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Abstract. This study assesses global landslide susceptibility (LSS) at the coarse 36-km spatial resolution of global satellite soil

moisture observations, to prepare for a subsequent combination of a global LSS map with dynamic
:::::::::::
satellite-based soil moisture

estimates for landslide modelling. Global LSS estimation intrinsically contains uncertainty, arising from errors in the underly-

ing data, the spatial mismatch between landslide events and predictor information, and large-scale
:::
LSS

:
model generalizations.

For a reliable uncertainty assessment, this study combines methods from the landslide community with common practices in5

meteorological modelling to create an ensemble of global LSS maps. The predictive LSS models are obtained from a mixed

effects logistic regression, associating hydrologically triggered
:::::::::::::::::::
hydrologically-triggered

:
landslide data from the Global Land-

slide Catalog (GLC) with predictor variables
::::::::
describing

:::
the

:::::::::
landscape.

::::
The

:::::
latter

:::
are

:::::
taken from the Catchment land surface

modeling system (incl. input parameters of soil (hydrological) properties and resulting climatological statistics of water budget

estimates), geomorphological and lithological data. Road network density is introduced as a random effect to mitigate potential10

landslide inventory bias. We use a blocked random cross validation to assess the model uncertainty that propagates into the LSS

maps. To account for other uncertainty sources, such as input uncertainty, we also perturb the predictor variables and obtain an

ensemble of LSS maps. The perturbations are optimized so that the total predicted uncertainty fits the observed discrepancy

between the ensemble average LSS and the landslide presence or absence from the GLC. We find that the most reliable total

uncertainty estimates are obtained through the inclusion of a topography-dependent perturbation between 15% and 20% to the15

predictor variables. The areas with the largest LSS uncertainty coincide with moderate ensemble average LSS
:
,
:::::::
because

::
of

:::
the

:::::::::
asymptotic

:::::
nature

::
of

:::
the

::::
LSS

::::::
model. The spatial patterns of the average LSS agree well with previous global studies and yield

areas under the Receiver Operating Characteristic between 0.63 and 0.9
::::
0.84

:::
and

::::
0.92

:
for independent regional to continental

landslide inventories.

1 Introduction20

Mitigating landslide impacts requires a good understanding of the spatial and temporal patterns of landslide occurrence. The

spatial likelihood
::
of

::
a

:::::::
landslide

:
is referred to as landslide susceptibility (LSS) and plays a crucial role in risk assessment and

land use planning (Guzzetti et al., 2005; Crozier, 2013; Reichenbach et al., 2018).
:::::::
Regional

:::::::::::::
high-resolution LSS maps derived
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from environmental conditions are a fundamental tool for informing local population, city planners and decision makers both

on the immanent landslide likelihood, but also about secondary effects such as major sediment sources (Crozier, 2013; Maes25

et al., 2017; Broeckx et al., 2020).
:::::
Large

::::
scale

::::::::::::
low-resolution

::::
LSS

:::::
maps

:::
can

:::::
serve

::
as

::::::::::
background

::::::::::
information

::
to

::
be

::::::::::
downscaled

::
for

:::
the

::::::
above

::::::::::
applications

::
at

:::
the

:::::
local

:::::
scale,

::
or

::::
they

::::
can

::
be

::::
used

:::
in

::::::::::
conjunction

::::
with

:::::::::
large-scale

:::::::
satellite

::::
data

::
to

::::::::
construct

::
a

:::::::::::::
spatio-temporal

:::::::
estimate

::
of

:::
the

::::::::
likelihood

:::
for

::
a

::::::::
landslide.

Due to their generalizing nature, LSS models are however prone to uncertainty (Petschko et al., 2014). A large number of

LSS models exists, but most focus on local to regional scales and typically lack thorough validation or uncertainty assessment30

(Reichenbach et al., 2018). Recent advances in computational power and data availability have fostered the development of

larger scale LSS maps at continental level (for example Europe: Wilde et al. (2018) and Van Den Eeckhaut et al. (2012), Africa:

Broeckx et al. (2018)) or at the global scale (for example Nadim et al. (2006); Hong et al. (2007); Lin et al. (2017); Stanley

and Kirschbaum (2017)). While information about the uncertainty would be essential to know how reliable these predictions

are
::::
large

::::
scale

::::
LSS

:::::
maps

:::
are

::
as

::::
well

::
as

::::
how

:::::
much

::::::::
variation

:::
can

::
be

::::::::
expected

:::::
within

::
a

:::::::
mapping

::::
unit, only Broeckx et al. (2018)35

provide such a measure
::
for

::::
their

:::::
map

::
of

::::::
Africa and only to a limited degree. The intrinsic uncertainty of LSS may become

more relevant at larger (global ) scales and
:::::::::::
quantification

::
of

::::
LSS

:::::::::
uncertainty

::::::::
becomes

::::
even

:::::
more

:::::
called

:::
for

:::
yet

::::::::::
challenging

::
at

::
the

::::::
global

::::
scale

::::
and

::::
with coarser spatial resolution due to necessary generalizations , higher chances of errors in the underlying

data or the
:::
and

:::
the increased spatial mismatch between landslide events and predictor information. When estimating LSS both

globally and at a coarse spatial resolution to facilitate a subsequent combination
:
A

:::::::
reliable

:::::::::
uncertainty

::::::::::
assessment

::
of

::::::
global40

:::
LSS

::::::::
estimates

::
is

::::::::
moreover

::::::
crucial

:::::
when

:::::::::::
subsequently

:::::::::
combining

::::
them

::
in

:
a
::::::::::
statistically

::::::
optimal

::::
way

:
with, for example, satellite

soil moisture products from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP) as used by Felsberg

et al. (2021), a reliable uncertainty assessment becomes even more crucial.

Uncertainty is typically grouped according to its origin into model uncertainty (here: ‘How correct are the equations that

we use to predict LSS?’) and input uncertainty (here: ‘How correct is the input to these equations?’). Model uncertainty stems45

from heuristic choices that are necessary in the process of model creation, including the choice of the statistical modelling

approach, the selection of predictor variables, training data sampling and training data quality (see for example Steger et al.

(2015); Pourghasemi and Rossi (2016); Zêzere et al. (2017); Depicker et al. (2020); Lima et al. (2021)). In order to estimate

::::
some

::
of
:

these model-intrinsic errors for a chosen modelling approach, cross validation (CV) is a widely used method where

data is divided into a number of subsets, that are subsequently used for training and testing of the model. How to best sample50

the CV subsets to retrieve realistic uncertainty estimates is in itself a field of research. For LSS maps, random sampling is most

common (see for example Broeckx et al. (2018)), while spatial sampling is used less often for an additional uncertainty estimate

(see for example Steger et al. (2020) or Depicker et al. (2020)). However, these are known to respectively strongly under- and

possibly overestimate the model uncertainty, and hybrid methods such as blocked random CV (B-CV) have been suggested to

result in the most reliable uncertainty estimates (Roberts et al., 2017). CV leads to multiple LSS model equations (one per CV55

subset) and the standard deviation of the resulting LSS values gives an indication of the associated model uncertainty as shown

by Broeckx et al. (2018) for Africa.
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Input uncertainty
:::::::::
principally results from errors in the environmental dataas well as from possible variability within a

modelling unit such as a grid cell or catchment. More specifically, coarser input data might be less representative for local

events, such as landslides.
:
. To assess how input uncertainty propagates into the total prediction uncertainty, ensemble simula-60

tions can be used. Meteorologists, for example, simulate the weather based on a distribution of starting conditions and retrieve

:::::
initial

:::::::::
conditions

:::
and

::::::
predict

:
an ensemble of equally possible predictions

::::::::
outcomes (ensemble members). Instead of only one

deterministic weather forecast, they use the ensemble average prediction that has been found to perform better than their de-

terministic counterpart (Kalnay et al., 2006). Note that this is not necessarily the case for individual ensemble members which

can and often will perform worse than the deterministic prediction. The uncertainty of the final ensemble average prediction65

can then be estimated by the variance or standard deviation among the ensemble members.

The total ensemble uncertainty, resulting from the combination of these methods that account for model and input uncer-

tainty respectively, is assumed to be reliable if it matches the observed ‘actual’ total uncertainty. The latter is estimated by

comparing the predicted average LSS against the observed presence and absence of landslides. The gap between this observed

and the predicted total uncertainty can then be closed by tuning the magnitude of the ensemble input perturbations. Note70

that this implies that the perturbations might in the end not purely capture the input uncertainty, but actually compensate

for other sources of uncertainty as well that are not specifically addressed.
:::
One

::::
such

:::::::::
important

:::::
source

:::
of

:::::::::
uncertainty

::
is

::::::
spatial

:::::::::::::::
representativeness

::::
error

::::::::::::::::::::::::::::::::::::::::::
(Blöschl and Sivapalan, 1995; van Leeuwen, 2015),

::::::::
especially

:::::
when

::::::::
evaluating

::::::::
spatially

:::::::
averaged

::::
grid

:::
cell

::::
LSS

::::::::
estimates

:::::
using

:::::
single

::::::::
landslide

::::::::::
observations

::
as

::::::::
reference

:::::
data.

In this study, we combine CV and an ensemble approach to create global LSS maps with a reliable total uncertainty75

(full ensemble standard deviation). We create multiple LSS equations as part of CV (‘weak model constraint’), and subse-

quently perturb the selected predictor variables (input of the LSS model equations) to retrieve a ‘full ensemble’ of possi-

ble LSS values. Specifically, we focus on hydrologically triggered landslides based on the Global Landslide Catalog (GLC).

::::::::::::::::::::
hydrologically-triggered

::::::::
landslides

:::
and

:::::::
propose

::
to

::::::
include

:::::::::
long-term

::::::::::::
climatological

:::::::
statistics

::
of

:::::::::::::::::
hydrometeorological

::::::::
variables

::
as

:::::::
predictor

:::::::::
variables,

::
in

:::::::
addition

::
to

:::
the

:::::::
common

:::::::::::::::
geomorphological

:::::
ones.

:
We use a mixed effects logistic regression (MELR)80

relying on the strong generalizing capabilities of logistic regression , while mitigating
::
as

:::
the

::::
basic

::::::
model

::::::::
structure,

::::
and

:::
we

:::::::
mitigate the potential reporting bias of landslide presences in the GLC with

::::::
Global

::::::::
Landslide

:::::::
Catalog

::::::
(GLC)

::::
with

::::::::
stratified

::::::
average

:
road network density

::::::
(RND) as a random effect. To limit biases from unreliable and confounding definitions of land-

slide absence grid cells for the model creation, we introduce a novel approach based on a ‘characteristic distance’ between

landslides. After having taken these steps to limit the introduced uncertainty, the B-CV is used to introduce
:::::
instill

:
model un-85

certainty and
::
via

::
a
:::::::
selection

:::
of

:::::::
different

:::::::
possible

::::::::
predictor

::::::::
variables

:::
and

:::::::::
associated

:::::::::
parameters,

::::
and we further add (and tune)

ensemble perturbations to the selected predictor variables to obtain a reliable total ensemble uncertainty. This LSS assessment

is carried out on the 36-km Equal-Area Scalable Earth version 2 (EASEv2 ) grid, which is is also used for
:::
grid,

::
in

::::
line

::::
with

:::
the

:::::::
nominal

:::::
spatial

:::::::::
resolution

::
of satellite soil moisture products

::::::::
estimates from SMOS or SMAP. Producing spatial LSS estimates

at this resolution facilitates
:::
the

::::::::
inclusion

::
of

::::::::
long-term

::::::::
statistics

::
of

:::::
global

:::::::::::::::::
hydrometeorological

:::::::::
variables, a subsequent combi-90

nation with the satellite-based temporally dynamic data, as well as
:::
and the development of computationally intense ensemble
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approaches. To our knowledge, no framework has earlier been developed for the assessment of the total uncertainty of LSS

predictions.

