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Abstract. This study assesses global landslide susceptibility (LSS) at the coarse 36-km spatial resolution of global satellite
soil moisture observations, to prepare for a subsequent combination of a global LSS map with dynamic satellite-based soil
moisture estimates for landslide modelling. Global LSS estimation contains uncertainty, arising from errors in the underlying
data, the spatial mismatch between landslide events and predictor information, and large-scale LSS model generalizations.
For a reliable uncertainty assessment, this study combines methods from the landslide community with common practices in
meteorological modelling to create an ensemble of global LSS maps. The predictive LSS models are obtained from a mixed
effects logistic regression, associating hydrologically-triggered landslide data from the Global Landslide Catalog (GLC) with
predictor variables describing the landscape. The latter are taken from the Catchment land surface modeling system (incl. input
parameters of soil (hydrological) properties and resulting climatological statistics of water budget estimates), geomorphological
and lithological data. Road network density is introduced as a random effect to mitigate potential landslide inventory bias. We
use a blocked random cross validation to assess the model uncertainty that propagates into the LSS maps. To account for other
uncertainty sources, such as input uncertainty, we also perturb the predictor variables and obtain an ensemble of LSS maps.
The perturbations are optimized so that the fotal predicted uncertainty fits the observed discrepancy between the ensemble
average LSS and the landslide presence or absence from the GLC. We find that the most reliable fotal uncertainty estimates are
obtained through the inclusion of a topography-dependent perturbation between 15% and 20% to the predictor variables. The
areas with the largest LSS uncertainty coincide with moderate ensemble average LSS, because of the asymptotic nature of the
LSS model. The spatial patterns of the average LSS agree well with previous global studies and yield areas under the Receiver

Operating Characteristic between 0.84 and 0.92 for independent regional to continental landslide inventories.

1 Introduction

Mitigating landslide impacts requires a good understanding of the spatial and temporal patterns of landslide occurrence. The
spatial likelihood of a landslide is referred to as landslide susceptibility (LSS) and plays a crucial role in risk assessment and
land use planning (Guzzetti et al., 2005; Crozier, 2013; Reichenbach et al., 2018). Regional high-resolution LSS maps derived

from environmental conditions are a fundamental tool for informing local population, city planners and decision makers both
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on the immanent landslide likelihood, but also about secondary effects such as major sediment sources (Crozier, 2013; Maes
etal., 2017; Broeckx et al., 2020). Large scale low-resolution LSS maps can serve as background information to be downscaled
for the above applications at the local scale, or they can be used in conjunction with large-scale satellite data to construct a
spatio-temporal estimate of the likelihood for a landslide.

Due to their generalizing nature, LSS models are prone to uncertainty (Petschko et al., 2014). A large number of LSS models
exists, but most focus on local to regional scales and typically lack thorough validation or uncertainty assessment (Reichenbach
et al., 2018). Recent advances in computational power and data availability have fostered the development of LSS maps at
continental level (for example Europe: Wilde et al. (2018) and Van Den Eeckhaut et al. (2012), Africa: Broeckx et al. (2018))
or at the global scale (for example Nadim et al. (2006); Hong et al. (2007); Lin et al. (2017); Stanley and Kirschbaum (2017)).
While information about the uncertainty would be essential to know how reliable these large scale LSS maps are as well as
how much variation can be expected within a mapping unit, only Broeckx et al. (2018) provide such a measure for their map
of Africa and only to a limited degree. The quantification of LSS uncertainty becomes even more called for yet challenging
at the global scale and with coarser spatial resolution due to necessary generalizations and the increased spatial mismatch
between landslide events and predictor information. A reliable uncertainty assessment of global LSS estimates is moreover
crucial when subsequently combining them in a statistically optimal way with, for example, satellite soil moisture products
from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP) as used by Felsberg et al. (2021).

Uncertainty is typically grouped according to its origin into model uncertainty (here: ‘How correct are the equations that
we use to predict LSS?’) and input uncertainty (here: ‘How correct is the input to these equations?’). Model uncertainty stems
from heuristic choices that are necessary in the process of model creation, including the choice of the statistical modelling
approach, the selection of predictor variables, training data sampling and training data quality (see for example Steger et al.
(2015); Pourghasemi and Rossi (2016); Z&zere et al. (2017); Depicker et al. (2020); Lima et al. (2021)). In order to estimate
some of these model-intrinsic errors for a chosen modelling approach, cross validation (CV) is a widely used method where
data is divided into a number of subsets, that are subsequently used for training and testing of the model. How to best sample
the CV subsets to retrieve realistic uncertainty estimates is in itself a field of research. For LSS maps, random sampling is most
common (see for example Broeckx et al. (2018)), while spatial sampling is used less often for an additional uncertainty estimate
(see for example Steger et al. (2020) or Depicker et al. (2020)). However, these are known to respectively strongly under- and
possibly overestimate the model uncertainty, and hybrid methods such as blocked random CV (B-CV) have been suggested to
result in the most reliable uncertainty estimates (Roberts et al., 2017). CV leads to multiple LSS model equations (one per CV
subset) and the standard deviation of the resulting LSS values gives an indication of the associated model uncertainty as shown
by Broeckx et al. (2018) for Africa.

Input uncertainty principally results from errors in the environmental data. To assess how input uncertainty propagates into
the fotal prediction uncertainty, ensemble simulations can be used. Meteorologists, for example, simulate the weather based on
a distribution of initial conditions and predict an ensemble of equally possible outcomes (ensemble members). Instead of only

one deterministic weather forecast, they use the ensemble average prediction that has been found to perform better than their
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deterministic counterpart (Kalnay et al., 2006). The uncertainty of the final ensemble average prediction can then be estimated
by the variance or standard deviation among the ensemble members.

The fotal ensemble uncertainty, resulting from the combination of these methods that account for model and input uncer-
tainty respectively, is assumed to be reliable if it matches the observed ‘actual’ fotal uncertainty. The latter is estimated by
comparing the predicted average LSS against the observed presence and absence of landslides. The gap between this observed
and the predicted fotal uncertainty can then be closed by tuning the magnitude of the ensemble input perturbations. Note that
this implies that the perturbations might in the end not purely capture the input uncertainty, but actually compensate for other
sources of uncertainty as well that are not specifically addressed. One such important source of uncertainty is spatial repre-
sentativeness error (Bloschl and Sivapalan, 1995; van Leeuwen, 2015), especially when evaluating spatially averaged grid cell
LSS estimates using single landslide observations as reference data.

In this study, we combine CV and an ensemble approach to create global LSS maps with a reliable fotal uncertainty (full
ensemble standard deviation). We create multiple LSS equations as part of CV (‘weak model constraint’), and subsequently
perturb the selected predictor variables (input of the LSS model equations) to retrieve a ‘full ensemble’ of possible LSS val-
ues. Specifically, we focus on hydrologically-triggered landslides and propose to include long-term climatological statistics
of hydrometeorological variables as predictor variables, in addition to the common geomorphological ones. We use a mixed
effects logistic regression (MELR) relying on the strong generalizing capabilities of logistic regression as the basic model
structure, and we mitigate the potential reporting bias of landslide presences in the Global Landslide Catalog (GLC) with strat-
ified average road network density (RND) as a random effect. To limit biases from unreliable and confounding definitions of
landslide absence grid cells for the model creation, we introduce a novel approach based on a ‘characteristic distance’” between
landslides. After having taken these steps to limit the introduced uncertainty, the B-CV is used to instill model uncertainty
via a selection of different possible predictor variables and associated parameters, and we further add (and tune) ensemble
perturbations to the selected predictor variables to obtain a reliable fotal ensemble uncertainty. This LSS assessment is carried
out on the 36-km Equal-Area Scalable Earth version 2 (EASEv2) grid, in line with the nominal spatial resolution of satellite
soil moisture estimates from SMOS or SMAP. Producing spatial LSS estimates at this resolution facilitates the-inelasion—of

ss-a subsequent combination with the satellite-based temporally dy-
namic data, as well as calculations of the above mentioned climatological statistics and the development of computationally
intense ensemble approaches. To our knowledge, no framework has earlier been developed for the assessment of the roral
uncertainty of LSS predictions.

