainty BS in Equation 2. For details of the tuning process, see Appendix A2. We240

apply the same perturbation magnitude to all (rescaled) predictor variables. The magnitude is chosen to increase proportionally

to the topographic complexity of a location from 15% to 20%. We use the variation of elevation within a grid cell as a measure

of said topographic complexity and find this perturbation scaling to yield better results than a globally constant perturbation

magnitude. Note that these perturbations in xi do not linearly propagate into the LSS estimates, because the logistic regression

(see Equation 1) relates xi to LSS via an S-shape LSS curve, with quasi-linear behaviour at the center (i.e. intermediate xi245

values) and asymptotic behaviour towards the upper or lower limit (i.e. for very low or high xi values). Locations of largest

perturbation do thus not necessarily coincide with large resulting ensemble uncertainty.

3.3 Evaluation

To quantify how well a predicted LSS map represents observed landslide presences and absences, a BS can be used (see

Equation 2). Alternatively, the Receiver Operating Characteristic (ROC) is commonly used as evaluation tool for categorical250

response values such as landslide presence and absence (Reichenbach et al., 2018). For the ROC, the true positive rate of one

LSS map is displayed against its false positive rate for different possible thresholds in the continuous probability (here: LSS)

that is predicted. The true positive rate is the proportion of correctly predicted landslide presence grid cells when applying said
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threshold (‘true positives’) of all observed landslide presence grid cells (Wilks, 2011). The false positive rate is the proportion

of erroneously predicted landslide presence grid cells (‘false positives’) of all observed landslide absence grid cells. The area255

under the ROC curve (AUC) is 1 for a perfect representation of the spatial LSS distribution, whereas an AUC value of 0.5

indicates that the model does not perform better than a uniform distribution.

Depending on the reference landslide data, the ROC analysis can be conducted for specific grid cells from a CV subset

(independent data not used in the training), or from other independent landslide inventories. Here, we use landslide presence

and absence information from the grid cells of the fifth CV subset to assess the model fitting performance for each LSS260

ensemble member map ‘on the go’. To evaluate the final prediction performance of the complete ensemble averages and the

corresponding ensemble members, we use 3 independent landslide inventories. We obtain 36-km landslide presence grid cells

as described for the GLC in Sect. 2.1 for i) quarterly reports issued by the Russian Federation (FSBIH, 2018) with NLS = 56

aggregated from 183 observations, ii) an inventory for Africa by Broeckx et al. (2018) with NLS = 649 aggregated from

18053 observations and iii) FraneItalia, a catalog of recent landslides in Italy (Calvello and Pecoraro, 2020) with NLS = 309265

aggregated from 5438 observations. Since we trust their landslide absence reporting to be reliable, we use all other grid cells

within the region in question as landslide absence grid cells. These validation inventories cover different climatic zones and

hence landslide regimes, stem from (mostly) non-English speaking regions (Africa, Russia, Italy) and include less populated

areas (Africa, Russia), not well represented in the GLC data that underlie our LSS estimates. With Italy being a hot-spot of

landslide occurrence within Europe, we are moreover able to assess whether the coarse spatial resolution hinders realistic270

regional assessment within smaller, potentially very susceptible areas.

The AUC and BS metrics can be computed for individual ensemble members (of the CV ensemble LSS100, or the full

ensemble LSS2500, yielding a distribution of metrics) or for ensemble averages (LSS100 and LSS2500). It will be assessed

whether i) an ensemble average outperforms an individual member LSS realization, and whether ii) the full ensemble average

with ensemble input perturbations (LSS2500) outperforms the CV ensemble average which does not include input perturbations275

(LSS100). This would be in line with the expectations for hydrological or meteorological models (Kalnay et al., 2006).

4 Results

4.1 LSS model structure

This section investigates the different values for the β-coefficients and intercept α of the 100 MELR models created following

Fig. 1. The landslide absence data, used to train these models, differ for each of the 20 repetitions and subsequently the280

definitions of the subsets for B-CV vary as well. All 100 models result in LSS maps with very high AUC values above 0.8, with

a median of 0.92, for the corresponding test data.

The values of the intercept α take negative values for low RND and positive values for high RND (by design, not shown).

Figure 2 left panel shows which predictor variables were selected how often and during which step of the selection process

(AIC, see Sect. 3.1). The right panel shows boxplots of the β-values for each predictor variable (see Equation 1). Whiskers285

extend from minimum to maximum and boxes from 25th to 75th quantile, with the median indicated in between. The first
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Figure 2. (Left) Frequency of selected predictor variables and (Right) corresponding β-values. The 5 best predictor variables (out of 77, see

Table 1) are determined using stepwise forward selection for each MELR model equation (n=100). Colours indicate at which selection step

(1-5) the predictor variable was selected. Boxplots for β-values are based on the n values of the left panel, independent of the selection step.