2 Data

2.1 Landslide data95

A first step in creating our LSS models is the creation of suitable training datasets(see
:
,
::::::::
indicated

::
in

:::
the

:::::
upper

::::
part

:::
of

:::
the

::::::::
flowchart

::
in Fig. 1). We use reported hydrologically triggered

::::::::::::::::::::
hydrologically-triggered landslide occurrences from the most

recent version of the GLC (https://landslides.nasa.gov/viewer, accessed 8th February 2021). The GLC is a landslide inventory

:::
that

:::::::
contains

::::::::::
information

:::::
about

:::::::
location,

::::
date

:::
and

::::::
trigger.

::
It

::
is

::::::::
originally based on media reports (Kirschbaum et al., 2010, 2015)

, which has
:::
but

:::
has

:::::::
recently been supplemented with the citizen science based

:::::::::::
science-based Landslide Reporter Catalog (LRC)100

data (Juang et al., 2019), see Stanley et al. (2021) for details. Any reference to the GLC hereafter refers to this combined data

product. Despite known English-language and economic biases (Kirschbaum et al., 2010, 2015), the GLC covers all continents

and landslide hotspots. It has already been used for the creation of two global LSS maps (Stanley and Kirschbaum, 2017; Lin

et al., 2017) and was used to train the newest version of the Landslide Hazard Assessment for Situational Awareness (LHASA)

model version 2.0 (Stanley et al., 2021).105

For this study, we use 12515 landslides
::::::::::::::::::::
hydrologically-triggered

::::::::
landslides

::::::
(GLC

::::::::
classifiers

::::::::::
“continuous

:::::
rain”,

:::::::::::
“downpour”,

::::::::::
“monsoon”,

:::::::::
“flooding”,

::::::
“rain”

::::
and

:::::::
“tropical

:::::::::
cyclone”) reported mainly between January 2007 and November 2020.

:::::
Since

:::
LSS

:::::::
informs

::::::
about

:::
the

:::::
static

::::::::::::
environmental

::::::::
landslide

:::::::::
likelihood,

::
it
::

is
::::::::

common
:::::::
practice

:::
to

::::::
exclude

::::
the

::::::::
temporal

:::::
aspect

:::
of

:::::::
landslide

::::::::::
occurrence

:::
and

:::::::
instead

:::::
work

::::
with

::::::::
landslide

:::::::
presence

::::
and

:::::::
absence

:::::::::
locations. Multiple landslides within the same

36-km
:::::::::
Equal-Area

:::::::
Scalable

:::::
Earth

:::::::
version

:
2
:
(EASEv2

:
)
:
grid cell are

:::::::
therefore aggregated into one ‘landslide location

:::::::
presence110

:::
grid

::::
cell’, resulting in NLS =

:
a

::::
total

::
of

:
NLS::

=3757 landslide presence grid cells (orange grid cells, Fig. A1). This
:::::
While

::
we

::::::::::::
acknowledge

:::
that

::::
grid

:::::
cells

::::
with

:::::
more

:::::::
frequent

::::::::
landslide

:::::::::
reporting

:::
can

::
in
:::::::

general
:::
be

::::::::
expected

::
to

::::
have

::
a
::::::
higher

:::::
LSS,

::
we

::::::
found

:::
that

:::
the

:::::::::::
information

:::::
about

:::
the

::::::::
frequency

:::
of

::::::::
landslide

:::::::::
occurrence

::::::
within

::
a

:::
grid

::::
cell

:::::::
strongly

:::::::
mirrors

:::::
biases

:::
in

:::
the

:::::::
landslide

:::::::::
inventory,

:::
e.g.

:::::
more

::::::::
landslides

:::
are

:::::::
reported

::
in

:::::::::::::::
English-speaking

::::::::
countries.

::::
The

::::::::::
aggregation,

:::
on

:::
the

:::::::
contrary,

:
reduces

the landslide presence reporting bias of the GLCand also excludes any temporal aspect of landslide occurrence.
:
. To address the115

remaining landslide presence bias originating from more landslide reporting in frequently accessed areas, we use
:::::::
stratified data

on the average road network density
::::
RND

:
(including highways and all types of roads, ranging from primary to local roads)

provided by the Global Roads Inventory Project (GRIP) (Meijer et al., 2018) .
:
as

::
a
::::::
random

::::::
effect,

::::::::
explained

::
in

::::
sect.

::::
3.1.

The creation of realistic statistical LSS models and uncertainty estimates depends on the knowledge of both landslide pres-

ences and absences (Roberts et al., 2017; Steger and Glade, 2017; Knevels et al., 2020; Lucchese et al., 2021). Usually, an120

absence grid cell is simply defined as one without a recorded landslide. For local modelling, this might work when complete

and reliable landslide inventories are available. For large or remote areas, however, no reported landslide does not necessarily

mean that the site never experienced one. Terrain features show a certain amount of spatial autocorrelation indicating that

locations in proximity of a known landslide are generally prone to instability as well. It should therefore be avoided to use
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Figure 1. Schematic of the setup for LSS assessment
:::::::::
methodology

:
used in this study and

:::
with

::
an

::::::::
indication

::
of

::
the

:
subsections that describe

the corresponding methods in
:::::
provide

:
more detail. ‘Ensemble’ refers to a collection of LSS maps. In the course of this study, we refer

to different subsets of the full ensemble (LSS2500), namely the ensemble from one single B-CV application (LSS5), when adding input

perturbations to it (LSS125) or when repeating the underlying landslide absence subsampling (LSS100).
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grid cells too close to known landslide locations as
::
an

:
absence reference (Brenning, 2005). On the other hand, absence grid125

cells sampled very far from the reported landslide locations, in so-called ‘trivial’ or easily classifiable areas (for example flat

areas), might result in an underrepresentation of stable areas in the vicinity of the known landslide locations (Steger and Glade,

2017). Additionally, it might confound the selection process of geomorphologically meaningful predictor variables and lead to

an overoptimistic conception of the resulting LSS map’s quality (Steger and Glade, 2017; Lucchese et al., 2021).

In this study, we therefore adopt a sampling strategy as used in earlier LSS assessments (Van Den Eeckhaut et al., 2012;130

Lin et al., 2017; Zhu et al., 2017; Nowicki Jessee et al., 2018; Knevels et al., 2020; Lucchese et al., 2021), where reliable

absence grid cells are defined between a minimum (buffer) and maximum radius around known landslide locations
:::::::
presence

:::
grid

::::
cells. As a measure of spatial autocorrelation we derive the ‘characteristic distance’ between two landslides from the GLC

(for details see Appendix A1). We use this characteristic distance of 221.43 km (appr.
::
∼ 6 grid cells) as the buffer radius, and

2.5 times this distance (appr.
::
∼ 15 grid cells) as maximum radius. Absence grid cells are hence selected from grid cells 7 to 15135

around a landslide occurrence (blue grid cells in Fig. A1). This definition still results in more than six times more absence grid

cells (NnoLS > 25000NnoLS :::::::
> 25000) than landslide presence grid cells (NLS =NLS::

=3757). We therefore sample from the

absence grid cells with a 1:1 ratio (NLS :NnoLSNLS :NnoLS) as is commonly done, for example by Brenning (2005), Steger

and Glade (2017), Nowicki Jessee et al. (2018), Depicker et al. (2020), Knevels et al. (2020), Lin et al. (2021) and Lucchese

et al. (2021). LSS models are subsequently constructed based on data from 7514
:::::::
(absence

:
+
:::::::::
presence) grid cells, as illustrated140

in Fig. 1.

2.2 Environmental data

The 77 predictor variables considered in this study are listed in Table 1 and were selected based on earlier reviews on the most

common predictors used for LSS maps (Pourghasemi and Rossi, 2016; Reichenbach et al., 2018). In statistical LSS models,

these predictor variables act as proxies for one or multiple processes underlying a landslide (Whiteley et al., 2019). Since LSS145

in its definition is referring to the spatial likelihood of landslides, we only consider predictor variables that are (quasi) static in

time.

To better represent processes underlying hydrologically triggered
:::::::::::::::::::
hydrologically-triggered

:
landslides, we include hydrological

::::::::
long-term climatological statistics of soil moisture in different layers, soil surface temperature, runoff,

:::::::
rainfall, evaporation and

snow depth as possible predictor variables. These climatological statistics include the range (here defined as the difference150

between percentiles 1 and 99), inter-quartile range, mean, median, percentile 99 and maximum within the time period 1990-

2020, derived from 36-km simulations with the Catchment Land Surface Model (CLSM) (Koster et al., 2000; Reichle et al.,

2019), forced with Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological

data, as in Felsberg et al. (2021). MERRA-2 rainfall input climatological statistics are used to accompany the above-mentioned

hydrological ones.155

Most other predictor variables are part of the 36-km input parameters to the CLSM. Of these, elevation and Compound

Topographic Index (CTI) stem from the same underlying Shuttle Radar Topography Mission (SRTM) data as the morphological
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Table 1. Environmental predictor variables used in this study, alongside their data source, original spatial resolution and methods used for

aggregation to the 36 km EASEv2 grid(if applicable).
::::
Apart

::::
from

:::::
slope,

:::::::
lithology,

:::::
PGA

:::
and

::::::
rainfall,

:::
the

:::::::
specified

:::::::::
aggregation

::::
was

:::
not

:::::::
conducted

::
in
:::
this

:::::
study.

:
Predictor variables that are part of the CLSM parameter set or output do not require any spatial aggregation. Long-

term climatological statistics of all hydrological variables comprise the range (here: difference between 1st and 99th percentile), inter-quartile

range, mean, median, 99th percentile and maximum between 1990 and 2020. MERRA-2 precipitation is used as input for the calculations

of the hydrological climatological statistics and has been interpolated to the 36 km EASEv2 grid as part of the simulation process. Units are

given for the original data, but are removed through the rescaling of the data to the interval (0,1) (see text).