Section 2 introduces the landslide (presence, absence) and environmental data used to create ensemble LSS maps. The LSS

model construction based on MELR is introduced in Sect. 3, along with the methods of CV and input predictor variable
perturbations for uncertainty assessment, and methods to evaluate the results. Section 4 presents the resulting LSS model
structure and selected predictor variables, and the ensemble LSS evaluation for different input perturbations. Section 3 discusses
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2 Data
2.1 Landslide data

A first step in creating our LSS models is the creation of suitable training datasets, indicated in the upper part of the flowchart
in Fig. 1. We use reported hydrologically-triggered landslide occurrences from the most recent version of the GLC (https://-
landslides.nasa.gov/viewer, accessed 8th February 2021). The GLC is a landslide inventory that contains information about
location, date and trigger. It is originally based on media reports (Kirschbaum et al., 2010, 2015) but has recently been sup-
plemented with the citizen science-based Landslide Reporter Catalog (LRC) data (Juang et al., 2019), see Stanley et al. (2021)
for details. Any reference to the GLC hereafter refers to this combined data product. Despite known English-language and
economic biases (Kirschbaum et al., 2010, 2015), the GLC covers all continents and landslide hotspots. It has already been
used for the creation of two global LSS maps (Stanley and Kirschbaum, 2017; Lin et al., 2017) and was used to train the newest
version of the Landslide Hazard Assessment for Situational Awareness (LHASA) model version 2.0 (Stanley et al., 2021).

CEINNT3

For this study, we use 12515 hydrologically-triggered landslides (GLC classifiers “continuous rain”, “downpour”, “mon-
soon”, “flooding”, “rain” and “tropical cyclone”) reported mainly between January 2007 and November 2020. Since LSS
informs about the static environmental landslide likelihood, it is common practice to exclude the temporal aspect of landslide
occurrence and instead work with landslide presence and absence locations. Multiple landslides within the same 36-km EA-
SEv2 grid cell are therefore aggregated into one ‘landslide presence grid cell’, resulting in a total of N;g=3757 (orange grid
cells, Fig. Al). While we acknowledge that grid cells with more frequent landslide reporting can in general be expected to have
a higher LSS, we found that the information about the frequency of landslide occurrence within a grid cell strongly mirrors
biases in the landslide inventory, e.g. more landslides are reported in English-speaking countries. The aggregation, on the con-
trary, reduces the landslide presence reporting bias of the GLC. To address the remaining landslide presence bias originating
from more landslide reporting in frequently accessed areas, we use stratified data on the RND (including highways and all
types of roads, ranging from primary to local roads) provided by the Global Roads Inventory Project (GRIP) (Meijer et al.,
2018) as a random effect, explained in seetSect. 3.1.

The creation of realistic statistical LSS models and uncertainty estimates depends on the knowledge of both landslide pres-
ences and absences (Roberts et al., 2017; Steger and Glade, 2017; Knevels et al., 2020; Lucchese et al., 2021). Usually, an
absence grid cell is simply defined as one without a recorded landslide. For local modelling, this might work when complete
and reliable landslide inventories are available. For large or remote areas, however, no reported landslide does not necessarily
mean that the site never experienced one. Terrain features show a certain amount of spatial autocorrelation indicating that
locations in proximity of a known landslide are generally prone to instability as well. It should therefore be avoided to use
grid cells too close to known landslide locations as an absence reference (Brenning, 2005). On the other hand, absence grid
cells sampled very far from the reported landslide locations, in so-called ‘trivial’ or easily classifiable areas (for example flat
areas), might result in an underrepresentation of stable areas in the vicinity of the known landslide locations (Steger and Glade,
2017). Additionally, it might confound the selection process of geomorphologically meaningful predictor variables and lead to

an overoptimistic conception of the resulting LSS map’s quality (Steger and Glade, 2017; Lucchese et al., 2021).
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Figure 1. Schematic of methodology used in this study with-an—indieation—to derive ensembles of the-subsections—that-provide-more
detailglobal landslide susceptibility (LSS) maps. ‘Ensemble’ refers to a collection of LSS maps. In the course of this study, we refer to
different subsets of the fut-ensembte-full ensemble (LS S2500), namely the ensemble from one single B-CV-apphieation(blocked random

CV application (single CV ensemble, L.5S5), when adding input perturbations to it (partial ensemble, L5.S125) or when repeating the

underlying landslide absence subsampling (CV ensemble, LS S100). Subscript numbers indicate the size of the LSS ensemble. Model fittin,
erformance is evaluated during the process of CV by calculating the area under the Receiver Operating Characteristic curve (AUC) for each

model equation.
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In this study, we therefore adopt a sampling strategy as used in earlier LSS assessments (Van Den Eeckhaut et al., 2012;
Lin et al., 2017; Zhu et al., 2017; Nowicki Jessee et al., 2018; Knevels et al., 2020; Lucchese et al., 2021), where reliable
absence grid cells are defined between a minimum (buffer) and maximum radius around known landslide presence grid cells.
As a measure of spatial autocorrelation we derive the ‘characteristic distance’ between two landslides from the GLC (for
details see Appendix Al). We use this characteristic distance of 221.43 km (~ 6 grid cells) as the buffer radius, and 2.5 times
this distance (~ 15 grid cells) as maximum radius. Absence grid cells are hence selected from grid cells 7 to 15 around a
landslide occurrence (blue grid cells in Fig. Al). This definition still results in more than six times more absence grid cells
(Nnors> 25000) than landslide presence grid cells (IN,s=3757). We therefore randomly sample from the absence grid cells
with a 1:1 ratio (Nps:Npors) as is commonly done, for example by Brenning (2005), Steger and Glade (2017), Nowicki Jessee
et al. (2018), Depicker et al. (2020), Knevels et al. (2020), Lin et al. (2021) and Lucchese et al. (2021). LSS models are

subsequently constructed based on data from 7514 (absence + presence) grid cells, as illustrated in Fig. 1.
2.2 Environmental data

The 77 predictor variables considered in this study are listed in Table 1 and were selected based on earlier reviews on the most
common predictors used for LSS maps (Pourghasemi and Rossi, 2016; Reichenbach et al., 2018). In statistical LSS models,
these predictor variables act as proxies for one or multiple processes underlying a landslide (Whiteley et al., 2019). Since LSS
is referring to the spatial likelihood of landslides, we only consider predictor variables that are (quasi) static in time.

To better represent processes underlying hydrologically-triggered landslides, we include long-term climatological statistics
of soil moisture in different layers, soil surface temperature, runoff, rainfall, evaporation and snow depth as possible predic-
tor variables. These climatological statistics include the range (here defined as the difference between percentiles 1 and 99),
inter-quartile range, mean, median, percentile 99 and maximum within the time period 1990-2020, derived from 36-km simu-
lations with the Catchment Land Surface Model (CLSM) (Koster et al., 2000; Reichle et al., 2019), forced with Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological data, as in Felsberg et al. (2021).

Most other predictor variables are part of the 36-km input parameters to the CLSM. Of these, elevation and compound
topographic index (CTI) stem from the same underlying Shuttle Radar Topography Mission (SRTM) data as the morphological
information on slope from the United States Geological Survey (USGS), but with different data sources for the high northern
latitudes (Verdin et al., 2007).

We use lithological information from the Global Lithological Map (GLiM) (Hartmann and Moosdorf, 2012) aggregated to
the fraction of a grid cell covered by each of the 13 lithological classes (we exclude the classes ‘water’, ‘ice and glacier’, and
‘no data’). This produces a dataset with 13 fields, each with a continuous fraction estimate. Peak ground acceleration (PGA) is
the likely level of ground motion from earthquakes (Giardini et al., 2003). Here, we do not use it as the likelihood of a seismic
landslide trigger, but rather as a proxy for the fracturation and weakening that lithologies have undergone due to seismic and
tectonic activity (Lin et al., 2017; Vanmaercke et al., 2017; Broeckx et al., 2018). Details on the aggregation methods are given
in Table 1.