Whiskers extend from minimum to maximum β-values. Where n= 1, boxplots are replaced by a point.

selected predictor variable was always related to the slope, i.e. either the mean CTI within the grid cell, the maximum slope

or the mean slope. The mean CTI, also known as a topographic wetness index, was selected as part of all 100 models. It is

inversely proportional to slope (see Table 1), which is in line with the negative β-values, i.e. decrease in LSS is expected with

increasing CTI. The second selected predictor variable is either another slope measure (maximum slope or standard deviation290

of the elevation i.e. local relief) or, for more than 65% of the models, related to the climatologic conditions (median surface

soil moisture, range of evaporation, maximum evaporation or surface soil moisture). Out of these variables, median surface soil

moisture stands out as most frequently being the second predictor variable (for more than 50% of the models). Independent of

the selection step, it is part of more than 80% of the models. All of these variables are modeled with positive β-values, i.e. the

higher the predictor variable, the larger the odds of a landslide presence and hence the LSS.295

The areal fraction of evaporites within the grid cell is the only lithological class that was selected, and only in the final

selection step. The very unrealistic β-value associated with this predictor (-128.65) suggests that this selection is possibly a

statistical artefact. The PGA, treated as a proxy for lithologic weakening due to regular seismic activity, is dominantly selected

in the later variable selection steps, but still part of about 80% of the models.
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Figure 3. a) Ensemble average LSS (LSS2500) and b) standard deviation (σLSS2500 ) at 36-km resolution. White areas denote missing values

(water bodies, ice). Seemingly larger grid cells in the North are characteristic of the EASEv2 grid projection.

4.2 Evaluation of ensemble LSS300

Based on these 100 model equations, and when perturbing the input parameters (see Fig. 1), we obtain the full ensemble average

LSS (LSS2500) and standard deviation (σLSS2500
) shown in Fig. 3. The highest LSS2500 can be found in the large mountain

ranges on all continents as well as coastal areas (especially the islands in South-East Asia). Very flat areas or planes, such as

central northern Canada, Siberia, the Tibetan plateau, the Arabian peninsula, large parts of Africa (especially the Sahara) as

well as central Australia have very low LSS2500. Intermediate LSS2500 values are found in the northern Rocky Mountains305

towards Alaska as well as the Kolyma Range in Russia, at the north-eastern shores of South America and the western shores of

Africa, along the East African Rift, Scandinavia and India. Figure 4a shows a density scatter plot of σLSS2500
versus LSS2500.
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Figure 4. (Top) Ensemble standard deviation LSS (σLSS) versus ensemble average (LSS) of a) the full ensemble (LSS2500) and b) CV

ensemble (LSS100) with the corresponding marginal distributions. The marginal distributions contain values of the complete set of 112573

‘land’ grid cells for which LSS is estimated and are scaled by their peak for visualization. (Bottom) Comparison of the c) ensemble average

and d) standard deviation of LSS2500 and LSS100. The 1-1 line (red, dashed) is shown as reference.

The uncertainty σLSS2500 is large for areas with intermediate LSS2500, whereas very high or low LSS2500 typically have a

smaller associated σLSS2500 .

Figure 5 illustrates the ensemble LSS2500 distribution for 20 randomly sampled landslide presence and absence grid cells.310

Even though we quantify the uncertainty with a σLSS2500
, the distributions are mostly non-gaussian. Most displayed landslide

presence (absence) grid cells have LSS distributions ranging at the upper (lower) end of the interval (0,1). Grid cells 1, 7 and

18, however, exhibit a very wide distribution that seems disconnected from the absence (1, 17) or presence (18) of a landslide.
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Figure 5. Distribution of ensemble member LSS values (LSS2500) within sample grid cells for select landslide presence (light orange triangle

on map) and absence (blue circle on map) grid cells. Please note that the distributions (top) all contain 2500 LSS ensemble members and are

merely scaled by their peak to avoid overlaying (large peak) or invisible (small peak, but wide distribution) curves.

The ROC curves for ensemble average LSS2500 are shown in Fig. 6, with the curves for Russia (AUC: 0.92) and Italy

(AUC: 0.91) being closest to the upper left corner, and that for Africa being a little further from this optimum (AUC: 0.84).315

The LSS2500 map hence very well captures the landslide patterns over all three regions.