Predictor variables Data source
Original spatial

resolution

Aggregation method

to or within EASEv2,

36 km grid cell

slope (mean, maximum) [◦] USGS: details in Verdin et al. (2007) based

on SRTM DEMa and GTOPO30b

3” (SRTM DEM),

30” (GTOPO30)

mean and maximum

elevation (mean, standard deviation) [m a. s. l.] CLSM parameters: details in Verdin (2013)

based on SRTM DEMa and GMTED2010c

3” (SRTM DEM),

7.5” (GMTED2010)

mean and standard

deviation

depth to bedrock [m] CLSM parameters: details in De Lannoy

et al. (2014) based on GSWP-2d

1◦ spatial interpolation

percentage of gravel (0-30 cm) [vol%] CLSM parameters 30” most representative

percentage of clay (0-30 cm and 0-100 cm) [w%] details in De Lannoy et al. (2014) 30” sample

percentage of sand (0-30 cm and 0-100 cm) [w%] based on STATSGO2e

porosity (0-30 cm and 0-100 cm) [m3/m3] and HWSD1.21f

wilting point divided by porosity (0-30 cm and 0-100 cm) [-]

compound topographic index, CTI (mean, maximum) = ln(specific catch-

ment area/tan(slope)) [log(m)]

CLSM parameters: details in Verdin (2013)

based on SRTM DEMa and GMTED2010c

3” (SRTM DEM),

7.5” (GMTED2010)

mean and maximum

land fraction within grid cell CLSM parameters: HYDRO1k based on

GTOPO30, 1996 (EROS, 2018; Verdin,

2013)

10” areal fraction

fraction covered by each of 13 lithological classes [-]: metamorphic rocks,

mixed sedimentary rocks, siliclastic sedimentary rocks, basic plutonic

rocks, acid plutonic rocks, basic volcanic rocks, intermediate volcanic

rocks, carbonate sedimentary rocks, unconsolidated sediments, interme-

diate plutonic rocks, pyroclastics, evaporites, acid volcanic rocks

GLiM created by Hartmann and Moosdorf

(2012)

polygons areal fraction

peak ground acceleration, PGA [m/s2] due to earthquakes expected with

a return period of 475 years (i.e. 10% exceedance probability in 50 years)

GSHMg created by GSHAPh (Giardini et al.,

2003)

1° nearest neighbour

rainfall climatological statistics [mm] MERRA-2 (Bosilovich, 2015) 0.625° lon x 0.5° lat bilinear interpolation

surface soil moisture climatological statistics (0-5 cm) [m3/m3] CLSM output EASEv2, 36 km -

root zone soil moisture climatological statistics (0-100 cm) [m3/m3]

profile soil moisture climatological statistics (0-100 cm) [m3/m3]

land surface temperature climatological statistics [K]

runoff climatological statistics [mm]

evaporation climatological statistics [mm]

snow depth climatological statistics [mm]

_ a Shuttle Radar Topography Mission digital elevation model; b USGS global elevation model; c Global Multi-resolution Terrain Elevation Data 2010; d Second Global Soil Wetness Project;

:
e State Soil Geographic project;

:
f Harmonized World Soil Databank version 1.21;

:
g
:

Global Seismic Hazard Map; e h
:

Global Seismic Hazard Assessment Project;
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information on slope from the United States Geological Survey (USGS),
::::

but
::::
with

:::::::
different

::::
data

::::::
sources

:::
for

:::
the

::::
high

::::::::
northern

:::::::
latitudes (Verdin et al., 2007).

We use lithological information from the Global Lithological Map (GLiM) (Hartmann and Moosdorf, 2012) aggregated to160

the fraction of a grid cell covered by each of the 13 lithological classes (we exclude the classes ‘water’, ‘ice and glacier’, and

‘no data’). This produces a dataset with 13 fields, each with a continuous fraction estimate. peak
::::
Peak

:
ground acceleration

(PGA) (Giardini et al., 2003),
::
is the likely level of ground motion from earthquakes , can be seen as a

::::::::::::::::::
(Giardini et al., 2003).

::::
Here,

:::
we

:::
do

:::
not

:::
use

::
it

::
as

:::
the

::::::::
likelihood

:::
of

:
a
:::::::
seismic

:::::::
landslide

:::::::
trigger,

:::
but

:::::
rather

::
as

:
a
:
proxy for the fracturation and weakening

that lithologies have undergone due to seismic and tectonic activity (Lin et al., 2017; Vanmaercke et al., 2017; Broeckx et al.,165

2018). Details on the aggregation methods are given in Table 1.

3 Model construction and evaluation

3.1 Mixed effects logistic regression (MELR) for model development

In this study, we create a statistical LSS model using MELR (Zuur, 2009), as previously also employed by Steger et al. (2017),

and at national scale by Lin et al. (2021) and Lima et al. (2021). Logistic regression is the most commonly used approach170

for statistical LSS mapping (Reichenbach et al., 2018), and .
::
It is associated with strong generalizing capabilities (Brenning,

2005)- ,
::::::

which
::
is

:
a necessity when working at the global scale. Within such an approach

:
,
:::
and

::
it

:::
has

::::::
proven

::
to
:::

be
:::::::
reliable

::
in

:::::::::
continental

::
to

:::::
global

::::
LSS

::::::::::
assessments

::::::::::::::::::::::::::::::::
(Broeckx et al., 2018; Lin et al., 2017).

::::::
Within

::::::
logistic

:::::::::
regression, the LSS, here defined

as the probability of a
:
landslide presence within a grid cell, P (Y = 1), is given by:

P (Y = 1) =
exp(α+

∑n
i=1βixi)

1 + exp(α+
∑n

i=1βixi)
(1)175

with α [-] the intercept, xi [-] the independent predictor variable
:::::::
variables, βi [-] the associated coefficient and n the number

of predictor variables. A one unit change in the predictor variable xi results in a muliplicative change in the odds of landslide

presence by exp(βi). Positive (negative) β-values hence indicate an increase (decrease) in LSS with an in increase in the

predictor variable. In this study, we work with rescaled predictor variables (between their global minimum and maximum) to

detach the magnitude of the β-values from the magnitude of the predictor variable. This facilitates subsequent interpretation.180

We employ a stepwise forward technique to select five predictor variables, corresponding well to the commonly used number

of predictor variables for LSS assessment at the global scale (Nadim et al., 2006; Stanley and Kirschbaum, 2017; Lin et al.,

2017; Reichenbach et al., 2018). Based on the Akaike information criterion (AIC), a measure that is proportional to the sum of

squared errors and allows for comparison between non-nested models, we determine the best performing univariate MELR, i.e.

the first predictor variable. The AIC comparison is subsequently repeated for multivariate MELR with one additional predictor185

variable at a time. This stepwise forward selection also allows to exclude correlated predictor variables (r > 0.7, following for

example Dormann et al. (2013)), so that largely independent predictor variables are used in the logistic regression. Analysis
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::
An

:::::::
analysis

:
of the generated models using the Variance Inflation Factor (VIF) proved that this approach indeed successfully

prevented a logistic regression model construction based on predictor variables that are too strongly intercorrelated
::::::::
correlated.

The mixed effects approach allows us to include a
:::::::::::
categorically

:::::
scaled

::::::::
variable

::
as

::
a so-called ‘random effect’, here the190

random intercept α, for which we use the average road network density
::::::
(RND) stratified into 6 groups (divided by the global

quintile thresholds). The underlying assumption here
::::::
classes.

:::
We

:::::::::
summarize

:::
all

::::
land

:::
grid

::::
cells

::::::
where

::::::
average

:::::
RND

:
is
:::::::::
negligible

:::::::::::
(< 1m/km2)

::::
into

:::
the

:::
first

:::::
class

:::
and

:::
use

::::::::
quantiles

:::
20,

:::
40,

:::
60

:::
and

:::
80

::
of

::::
those

::::
grid

::::
cells

::::
with

:::::::::::::
non-negligible

::::
RND

::
to

::::::
divide

:::
the

:::
rest

:::
into

:::::::::
additional

:
5
:::::::
classes.

::::
The

:::::
mixed

::::::
effects

::::::::
approach

:::
will

::::
then

:::::
result

::
in

:::
one

::::::
global

::::::
logistic

:::::::::
regression

:::::::
equation

::::
that

:::
has

:::
the

::::
same

::::::::
β-factors

:::
for

::
all

::::
grid

:::::
cells,

:::
but

:::::::
different

::
α

:::::
values

:::::::::
according

::
to

::::
each

::::
grid

::::
cell’s

:::::
RND

:::::
class.

::::
The

:
6
::
α

:::::
values

:::
are

::::::::
assumed

::
to195

::::
come

:::::
from

:
a
:::::::::
zero-mean

::::::
normal

::::::::::
distribution

:::::::::::
(Zuur, 2009).

:

:::
The

:::::::::
underlying

::::::::::
assumption

::
of

::::
RND

::
as

::
a

::::::
random

:::::
effect is that the representativeness of the landslide data from the GLC varies

with the road network density
:::::
RND of the region. We recognize that road network density

::::
RND may also serve as a proxy for

human interference or likelihood of slope cutting and may hence be included as a predictor variable, as was argued by Stanley

and Kirschbaum (2017). Instead, we opt for the inclusion
:::
The

:::
use

:::
of

:::::
RND

::
as

:
a
::::::::

predictor
:::::::

variable
:::

or
:::::::
random

:::::
effect

:::
can

:::
be200

:::::::
expected

::
to

::::
have

::::::
similar

::::::
results

::::
were

:::
the

:::::::::
connected

:::
bias

::::::
small.

:::
For

::::
large

::::::
biases,

::::::::
however,

:::::::::
predictions

:::::
using

:::::
RND

::
as

:
a
::::::::
predictor

::::::
variable

::::::
would

::::::::::::
systematically

::::::::::::
underestimate

:::
the

:::::
actual

::::
LSS

::
of

:::::::
remote

::::
areas

::::
with

::::::
strong

::::::::::::
underreporting

:::
of

::::::::
landslides

:::
(as

::::
was

:::
put

:::::::
forward

::
by

:::::::::::::::::::
Steger et al. (2017) for

:::::::
forested

::::::
areas).

::::
The

::::::::
inclusion

::
of

:::::
RND

:
as a random effect in order to favour

::::::
favours

the selection of natural, physically valid predictor variables while allowing for locations without roads to also receive a high

predicted LSS, as was put forward by Steger et al. (2017) for forested areas. While they Steger et al. (2017) found results to be205

very similar between these two options for small biases in the landslide inventory, they conclude a clear underrepresentation

in the underreported areas for stronger biases.
:
. We use the glmer function from the lme4 package (Bates et al., 2015) to create

MELR models in R version 4.0.3 (R Core Team, 2020)
::::
where

:::
the

::::
best

:::::
fitting

::::::::::
parameters

:::
are

:::::::
obtained

:::
by

::::::::
maximum

:::::::::
likelihood

::::::::
estimation.

3.2 Cross validation (CV) and input perturbations for reliable uncertainty estimation210

The inclusion of random effects in a regression model results in unbiased model parameter estimates, but it does not inform

about the uncertainty of the predictions (Roberts et al., 2017). Similar to a
:::
The Brier Score (BS) (Wilks, 2011) ,

::::
gives

:
a measure

of the ‘actual’ total uncertainty can be obtained by comparing the predicted average LSS (LSS) against landslide observations

from the GLC (o) at different grid cells i (i= 1, ...,N ):

BSBS
::

=
1

N

N∑
i=1

(LSS− o)2i (2)215

with o being 1 for landslide presence and 0 for absence grid cells. The aim is to design an LSS model setup so that the predicted

total ensemble uncertainty, quantified by the ensemble variance or spread σ2
LSS matches this ‘actual’ uncertainty

:
,
:::::
which

:::
by

:::::
design

:::::::
includes

::::::
model

:::
and

:::::
input

::::
error

:::::::
(LSS),

:::
but

:::
also

:::::
error

::
in

:::
the

::::::::
reference

::::
data

:::
(o),

:::
and

::::::
spatial

:::::::::::::::
representativeness

::::
error.
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In this study, the predicted total ensemble uncertainty results from the combination of CV techniques and input ensemble

perturbations. For CV,
::
the

:
data is separated into five subsets, which subsequently are used for training and testing the model220

with the hold-one-out technique, as illustrated in Fig. 1. We employ a B-CV, as recommended by Roberts et al. (2017), which

we found to indeed yield most realistic error estimates in comparison to random or spatial sampling (not shown). One subset

consists of 20 randomly sampled ‘blocks’, i.e. small groups , of the 7514 grid cells selected for model creation. We group the

::::
This

:::::
means

::::
that

::::::
instead

::
of

::::::::
randomly

::::::::
sampling

:::::::::
individual

:::
grid

::::
cells

::::
into

:::
the

:
5
:::::::
subsets

:::
for

::::::
training

::::
and

::::::
testing

::
the

::::::
model

::
as

::::
part

::
of

:::
CV,

:::
we

::::::::
randomly

::::::
sample

:::::
small

::::::
groups

::
of

:
grid cells into a total of 100 blocks according to climatological conditions within225

::::
with

::::::
similar

::::::::::::
environmental

:::::::::
conditions,

::::::::
so-called

:::::::
“blocks”

::::
(see

:::
Fig.

