
 

The authors thank the reviewers for their constructive comments. The comments are shown in regular 

fonts, our responses are in bold italic, blue fonts. Changes made in the manuscript are printed in italic, 

underlined, blue fonts. Our line references refer to the updated manuscript with track-changes. 

 

Reviewer #1 

 

I must first apologize to the authors and to the editor for this late review. As an author, I have myself 

experienced how irritating it can be to wait for an overdue review. I can only mention heavy load of 

work as an excuse for my delayed response.  

Not being myself an expert on landslide causes and occurrences, I am not in a position to comment on 

the parts of the paper that specifically deal with those aspects, nor actually to evaluate the paper in 

comparison with what has already been done on estimation of landslide susceptibility and uncertainty. 

But I have comments on the methodological aspects of the paper, which may be useful for all readers.  

I must say I have had difficulties to clearly understand what the authors have done, as concerns both 

their methodological approach and the validation of the results they have obtained. I will limit myself to 

what are the most important points I want to stress. 

We thank the reviewer for the feedback on the methods. We improved the readability of the paper for 

people in various research fields, because we hope to bridge multiple disciplines in this paper and 

appreciate feedback from outside the landslide community. 

1. My first question has actually to do with landslides. The authors focus their study to hydrologically 

triggered landslides (l. 68). This means that they ignore, for instance, landslides triggered by 

earthquakes. What is the reason for that restriction ? How can the distinction be made between 

different kinds of landslides, once they have occurred ? And does the Global Landslide Catalog report 

only hydrologically triggered landslides ? These questions may look naïve to specialists, but some 

appropriate information (and references) may be useful to outsiders. 

Thank you for this valid question. As mentioned in lines 39-43, the susceptibility assessment carried 

out in this study is intended to be used with satellite soil moisture observations. Since the likelihood of 

earthquake triggered landslides is primarily dependent on the presence of an earthquake and its 

magnitude, the soil saturation is not a reliable indicator for occurrence of these landslides. For 

hydrologically triggered landslides, on the other hand, increased soil water content is the actual 

underlying condition that leads to slope failure by i) decreasing the shear strength and ii) increasing 

the shear stress.  

Landslide inventories (such as the GLC) based on media reports usually take the information on the 

trigger from the report itself. The GLC was designed mainly for the purpose of collecting information 

on hydrologically triggered landslides, namely triggered by “continuous rain”, “downpour”, 

“monsoon”, “flooding”, “rain” and “tropical cyclone” (GLC classifiers), but also contains a small 

number of landslides from other triggers (less than 5%) and for about 16% triggers are unknown. We 

will update section 2.1 as follows: “The GLC is a landslide inventory that contains information about 

location, date and trigger. It is originally based on media reports (Kirschbaum et al., 2010, 2015) but has 

recently been supplemented with the citizen science-based Landslide Reporter Catalog (LRC) data (Juang 



et al., 2019), see Stanley et al. (2021) for details. […] For this study, we use 12515 hydrologically 

triggered landslides (GLC classifiers “continuous rain”, “downpour”, “monsoon”, “flooding”, “rain” and 

“tropical cyclone”) reported mainly between January 2007 and November 2020.” (Line 98-107)  

2. The first purpose of the paper is to derive LSS model equations (ll. 66‐67). The authors do not actually 

show any equation that is explicitly identified as such. The model equations must be equations of form 

(1), where the quantity P(Y = 1) is what is called LSS elsewhere. Equations of form (1), which are defined 

as a form of logistic regression, are used on appropriate training sets for determining, through MELR and 

Cross Validation, values of the parameters α and βi (i=1,…,n). This raises a number of questions. 

a. What is the rationale for the logistic form of equation (1) ? What are the advantages of that specific 

approach ? It seems to me to be a rather arbitrary choice. In their conclusion, the authors mention the 

choice of the statistical model (l. 365) as one possible source of uncertainty in the whole estimation 

process. Do they refer there to Eq. (1) ? The authors give references concerning logistic regression, but 

some basic explanation would be useful. 

Thank you for your question. Indeed, the choice of logistic regression as statistical model was in a way 

arbitrary, but based on literature review and expert opinions. Many smaller scale LSS studies compare 

multiple statistical models and subsequently use the best performing one (for example Steger et al. 

2015, Zêzere et al. 2017 or Depicker et al. 2020). Larger scale studies usually choose a priori one 

statistical model to limit computational time (for example Stanley and Kirschbaum 2017, Lin et al. 

2017 or Broeckx et al. 2018). The findings of Zêzere et al. 2017 also show that the choice of statistical 

model has less impact on the final LSS results than the choice of mapping unit. We opted for a logistic 

regression because it is a very simple approach and one of the earliest statistical, data-driven models 

used for LSS (Reichenbach et al. 2018). The advantage lies in its rather robust nature, that is not as 

prone to overfitting as certain machine learning algorithms. As such, logistic regression is also the 

most commonly used technique (Reichenbach et al. 2018). We will extend the manuscript as follows:  

“Logistic regression is the most commonly used approach for statistical LSS mapping (Reichenbach et al., 

2018). It is associated with strong generalizing capabilities (Brenning, 2005), which is a necessity when 

working at the global scale, and it has proven to be reliable in continental to global LSS assessments 

(Broeckx et al., 2018; Lin et al., 2017).” (Line 170-173)  

“Because Zêzere et al. (2017) found that the choice of spatial mapping unit influences LSS estimates 

stronger than the choice of statistical model, we do not expect that our results would fundamentally 

change for approaches other than MELR.” (Line 473-475) 

b. In MELR, what is the criterion for quality ? Given a tentative set of values (α, βi,i=1,…,n), by which 

measure is the corresponding fit to P(Y = 1) evaluated ? A simple quadratic fit, or what ? 