4.3 Impact of input perturbations

The above discussion of the full ensemble LSS2500 includes perturbations to the predictor variables on top of the CV ensemble

LSS100 obtained by the CV techniques alone. Figure 4a and b show that the LSS uncertainty is a function of the average LSS

values and that σLSS2500
is typically higher than σLSS100

. Figure 4d shows that the differences between σLSS2500
and σLSS100

320

are smallest for the very high and low σLSS100
. However, Figure 4c shows that the ensemble averages LSS2500 and LSS100

are similar, as expected from the additional zero-mean predictor variable perturbation. The values of LSS2500 are slightly

smaller than those of LSS100, except for very small LSS (< 0.1).
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Figure 6. ROC curves of full ensemble average LSS (LSS2500) for validation inventories from Russia, Italy and Africa. Corresponding AUC

values are denoted in brackets.

Figure 7 shows boxplots of the AUC values for individual members of the CV ensemble (LSS100) and the full ensemble

(LSS2500) compared against the according CV test subsets, as well as the independent validation inventories. Note thatLSS100325

is a subset of LSS2500. The median AUC value is lower for LSS2500 than for LSS100 for all reference data. Despite this shift,

a number of the LSS2500 ensemble members also perform better than any of those from LSS100. The intention is not for

the individual ensemble members to have the best prediction, but rather for the ensemble average LSS to be best: clearly the

ensemble mean performs better than the majority of the individual ensemble members. We find AUC values for these LSS2500

and LSS100 (dots on the figure) to be practically the same (Fig. 4c)330

5 Discussion

5.1 Selected predictor variables

For the global LSS prediction of this study, the mean CTI per grid cell is the most important predictor variable. Mean and

maximum slope within a grid cell are selected less often as the first predictor variable, but one of the two is still included in

nearly every MELR model. We attribute the primary importance of CTI to the fact that our model is trained with data from335

hydrologically-triggered landslides (Kirschbaum et al., 2010, 2015), which do not uniquely occur on steep slopes. The CTI

intrinsically contains information on the potential hydrological conditions of the site (through the catchment area) as well as

its slope. In line with our study, Emberson et al. (2021) found that the CTI is a strong predictor of rainfall-induced landslides

for a number of inventories in the tropics and subtropics. Earlier global LSS maps by Nadim et al. (2006), Hong et al. (2007)
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Figure 7. Distribution of AUC for model fitting performance (test data) and model prediction performance (based on independent validation

inventories from Russia, Italy and Africa). Boxplots are shown for CV ensemble members (LSS100) and full ensemble members (LSS2500,

including CV ensemble members), with whiskers extending from minimum to maximum AUC. AUC values for ensemble averages are

displayed as points (black: LSS100, coloured: LSS2500). The latter correspond to the ROC curves shown in Fig. 6.

and Stanley and Kirschbaum (2017) primarily used slope information, while Lin et al. (2017) use relative relief. The latter is340

comparable to the standard deviation of elevation, which is selected in more than 25% of the models of our study.

Long-term median surface soil moisture was most frequently selected as the second predictor variable and part of more than

80% of all models. The positive connection to LSS reflects the fact that hydrologically-triggered landslides mostly occur in

humid regions where the soil is often wet and rainfall can more easily destabilize a slope. The close relation between surface

soil moisture and rainfall characteristics is probably the reason for its preferred selection compared to deeper layer soil moisture345

variables. The high correlation between surface soil moisture and both rainfall and deeper layer soil moisture variables prevents

that the latter two would be selected during one model creation (see Sect. 3.2). The preference for median surface soil moisture

over average rainfall might be due to the less extreme values in soil moisture (quasi-normal distribution) compared to the highly

non-normal distribution of rainfall, but could also reflect that surface soil moisture intrinsically contains additional information

on the soil characteristics. It can be interpreted as a proxy or integrator of rainfall patterns, soil and possibly also vegetation350

characteristics. Similar to surface soil moisture, a positive relation of LSS is found for the (inter-quartile) range of evaporation.

This accounts for regions with strong seasonality in rainfall and in the associated evaporation over wet soils.

In earlier global LSS maps, Nadim et al. (2006) and Lin et al. (2017) included information on the soil moisture in the form

of a soil moisture index by Willmott and Feddema (1992)) that distinguishes ‘wet’ and ‘dry’ climates. Lin et al. (2017) found

this index to be the most important predictor variable. Broeckx et al. (2018) include climatological average annual rainfall as a355
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predictor variable for LSS over Africa. At the global scale, the use of climatological statistics of hydrometeorological variables

for LSS has not been tested before. It is important to note that such long-term statistics are meant to remain constant in time

for global LSS estimation (by definition), but they also offer the possibility to recompute and refine LSS estimates in an era of

climate change.