:::
1).

:::
We

::::::
expect

:::
that

:::
the

::::::::::::
environmental

:::::::::
conditions

:::
are

::::::
similar

::
in

::::::::::
neighboring

:::::
pixels

::::
(for

:::::::
example

:::::
same

:::::::::::
subcontinent)

::::
and

:::
for

::::::
similar

:::::::
climate

:::::
zones.

::::
We

:::::::
therefore

::::::
derive

::::::
blocks

::
in

::
2

:::::
steps.

::::
First,

:::
the

::::
7514

::::
grid

::::
cells

:::::::
selected

:::
for

:::::
model

:::::::
creation

:::
are

::::::
divided

:::::::::
according

::
to 10 predefined regions (roughly two per continent)

, independent of landslide absence or presence. Within these regions, we mimic typical climatological zonations (for example

that of Köppen) through k-means
::::
(sub-)

::::::::::
continents.

::::::
Within

::::
each

::::::
(sub-)

::::::::
continent,

:::
we

::::
then

::::::
derive

::
in

:
a
::::::
second

::::
step

:::
10

::::::
blocks230

::::::
through

:::::::
kmeans clustering (Lloyd, 1982) of 30-year average soil surface temperature and rainfall (see Table 1), dividing each

region into 10 blocks . .
:::

In
::::
total

:::
we

::::::
retrieve

::::
100

::::::
blocks

::::::::::
comprising

:::::::
different

::::::::
numbers

::
of

::::
grid

::::
cells

::::::::
(median:

:::
55)

::::
that

:::
are

:::
not

:::::::::
necessarily

::::::
located

::::
next

:::
to

::::
each

:::::
other.

::::
The

::::
100

:::::
blocks

::::
are

::::
then

::::::::
randomly

:::::::
divided

:::
into

::::
the

:
5
:::::::
subsets

:::
for

:::::
model

:::::::
creation

::::
(20

:::::
each).

Next, the MELR is iteratively trained on 4 subsets and the model fitting performance is tested against the 5th, i.e. the hold-235

one-out subset, until each of these has served
::::
using

::::
each

::::::
subset as a test-subset once (see Fig. 1). This results in 5 different

model equations and corresponding LSS maps. By repeating the absence sampling 20 times, we obtain a total of 100 LSS maps

(referred to as CV ensemble or LSS100, see Fig. 1) that allow for calculations of an ensemble average LSS (LSS100), as well

as a standard deviation (σLSS100
).

::::
Note

:::
that

::::
the

::::::::
definition

::
of

:::
the

:::::::::
individual

:::::
blocks

::::::
varies

:::::::
between

::::
each

:::::::::
repetition

::
of

:::::::
absence

:::
grid

::::
cell

:::::::
sampling

::::
due

::
to

:::
the

::::::
kmeans

:::::::::
clustering

:::::::::
algorithm.240

For the input ensemble perturbations, we apply a retrieved
:::
one

:::::
fitted model equation to slightly perturbed

:
a
:::::::
slightly

::::::::
perturbed

::
set

:::
of

::
its

:
predictor variable valuesand obtain an additional LSS map realization. In total, 25 repetitions of this process are

conducted, resulting in an ensemble of 25 LSS maps per model equation (see Fig. 1). In combination with the 5 model

equations and 20 repetitions for the CV ensemble, this results in a total amount of 2500 LSS maps (referred to as full ensemble

or LSS2500) with corresponding average (LSS2500) and standard deviation (σLSS2500
), which

:
.
:::
The

:::::
latter

:
is representative of245

the total prediction uncertainty.

The perturbations to the predictor variables are randomly sampled from a normal distribution with the mean being the

original value of the grid celland a standard deviationthat is referred to as the perturbation magnitude. The latter
:
.
:::
The

::::::::
standard

::::::::
deviation,

::
or

:::::::::::
perturbation

:::::::::
magnitude,

:
is tuned, so that the resulting total ensemble spread (including the spread originating

from CV) matches the observed actual uncertainty as retrieved by
::
BS

:::
in Equation 2. For details of the tuning process, see250

Appendix A2. We apply the same perturbation magnitude to all predictor variables, but have it increase proportional
::::::::
(rescaled)

:::::::
predictor

::::::::
variables.

::::
The

:::::::::
magnitude

::
is

::::::
chosen

::
to

:::::::
increase

::::::::::::
proportionally

:
to the topographic complexity of a location from 0.15

to 0.2
::::
15%

::
to

::::
20%. We use the variation of elevation within a grid cell as a measure of said topographic complexity and find this
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perturbation scaling to yield better results than a globally constant perturbation magnitude. Note that these perturbations do not

linearly propagate into the final LSS, as we are working with a
:::::::
because

:::
the logistic regression (see Equation 1)

:
is
::::::::::
asymptotic255

and locations of largest perturbation do
:::
thus

:
not necessarily coincide with large resulting ensemble uncertainty.

3.3 Evaluation

To quantify how well the predicted average LSS (LSS2500) represents the
:
a
::::::::
predicted

::::
LSS

::::
map

::::::::
represents

:
observed landslide

presences and absences, a BS can be used (see Equation 2). Alternatively, the LSS accuracy can be quantified using the Receiver

Operating Characteristic (ROC) ,
:
is commonly used as evaluation

:::
tool for categorical response values such as landslide presence260

or
:::
and

:
absence (Reichenbach et al., 2018). For the ROC, the true positive rate

::
of

:::
one

::::
LSS

::::
map

:
is displayed against the

:
its

:
false

positive rate for different possible thresholds in the continuous probability (here: LSS
:::
LSS) that is predicted. We summarize

its information by the
:::
The area under the ROC curve (AUC) . A value of

:
is 1 indicates

::
for a perfect representation of the LSS,

while a
:::::
spatial

::::
LSS

::::::::::
distribution,

:::::::
whereas

:::
an

::::
AUC

:
value of 0.5 indicates that the model does not perform better than random

guessing. As part of the CV model construction, we assess the model fitting performance for each retrieved model equation265

against landslide presences within the test subset (see Fig. 1). This evaluation is conducted both for the LSS resulting from the

original predictor variable values and the perturbed ones, resulting in a total of 100 AUC values for the CV ensemble (LSS100)

and 2500 AUC values for the full ensemble (LSS2500). Note that the performance of individual perturbed ensemble members

can be worse than their counterpart based on the original predictor variable values. a
:::::::
uniform

:::::::::::
distribution.

The ensemble averages, in contrast, are assumed to outperform deterministic predictions, i.e. have a higher accuracy (Kalnay et al., 2006).270

To test this assumption we additionally assess model
:::::::::
Depending

:::
on

:::
the

::::::::
reference

::::::::
landslide

:::::
data,

:::
the

::::
ROC

::::::::
analysis

:::
can

:::
be

::::::::
conducted

:::
for

:::::::
specific

::::
grid

::::
cells

:::::
from

::
a

:::
CV

::::::
subset

:::::::::::
(independent

::::
data

:::
not

:::::
used

::
in

:::
the

::::::::
training),

:::
or

::::
from

:::::
other

:::::::::::
independent

:::::::
landslide

::::::::::
inventories.

:::::
Here,

:::
we

:::
use

::::::::
landslide

:::::::
presence

::::
and

:::::::
absence

::::::::::
information

::::
from

:::
the

::::
grid

::::
cells

::
of

:::
the

::::
fifth

:::
CV

::::::
subset

::::
(test

:::::
subset,

::::
see

:::
Fig.

:::
1)

::
to

:::::
assess

:::
the

::::::
model

:::::
fitting

::::::::::
performance

:::
for

::::
each

::::
LSS

::::::::
ensemble

:::::::
member

::::
map

::::
“on

:::
the

::::
go”.

:::
To

:::::::
evaluate

:::
the

::::
final predictive

::::::::
prediction performance of ensemble average LSS (LSS100 and LSS2500),

:::
the

::::::::
complete

::::::::
ensemble

::::::::
averages275

:::
and

:::
the

:
corresponding ensemble membersand one fully deterministic reference MELR equation (based on neither CV nor

input perturbations) against independent validation data: from
:
,
:::
we

:::
use

:
3
:::::::::::
independent

:::::::
landslide

::::::::::
inventories.

:::
We

::::::
obtain

::::::
36-km

:::::::
landslide

::::::::
presence

::::
grid

::::
cells

::
as

:::::::::
described

:::
for

:::
the

::::
GLC

:::
in

::::
sect.

:::
2.1

:::
for

:
i) quarterly reports issued by the Russian Federation

(FSBIH, 2018) with NLS = 56 aggregated from 183 observations, ii) an inventory for Africa by Broeckx et al. (2018) with

NLS = 649 aggregated from 18053 observations and iii) FraneItalia, a catalog of recent landslides in Italy (Calvello and Peco-280

raro, 2020) withNLS = 309 aggregated from 5438 observations.
::::
Since

:::
we

::::
trust

::::
their

::::::::
landslide

:::::::
absence

:::::::
reporting

::
to
:::
be

:::::::
reliable,

::
we

::::
use

::
all

:::::
other

:::
grid

:::::
cells

:::::
within

:::
the

::::::
region

::
in

:::::::
question

::
as

::::::::
landslide

:::::::
absence

::::
grid

::::
cells.

:
These validation inventories cover dif-

ferent climatic zones and hence landslide regimes, stem from (mostly) non-English speaking regions (Africa, Russia, Italy)

and include less populated areas (Africa, Russia). Predictions from an LSS model created based on the GLC might here hence

be less reliable
:
,
:::
not

::::
well

::::::::::
represented

::
in

:::
the

:::::
GLC

::::
data

::::
that

:::::::
underlie

:::
our

::::
LSS

::::::::
estimates. With Italy being a hot-spot of land-285

slide occurrence within Europe, we are moreover able to assess whether the coarse spatial resolution hinders realistic regional

assessment within smaller, potentially very susceptible areas.
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Figure 2. (Left) Frequency of selected predictor variables and (right
::::
Right) corresponding β-values. The 5 best predictor variables (out of 77,

see Table 1) are determined using stepwise forward selection for each MELR model equation (n=100). Colors indicate at which selection

step (1-5) the predictor variable was selectedat. Boxplots base
::
for

::
β

:::::
values

::
are

:::::
based

:
on the n values of the left panel, independent of the

selection step. Where n= 1, boxplots are replaced by a point.

:::
The

:::::
AUC

::::
and

:::
BS

::::::
metrics

::::
can

::
be

:::::::::
computed

:::
for

:::::::::
individual

::::::::
ensemble

::::::::
members

:::
(of

:::
the

::::
CV

::::::::
ensemble

::::::::
LSS100,

::
or

:::
the

::::
full

::::::::
ensemble

::::::::
LSS2500,

:::::::
yielding

::
a

:::::::::
distribution

:::
of

:::::::
metrics)

::
or

:::
for

::::::::
ensemble

::::::::
averages

::::::::
(LSS100 :::

and
:::::::::
LSS2500).

::
It
::::
will

::
be

::::::::
assessed

::::::
whether

::
i)
:::
an

::::::::
ensemble

::::::
average

:::::::::::
outperforms

::
an

:::::::::
individual

:::::::
member

::::
LSS

:::::::::
realization,

:::
and

:::::::
whether

:::
ii)

:::
the

:::
full

::::::::
ensemble

:::::::
average290

::::
with

::::::::
ensemble

::::
input

:::::::::::
perturbations

:::::::::
(LSS2500)

::::::::::
outperforms

:::
the

:::
CV

::::::::
ensemble

:::::::
average

:::::
which

::::
does

:::
not

::::::
include

:::::
input

:::::::::::
perturbations

::::::::
(LSS100).