Table 1. Environmental predictor variables used in this study, alongside their data source, original spatial resolution and methods used
for aggregation to the 36 km EASEv2 grid. Apart from slope, lithology, PGA and rainfall, the specified aggregation was not conducted
in this study. Predictor variables that are part of the CLSM parameter set or output do not require any spatial aggregation. Long-term
climatological statistics of all hydrological variables comprise the range (here: difference between 1% and 99" percentile), inter-quartile
range, mean, median, 99*" percentile and maximum between 1990 and 2020. MERRA-2 precipitation is used as input for the calculations

of the hydrological climatological statistics and has been interpolated to the 36 km EASEv?2 grid as part of the simulation process. Units are

given for the original data, but are removed through the rescaling of the data to the interval (0,1) (see text).

Predictor variables

Data source

Original spatial

resolution

Aggregation method
to or within EASEv2,
36 km grid cell

slope (mean, maximum) [°]

USGS: details in Verdin et al. (2007) based
on SRTM DEM*® and GTOPO30"

3” (SRIM DEM),
30” (GTOPO30)

mean and maximum

elevation (mean, standard deviation) [m a. s. L.]

CLSM parameters: details in Verdin (2013)
based on SRTM DEM*® and GMTED2010°¢

3” (SRIM DEM),
7.5” (GMTED2010)

mean and standard

deviation

depth to bedrock [m]

CLSM parameters: details in De Lannoy
et al. (2014) based on GSWP-2¢

1°

spatial interpolation

percentage of gravel (0-30 cm) [vol%]

percentage of clay (0-30 cm and 0-100 cm) [w%]

percentage of sand (0-30 cm and 0-100 cm) [w%]

porosity (0-30 cm and 0-100 cm) [m®/m®]

wilting point divided by porosity (0-30 cm and 0-100 cm) [-]

CLSM parameters

details in De Lannoy et al. (2014)
based on STATSGO2°

and HWSD1.21/

307

most representative

30” sample

compound topographic index, CTI (mean, maximum) = In(specific catch-

ment area/tan(slope)) [log(m)]

CLSM parameters: details in Verdin (2013)
based on SRTM DEM*® and GMTED2010°¢

3” (SRTM DEM),
7.5” (GMTED2010)

mean and maximum

land fraction within grid cell

CLSM parameters: HYDROIk based on

107

areal fraction

areturn period of 475 years (i.e. 10% exceedance probability in 50 years)

2003)

GTOPO30, 1996 (EROS, 2018; Verdin,
2013)
fraction covered by each of 13 lithological classes [-]: metamorphic rocks, | GLiM created by Hartmann and Moosdorf | polygons areal fraction
mixed sedimentary rocks, siliclastic sedimentary rocks, basic plutonic | (2012)
rocks, acid plutonic rocks, basic volcanic rocks, intermediate volcanic
rocks, carbonate sedimentary rocks, unconsolidated sediments, interme-
diate plutonic rocks, pyroclastics, evaporites, acid volcanic rocks
peak ground acceleration, PGA [m/s?] due to earthquakes expected with | GSHM? created by GSHAP" (Giardinietal., | 1° nearest neighbour

rainfall climatological statistics [mm]

MERRA-2 (Bosilovich, 2015)

0.625° lon x 0.5° lat

bilinear interpolation

surface soil moisture climatological statistics (0-5 cm) [m®/m?)

root zone soil moisture climatological statistics (0-100 cm) [m®/m3]

profile soil moisture climatological statistics (0-100 cm) [m®/m?]

land surface temperature climatological statistics [K]

runoff climatological statistics [mm]

evaporation (incl. transpiration) climatological statistics [mm]

snow depth climatological statistics [mm]

CLSM output

EASEv2, 36 km

@ Shuttle Radar Topography Mission digital elevation model; b usGs global elevation model; © Global Multi-resolution Terrain Elevation Data 2010; @ Second Global Soil Wetness Project;

© State Soil Geographic project; f Harmonized World Soil Databank version 1.21; & Global Seismic Hazard Map; ' Global Seismic Hazard Assessment Project;
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3 Model construction and evaluation

This section introduces the methods used in this study for model construction and evaluation. Section 3.1 introduces the general
principles of logistic regression used to derive global LSS estimates, before elaborating the predictor variable selection process
and the implementation of average road network density as a random effect. Section 3.2 introduces methods for uncertainty.
assessment. First, cross validation is introduced with a detailed explanation of the blocked random sampling. Second, the
methods of input ensemble perturbations are briefly explained (details are elaborated in Appendix A2). LSS results based on the
first approach alone are referred to as ‘CV_ensemble” or L5 5190, Results based on both CV and input ensemble perturbations
are referred to as “full ensemble’ or L5 99509 Section 3.3 introduces the methods and data used for the evaluation of ensemble
average LSS and the impact of the extended uncertainty assessment through input perturbations.

3.1 Mixed effects logistic regression (MELR) for model development

In this study, we create a statistical LSS model using MELR (Zuur, 2009), as previously also employed by Steger et al. (2017),
Lin et al. (2021) and Lima et al. (2021). Logistic regression is the most commonly used approach for statistical LSS mapping
(Reichenbach et al., 2018). It is associated with strong generalizing capabilities (Brenning, 2005), which is a necessity when
working at the global scale, and it has proven to be reliable in continental to global LSS assessments (Broeckx et al., 2018;
Lin et al., 2017). Within logistic regression, the LSS, here defined as the probability of a landslide presence within a grid cell,
P(Y =1),is given by:

) _ealot S Bir)

PY=1)=
( 1+exp(a+ > Bixi)

)]

with « [-] the intercept, x; [-] the independent predictor variables, 3; [-] the associated coefficient and n the number of predic-

tor variables. A one unit change in the predictor variable x; results in a muliplicative-change-multiplicative change by ex
in the odds of landslide presenceby-e#p{5:)—, defined as the ratio of P(Y =1

increase in the odds of landslide presence is associated with a (non-linear) increase in LSS. Positive (negative) S-values hence

indicate an increase (decrease) in LSS with an increase in the predictor variable. In this study, we work with rescaled predictor

variables (between their global minimum and maximum) to detach the magnitude of the 3-values from the magnitude of the
predictor variable. This facilitates subsequent interpretation.

We employ a stepwise forward technique to select five predictor variables, corresponding to the commonly used number
of predictor variables for LSS assessment at the global scale (Nadim et al., 2006; Stanley and Kirschbaum, 2017; Lin et al.,
2017; Reichenbach et al., 2018). Based on the Akaike information criterion (AIC), a measure that is proportional to the sum of
squared errors and allows for comparison between non-nested models, we determine the best performing univariate MELR, i.e.
the first predictor variable. The AIC comparison is subsequently repeated for multivariate MELR with one additional predictor
variable at a time. This stepwise forward selection also allows to exclude correlated predictor variables (r > 0.7, following for

example Dormann et al. (2013)), so that largely independent predictor variables are used in the logistic regression. An analysis
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of the generated models using the Variance Inflation Factor (VIF) proved that this approach indeed successfully prevented a
logistic regression model construction based on predictor variables that are too strongly correlated.

The mixed effects approach allows us to include a categorically scaled variable as a so-called ‘random effect’, here the
random intercept «, for which we use the average road network density (RND) stratified into 6 classes. We summarize all land
grid cells where average RND is negligible (< 1m/km?) into the first class and use quantiles 20, 40, 60 and 80 of those grid
cells with non-negligible RND to divide the rest into additional 5 classes. The mixed effects approach will then result in one
global logistic regression equation that has the same (3-factors for all grid cells, but 6 different avvatues—values according to
each grid cell’s RND class. The-For model fitting purposes it is assumed that these 6 avalues-are-assumed-to—-values come
from a zere-meannormal distribution (Zuur, 2009).