We did not find significant contributions of lithological predictor variables. For Africa, Broeckx et al. (2018) found a (limited)360

impact of the presence of unconsolidated sediments and siliclastic sedimentary rocks on LSS. Stanley et al. (2021) found

the lithology (regrouped from GLiM) to be the least important factor. While local lithology plays a vital role for landslide

occurrence, the large data uncertainty and often very broad definitions (as for example elaborated by Campforts et al. (2020) in

a different context) hinder meaningful contributions to LSS assessment, even for smaller scale studies. This might also explain

why, instead, PGA was favoured as a proxy for structural weakening during the variable selection. The one-time selection of365

the fraction of land within a grid cell, with a negative β-value assigned, reflects that coastal or shore areas with a low land

fraction are more prone to landslides (higher LSS).

Overall, the selected predictor variables, as well as the assigned β-values are in line with general geomorphologic under-

standing and previous studies. We acknowledge, however, that not all possible predictors for landslides were included in the

analysis. For example, land cover and land use were not explicitly included (although they are implicitly included in the cli-370

matological statistics of soil moisture, runoff and evaporation). Forest has been found to be less susceptible to landslides than

non-forested areas in some regional studies (Sidle and Bogaard, 2016; Knevels et al., 2021; Depicker et al., 2021; Steger

et al., 2020), although Stanley and Kirschbaum (2017) pointed out that landslides are also simply more easily observed in non-

forested areas. Land cover and land use change, e.g. deforestation and urbanization (possible slope undercutting and changes

in the natural drainage system of hillslopes) are also known to increase propensity for landslides (Dille et al., 2019; Depicker375

et al., 2021). Stanley and Kirschbaum (2017) include forest loss and presence of roads as predictor variables for their global

susceptibility map. With the expanding human presence, such predictor variables would require temporal updates and need

further research for global applications.

5.2 Full ensemble results

The spatial patterns of the full ensemble average LSS (LSS2500, see Fig. 3) agree well with those of the categorical LSS maps380

by Stanley and Kirschbaum (2017) at 1 km resolution and Lin et al. (2017) at 0.5° resolution, shown in Fig. 8a and b. Figure 8

c and d show the distribution of the continuous 36-km LSS2500 per LSS class of these two reference maps. In comparing the

maps, we find a larger area covered by high LSS2500 for example in the Eastern United States, Latin America, Mediterranean

Europe, India, South-East Asia and New Zealand. At the same time, LSS2500 shows much less variation than the map by

Stanley and Kirschbaum (2017) within large deserts (Sahara, Arabian peninsula and central Australia). This might be a result385

of the coarser spatial resolution, but is also attributable to the fact that LSS2500 is strongly governed by hydrological predictor

variables apart from the typical geomorphological ones. With a very large proportion of the lowest LSS class, Lin et al. (2017)

have even less variation within these areas than LSS2500.
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Figure 8. Comparison of LSS2500 against existing global categorical LSS maps by (a) Stanley and Kirschbaum (2017) and (b) Lin et al.

(2017). Boxplots showLSS2500 values extracted from the nearest 36-km grid cell for each (c) 1-km and (d) 0.5o grid cell in the reference map

per LSS class. Whiskers extend from minimum to maximum LSS2500. Boxplots are underlain with the fractions of the reference map LSS

classes (grey). Note that both reference maps start off from continuous LSS values but use very different thresholds for the class definitions:

Stanley and Kirschbaum (2017) set breakpoints at [0.11,0.49,0.67,0.75], defined so that each category contains twice as many grid cells as

the next highest, whereas Lin et al. (2017) set breakpoints at [0.4,0.6,0.7,0.9], following Guzzetti et al. (2006) and Van Den Eeckhaut et al.

(2012).

These realistic spatial distributions of LSS2500 are supported by the AUC values calculated for this ensemble average (dots

in Fig. 7). The lower AUC value for Africa can be attributed to the fact that the inventory comprises also very old landslides390

from very different climatic conditions. In general though, these AUC values are in line with those of Stanley and Kirschbaum

(2017) and Lin et al. (2017), who reported AUC between 0.6 and 0.9, and around 0.9, respectively.