::::
This

::::::
would

::
be

::
in

::::
line

::::
with

:::
the

::::::::::
expectations

:::
for

:::::::::::
hydrological

::
or

::::::::::::
meteorological

:::::::
models

:::::::::::::::::
(Kalnay et al., 2006).

:

4 Results

4.1 LSS model structure

To assess the global LSS, we create
::::
This

::::::
section

::::::::::
investigates

:::
the

:::::::
different

::::::
values

:::
for

:::
the

::::::::::::
β-coefficients

:::
and

::::::::
intercept

:
α
:::

of
:::
the295

100 MELR model equations using B-CV (see
::::::
models

::::::
created

:::::::::
following Fig. 1). Each one of these 100 models has a different

set of 5 predictor variables with associated β-values and intercept α. The landslide absence data, used to train these models,

differ for each of the 20 repetitions and subsequently the definitions of the subsets for B-CV vary slightly as well. All 100

models result in LSS maps with very high AUC values above 0.8, with a median of 0.92
:
, for the corresponding test data.
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:::
The

::::::
values

::
of

:::
the

::::::::
intercept

:
α
::::

take
::::::::
negative

:::::
values

:::
for

::::
low

::::
RND

::::
and

:::::::
positive

:::::
values

:::
for

::::
high

:::::
RND

:::
(by

:::::::
design,

:::
not

:::::::
shown).300

Figure 2 (left panel )
:::
left

::::
panel

:
shows which predictor variables were selected how often and during which step of the selection

process
::::
(AIC,

::::
see

::::::
section

::::
3.1). The right panel shows boxplots of the β-values retrieved for each predictor variable (see

Equation 1). Values of the intercept, which is part of all models, vary with road network density as part of the MELR and

mostly have and average close to zero (not shown). The first selected predictor variable was always related to the slope, i.e.

either the mean CTI within the grid cell, the maximum slope or the mean slope.
:::
The

:::::
mean

:
CTI, also known as

:
a topographic305

wetness index, was selected as part of all 100 models. It is inversely proportional to slope (see Table 1), which is in line

with the negative β-values, i.e. an expected decrease in LSS
:
is
::::::::

expected
:
with increasing CTI. As a second selection, if not

again a slope-measure (slope max
:::
The

::::::
second

:::::::
selected

::::::::
predictor

:::::::
variable

::
is

:::::
either

::::::
another

:::::
slope

:::::::
measure

::::::::::
(maximum

:::::
slope or

standard deviation of the elevation i.e. local relief) , we mostly find variables
::
or,

:::
for

::::
more

::::
than

::::
65%

::
of

:::
the

:::::::
models, related to the

climatologic conditions (median surface soil moisture, range of evaporation, maximum evaporation or surface soil moisture).310

:::
Out

::
of

:::::
these

::::::::
variables,

::::::
median

::::::
surface

::::
soil

:::::::
moisture

:::::
stands

:::
out

:::
as

::::
most

:::::::::
frequently

::::
being

:::
the

::::::
second

::::::::
predictor

:::::::
variable

:::
(for

:::::
more

:::
than

:::::
50%

::
of

:::
the

:::::::
models).

:::::::::::
Independent

::
of

:::
the

::::::::
selection

::::
step,

::
it
::
is

::::
part

::
of

::::
more

:::::
than

::::
80%

::
of

:::
the

:::::::
models. All of these variables

are modeled with positive β-values, i.e. the higher the predictor variable, the larger the odds of a landslide presence and hence

the LSS.

The areal fraction of evaporites within the grid cell is the only lithological class that was selected, and only in the final315

selection step. The very unrealistic β-value associated with this predictor (-128.65) suggests that this selection is possibly a

statistical artefact.
:::
The

:
PGA, treated as a proxy for lithologic weakening due to regular seismic activity, is dominantly selected

in the later variable selection steps, but still part of about 80% of the models.

4.2 Evaluation of ensemble LSS

Based on these 100 model equationsand the input parameter perturbations
:
,
:::
and

:::::
when

:::::::::
perturbing

:::
the

:::::
input

::::::::::
parameters

::::
(see320

:::
Fig.

::
1), we obtain the full ensemble average LSS (LSS2500) and standard deviation (σLSS2500

) as shown in Fig. 3(based on

2500 LSS values per grid cell, see Fig. 1). .
:
The highest LSS2500 can be found in the large mountain ranges on all continents

as well as coastal areas (especially the islands in South-East Asia). Very flat areas or planes, such as central northern Canada,

Siberia, the Tibetan plateau, the Sinai peninsula, the Sahara as well as central Australia have very low LSS2500. Intermediate

LSS2500 values are found in the northern Rocky Mountains towards Alaska as well as the Kolyma Range in Russia, at the325

north-eastern shores of South America and the western shores of Africa, along the East African Rift, Scandinavia and India.

Areas with intermediate
::::::
Figure

::
4a

::::::
shows

:
a
:::::::

density
::::::
scatter

::::
plot

::
of

::::::::
σLSS2500::::::

versus LSS2500exhibit large .
::::
The

::::::::::
uncertainty

σLSS2500
while those with

:
is
:::::

large
:::
for

:::::
areas

::::
with

:::::::::::
intermediate

::::::::
LSS2500,

:::::::
whereas

:
very high or low LSS2500 typically have

smaller σLSS2500
associated . This parabolic behaviour is summarized in the density scatter plot of Fig. 4a).

:
a
::::::
smaller

:::::::::
associated

::::::::
σLSS2500

.330

:::::
Figure

::
5

::::::::
illustrates

:::
the

::::::::
ensemble

::::::::
LSS2500::::::::::

distribution
:::
for

::
20

::::::::
randomly

::::::::
sampled

:::::::
landslide

::::::::
presence

:::
and

:::::::
absence

::::
grid

:::::
cells.

Even though we quantify the uncertainty with a σLSS2500statistic, the distributions around LSS2500 within one grid cell are

mostly non-gaussian, as illustrated for 20 randomly sampled landslide presence and absence grid cells in Fig. 5.
:
.
:
Most
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Figure 3. a) Ensemble average LSS (LSS2500) and b) standard deviation (σLSS2500 ) at 36-km resolution. White areas denote missing values

(water bodies, ice). Seemingly larger grid cells in the North are characteristic of the EASEv2 grid projection.

displayed landslide presence (absence) grid cells have LSS distributions ranging at the upper (lower) end of the interval (0,1).

Grid cells 1, 7 and 18, however, exhibit an opposite tendency to their landslideobservation
:
a

::::
very

::::
wide

::::::::::
distribution

:::
that

::::::
seems335

::::::::::
disconnected

:::::
from

:::
the

:::::::
absence

::
(1,

:::
17)

:::
or

:::::::
presence

::::
(18)

::
of

:
a
::::::::
landslide.

The ROC curves for ensemble average LSS2500 are shown in Fig. 6, with the curve for Russia
:::::
curves

:::
for

::::::
Russia

::::::
(AUC:

::::
0.92)

::::
and

::::
Italy

::::::
(AUC:

::::
0.91)

:
being closest to the upper left corner(AUC: 0.90), ,

::::
and that for Africa being a little further from

this optimum (AUC: 0.82)and Italy relatively close to the 1-1 line (AUC: 0.63)
:::::
0.84). The LSS2500 map hence performs very

well over Russia and Africa, while showing some difficulties to capture the patterns for Italy
::::
very

::::
well

:::::::
captures

:::
the

::::::::
landslide340

::::::
patterns

::::
over

:::
all

::::
three

:::::::
regions.

14



Figure 4. (Top) Ensemble standard deviation LSS (σLSS) versus ensemble average (LSS) of a) the full ensemble (LSS2500) and b) CV

ensemble (LSS100) with the corresponding marginal distributions. Please note that all
:::
The

:
marginal distributions contain values of the com-

plete set of 112573 ‘land’ grid cells for which LSS is estimated and are merely scaled by their peak
::
for

::::::::::
visualization. (Bottom) Comparison

of the c) ensemble average and d) standard deviation of LSS2500 and LSS100. The 1-1 line (red, dashed) is shown as reference.

4.3 Impact of input perturbations

The additional inclusion of
::::
above

:::::::::
discussion

:::
of

:::
the

:::
full

::::::::
ensemble

::::::::
LSS2500::::::::

includes perturbations to the predictor variables

alters the ensemble standard deviations (σLSS), while only slightly changing the ensemble averages (LSS) compared to the

ensemble statistics
::
on

:::
top

:::
of

::
the

::::
CV

::::::::
ensemble

:::::::
LSS100 obtained by the CV techniques alone. The parabolic behaviour of σLSS345

with LSS (as shown in Fig. 4a and b) is hence amplified. Figure 4 c) and d) compare results for the full ensemble (LSS2500)

against those of the CV ensemble (LSS100)
::::
(top)

:::::
shows

:::
that

::::::::
σLSS2500::

is
::::::::
typically

:::::
higher

::::
than

::::::::
σLSS100

,
:::::::
whereas

:::
the

::::::::
ensemble
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Figure 5. Distribution of ensemble member LSS values (LSS2500, see Fig. 1) within sample grid cells for select landslide presence (light

orange triangle on map) and absence (blue circle on map)
:::
grid

::::
cells. Please note that the distributions (top) all contain 2500 LSS ensemble

members and are merely scaled by their peak to avoid overlaying (large peak) or invisible (small peak, but wide distribution) curves.

:::::::
averages

::::::::
(LSS2500:

and show
:::::::
LSS100)

:::
are

:::::::
similar,

::
as

:::::::
expected

:::::
from

:::
the

::::::::
additional

:::::::::
zero-mean

::::::::
predictor

:::::::
variable

:::::::::::
perturbation.

:::::
Figure

::
4

:::::::
(bottom)

::::::::
compares

:::
the

::::::
results

:::
for

:::
both

:::::::::
ensembles

::::
and

:::::
shows only slightly smaller LSS2500 in comparison to LSS100,

except for very small LSS (< 0.1). By contrast, the standard deviation σLSS2500
is larger than σLSS100

for nearly all locations,350

as was intended by the additional predictor variable perturbation. The differences between σLSS2500
and σLSS100

are the least

for the very high and low σLSS100
.

Figure 7 shows boxplots of the AUC values for individual members of the CV ensemble (LSS100) and the full ensemble

(LSS2500) compared against the according CV test subsets, as well as the independent validation inventories. Note thatLSS100

is a subset of LSS2500. The median AUC value is lower for LSS2500 than for LSS100 for all reference data. Note though that355

despite
::::::
Despite

:
this shift, a number of the LSS2500 ensemble members also perform better than any of those from LSS100.

As stated before, the
:::
The

:
intention is not for the individual ensemble members to have the best prediction, but rather

:::
for the

ensemble average LSS
:
to

:::
be

::::
best:

::::::
clearly

:::
the

:::::::::
ensemble

:::::
mean

::::::::
performs

:::::
better

::::
than

:::
the

:::::::
majority

:::
of

:::
the

:::::::::
individual

::::::::
ensemble
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Figure 6. ROC curves of full ensemble average LSS (LSS2500) for validation inventories from Russia, Africa and Italy
:::
and

:::::
Africa. Corre-

sponding AUC values are denoted in brackets.