The underlying assumption of RND as a random effect is that the representativeness of the landslide data from the GLC
varies with the RND of the region. We recognize that RND may also serve as a proxy for human interference or likelihood of
slope cutting and may hence be included as a predictor variable, as was argued by Stanley and Kirschbaum (2017). The use of
RND as a predictor variable or random effect can be expected to have similar results were the connected bias small. For large
biases, however, predictions using RND as a predictor variable would systematically underestimate the actual LSS of remote
areas with strong underreporting of landslides (as was put forward by Steger et al. (2017) for forested areas). The inclusion

of RND as a random effect favours the selection of natural, physically valid predictor variables while allowing for locations

without roads to also receive a high predicted LSS. The inclusion of random effects in a regression model results in unbiased

model parameter estimates, but it does not inform about the uncertainty of the predictions (Roberts et al., 2017) . We use the
glmer function from the Ime4 package (Bates et al., 2015) to create models in R version 4.0.3 (R Core Team, 2020) where the

best fitting parameters are obtained by maximum likelihood estimation.

3.2 Cross validation (CV) and input perturbations for reliable uncertainty estimation

In this study, the predicted fotal ensemble uncertainty results from the combination of CV techniques and input ensemble

perturbations. For CV, the data is separated into five5 subsets, which subsequently are used for training and testing the model
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with the hold-one-out technique, as illustrated in Fig. 1. We employ a blocked random CV (B-CV), as recommended by Roberts
et al. (2017), which we found to indeed yield most realistic error estimates in comparison to random or spatial sampling (not
shown). This means that instead of randomly sampling individual grid cells into the 5 subsets for training and testing the
model as part of CV, we randomly sample small groups of grid cells with similar environmental conditions, so-called “bleeks™
‘blocks’ (see Fig. 1). We expect that the environmental conditions are similar in neighberingneighbouring pixels (for example
same subcontinent) and for similar climate zones. We therefore derive blocks in 2 steps. First, the 7514 grid cells selected
for model creation are divided according to 10 predefined (sub-) continents. Within each (sub-) continent, we then derive in a
second step 10 blocks through kmeans clustering (Lloyd, 1982) of 30-year average soil surface temperature and rainfall (see
Table 1). In total we retrieve 100 blocks comprising different numbers of grid cells (median: 55) that are not necessarily located
next to each other. The 100 blocks are then randomly divided into the 5 subsets for model creation (20 each).

Next, the MELR is iteratively trained on 4 subsets and the model fitting performance is tested against the 5", i.e. the
hold-one-out subset, using each subset as a test-subset once (see Fig. 1). This results in 5 different model equations of form
Equation 1 and corresponding LSS maps. By repeating the absenee-samplingrandom absence grid cell sub-sampling 20 times,
we obtain a total of 100 LSS maps (referred to as CV ensemble or L.5S1(q, see Fig. 1) that allow for calculations of an ensemble
average LSS (LSS 100), as well as a standard deviation (o7, 55100) Per grid cell. Note that the definition of the individual blocks
varies between each repetition of absence grid cell sampling due to the kmeans clustering algorithm.

For the input ensemble perturbations, we apply one fitted model equation to a slightly perturbed set of its predictor variable
values. In total, 25-24 repetitions of this process are conducted, resulting in ar-a total ensemble of 25 LSS maps per model

equation (see Fig. 1). In combination with the 5 model equations and 20 repetitions for the CV ensemble, this results in a

total amount of 2500 LSS maps (referred to as full ensemble or LS S5500) with corresponding average (L.SS2500) and standard

deviation (07,55,5,,) Per grid cell. The latter is representative of the total prediction uncertainty.

The aim is to design an LSS model setup so that the predicted fotal ensemble uncertainty, quantified by the ensemble variance
or spread o2 - matches the discrepancy between predictions and observations which we refer to as the ‘actual’ uncertainty.
A measure of this actual uncertainty is the Brier Score (BS) (Wilks, 2011) which compares the predicted average LSS (LSS

against landslide observations from the GLC (o) at different grid cells 7 (: = 1,..., N):

1 .
BS =+ Z(LSS —0)? 2)

with o being 1 for landslide presence and 0 for absence grid cells. This actual uncertainty by design includes model and input
error (L.SS), but also error in the reference data (0), and spatial representativeness error, The perturbations to the predictor

variables are randomly sampled from a normal distribution with the mean being the original value of the grid cell. The standard
deviation, or perturbation magnitude, is tuned, so that the resulting total ensemble spread (including the spread originating
from CV) matches the observed actual uncertainty BS in Equation 2. For details of the tuning process, see Appendix A2. We

apply the same perturbation magnitude to all (rescaled) predictor variables. The magnitude is chosen to increase proportionally
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to the topographic complexity of a location from 15% to 20%. We use the variation of elevation within a grid cell as a measure
of said topographic complexity and find this perturbation scaling to yield better results than a globally constant perturbation
magnitude. Note that these perturbations in x; do not linearly propagate into the final-LSS estimates, because the logistic

regression (see Equation 1) is-asymptotic-and-locationsrelates x; to LSS via an S-shape LSS curve, with quasi-linear behaviour

at the center (i.e. intermediate x; values) and asymptotic behaviour towards the upper or lower limit (i.e. for very low or high

x; values). Locations of largest perturbation do thus not necessarily coincide with large resulting ensemble uncertainty.
3.3 Evaluation

To quantify how well a predicted LSS map represents observed landslide presences and absences, a BS can be used (see
Equation 2). Alternatively, the Receiver Operating Characteristic (ROC) is commonly used as evaluation tool for categorical
response values such as landslide presence and absence (Reichenbach et al., 2018). For the ROC, the true positive rate of one

LSS map is displayed against its false positive rate for different possible thresholds in the continuous probability (here: LSS)

that is predicted. The true positive rate is the proportion of correctly predicted landslide presence grid cells when applying said
threshold (‘true positives’) of all observed landslide presence grid cells (Wilks, 2011). The false positive rate is the proportion

‘false positives’) of all observed landslide absence grid cells. The area
under the ROC curve (AUC) is 1 for a perfect representation of the spatial LSS distribution, whereas an AUC value of 0.5
indicates that the model does not perform better than a uniform distribution.

Depending on the reference landslide data, the ROC analysis can be conducted for specific grid cells from a CV subset
(independent data not used in the training), or from other independent landslide inventories. Here, we use landslide presence
and absence information from the grid cells of the fifth CV subset (teststbset;see-Fig—1)-to assess the model fitting performance

999

for each LSS ensemble member map “‘on the go”’. To evaluate the final prediction performance of the complete ensemble
averages and the corresponding ensemble members, we use 3 independent landslide inventories. We obtain 36-km landslide
presence grid cells as described for the GLC in seetSect. 2.1 for i) quarterly reports issued by the Russian Federation (FSBIH,
2018) with Ny g = 56 aggregated from 183 observations, ii) an inventory for Africa by Broeckx et al. (2018) with Ny g = 649
aggregated from 18053 observations and iii) Franeltalia, a catalog of recent landslides in Italy (Calvello and Pecoraro, 2020)
with Ny g = 309 aggregated from 5438 observations. Since we trust their landslide absence reporting to be reliable, we use
all other grid cells within the region in question as landslide absence grid cells. These validation inventories cover different
climatic zones and hence landslide regimes, stem from (mostly) non-English speaking regions (Africa, Russia, Italy) and
include less populated areas (Africa, Russia), not well represented in the GLC data that underlie our LSS estimates. With Italy
being a hot-spot of landslide occurrence within Europe, we are moreover able to assess whether the coarse spatial resolution

hinders realistic regional assessment within smaller, potentially very susceptible areas.

The AUC and BS metrics can be computed for individual ensemble members (of the CV ensemble L.SS1gg, or the full

ensemble L.SSo500, yielding a distribution of metrics) or for ensemble averages (L.SS19p and LS S2500). It will be assessed

whether i) an ensemble average outperforms an individual member LSS realization, and whether ii) the full ensemble average
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Figure 2. (Left) Frequency of selected predictor variables and (Right) corresponding 3-values. The 5 best predictor variables (out of 77, see
Table 1) are determined using stepwise forward selection for each MELR model equation (n=100). €etersColours indicate at which selection

step (1-5) the predictor variable was selected. Boxplots for Svaties—values are based on the n values of the left panel, independent of the

selection step. Whiskers extend from minimum to maximum [-values. Where n = 1, boxplots are replaced by a point.

with ensemble input perturbations (LS S2500) outperforms the CV ensemble average which does not include input perturbations

(LS5100). This would be in line with the expectations for hydrological or meteorological models (Kalnay et al., 2006).