Figure 5 shows that the distributions of LSS ensemble members within one grid cell could have a very wide range. Even

though in this figure we only selected locations within English-speaking countries and excluded unreliable absence grid cells
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(see Sect. 2.1), it is still possible that an absence grid cell could experience a landslide, even if none has been reported in the395

GLC. A prominent example of this are absence grid cells 1 and 7, located in the East African Rift and India, respectively.

Both grid cells have no reported landslide, but very wide LSS distributions, with relatively high LSS values. This discrepancy

between prediction and observation could indicate the need to visit this location for landslide research. At the same time,

landslide presence grid cell 18 also has a very wide LSS distribution with a rather low average. This could either indicate that a

non-hydrological process caused the landslide (misclassification) or that specific unrepresented features are present within the400

grid cell area. Overall, we find an average LSS2500 of 0.18 (0.82) for landslide absence (presence) grid cells (as displayed in

Fig. A1) which makes us confident in our classification of these grid cells.

Calculating the ensemble standard deviation of these distributions (σLSS2500
) is a good measure of total prediction uncer-

tainty associated with the LSS2500 for one grid cell. The σLSS2500 is typically small for distributions at either end of the LSS

interval (0,1), resulting in the parabolic pattern as displayed in Fig. 4a-b. This pattern has also been found for local assessments405

(Guzzetti et al., 2006; Depicker et al., 2020)) and holds for Broeckx et al. (2018) over Africa as well (visual comparison of two

maps). The reasons for this relationship between LSS2500 and σLSS2500
are twofold: (i) The classification algorithm works

best for extreme environmental conditions, such as very steep slope or completely flat areas and has a strongly nonlinear,

asymptotic behaviour (logistic regression), and (ii) the predictions are limited to the interval (0,1), restraining the opportunity

for deviations at the extremes to one side. A comparison of σLSS2500 with independent global estimates is currently not possi-410

ble for lack of uncertainty estimates (Nadim et al., 2006; Hong et al., 2007; Stanley and Kirschbaum, 2017; Lin et al., 2017).

However, a comparison with the standard deviations retrieved during the process of random CV for the continental LSS map

of Africa by Broeckx et al. (2018) (i.e. not accounting for the total uncertainty) reveals that the patterns are very similar, but

with less (more) variation in σLSS2500
for the very arid (humid) regions.

5.3 Impact of input perturbations415

In this study, we add predictor variable perturbations to the CV approach in order to obtain a more reliable estimate of the total

prediction uncertainty from the resulting full ensemble. By design, the zero-mean input perturbation does only marginally

affect the ensemble LSS (see Fig. 4). Slightly increased (decreased) LSS2500 at the lower (upper) limits can be attributed to

the resampling of predictor variable values if they exceed the definition interval of rescaled predictor variables (0,1). Overall,

this introduced bias remains small.420

The AUC analysis (Fig. 7) shows that the ensemble averages perform much better than individual ensemble members, and

that LSS2500 and LSS100 perform equally well. Not shown is that the BS (Equation 2) decreases (i.e. improves) for LSS2500

in comparison to LSS100 where LSS is not very close to the observation already (landslide presence and absence). This effect

is, however, not visible in the AUC comparison (spatial accuracy) for the validation data in Russia, Africa and Italy because the

grid cells with BS improvement only make up for ∼8%, ∼9% and ∼18% respectively. The AUC values of ensemble averages425

remain practically the same, and an LSS model without predictor perturbations would hence suffice for a general insight in the

global spatial LSS pattern.
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That the individual ensemble member LSS maps of LSS2500 (based on perturbed variables) have lower median AUC values

than LSS100 is logical: the model equations are tailored to the original predictor variable values so that they are optimally

combined into an LSS prediction. Any change of these variables could deteriorate the outcome. This is, however, no lack in430

quality of the ensemble, but rather a side effect. We do not use the individual ensemble members but their average as an LSS

prediction, for which we find practically unchanged spatial accuracy between CV ensemble and full ensemble.

By tuning the predictor variable perturbations to match the total ensemble prediction uncertainty to the observed actual

uncertainty, we are able to provide statistically reliable uncertainty estimates for the predicted average LSS, even in places

where landslide observations are unavailable. As stated before, this optimized spread is introduced to the input variables,435

but does not actually reflect the input errors only: it also compensates for other uncertainty sources that are not specifically

addressed, incl. spatial representativeness error, and uncertainties introduced by heuristic decisions along the way, such as

the choice of the statistical model, etc. Explicitly accounting for these error sources would require dedicated analyses (as for

example conducted by Depicker et al. (2020)). Because Zêzere et al. (2017) found that the choice of spatial mapping unit

influences LSS estimates stronger than the choice of statistical model, we do not expect that our results would fundamentally440

change for approaches other than MELR. Future research could explore the additional information, such as landslide sizes,

types or the frequency of occurrence per grid cell instead of reducing the data to landslide presence and absence. For the latter,

one would need to find ways to counteract the English-language and economic bias of the GLC which is more pronounced

when using the actual number of reports instead of the presence-absence method chosen in this study.