:::::::
members. We find AUC values for these LSS2500 and LSS100 ::::

(dots
:::
on

:::
the

::::::
figure) to be practically the same , since there are

only minor difference between the two (Fig. 4c)360

5 Discussion

5.1 Selected predictor variables

For the global LSS prediction of this study, the mean CTI per grid cell is the most important predictor variable. Mean and

maximum slope within a grid cell are selected less often as the first predictor variable, but one of the two is still included in

nearly every MELR model. We attribute the primary importance of CTI to the fact that our model is trained with data from365

hydrologicall triggered
::::::::::::::::::::
hydrologically-triggered landslides (Kirschbaum et al., 2010, 2015), which do not uniquely occur on

strong slopes.
::::
steep

::::::
slopes.

::::
The

:
CTI intrinsically contains information on the potential hydrological conditions of the site

(through the catchment area) as well as its slope. In line with our study, Emberson et al. (2021) found that the CTI is a strong

predictor of rainfall-induced landslides for a number of inventories in the tropics and subtropics. Earlier global LSS maps by

Nadim et al. (2006), Hong et al. (2007) and Stanley and Kirschbaum (2017) primarily used slope information, while Lin et al.370

(2017) use relative relief. The latter is comparable to the standard deviation of elevation, which is selected in more than 25%

of the models of our study.

:::::::::
Long-term

::::::
median

::::::
surface

::::
soil

:::::::
moisture

::::
was

::::
most

:::::::::
frequently

:::::::
selected

::
as

:::
the

::::::
second

:::::::
predictor

:::::::
variable

::::
and

:::
part

::
of

:::::
more

::::
than

::::
80%

::
of

:::
all

::::::
models.

:
The positive connection of LSS to the long-term median surface soil moisture in the MELR equations is
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Figure 7. Distribution of AUC for model fitting performance (test data) and model prediction performance (based on independent validation

inventories from Russia, Africa and Italy
:::
and

:::::
Africa). Results are shown for CV ensemble members (LSS100) and full ensemble mem-

bers (LSS2500, including CV ensemble members). AUC values for ensemble averages are displayed as points (black: LSS100, coloured:

LSS2500). The latter correspond to the ROC curves shown in Fig. 6.

logical for hydrologically triggered landslides. Surface soil moisture is closely related to rainfall and the
:
to

::::
LSS

::::::
reflects

:::
the

::::
fact375

:::
that

::::::::::::::::::::
hydrologically-triggered

:::::::::
landslides

:::::
mostly

:::::
occur

::
in
::::::
humid

::::::
regions

::::::
where

:::
the

:::
soil

::
is

:::::
often

:::
wet

:::
and

:::::::
rainfall

:::
can

:::::
more

:::::
easily

:::::::::
destabilize

:
a
:::::
slope.

::::
The

:::::
close

::::::
relation

::::::::
between

::::::
surface

:::
soil

::::::::
moisture

::::
and

::::::
rainfall

::::::::::::
characteristics

::
is

::::::::
probably

:::
the

:::::
reason

:::
for

:::
its

:::::::
preferred

::::::::
selection

::::::::
compared

::
to
::::::
deeper

:::::
layer

:::
soil

::::::::
moisture

::::::::
variables.

:::
The

:
high correlation between both prevents that both are

::::::
surface

:::
soil

::::::::
moisture

:::
and

::::
both

:::::::
rainfall

:::
and

::::::
deeper

:::::
layer

:::
soil

::::::::
moisture

::::::::
variables

:::::::
prevents

:::
that

:::
the

:::::
latter

::::
two

:::::
would

:::
be selected

during one model creation (see sect. 3.2). The preference for median surface soil moisture over average rainfall is probably380

:::::
might

::
be

:
due to the less extreme values in soil moisture (quasi-normal distribution) compared to the highly non-Gaussian

:::::::::
non-normal

:
distribution of rainfall. The

:
,
:::
but

::::::
could

::::
also

:::::
reflect

::::
that

:::::::
surface

:::
soil

::::::::
moisture

::::::::::
intrinsically

::::::::
contains

:::::::::
additional

:::::::::
information

:::
on

:::
the

:::
soil

:::::::::::::
characteristics.

::
It

:::
can

::
be

::::::::::
interpreted

::
as

:
a
:::::
proxy

:::
or

::::::::
integrator

::
of

::::::
rainfall

::::::::
patterns,

:::
soil

::::
and

:::::::
possibly

::::
also

::::::::
vegetation

:::::::::::::
characteristics.

::::::
Similar

::
to

:::::::
surface

:::
soil

::::::::
moisture,

::
a positive relation of LSS to

:
is
::::::
found

::
for

:
the (inter-quartile) range

of evaporation.
::::
This

:
accounts for regions with strong seasonality in rainfall and in the associated evaporation over wet soils.385

In earlier global LSS maps, Nadim et al. (2006) and Lin et al. (2017) also included information on the soil moisture (
::
in

:::
the

::::
form

::
of

:
a
:
soil moisture index by Willmott and Feddema (1992)) , with the latter finding soil moisture as the

:::
that

:::::::::::
distinguishes

:::::
“wet”

:::
and

:::::
“dry”

:::::::
climates.

:::::::::::::::::::
Lin et al. (2017) found

:::
this

:::::
index

::
to

::
be

:::
the most important predictor variable.

:::::::::::::::::::::::
Broeckx et al. (2018) include

:::::::::::
climatological

:::::::
average

::::::
annual

::::::
rainfall

::
as

::
a

:::::::
predictor

:::::::
variable

:::
for

::::
LSS

::::
over

::::::
Africa.

::
At

:::
the

::::::
global

:::::
scale,

:::
the

:::
use

::
of

::::::::::::
climatological
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:::::::
statistics

::
of

::::::::::::::::::
hydrometeorological

::::::::
variables

:::
for

::::
LSS

:::
has

::::
not

::::
been

::::::
tested

::::::
before.

::
It

::
is

::::::::
important

:::
to

::::
note

::::
that

::::
such

:::::::::
long-term390

:::::::
statistics

:::
are

:::::
meant

:::
to

::::::
remain

:::::::
constant

::
in

::::
time

:::
for

::::::
global

::::
LSS

:::::::::
estimation

:::
(by

:::::::::
definition),

:::
but

::::
they

::::
also

:::::
offer

:::
the

:::::::::
possibility

::
to

::::::::
recompute

::::
and

:::::
refine

::::
LSS

::::::::
estimates

::
in

::
an

:::
era

::
of

:::::::
climate

::::::
change.

:

We did not find significant contributions of lithological predictor variables. For Africa, Broeckx et al. (2018) found a (limited)

impact of the presence of unconsolidated sediments and siliclastic sedimentary rocks on LSS. Stanley et al. (2021) found

the lithology (regrouped from GLiM) to be the least important factor. While local lithology plays a vital role for landslide395

occurrence, the large data uncertainty and often very broad definitions (as for example elaborated by Campforts et al. (2020) in

a different context) hinder meaningful contributions to LSS assessment, even for smaller scale studies. This might also explain

why, instead, PGA was favoured as a proxy for structural weakening during the variable selection. The one-time selection of

the fraction of land within a grid cell, with a negative β-value assigned, reflects that coastal or shore areas with a low land

fraction are more prone to landslides (higher LSS). Overall, the selected predictor variables, as well as the assigned β-values400

are in line with general geomorphologic understanding and previous studies.

5.2 Full ensemble results

The spatial patterns of
:::
the

:::
full ensemble average LSS (LSS2500, see Fig. 3) agree well with those of the categorical LSS maps

by Stanley and Kirschbaum (2017) at 1 km resolution and Lin et al. (2017) at 0.5° resolution(see ,
::::::
shown

::
in

:
Fig. 8a and b),

with high LSS in strongly mountainous areas, and low LSS for very flat and dry areas. Figure 8 c ) and d )
:::
and

::
d show the405

distribution of the continuous 36-km LSS2500 per LSS class of these two reference maps. In comparison to both
:::::::::
comparing

:::
the

::::
maps, we find a larger area covered by high LSS2500 for example in the Eastern United States, Latin America, Mediterranean

Europe, India, South-East Asia and New Zealand. At the same time, LSS2500 shows much less variation than the map by

Stanley and Kirschbaum (2017) within large deserts (Sahara, Sinai peninsula and central Australia). This might be a result of

the coarser spatial resolution, but is also attributable to the fact that LSS2500 is strongly governed by hydrological predictor410

variables apart from the typical geomorphological ones. With a very large proportion of the lowest LSS class, Lin et al. (2017)

have even less variation within these areas than LSS2500.

These realistic spatial distributions of LSS2500 are supported by the AUC values calculated for this ensemble average (
::::
dots

::
in Fig. 7). The lower AUC value for Africa can be attributed to the fact that the inventory comprises also very old landslides

from very different climatic conditions. For Italy, LSS2500 lacks detail to distinguish between the various levels of high415

susceptibility: most LSS2500 values are close to 1, i.e. there is little spatial variation. In general though, these AUC values are

in line with those of Stanley and Kirschbaum (2017)
:::
and

::::::::::::::
Lin et al. (2017), who reported AUC between 0.6 and 0.9, and and

Lin et al. (2017) of around 0.9, respectively.

Figure 5 shows that the distributions of LSS ensemble members within one grid cell could have a very wide range. Even

though in this figure we only selected locations within English-speaking countries and excluded unreliable absence grid cells420

(see sect. 2.1), it is still possible that an ‘absence ’
:::::::
absence

:::
grid

::::
cell

:
could experience a landslide, even if none has been

reported in the GLC. A prominent example of this are absence grid cells 1 and 7, located in the East African Rift and India,

respectively. Both grid cells have no reported landslide, but very wide LSS distributions, with relatively high LSS values. This
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Figure 8. Comparison of LSS2500 against
:::::
existing

:
global categorical LSS maps by (top

:
a) Stanley and Kirschbaum (2017) and (bottom

:
b)

Lin et al. (2017). (a,b) spatial distributions; (c,d) boxplots
:::::::
Boxplots

:
of LSS2500 values : c)

::::::
extracted

:
from

:::
the nearest 36-km grid

cell
::
for

::::
each

:::
(c)

:::::
1-km and (d) the average of the 6 nearest

:::
0.5o

:
grid cells

::
cell

:::
in

:::
the

:::::::
reference

::::
map. Boxplots are underlayn

:::::::
underlain

with the fractions of the reference map LSS classes (grey). Note that both reference maps start off from continuous LSS values but

use very different thresholds for the class definitions: Lin et al. (2017)
::::::::::::::::::::::::
Stanley and Kirschbaum (2017) set breakpoints at [0.4,0.6,0.7,0.9,

following Guzzetti et al. (2006) and Van Den Eeckhaut et al. (2012); Stanley and Kirschbaum (2017) at 0.11,0.49,0.67,0.75], defined so that

each category contains twice as many grid cells as the next highest,
::::::
whereas

:::::::::::::::
Lin et al. (2017) set

:::::::::
breakpoints

::
at [

::::::::::
0.4,0.6,0.7,0.9],

::::::::
following

::::::::::::::::::
Guzzetti et al. (2006) and

:::::::::::::::::::::::
Van Den Eeckhaut et al. (2012).

discrepancy between prediction and observation could indicate the need for further researchin this location.
::
to

::::
visit

:::
this

:::::::
location

::
for

::::::::
landslide

::::::::
research.

:::
At

:::
the

::::
same

:::::
time,

::::::::
landslide

::::::::
presence

:::
grid

::::
cell

:::
18

:::
also

::::
has

:
a
::::
very

:::::
wide

::::
LSS

::::::::::
distribution

::::
with

:
a
::::::

rather425

:::
low

:::::::
average.