4 Results
4.1 ESS-LSS model structure

This section investigates the different values for the S-coefficients and intercept « of the 100 MELR models created following
Fig. 1. The landslide absence data, used to train these models, differ for each of the 20 repetitions and subsequently the
definitions of the subsets for B-CV vary as well. All 100 models result in LSS maps with very high AUC values above 0.8, with
a median of 0.92, for the corresponding test data.

The values of the intercept « take negative values for low RND and positive values for high RND (by design, not shown).
Figure 2 left panel shows which predictor variables were selected how often and during which step of the selection process
(AIC, see seetSect. 3.1). The right panel shows boxplots of the 3-values for each predictor variable (see Equation 1). Whiskers
extend from minimum to maximum and boxes from 25" to 75" quantile, with the median indicated in between. The first

selected predictor variable was always related to the slope, i.e. either the mean CTI within the grid cell, the maximum slope
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or the mean slope. The mean CTI, also known as a topographic wetness index, was selected as part of all 100 models. It is
inversely proportional to slope (see Table 1), which is in line with the negative S-values, i.e. decrease in LSS is expected with
increasing CTI. The second selected predictor variable is either another slope measure (maximum slope or standard deviation
of the elevation i.e. local relief) or, for more than 65% of the models, related to the climatologic conditions (median surface
soil moisture, range of evaporation, maximum evaporation or surface soil moisture). Out of these variables, median surface soil
moisture stands out as most frequently being the second predictor variable (for more than 50% of the models). Independent of
the selection step, it is part of more than 80% of the models. All of these variables are modeled with positive 5-values, i.e. the
higher the predictor variable, the larger the odds of a landslide presence and hence the LSS.

The areal fraction of evaporites within the grid cell is the only lithological class that was selected, and only in the final
selection step. The very unrealistic S-value associated with this predictor (-128.65) suggests that this selection is possibly a
statistical artefact. The PGA, treated as a proxy for lithologic weakening due to regular seismic activity, is dominantly selected

in the later variable selection steps, but still part of about 80% of the models.
4.2 Evaluation of ensemble LSS

Based on these 100 model equations, and when perturbing the input parameters (see Fig. 1), we obtain the full ensemble

average LSS (LSS3500) and standard deviation (01.9S5500) Shown in Fig. 3. The highest LSS2500 can be found in the large
mountain ranges on all continents as well as coastal areas (especially the islands in South-East Asia). Very flat areas or planes,
such as central northern Canada, Siberia, the Tibetan plateau, the Sinai-peninsula;-the-Sahara-Arabian peninsula, large parts of
Africa (especially the Sahara) as well as central Australia have very low LSSa500. Intermediate LS Sa500 values are found in
the northern Rocky Mountains towards Alaska as well as the Kolyma Range in Russia, at the north-eastern shores of South
America and the western shores of Africa, along the East African Rift, Scandinavia and India. Figure 4a shows a density scatter

plot of 01,55,5,, Versus LSSa500. The uncertainty orgs,.,,, is large for areas with intermediate LS.S2500, whereas very high

or low LS S2500 typically have a smaller associated 01,55,.,,-

Figure 5 illustrates the ensemble L.SSa50¢ distribution for 20 randomly sampled landslide presence and absence grid cells.
Even though we quantify the uncertainty with a o1,g5,;,,, the distributions are mostly non-gaussian. Most displayed landslide
presence (absence) grid cells have LSS distributions ranging at the upper (lower) end of the interval (0,1). Grid cells 1, 7 and
18, however, exhibit a very wide distribution that seems disconnected from the absence (1, 17) or presence (18) of a landslide.

The ROC curves for ensemble average LSSo500 are shown in Fig. 6, with the curves for Russia (AUC: 0.92) and Italy
(AUC: 0.91) being closest to the upper left corner, and that for Africa being a little further from this optimum (AUC: 0.84).

The LSS2500 map hence very well captures the landslide patterns over all three regions.
4.3 Impact of input perturbations

The above discussion of the full ensemble LS S250¢ includes perturbations to the predictor variables on top of the CV ensemble

LS S100 obtained by the CV techniques alone. Figure 4(top)-shews-thata and b show that the LSS uncertainty is a function of the
average LSS values and that 01.53,.,, 1s typically higher than o g5, ,,~Whereas-, Figure 4d shows that the differences between
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Figure 3. a) Ensemble average LSS (LS S2500) and b) standard deviation (055,50, ) at 36-km resolution. White areas denote missing values

(water bodies, ice). Seemingly larger grid cells in the North are characteristic of the EASEv2 grid projection.

01882300309 T 155100 Ar€ SMallest for the very high and low g7,55,,. However, Figure 4¢ shows that the ensemble averages
€LSS9500 and LSS100 J-are similar, as expected from the additional zero-mean predictor variable perturbation. Figure—4
pottom)-compares-the resultsfor-both-ensembles-and-shows-onty-stightly-smatlerThe values of LSS 2500 i-comparison-to-are
slightly smaller than those of LSS100, except for very small LSS (< 0.1). Fhe-differencesbetween 615555 and-orss—are
Figure 7 shows boxplots of the AUC values for individual members of the CV ensemble (L.SS190) and the full ensemble
(LS S2500) compared against the according CV test subsets, as well as the independent validation inventories. Note that LS S19
is a subset of L5 S5500. The median AUC value is lower for LS S350 than for LS S1¢g for all reference data. Despite this shift,

a number of the L.SSo500 ensemble members also perform better than any of those from L.SS1g9. The intention is not for

the individual ensemble members to have the best prediction, but rather for the ensemble average LSS to be best: clearly the
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Figure 4. (Top) Ensemble standard deviation LSS (orss) versus ensemble average (LSS) of a) the full ensemble (L.SS2500) and b) CV
ensemble (L.SS100) with the corresponding marginal distributions. The marginal distributions contain values of the complete set of 112573
‘land’ grid cells for which LSS is estimated and are scaled by their peak for visualization. (Bottom) Comparison of the c) ensemble average

and d) standard deviation of LS S2500 and LS S100. The 1-1 line (red, dashed) is shown as reference.

ensemble mean performs better than the majority of the individual ensemble members. We find AUC values for these LS S2500
and L.S'S100 (dots on the figure) to be practically the same (Fig. 4c)
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Figure 5. Distribution of ensemble member LSS values (LS S2500) within sample grid cells for select landslide presence (light orange triangle
on map) and absence (blue circle on map) grid cells. Please note that the distributions (top) all contain 2500 LSS ensemble members and are

merely scaled by their peak to avoid overlaying (large peak) or invisible (small peak, but wide distribution) curves.

5 Discussion
5.1 Selected predictor variables

For the global LSS prediction of this study, the mean CTI per grid cell is the most important predictor variable. Mean and
maximum slope within a grid cell are selected less often as the first predictor variable, but one of the two is still included in
nearly every MELR model. We attribute the primary importance of CTI to the fact that our model is trained with data from
hydrologically-triggered landslides (Kirschbaum et al., 2010, 2015), which do not uniquely occur on steep slopes. The CTI
intrinsically contains information on the potential hydrological conditions of the site (through the catchment area) as well as
its slope. In line with our study, Emberson et al. (2021) found that the CTI is a strong predictor of rainfall-induced landslides
for a number of inventories in the tropics and subtropics. Earlier global LSS maps by Nadim et al. (2006), Hong et al. (2007)
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Figure 6. ROC curves of full ensemble average LSS (LS .S2500) for validation inventories from Russia, Italy and Africa. Corresponding AUC

values are denoted in brackets.

and Stanley and Kirschbaum (2017) primarily used slope information, while Lin et al. (2017) use relative relief. The latter is
comparable to the standard deviation of elevation, which is selected in more than 25% of the models of our study.