6 Conclusions445

This study presents the first global landslide susceptibility (LSS) map directly developed to be compatible with satellite soil

moisture products retrieved from passive microwave sensors, i.e. at a spatial resolution of 36 km. The novel method of combin-

ing blocked random CV (B-CV) and predictor variable perturbations results in a reasonable assessment of the associated total

prediction uncertainty. For each grid cell, we estimate 2500 individual LSS values (‘full ensemble’) that are summarized by

the ensemble average LSS (LSS) and standard deviation (σLSS , i.e. the uncertainty). Together, these LSS statistics can provide450

unprecedented information for subsequent global probabilistic spatio-temporal landslide modeling, and statistical combination

of the LSS and soil moisture estimates, each with their respective uncertainties. Furthermore, the LSS maps have the potential

to discern areas that deserve more attention for landslide detection.

A mixed effects logistic regression (MELR) is used as the model structure to relate environmental predictor variables to

spatial landslide likelihoods. The objectively selected predictor variables are mainly related to slope and hydrology, in line455

with the expectations for hydrologically-triggered landslides. The odds of landslide occurrence were found to (i) decrease with

increasing compound topographic index (CTI), which depends on the ratio of catchment area and slope and (ii) increase with

increasing slope, peak ground acceleration (PGA) and long-term climatological statistics of surface soil moisture (median and

99th percentile) or range of evaporation. The inclusion of long-term statistics of hydrometeorological variabels enables future

investigations into possible shifts in LSS due to climate change.460
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The map of the full ensemble LSS reproduces global patterns of LSS as presented in previous global studies well. The

performance assessment yields area under the ROC curve (AUC) values of 0.92, 0.91 and 0.84 for independent data from

Russia, Italy and Africa, respectively. The uncertainty σLSS is largest for intermediate LSS. High predicted LSS at (reliable)

landslide absence grid cells might furthermore indicate regions that could benefit from future landslide detection and research.

For the ensemble perturbations of the selected predictor variables we use a perturbation magnitude of 15% to 20%, linearly465

proportional to the variation of elevation within a grid cell. The magnitude is chosen to match the total predicted ensemble

uncertainty with the observed actual uncertainty relative to data from the Global Landslide Catalog (GLC). Adding these

perturbations does not linearly propagate into the ensemble spread due to the asymptotic nature of logistic regression. It

increases the ensemble spread for locations of intermediateLSS while having negligible impact whereLSS is close to its lower

or upper limit. The ensemble LSS and its spatial accuracy (AUC) remain practically unchanged by the ensemble perturbations,470

but AUC values of these average predictions are always much better than that of individual ensemble realizations. In short,

these novel methods explicitly focus on the uncertainty quantification. The availability of global reliable uncertainty estimates

is an unprecedented new contribution to the suite of global LSS maps, and it will support stochastic landslide hazard modeling.

Code and data availability. For most of the landslide and environmental predictor data we refer the reader to the provided sources. Source

code and climatological statistics of hydrological parameters in netCDF format can be obtained by contacting the authors. The resulting full475

LSS ensemble is available as a netCDF file as well and will be publicly available after the acceptance of this paper.

Appendix A

A1 Landslide absence sampling

Figure A1 shows the NLS=3757 landslide locations based on data from the GLC aggregated to the 36-km EASEv2 (sec-

tion 2.1). Landslide absence grid cells are sampled between a minimum (buffer) and maximum distance around known land-480

slide locations (NnoLS=25417). These distances can be based on either heuristic choices (Van Den Eeckhaut et al., 2012; Lin

et al., 2017; Knevels et al., 2020) or empirical approaches (Zhu et al., 2017; Nowicki Jessee et al., 2018; Lucchese et al., 2021).