::::
This

:::::
could

:::::
either

:::::::
indicate

:::
that

::
a
::::::::::::::
non-hydrological

:::::::
process

::::::
caused

:::
the

:::::::
landslide

:::::::::::::::
(misclassification)

:::
or

:::
that

:::::::
specific

:::::::::::
unrepresented

:::::::
features

:::
are

::::::
present

::::::
within

:::
the

::::
grid

:::
cell

:::::
area.

:::::::
Overall,

:::
we

:::
find

:::
an

::::::
average

::::::::
LSS2500:::

of
::::
0.18

:::::
(0.82)

:::
for

::::::::
landslide

::::::
absence

:::::::::
(presence)

::::
grid

::::
cells

:::
(as

::::::::
displayed

::
in

::::
Fig.

:::
A1)

::::::
which

:::::
makes

:::
us

::::::::
confident

::
in

:::
our

:::::::::::
classification

::
of

:::::
these

:::
grid

:::::
cells.
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Calculating the ensemble standard deviation of these distributions (σLSS2500
) is a good measure of total prediction uncer-

tainty associated with a
::
the

:
LSS2500 for one grid cell. The σLSS2500

is typically small for distributions at either end of the430

LSS interval (0,1), resulting in the parabolic pattern as displayed in Fig. 4a-b). This pattern has also been found for local

assessments (Guzzetti et al., 2006; Depicker et al., 2020)) and seems to be hold
::::
holds

:
for Broeckx et al. (2018) over Africa as

well (visual comparison of two maps). The reasons for this LSS2500-σLSS2500
relationship are twofold: (i) The classification

algorithm works best for extreme environmental conditions, such as very steep slope or completely flat areas and has a strongly

nonlinear,
:::::::::
asymptotic

:
behaviour (logistic regression), and (ii) the predictions are limited to the interval (0,1), restraining the435

opportunity for deviations at the extremes to one side. A comparison of σLSS2500
with independent global estimates is currently

not possible for lack of uncertainty estimates (Nadim et al., 2006; Hong et al., 2007; Stanley and Kirschbaum, 2017; Lin et al.,

2017). However, a comparison with the standard deviations retrieved during the process of random CV for the continental LSS

map of Africa by Broeckx et al. (2018) (i.e. not accounting for the total uncertainty) reveals that the patterns are very similar,

but with less (more) variation in σLSS2500
for the very arid (humid) regions.440

5.3 Impact of input perturbations

In this study, we add predictor variable perturbations to the cross validation (CV )
:::
CV approach in order to obtain a more reliable

estimate of the total prediction uncertainty from the resulting full ensemble. By design, the zero-mean input perturbation does

only marginally affects
:::::
affect the ensemble LSS , i.e. LSS2500 is practically the same as the CV ensemble average LSS100

(see Fig. 4). Slightly increased (decreased) LSS2500 at the lower (upper) limits can be attributed to the resampling of predictor445

variable values if they exceed the definition interval of rescaled predictor variables (0,1). Overall, this introduced bias remains

rather small.
:::::
small.

:

:::
The

:::::
AUC

:::::::
analysis

::::
(Fig.

::
7)

::::::
shows

:::
that

:::
the

:::::::::
ensemble

:::::::
averages

:::::::
perform

:::::
much

:::::
better

::::
than

:::::::::
individual

::::::::
ensemble

::::::::
members,

::::
and

:::
that

::::::::
LSS2500:::

and
:::::::
LSS100:::::::

perform
:::::::
equally

::::
well.

:::
Not

::::::
shown

::
is

:::
that

:::
the

:::
BS

:::::::::
(Equation

::
2)

::::::::
decreases

::::
(i.e.

::::::::
improves)

:::
for

::::::::
LSS2500

::
in

:::::::::
comparison

::
to
:::::::
LSS100::::::

where
::::
LSS

::
is

:::
not

::::
very

::::
close

::
to

:::
the

::::::::::
observation

::::::
already

:::::::::
(landslide

:::::::
presence

::::
and

::::::::
absence).

::::
This

:::::
effect450

::
is,

:::::::
however,

:::
not

::::::
visible

::
in

:::
the

:::::
AUC

:::::::::
comparison

:::::::
(spatial

::::::::
accuracy)

:::
for

:::
the

::::::::
validation

::::
data

::
in

::::::
Russia,

::::::
Africa

:::
and

::::
Italy

:::::::
because

:::
the

:::
grid

::::
cells

::::
with

:::
BS

::::::::::::
improvement

::::
only

::::
make

:::
up

:::
for

:::::
∼8%,

:::::
∼9%

:::
and

::::::
∼18%

::::::::::
respectively.

::::
The

::::
AUC

::::::
values

::
of

::::::::
ensemble

::::::::
averages

::::::
remain

::::::::
practically

:::
the

:::::
same,

::::
and

::
an

::::
LSS

::::::
model

::::::
without

::::::::
predictor

:::::::::::
perturbations

:::::
would

::::::
hence

:::::
suffice

:::
for

:
a
:::::::
general

::::::
insight

::
in

:::
the

:::::
global

:::::::
spatial

::::
LSS

::::::
pattern.

:

That the individual ensemble member LSS maps
::
of

::::::::
LSS2500 (based on perturbed variables) have a lower median AUC455

values is, however, realistic
::::
than

:::::::
LSS100 :

is
::::::

logical: the model equations are created with the original variables
:::::::
tailored

::
to

:::
the

::::::
original

::::::::
predictor

:::::::
variable

::::::
values so that they are optimally combined into an LSS prediction. Any change of these variables

naturally deteriorates
::::
could

:::::::::
deteriorate

:
the outcome. This is, however, no lack in quality of the ensemble, but rather a side

effect. We do not use the individual ensemble members but their average as an LSS prediction, for which we find practically

unchanged
:::::
spatial

:
accuracy between CV ensemble and full ensemble. For a reference, we also retrieve one deterministic MELR460

equation (resulting in f(CTI, maximum slope, median surface soil moisture, range of evaporation, PGA), not shown). Again,

we retrieve nearly identical AUC values (Russia: 0.90, Italy: 0.63, Africa 0.82). The finding of Kalnay et al. (2006) that the
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introduction of ensembles increases the accuracy of the prediction does not hold for our LSS modelling. This is probably due

to the non-linear characteristics of logistic regression and LSS being static.

By tuning the predictor variable perturbations to match the total ensemble prediction uncertainty to the observed ‘actual’ un-465

certainty, we are able to provide statistically reliable uncertainty estimates for the predicted average LSS, even in places where

landslide observations are unavailable. As stated before, this optimized spread is introduced to the input variables, but does

not actually reflect the input errors only: it also compensates for other uncertainty sources that are not specifically addressed.

This does, however, not include most
:
,
:::
incl.

::::::
spatial

:::::::::::::::
representativeness

:::::
error,

:::
and

:
uncertainties introduced by heuristic decisions

along the way, such as the choice of spatial resolution, the choice of the
::
the

:
statistical model, the definition of a random effect470

variable, the definition of landslide presence and absence grid cells (characteristic distance) and the preselection of predictor

variables to include in the study. These
:::
etc.

::::::::
Explicitly

::::::::::
accounting

:::
for

::::
these

:::::
error

::::::
sources

:
would require dedicated analyses to

assess their introduced uncertainty (as for example conducted by Depicker et al. (2020)).
::::::
Because

::::::::::::::::::::::
Zêzere et al. (2017) found

:::
that

:::
the

::::::
choice

:::
of

::::::
spatial

:::::::
mapping

::::
unit

:::::::::
influences

::::
LSS

:::::::::
estimates

:::::::
stronger

::::
than

:::
the

::::::
choice

:::
of

::::::::
statistical

:::::::
model,

:::
we

::
do

::::
not

:::::
expect

::::
that

:::
our

::::::
results

:::::
would

::::::::::::
fundamentally

:::::::
change

:::
for

:::::::::
approaches

:::::
other

::::
than

::::::
MELR.

:
Future research could also explore the475

additional informationfrom the GLC, such as landslide sizesor types
:
,
:::::
types

::
or

:::
the

:::::::::
frequency

::
of

:::::::::
occurrence

:::
per

::::
grid

::::
cell

:
in-

stead of reducing the data to landslide presence and absence.
:::
For

:::
the

:::::
latter,

:::
one

::::::
would

:::::
need

::
to

::::
find

::::
ways

:::
to

:::::::::
counteract

:::
the

::::::::::::::
English-language

:::
and

:::::::::
economic

::::
bias

::
of

:::
the

::::
GLC

::::::
which

::
is

::::
more

::::::::::
pronounced

:::::
when

:::::
using

:::
the

:::::
actual

:::::::
number

::
of

::::::
reports

:::::::
instead

::
of

:::
the

::::::::::::::
presence-absence

:::::::
method

::::::
chosen

::
in

:::
this

:::::
study.

:

6 Conclusions480

This study presents the first global landslide susceptibility (LSS) map directly developed to be compatible with satellite soil

moisture products retrieved from passive microwave sensors, i.e. at a spatial resolution of 36 km. The novel method of com-

bining blocked random CV (B-CV) and predictor variable perturbations results in a reliable
::::::::
reasonable

:
assessment of the

associated total prediction uncertainty:
:
.
:
For each grid cell, we estimate 2500 individual LSS values (‘full ensemble’) that are

summarized by the ensemble average LSS (LSS) and standard deviation (σLSS , i.e. the uncertainty). Together, these LSS485

statistics can provide unprecedented information for subsequent global probabilistic spatio-temporal landslide modelingand
:
,

:::
and

::::::::
statistical

:::::::::::
combination

::
of

:::
the

::::
LSS

:::
and

::::
soil

:::::::
moisture

:::::::::
estimates,

::::
each

::::
with

:::::
their

::::::::
respective

::::::::::::
uncertainties.

:::::::::::
Furthermore,

:::
the

:::
LSS

:::::
maps

:
have the potential to discern areas that deserve more attention for landslide detection.

A mixed effects logistic regression (MELR) is used as the model structure to relate environmental predictor variables to

spatial landslide likelihoods. The objectively selected predictor variables are mainly related to slope and hydrology, in line with490

the expectations for hydrologically triggered
:::::::::::::::::::
hydrologically-triggered

:
landslides. The odds of landslide occurrence were found

to (i) decrease with increasing Compound Topographic Index (CTI), which depends on the ratio of catchment area and slope

and (ii) increase with increasing slope, peak ground acceleration (PGA) ,
:::
and

:::::::::
long-term

::::::::::::
climatological

:::::::
statistics

::
of

:
surface soil

moisture (median and 99th percentile) or range of evaporation. The
:::::::
inclusion

::
of

:::::::::
long-term

:::::::
statistics

::
of

::::::::::::::::::
hydrometeorological

:::::::
variabels

:::::::
enables

:::::
future

:::::::::::
investigations

::::
into

:::::::
possible

:::::
shifts

::
in

::::
LSS

:::
due

::
to
:::::::
climate

::::::
change.

:
495
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:::
The

:
map of the full ensemble LSS reproduces global patterns of LSS as presented in previous global studies well. The

performance assessment yields area under the ROC curve (AUC) values of 0.9, 0.8 and 0.6
::::
0.92,

::::
0.91

::::
and

::::
0.84 for independent

data from Russia, Africa and Italy
:::
Italy

::::
and

:::::
Africa, respectively. The latter emphasizes that the coarse spatial resolution might

not be suited for detailed assessments within small regions. The uncertainty σLSS is largest for intermediate LSS. High

predicted LSS at (reliable) landslide absence grid cells might furthermore indicate regions that could benefit from future500

landslide detection and research.