Long-term median surface soil moisture was most frequently selected as the second predictor variable and part of more than
80% of all models. The positive connection to LSS reflects the fact that hydrologically-triggered landslides mostly occur in
humid regions where the soil is often wet and rainfall can more easily destabilize a slope. The close relation between surface
soil moisture and rainfall characteristics is probably the reason for its preferred selection compared to deeper layer soil moisture
variables. The high correlation between surface soil moisture and both rainfall and deeper layer soil moisture variables prevents
that the latter two would be selected during one model creation (see seet:Sect. 3.2). The preference for median surface soil
moisture over average rainfall might be due to the less extreme values in soil moisture (quasi-normal distribution) compared to
the highly non-normal distribution of rainfall, but could also reflect that surface soil moisture intrinsically contains additional
information on the soil characteristics. It can be interpreted as a proxy or integrator of rainfall patterns, soil and possibly also
vegetation characteristics. Similar to surface soil moisture, a positive relation of LSS is found for the (inter-quartile) range of
evaporation. This accounts for regions with strong seasonality in rainfall and in the associated evaporation over wet soils.

In earlier global LSS maps, Nadim et al. (2006) and Lin et al. (2017) included information on the soil moisture in the
form of a soil moisture index by Willmott and Feddema (1992)) that distinguishes “wet™and—dry"~‘wet’ and ‘dry’ climates.
Lin et al. (2017) found this index to be the most important predictor variable. Broeckx et al. (2018) include climatological
average annual rainfall as a predictor variable for LSS over Africa. At the global scale, the use of climatological statistics of

hydrometeorological variables for LSS has not been tested before. It is important to note that such long-term statistics are meant
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Figure 7. Distribution of AUC for model fitting performance (test data) and model prediction performance (based on independent validation
inventories from Russia, Italy and Africa). Results-Boxplots are shown for CV ensemble members (LS S100) and full ensemble members
(LS S2500, including CV ensemble members), with whiskers extending from minimum to maximum AUC. AUC values for ensemble averages
are displayed as points (black: LS S100, coloured: LS S2500). The latter correspond to the ROC curves shown in Fig. 6.

370 to remain constant in time for global LSS estimation (by definition), but they also offer the possibility to recompute and refine
LSS estimates in an era of climate change.

We did not find significant contributions of lithological predictor variables. For Africa, Broeckx et al. (2018) found a (limited)
impact of the presence of unconsolidated sediments and siliclastic sedimentary rocks on LSS. Stanley et al. (2021) found
the lithology (regrouped from GLiM) to be the least important factor. While local lithology plays a vital role for landslide

375 occurrence, the large data uncertainty and often very broad definitions (as for example elaborated by Campforts et al. (2020) in
a different context) hinder meaningful contributions to LSS assessment, even for smaller scale studies. This might also explain
why, instead, PGA was favoured as a proxy for structural weakening during the variable selection. The one-time selection of
the fraction of land within a grid cell, with a negative J-value assigned, reflects that coastal or shore areas with a low land
fraction are more prone to landslides (higher LSS).

380 Overall, the selected predictor variables, as well as the assigned (-values are in line with general geomorphologic un-

the analysis. For example, land cover and land use were not explicitly included (although they are implicitly included in the
studies (Sidle and Bogaard, 2016; Knevels et al., 2021; Depicker et al., 2021; Steger et al., 2020

385 although Stanley and Kirschbaum (2017) pointed out that landslides are also simply more easily observed in non-forested

non-forested areas in some regional
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areas. Land cover and land use change, e.g. deforestation and urbanization (possible slope undercutting and changes in the

natural drainage system of hillslopes) are also known to increase propensity for landslides (Dille et al., 2019; Depicker et al., 2021).

Stanley and Kirschbaum (2017) include forest loss and presence of roads as predictor variables for their global susceptibility

map. With the expanding human presence, such predictor variables would require temporal updates and need further research
390  for global applications.

5.2 Full ensemble results

The spatial patterns of the full ensemble average LSS (LS S2500, see Fig. 3) agree well with those of the categorical LSS maps
by Stanley and Kirschbaum (2017) at 1 km resolution and Lin et al. (2017) at 0.5° resolution, shown in Fig. 8a and b. Figure 8
¢ and d show the distribution of the continuous 36-km L5S2500 per LSS class of these two reference maps. In comparing the
395 maps, we find a larger area covered by high LS'S5500 for example in the Eastern United States, Latin America, Mediterranean
Europe, India, South-East Asia and New Zealand. At the same time, LSSo500 shows much less variation than the map by

Stanley and Kirschbaum (2017) within large deserts (Sahara, Sinai-Arabian peninsula and central Australia). This might be a

result of the coarser spatial resolution, but is also attributable to the fact that LSS50 is strongly governed by hydrological
predictor variables apart from the typical geomorphological ones. With a very large proportion of the lowest LSS class, Lin
400 et al. (2017) have even less variation within these areas than LS Sa50.

These realistic spatial distributions of L.SS550¢ are supported by the AUC values calculated for this ensemble average (dots
in Fig. 7). The lower AUC value for Africa can be attributed to the fact that the inventory comprises also very old landslides
from very different climatic conditions. In general though, these AUC values are in line with those of Stanley and Kirschbaum
(2017) and Lin et al. (2017), who reported AUC between 0.6 and 0.9, and around 0.9, respectively.

405 Figure 5 shows that the distributions of LSS ensemble members within one grid cell could have a very wide range. Even
though in this figure we only selected locations within English-speaking countries and excluded unreliable absence grid cells
(see seetSect. 2.1), it is still possible that an absence grid cell could experience a landslide, even if none has been reported in
the GLC. A prominent example of this are absence grid cells 1 and 7, located in the East African Rift and India, respectively.
Both grid cells have no reported landslide, but very wide LSS distributions, with relatively high LSS values. This discrepancy

410 between prediction and observation could indicate the need to visit this location for landslide research. At the same time,
landslide presence grid cell 18 also has a very wide LSS distribution with a rather low average. This could either indicate that a
non-hydrological process caused the landslide (misclassification) or that specific unrepresented features are present within the
grid cell area. Overall, we find an average LSS50 of 0.18 (0.82) for landslide absence (presence) grid cells (as displayed in
Fig. A1) which makes us confident in our classification of these grid cells.

415 Calculating the ensemble standard deviation of these distributions (01,55,5,,) 1S @ good measure of fotal prediction uncer-
tainty associated with the LS S350 for one grid cell. The o L.SS2500 18 typically small for distributions at either end of the LSS
interval (0,1), resulting in the parabolic pattern as displayed in Fig. 4a-b. This pattern has also been found for local assessments

(Guzzetti et al., 2006; Depicker et al., 2020)) and holds for Broeckx et al. (2018) over Africa as well (visual comparison of

two maps). The reasons for this relationship between LSS2500 -and or.ss,,,, tetationship-are twofold: (i) The classification
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Figure 8. Comparison of LSS2500 against existing global categorical LSS maps by (a) Stanley and Kirschbaum (2017) and (b) Lin et al.
(2017). Boxplots eﬁsmmgsoo values extracted from the nearest 36-km grid cell for each (c) 1-km and (d) 0.5° grid cell in the reference
map per LSS class. \WWBOXPIOB are underlain with the fractions of the reference
map LSS classes (grey). Note that both reference maps start off from continuous LSS values but use very different thresholds for the class
definitions: Stanley and Kirschbaum (2017) set breakpoints at [0.11,0.49,0.67,0.75], defined so that each category contains twice as many grid
cells as the next highest, whereas Lin et al. (2017) set breakpoints at [0.4,0.6,0.7,0.9], following Guzzetti et al. (2006) and Van Den Eeckhaut
et al. (2012).

algorithm works best for extreme environmental conditions, such as very steep slope or completely flat areas and has a strongly
nonlinear, asymptotic behaviour (logistic regression), and (ii) the predictions are limited to the interval (0,1), restraining the
opportunity for deviations at the extremes to one side. A comparison of o1,gs,.,, With independent global estimates is currently
not possible for lack of uncertainty estimates (Nadim et al., 2006; Hong et al., 2007; Stanley and Kirschbaum, 2017; Lin et al.,

2017). However, a comparison with the standard deviations retrieved during the process of random CV for the continental LSS
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map of Africa by Broeckx et al. (2018) (i.e. not accounting for the total uncertainty) reveals that the patterns are very similar,

but with less (more) variation in 01,5s,.,, for the very arid (humid) regions.
5.3 Impact of input perturbations

In this study, we add predictor variable perturbations to the CV approach in order to obtain a more reliable estimate of the fotal
prediction uncertainty from the resulting full ensemble. By design, the zero-mean input perturbation does only marginally
affect the ensemble LSS (see Fig. 4). Slightly increased (decreased) LSSa500 at the lower (upper) limits can be attributed to
the resampling of predictor variable values if they exceed the definition interval of rescaled predictor variables (0,1). Overall,
this introduced bias remains small.