For our global study, we set a buffer based on the probability for any two landslide locations from the GLC to be reported

within a specific distance interval for 100 spatially defined clusters (k-means-clustering (Lloyd, 1982) on latitude and lon-

gitude). Figure A2 shows that the frequency of encountering two landslide locations decreases for larger distances and can485

be characterized by a Poisson exponential fit. In line with the definition of autocorrelation length (Gaspari and Cohn, 1999),

we define the ‘characteristic distance’ between two landslides as the distance where the probability to meet another landslide

drops by 1/e. We use this characteristic distance of 221.43 km or ∼6 36-km grid cells (median of characteristic distances

retrieved for 50 repetitions of the clustering) as a buffer around landslide locations. The maximum distance around a landslide

is subsequently defined as 2.5 times this characteristic distance (553.58 km, ∼15 grid cells), borrowing from the data assimi-490
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Figure A1. Spatial distribution of landslide presence (shade of orange) and absence (shade of blue) grid cells at 36-km resolution, for English

speaking countries (light orange and dark blue) and non-English speaking countries (dark orange and light blue). White indicates grid cells

that are excluded during the model creation process (buffer and maximum radius around landslide location, see sect. 2.1). The numbers are

the sum of each subgroup of grid cells.

lation community where 2.5 times the autocorrelation length is a measure for absence of correlation (Gaspari and Cohn, 1999;

De Lannoy, 2006; De Lannoy et al., 2010).

Landslide absence grid cells are hence selected from 7 to 15 grid cells around a landslide presence grid cell (blue grid

cells in Fig. A1). These distances are inevitably much larger than those found in literature for finer-scale studies, because

autocorrelation lengths are scale-dependent and the retrieved characteristic distance is influenced by the spatial extent, or the495

definition of the clusters in our case.

A2 Input perturbation and optimization

For a reliable assessment, the total ensemble prediction uncertainty of the obtained ensemble average LSS map ideally should

match the observed actual uncertainty. The first can be defined for a single location by the standard deviation (σ) among the

LSS ensemble members (LSSi, with i= 1, ...,Nens), as also displayed in sect. 4 and Fig. 3. Similarly, it is possible to assess500

the according variance (σ2), referred to as ensemble spread (ensp):

ensp =
1

Nens

Nens∑
i=1

(LSSi−LSS)2 (A1)

The observed actual uncertainty at a single location is defined as the difference between LSS and the aggregated landslide

observations from the GLC (o), referred to as the ensemble skill (ensk):

ensk = (LSS− o)2 (A2)505
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Figure A2. Histogram of distances [km] between landslides within a k-means cluster (for 100 clusters across the globe) of the GLC (grey) and

Poisson exponential fit (black line) to retrieve the characteristic landslide distance (red). The red dashed line indicates median characteristic

landslide distance from 50 repetitions of the k-means clustering, with the smallest and largest characteristic distance indicated by the light

red bar and numbers at top.

where o is 1 (0) in case of a landslide presence (absence) grid cell. The smaller ensk, the closer the predicted LSS to the

observation. This is essentially a Brier Score (see Equation 2) for one single grid cell. (Wilks, 2011).

The optimization of the uncertainty estimates entails tuning of ensp to match ensk. In this study, this is done by varying

the perturbation magnitude that is added to the input variables (see sect. 3.2). Talagrand et al. (1997) defined spread-skill

relationships that allow to verify the statistical consistency between the assumed uncertainty (chosen perturbation) and the510

actual ‘observed’ uncertainty based on the ergodicity principle. Over a large number of realizations, i.e. for large enough

ensembles, 〈ensk− ensp〉 → 0 or

〈ensk〉
〈ensp〉

→ 1⇔ log

(
〈ensk〉
〈ensp〉

)
→ 0 (A3)

where 〈.〉 denotes the average. In most hydrological or meteorological applications, this is the temporal average within one

grid cell. As this is not applicable for the static LSS data, we consider (i) spatial averages 〈ensk〉/〈ensp〉 per LSS interval as515

well as (ii) the distribution of individual ensk/ensp per grid cell. Both should only be performed over grid cells with reliable

information about landslide presence or absence (see Appendix A1). Note that this definition of 〈ensk〉 corresponds to the

definition of the Brier Score as given in sect. 3.2.

We tested various magnitudes of perturbations to the rescaled predictor variables either by using (i) a globally constant

standard deviation or (ii) a standard deviation proportional to the topographic complexity (i.e. the variation within a grid cell,520
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Figure A3. Spread-skill relationship log(〈ensk〉/〈ensp〉), stratified per ensemble average LSS (LSS125). The optimum of 0 is indicated by

red dashed line. Shapes indicate the type and colours the magnitude (constant) and interval (linear) of perturbation.

here the standard deviation of elevation). A range of possible perturbation options was tested for a partial ensemble (LSS125,

i.e. no repetition of landslide absence sampling as illustrated in Fig. 1). Figure A3 shows log(〈enskLSS125
〉/ 〈enspLSS125

〉)
for 10 intervals of LSS125 and two examples of constant and linear perturbations. Adding any of the four perturbations brings

log(〈enskLSS125
〉/〈enspLSS125

〉) values closer to zero, i.e. improves the spread-skill relationship, compared to results without

a perturbation (LSS5, single CV ensemble). Linear perturbations introduce larger spread in areas of higher LSS125 resulting525

in log(〈enskLSS125〉/〈enspLSS125〉) closer to zero than constant perturbations, and are therefore preferred here.