For the ensemble perturbations of the selected predictor variables we use a perturbation magnitude of 15% to 20%, linearly

proportional to the variation of elevation within a grid cell. The magnitude is chosen to match the total predicted ensemble

uncertainty with the observed actual uncertainty relative to data from the Global Landslide Catalog (GLC). Adding these per-

turbations does not linearly propagate into the ensemble spread due to the
:::::::::
asymptotic

:
nature of logistic regression. It increases505

the ensemble spread for locations of intermediate LSS while having negligible impact where LSS is close to its lower or

upper limit. The ensemble LSS remains practically unchanged , regardless of the input perturbations. This is also the case

when comparing LSS to that of pure B-CV ensembles, leaving the accuracy
:::
and

:::
its

:::::
spatial

::::::::
accuracy

::::::
(AUC)

::::::
remain

:::::::::
practically

:::::::::
unchanged

::
by

:::
the

::::::::
ensemble

::::::::::::
perturbations,

:::
but

:::::
AUC

:::::
values

:
of these average predictions virtually unchanged

:::
are

::::::
always

:::::
much

:::::
better

::::
than

:::
that

::
of

:::::::::
individual

::::::::
ensemble

::::::::::
realizations. In short, these novel methods explicitly focus on the uncertainty quantifi-510

cation. The availability of global reliable uncertainty estimates is an unprecedented new contribution to the suite of global LSS

maps, and it will support stochastic landslide hazard modeling.

Code and data availability. For most of the landslide and environmental predictor data we refer the reader to the provided sources. Source

code and climatological statistics of hydrological parameters in netCDF format can be obtained by contacting the authors. The resulting full

LSS ensemble is available as a netCDF file as well and will be publicly available after the acceptance of this paper.515

Appendix A

A1 Landslide absence sampling

Figure A1 shows the NLS =NLS::
=3757 landslide locations based on data from the GLC aggregated to the 36-km EASEv2

(section 2.1). Landslide absence grid cells are sampled between a minimum (buffer) and maximum distance around known

landslide locations (NnoLS =NnoLS :
=25417). These distances can be based on either heuristic choices (Van Den Eeckhaut520

et al., 2012; Lin et al., 2017; Knevels et al., 2020) or empirical approaches (Zhu et al., 2017; Nowicki Jessee et al., 2018;

Lucchese et al., 2021).

For our global study, we set a buffer based on the probability for any two landslide locations from the GLC to be reported

within a specific distance interval for 100 spatially defined clusters (k-means-clustering (Lloyd, 1982) on latitude and lon-

gitude). Figure A2 shows that the frequency of encountering two landslide locations decreases for larger distances and can525

be characterized by a Poisson exponential fit. In line with the definition of autocorrelation length (Gaspari and Cohn, 1999),
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Figure A1. Spatial distribution of landslide presence (shade of orange) and absence (shade of blue) grid cells at 36-km resolution, for English

speaking countries (light orange and dark blue) and non-English speaking countries (dark orange and light blue). White indicates grid cells

that are excluded during the model creation process (buffer and maximum radius around landslide location, see sect. 2.1). The numbers are

the sum of each subgroup of grid cells.

we define the ‘characteristic distance’ between two landslides as the distance where the probability to meet another landslide

drops by 1/e. We use this characteristic distance of 221.43 km or appr.
::
∼6 36-km grid cells (median of characteristic distances

retrieved for 50 repetitions of the clustering) as a buffer around landslide locations. The maximum distance around a landslide

is subsequently defined as 2.5 times this characteristic distance (553.58 km, appr.
::
∼15 grid cells), borrowing from the data530

assimilation community where 2.5 times the autocorrelation length is a measure for absence of correlation (Gaspari and Cohn,

1999; De Lannoy, 2006; De Lannoy et al., 2010).

Landslide absence grid cells are hence selected from grid cells 7 to 15 grid cells around a landslide location
:::::::
presence

::::
grid

:::
cell (blue grid cells in Fig. A1). These distances are inevitably much larger than those found in literature for finer-scale studies,

because autocorrelation lengths are scale-dependent and the retrieved characteristic distance is influenced by the spatial extent,535

or the definition of the clusters in our case.

A2 Input perturbation and optimization

For a reliable assessment, the total ensemble prediction uncertainty of the obtained ensemble average LSS map ideally should

match the observed actual uncertainty. The first can be defined for a single location by the standard deviation (σ) among the

LSS ensemble members (LSSi, with i= 1, ...,Nens), as also displayed in sect. 4 and Fig. 3. Similarly, it is possible to assess540

the according variance (σ2), referred to as ensemble spread (ensp):

ensp =
1

Nens

Nens∑
i=1

(LSSi−LSS)2 (A1)
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Figure A2. Histogram of distances [km] between landslides within a k-means cluster (for 100 clusters across the globe) of the GLC (grey) and

Poisson exponential fit (black line) to retrieve the characteristic landslide distance (red). The red dashed line indicates median characteristic

landslide distance from 50 repetitions of the k-means clustering, with the smallest and largest characteristic distance indicated by the light

red bar and numbers at top.

Similar to a (Wilks, 2011), the
:::
The observed actual uncertainty at a single location is defined as the difference between LSS

and the aggregated landslide observations from the GLC (o), referred to as the ensemble skill (ensk):

ensk = (LSS− o)2 (A2)545

where o is 1 (0) in case of a landslide presence (absence) grid cell. The smaller ensk, the closer the predicted LSS to the

observation.
::::
This

::
is

:::::::::
essentially

:
a
:
Brier Score

:::
(see

::::::::
Equation

::
2)

:::
for

:::
one

::::::
single

:::
grid

::::
cell.

::::::::::::
(Wilks, 2011).

:

The optimization of the uncertainty estimates entails tuning of ensp to match ensk. In this study, this is done by varying

the perturbation magnitude that is added to the input variables (see sect. 3.2). Talagrand et al. (1997) defined spread-skill

relationships that allow to verify the statistical consistency between the assumed uncertainty (chosen perturbation) and the550

actual ‘observed’ uncertainty based on the ergodicity principle. Over a large number of realizations, i.e. for large enough

ensembles, < ensk− ensp >→ 0 or
::::::::::::::::
〈ensk− ensp〉 → 0

::
or

< ensk >

< ensp >

〈ensk〉
〈ensp〉
::::::

→ 1⇔ log

< ensk >

< ensp >

〈ensk〉
〈ensp〉
::::::

→ 0 (A3)

where < . >
::
〈.〉 denotes the average. In most hydrological or meteorological applications, this is the temporal average within

one grid cell. As this is not applicable for the static LSS data, we consider (i) spatial averages< ensk > / < ensp >
:::::::::::::
〈ensk〉/〈ensp〉555
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per LSS interval as well as (ii) the distribution of individual ensk/ensp per grid cell. Both should only be performed over grid

cells with reliable information about landslide presence or absence (see Appendix A1). Note that this definition of < ensk >

::::::
〈ensk〉 corresponds to the definition of the Brier Score as given in sect. 3.2.

Figure A3. Spread-skill relationship log(< ensk > / < ensp >)
::::::::::::::::
log(〈ensk〉/〈ensp〉), stratified per ensemble average LSS (LSS125). The

optimum of 0
:
is
:
indicated by red dashed line. Shapes indicate the type and colours the magnitude (constant) and interval (linear) of perturba-

tion.

We tested various magnitudes of perturbations to the rescaled predictor variables either by using (i) a globally constant stan-

dard deviation or (ii) a standard deviation proportional to the topographic complexity (i.e. the variation within a grid cell, here560

the standard deviation of elevation). A range of possible perturbation options was tested for a partial ensemble (LSS125, i.e.

no repetition of landslide absence sampling as illustrated in Fig. 1). Figure A3 shows log(< enskLSS125 > / < enspLSS125 >)

:::::::::::::::
log(〈enskLSS125〉/:::::::::::::

〈enspLSS125〉) for 10 intervals of LSS125 and two examples of constant and linear perturbations. Adding

any of the four perturbations brings log(< enskLSS125
> / < enspLSS125

>)
:::::::::::::::::::::::::::
log(〈enskLSS125

〉/〈enspLSS125
〉) values closer

to zero, i.e. improves the spread-skill relationship, compared to results without a perturbation (LSS5, single CV ensemble).565

Linear perturbations introduce larger spread in areas of higher LSS125 resulting in log(< enskLSS125
> / < enspLSS125

>)

:::::::::::::::::::::::::::
log(〈enskLSS125

〉/〈enspLSS125
〉)

:
closer to zero than constant perturbations, and are therefore preferred here.

We futher analyze the distribution of individual ensp and ensk across all grid cells in Fig. A4 (top), stratified for landslide

presence and absence. Ideally, ensp versus ensk should stay close to the 1-1 line. Adding a perturbation to the predictor variables

(Fig. A4 c in comparison to a) nudges the distribution in this direction, but fails to do so for large ensk: a large ensk results570
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from a large difference between LSS125 and landslide observation (o), and often coincides with very small ensp. This can be

attributed in part to the incompleteness of the GLC (missing observations in a very susceptible area) and the coarse spatial

resolution of this study (one very susceptible location surrounded by dominantly non-susceptible area within grid cell). Note

also that the logistic regression (see Equation 1) does not linearly propagate the perturbations of predictor variables into the

resulting LSS values, especially not at the edges of the definition interval (0,1). Accepting this tail of the distribution as an575

unavoidable characteristic, we further analyze the histogram of grid cell wise log(ensk/ensp) as displayed in Fig. A4 c) and

d)
:
b

:::
and

::
d. An optimal perturbation would result in median log(ensk/ensp) close to zero and a small inter-quartile range

(IQR). We therefore define the optimal perturbation for a minimum Euclidean distance (d) between the point (median|IQR)

and (0|0), averaged over the distribution of observed landslide presences and absences (o= 0,1):

d̄=
1

2

∑
o=0,1

(median2 + IQR2)o (A4)580

The d̄ for a range of possible linear perturbation options for LSS125 is summarized in Fig. A4e). The optimal perturbation

(smallest d̄) scales the applied standard deviation according to topographic complexity, represented by the standard deviation

of elevation within a grid cell, between (0.15,0.2). ,
:::
i.e.

::::::::
between

::::
15%

:::
and

:::::
20%.

:
Fine tuning of the standard deviation is left

for future work, but could involve other variables or transformations thereof or different amounts of perturbations per predictor

variable.585
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Figure A4. Spread-skill relationship per grid cell with the optimum indicated by the red dashed lines: (top; a,c) scatter plots of ensk against

ensp, (middle; b,d) histograms of log(ensk/ensp), stratified for landslide presence and absence (between buffer and maximum distance).

(Bottom; e) summary of the average Euclidean distance d̄ for all applied linear perturbations with the optimum framed in red. Shown are

results for a-b) without perturbation of predictor variables (LSS5), and c-d) for linear perturbation of predictor variables within the interval

:
(0.15,0.2

:
) (LSS125). In other words, (a-b) account for model uncertainty alone whereas (c-d) account for the total uncertainty (see Fig. 1).
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Abbreviations

NLS number of landslide locations, i.e. landslide presence grid cells

NnoLS number of landslide absence grid cells

BS Brier Score

CLSM Catchment Land Surface Model600

DEM digital elevation model

EASEv2 Equal-Area Scalable Earth version 2

GLiM Global Lithological Map

GMTED2010 Global Multi-resolution Terrain Elevation Data 2010

GSHAP Global Seismic Hazard Assessment Project605

GSHM Global Seismic Hazard Map

GSWP-2 Second Global Soil Wetness Project

GTOPO30 USGS global elevation model

HWSD1.21 Harmonized World Soil Databank version 1.21

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2610

R-CV random CV

ROC Receiver Operating Characteristic

SRTM Shuttle Radar Topography Mission

STATSGO2 State Soil Geographic project
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