The AUC analysis (Fig. 7) shows that the ensemble averages perform much better than individual ensemble members, and

that L.SS5500 and L.S.S1¢g perform equally well. Not shown is that the BS (Equation 2) decreases (i.e. improves) for L.S.S2500
in comparison to L.S.S19o where LSS is not very close to the observation already (landslide presence and absence). This effect
is, however, not visible in the AUC comparison (spatial accuracy) for the validation data in Russia, Africa and Italy because the
grid cells with BS improvement only make up for ~8%, ~9% and ~18% respectively. The AUC values of ensemble averages
remain practically the same, and an LSS model without predictor perturbations would hence suffice for a general insight in the
global spatial LSS pattern.

That the individual ensemble member LSS maps of LS So500 (based on perturbed variables) have lower median AUC values
than LSS1qg is logical: the model equations are tailored to the original predictor variable values so that they are optimally
combined into an LSS prediction. Any change of these variables could deteriorate the outcome. This is, however, no lack in
quality of the ensemble, but rather a side effect. We do not use the individual ensemble members but their average as an LSS
prediction, for which we find practically unchanged spatial accuracy between CV ensemble and full ensemble.

By tuning the predictor variable perturbations to match the total ensemble prediction uncertainty to the observed “actual™
uncertainty, we are able to provide statistically reliable uncertainty estimates for the predicted average LSS, even in places where
landslide observations are unavailable. As stated before, this optimized spread is introduced to the input variables, but does not
actually reflect the input errors only: it also compensates for other uncertainty sources that are not specifically addressed, incl.
spatial representativeness error, and uncertainties introduced by heuristic decisions along the way, such as the choice of the
statistical model, etc. Explicitly accounting for these error sources would require dedicated analyses (as for example conducted
by Depicker et al. (2020)). Because Zézere et al. (2017) found that the choice of spatial mapping unit influences LSS estimates
stronger than the choice of statistical model, we do not expect that our results would fundamentally change for approaches
other than MELR. Future research could explore the additional information, such as landslide sizes, types or the frequency
of occurrence per grid cell instead of reducing the data to landslide presence and absence. For the latter, one would need to
find ways to counteract the English-language and economic bias of the GLC which is more pronounced when using the actual

number of reports instead of the presence-absence method chosen in this study.
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6 Conclusions

This study presents the first global landslide susceptibility (LSS) map directly developed to be compatible with satellite soil
moisture products retrieved from passive microwave sensors, i.e. at a spatial resolution of 36 km. The novel method of combin-
ing blocked random CV (B-CV) and predictor variable perturbations results in a reasonable assessment of the associated total
prediction uncertainty. For each grid cell, we estimate 2500 individual LSS values (‘full ensemble’) that are summarized by
the ensemble average LSS (LSS) and standard deviation (o, gg, i.e. the uncertainty). Together, these LSS statistics can provide
unprecedented information for subsequent global probabilistic spatio-temporal landslide modeling, and statistical combination
of the LSS and soil moisture estimates, each with their respective uncertainties. Furthermore, the LSS maps have the potential
to discern areas that deserve more attention for landslide detection.

A mixed effects logistic regression (MELR) is used as the model structure to relate environmental predictor variables to
spatial landslide likelihoods. The objectively selected predictor variables are mainly related to slope and hydrology, in line
with the expectations for hydrologically-triggered landslides. The odds of landslide occurrence were found to (i) decrease with
increasing compound topographic index (CTI), which depends on the ratio of catchment area and slope and (ii) increase with
increasing slope, peak ground acceleration (PGA) and long-term climatological statistics of surface soil moisture (median and
99'" percentile) or range of evaporation. The inclusion of long-term statistics of hydrometeorological variabels enables future
investigations into possible shifts in LSS due to climate change.

The map of the full ensemble LSS reproduces global patterns of LSS as presented in previous global studies well. The
performance assessment yields area under the ROC curve (AUC) values of 0.92, 0.91 and 0.84 for independent data from
Russia, Italy and Africa, respectively. The uncertainty o1 gg is largest for intermediate LSS. High predicted LSS at (reliable)
landslide absence grid cells might furthermore indicate regions that could benefit from future landslide detection and research.

For the ensemble perturbations of the selected predictor variables we use a perturbation magnitude of 15% to 20%, linearly
proportional to the variation of elevation within a grid cell. The magnitude is chosen to match the fotal predicted ensemble
uncertainty with the observed actual uncertainty relative to data from the Global Landslide Catalog (GLC). Adding these
perturbations does not linearly propagate into the ensemble spread due to the asymptotic nature of logistic regression. It
increases the ensemble spread for locations of intermediate L.S'S while having negligible impact where LSS is close to its lower
or upper limit. The ensemble LSS and its spatial accuracy (AUC) remain practically unchanged by the ensemble perturbations,
but AUC values of these average predictions are always much better than that of individual ensemble realizations. In short,
these novel methods explicitly focus on the uncertainty quantification. The availability of global reliable uncertainty estimates

is an unprecedented new contribution to the suite of global LSS maps, and it will support stochastic landslide hazard modeling.

Code and data availability. For most of the landslide and environmental predictor data we refer the reader to the provided sources. Source
code and climatological statistics of hydrological parameters in netCDF format can be obtained by contacting the authors. The resulting full

LSS ensemble is available as a netCDF file as well and will be publicly available after the acceptance of this paper.
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Appendix A

Al Landslide absence sampling

« landslide (1801) 2 | B \é

landslide, English (1956)
absence (17622)
e absence, English (7795)

Figure A1l. Spatial distribution of landslide presence (shade of orange) and absence (shade of blue) grid cells at 36-km resolution, for English
speaking countries (light orange and dark blue) and non-English speaking countries (dark orange and light blue). White indicates grid cells
that are excluded during the model creation process (buffer and maximum radius around landslide location, see sect. 2.1). The numbers are

the sum of each subgroup of grid cells.

Figure A1l shows the N s=3757 landslide locations based on data from the GLC aggregated to the 36-km EASEv2 (sec-
tion 2.1). Landslide absence grid cells are sampled between a minimum (buffer) and maximum distance around known landslide
locations (IV,,,1,s=25417). These distances can be based on either heuristic choices (Van Den Eeckhaut et al., 2012; Lin et al.,
2017; Knevels et al., 2020) or empirical approaches (Zhu et al., 2017; Nowicki Jessee et al., 2018; Lucchese et al., 2021).