We futher analyze the distribution of individual ensp and ensk across all grid cells in Fig. A4 (top), stratified for landslide

presence and absence. Ideally, ensp versus ensk should stay close to the 1-1 line. Adding a perturbation to the predictor variables

(Fig. A4 c in comparison to a) nudges the distribution in this direction, but fails to do so for large ensk: a large ensk results

from a large difference between LSS125 and landslide observation (o), and often coincides with very small ensp. This can be530

attributed in part to the incompleteness of the GLC (missing observations in a very susceptible area) and the coarse spatial

resolution of this study (one very susceptible location surrounded by dominantly non-susceptible area within grid cell). Note

also that the logistic regression (see Equation 1) does not linearly propagate the perturbations of predictor variables into the

resulting LSS values, especially not at the edges of the definition interval (0,1). Accepting this tail of the distribution as an

unavoidable characteristic, we further analyze the histogram of grid cell wise log(ensk/ensp) as displayed in Fig. A4 b and535

d. An optimal perturbation would result in median log(ensk/ensp) close to zero and a small inter-quartile range (IQR). We

25



therefore define the optimal perturbation for a minimum Euclidean distance (d) between the point (median|IQR) and (0|0),

averaged over the distribution of observed landslide presences and absences (o= 0,1):

d̄=
1

2

∑
o=0,1

(median2 + IQR2)o (A4)

The d̄ for a range of possible linear perturbation options for LSS125 is summarized in Fig. A4e. The optimal perturbation540

(smallest d̄) scales the applied standard deviation according to topographic complexity, represented by the standard deviation

of elevation within a grid cell, between (0.15,0.2), i.e. between 15% and 20%. Fine tuning of the standard deviation is left for

future work, but could involve other variables or transformations thereof or different amounts of perturbations per predictor

variable.
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Figure A4. Spread-skill relationship per grid cell with the optimum indicated by the red dashed lines: (top; a,c) scatter plots of ensk against

ensp, (middle; b,d) histograms of log(ensk/ensp), stratified for landslide presence and absence (between buffer and maximum distance).

(Bottom; e) summary of the average Euclidean distance d̄ for all applied linear perturbations with the optimum framed in red. Shown are

results for a-b) without perturbation of predictor variables (LSS5), and c-d) for linear perturbation of predictor variables within the interval

(0.15,0.2) (LSS125). In other words, (a-b) account for model uncertainty alone whereas (c-d) account for the total uncertainty (see Fig. 1).
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Abbreviations555

NLS number of landslide locations, i.e. landslide presence grid cells

NnoLS number of landslide absence grid cells

LSS landslide susceptibility

ensk ensemble skill

ensp ensemble spread560

AIC Akaike information criterion

AUC area under the ROC curve

B-CV blocked random CV

BS Brier Score

CLSM Catchment Land Surface Model565

CTI compound topographic index

CV cross validation

DEM digital elevation model

EASEv2 Equal-Area Scalable Earth version 2

GLC Global Landslide Catalog570

GLiM Global Lithological Map

GMTED2010 Global Multi-resolution Terrain Elevation Data 2010

GRIP Global Roads Inventory Project

GSHAP Global Seismic Hazard Assessment Project

GSHM Global Seismic Hazard Map575

GSWP-2 Second Global Soil Wetness Project

GTOPO30 USGS global elevation model
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HWSD1.21 Harmonized World Soil Databank version 1.21

IQR inter-quartile range

LHASA Landslide Hazard Assessment for Situational Awareness580

LRC Landslide Reporter Catalog

MELR mixed effects logistic regression

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2

PGA peak ground acceleration

R-CV random CV585

RND average road network density

ROC Receiver Operating Characteristic

SMAP Soil Moisture Active Passive

SMOS Soil Moisture Ocean Salinity

SRTM Shuttle Radar Topography Mission590

STATSGO2 State Soil Geographic project

USGS United States Geological Survey

VIF Variance Inflation Factor
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