For our global study, we set a buffer based on the probability for any two landslide locations from the GLC to be reported
within a specific distance interval for 100 spatially defined clusters (k-means-clustering (Lloyd, 1982) on latitude and lon-
gitude). Figure A2 shows that the frequency of encountering two landslide locations decreases for larger distances and can
be characterized by a Poisson exponential fit. In line with the definition of autocorrelation length (Gaspari and Cohn, 1999),
we define the ‘characteristic distance’ between two landslides as the distance where the probability to meet another landslide
drops by 1/e. We use this characteristic distance of 221.43 km or ~6 36-km grid cells (median of characteristic distances
retrieved for 50 repetitions of the clustering) as a buffer around landslide locations. The maximum distance around a landslide
is subsequently defined as 2.5 times this characteristic distance (553.58 km, ~15 grid cells), borrowing from the data assimi-
lation community where 2.5 times the autocorrelation length is a measure for absence of correlation (Gaspari and Cohn, 1999;

De Lannoy, 2006; De Lannoy et al., 2010).
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Figure A2. Histogram of distances [km] between landslides within a k-means cluster (for 100 clusters across the globe) of the GLC (grey) and
Poisson exponential fit (black line) to retrieve the characteristic landslide distance (red). The red dashed line indicates median characteristic
landslide distance from 50 repetitions of the k-means clustering, with the smallest and largest characteristic distance indicated by the light

red bar and numbers at top.

Landslide absence grid cells are hence selected from 7 to 15 grid cells around a landslide presence grid cell (blue grid
cells in Fig. Al). These distances are inevitably much larger than those found in literature for finer-scale studies, because
autocorrelation lengths are scale-dependent and the retrieved characteristic distance is influenced by the spatial extent, or the

definition of the clusters in our case.
A2 Input perturbation and optimization

For a reliable assessment, the total ensemble prediction uncertainty of the obtained ensemble average LSS map ideally should
match the observed actual uncertainty. The first can be defined for a single location by the standard deviation (o) among the
LSS ensemble members (LSS;, with i = 1,..., N¢,5), as also displayed in sect. 4 and Fig. 3. Similarly, it is possible to assess
the according variance (o2), referred to as ensemble spread (ensp):

Nens
N Z (LSS; — LSS)? (A1)

i=1

ensp =

The observed actual uncertainty at a single location is defined as the difference between LSS and the aggregated landslide

observations from the GLC (o), referred to as the ensemble skill (ensk):

ensk = (LSS — 0)* (A2)
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where o is 1 (0) in case of a landslide presence (absence) grid cell. The smaller ensk, the closer the predicted LSS to the
observation. This is essentially a Brier Score (see Equation 2) for one single grid cell. (Wilks, 2011).

The optimization of the uncertainty estimates entails tuning of ensp to match ensk. In this study, this is done by varying
the perturbation magnitude that is added to the input variables (see sect. 3.2). Talagrand et al. (1997) defined spread-skill
relationships that allow to verify the statistical consistency between the assumed uncertainty (chosen perturbation) and the
actual ‘observed’ uncertainty based on the ergodicity principle. Over a large number of realizations, i.e. for large enough
ensembles, (ensk — ensp) — 0 or

(ensk) 1 & 1og (E:Zig) ~0 (A3)

where (.) denotes the average. In most hydrological or meteorological applications, this is the temporal average within one
grid cell. As this is not applicable for the static LSS data, we consider (i) spatial averages (ensk)/(ensp) per LSS interval as
well as (ii) the distribution of individual ensk/ensp per grid cell. Both should only be performed over grid cells with reliable

information about landslide presence or absence (see Appendix Al). Note that this definition of (ensk) corresponds to the

530 definition of the Brier Score as given in sect. 3.2.
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Figure A3. Spread-skill relationship log({ensk)/{ensp)), stratified per ensemble average LSS (LS S125). The optimum of 0 is indicated by

red dashed line. Shapes indicate the type and colours the magnitude (constant) and interval (linear) of perturbation.

We tested various magnitudes of perturbations to the rescaled predictor variables either by using (i) a globally constant

standard deviation or (ii) a standard deviation proportional to the topographic complexity (i.e. the variation within a grid cell,
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here the standard deviation of elevation). A range of possible perturbation options was tested for a partial ensemble (LSS125,
i.e. no repetition of landslide absence sampling as illustrated in Fig. 1). Figure A3 shows log({enskrss,,.)/ (ENSPLSS 05 ))
for 10 intervals of LSS25 and two examples of constant and linear perturbations. Adding any of the four perturbations brings
log({enskrss,,s)/{ensprss,,s)) values closer to zero, i.e. improves the spread-skill relationship, compared to results without
a perturbation (LSS5, single CV ensemble). Linear perturbations introduce larger spread in areas of higher LSS5 resulting
inlog({enskrss,,5)/{enspLss,,s)) closer to zero than constant perturbations, and are therefore preferred here.

We futher analyze the distribution of individual ensp and ensk across all grid cells in Fig. A4 (top), stratified for landslide
presence and absence. Ideally, ensp versus ensk should stay close to the 1-1 line. Adding a perturbation to the predictor variables
(Fig. A4 c in comparison to a) nudges the distribution in this direction, but fails to do so for large ensk: a large ensk results
from a large difference between LS S125 and landslide observation (o), and often coincides with very small ensp. This can be
attributed in part to the incompleteness of the GLC (missing observations in a very susceptible area) and the coarse spatial
resolution of this study (one very susceptible location surrounded by dominantly non-susceptible area within grid cell). Note
also that the logistic regression (see Equation 1) does not linearly propagate the perturbations of predictor variables into the
resulting LSS values, especially not at the edges of the definition interval (0,1). Accepting this tail of the distribution as an
unavoidable characteristic, we further analyze the histogram of grid cell wise log(ensk/ensp) as displayed in Fig. A4 b and
d. An optimal perturbation would result in median log(ensk/ensp) close to zero and a small inter-quartile range (IQR). We
therefore define the optimal perturbation for a minimum Euclidean distance (d) between the point (median|IQR) and (0]0),

averaged over the distribution of observed landslide presences and absences (o0 = 0, 1):

d= % Z (median® + IQR?), (A4)

0=0,1
The d for a range of possible linear perturbation options for LSS15 is summarized in Fig. A4e. The optimal perturbation
(smallest d) scales the applied standard deviation according to topographic complexity, represented by the standard deviation
of elevation within a grid cell, between (0.15,0.2), i.e. between 15% and 20%. Fine tuning of the standard deviation is left for
future work, but could involve other variables or transformations thereof or different amounts of perturbations per predictor

variable.
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Figure A4. Spread-skill relationship per grid cell with the optimum indicated by the red dashed lines: (top; a,c) scatter plots of ensk against
ensp, (middle; b,d) histograms of log(ensk/ensp), stratified for landslide presence and absence (between buffer and maximum distance).
(Bottom; e) summary of the average Euclidean distance d for all applied linear perturbations with the optimum framed in red. Shown are
results for a-b) without perturbation of predictor variables (L.5S5), and c-d) for linear perturbation of predictor variables within the interval

(0.15,0.2) (LS S125). In other words, (a-b) account for model uncertainty alone whereas (c-d) account for the rotal uncertainty (see Fig. 1).
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Abbreviations

N5 number of landslide locations, i.e. landslide presence grid cells
Npors number of landslide absence grid cells

LSS landslide susceptibility

ensk ensemble skill

ensp ensemble spread

AIC Akaike information criterion

AUC area under the ROC curve

B-CV blocked random CV

BS Brier Score

CLSM Catchment Land Surface Model

CTI compound topographic index

CV cross validation

DEM digital elevation model

EASEv2 Equal-Area Scalable Earth version 2

GLC Global Landslide Catalog

GLiM Global Lithological Map

GMTED2010 Global Multi-resolution Terrain Elevation Data 2010
GRIP Global Roads Inventory Project

GSHAP Global Seismic Hazard Assessment Project
GSHM Global Seismic Hazard Map

GSWP-2 Second Global Soil Wetness Project

GTOPO30 USGS global elevation model
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590 HWSDI1.21 Harmonized World Soil Databank version 1.21
IQR inter-quartile range
LHASA Landslide Hazard Assessment for Situational Awareness
LRC Landslide Reporter Catalog
MELR mixed effects logistic regression
595 MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2
PGA peak ground acceleration
R-CV random CV
RND average road network density
ROC Receiver Operating Characteristic
600 SMAP Soil Moisture Active Passive
SMOS Soil Moisture Ocean Salinity
SRTM Shuttle Radar Topography Mission
STATSGO2 State Soil Geographic project
USGS United States Geological Survey

605 VIF Variance Inflation Factor
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