For this study we used the lme4 package in R, specifically the glmer function, in which the fit is 

optimized based on maximum likelihood estimation, which involves a minimization of squared 

deviances with penalty terms. Subsequently, we evaluate the model fitting performance of each fitted 

equation by means of AUC on the test data, but this information is not used for optimization.  We will 

extend section 3.1 by the following statement in hope for clarification: “We use the glmer function 

from the lme4 package (Bates et al. 2015) to create MELR models in R version 4.0.3 (R Core Team, 2020) 

where the best fitting parameters are obtained by maximum likelihood estimation.”  (Line 207-209). 

In addition, note that: “a measure that is proportional to the sum of squared errors [...]” (L.183-184) is 

used to identify the most useful predictor variables. 

c. I understand that the values P(Y = 1) in the training sets are taken in the data set built in subsection 

2.1 from the GLC catalog, so that these values are restricted to 0 and 1 (absence or presence of 



landslides). It would a priori seem more appropriate to consider a quantity such as the frequency of 

occurrence of landslides (that would not be impossible from GLC since the latter mentions more than 

one landslide for a number of individual grid cells). That may not be practically possible, but it would in 

my mind be appropriate to mention, and preferably briefly discuss, that alternative approach. 

That is a valid point that also crossed our mind. A posterior analysis of average LSS (��������
����) against 

the number of landslide reports per grid cell showed indeed mostly an increased median ��������
����  for 

higher reporting frequency (see Figure 1 below).  

 

Figure 1 Ensemble average LSS ( ��������
����) for grid cells with different number of reported landslides in the GLC, stratified for the 

official language denoted by the United Nations Group of Experts on Geographical Names. 

However, this connection significantly differed between grid cells located in English-speaking countries 

and those of other official languages. One reported landslide in an English-speaking country is 

associated with lower LSS than in a non-English-speaking country. Hence, keeping the possible  

response values restricted to 0 or 1 also contributes to mitigating observation biases from the GLC. 

This posterior analysis nevertheless gives confidence that locations with a higher frequency of 

landslide reports have also been assigned a higher LSS by the statistical method of MELR. We will add 

the following short discussions of this: 

“While we acknowledge that grid cells with more frequent landslide reporting can in general be expected 

to have a higher LSS, we found that the information about the frequency of landslide occurrence within a 

grid cell strongly mirrors biases in the landslide inventory, e.g. more landslides are reported in English-

speaking countries. The aggregation, on the contrary, reduces the landslide presence reporting bias of 

the GLC.” (Line 111-115) 

 “Future research could explore the additional information, such as landslide sizes, types or the frequency 

of occurrence per grid cell instead of reducing the data to landslide presence and absence. For the latter, 

one would need to find ways to counteract the English-language and economic bias of the GLC which is 

more pronounced when using the actual number of reports instead of the presence-absence method 

chosen in this study. ” (Line 475-479) 

3. a. Concerning the quality of the uncertainty of their LSS estimates, the authors use as diagnostic the 

Receiver Operation Characteristic (ROC) and the associated area under the ROC curve (AUC). They 

mention AUC values for individual members of ensembles, i.e. LSS maps (ll. 214‐217, l. 275 and Fig. 7), as 



well as for global ensembles (ensembles of maps). The latter are all right for me, but I do not understand 

what AUC values for individual maps can be. ROC curves (https://en.wikipedia.org/wiki/Receiver 

operating characteristic) are parameterized by a threshold T, each point on the curve corresponding to a 

value of T. The corresponding coordinates are relative to the circumstances when the value of a given 

parameter is larger than T (in the context of the present paper, that parameter must be LSS). Unless all 

grid cells are lumped together, which does not seem to be reasonable, it does not make sense to 

consider the situation LSS > T on a single map. That makes sense only on an ensemble of maps, with grid 

cells being considered independently of each other. I may of course be mistaken as to what the authors 

have exactly done, but clarification is necessary. 

Thank you for this valid question. All ROC curves and connected AUC values mentioned in this study 

were derived for individual LSS maps, i.e. “all grid cells lumped together”, or a subset of these grid 

cells. In case of the ensemble, this means one AUC value is computed for each member map (or parts 

of it, such as Africa, Russia and Italy). The ROC allows to validate a continuous probability value 

against a discrete outcome (landslide presence and absence) by means of applying, as you correctly 

state, different threshold values T. For grid cells below (above) T, the prediction is assumed to be 

landslide absence (presence), and comparison against the validation data in form of a confusion 

matrix allows to compute the according true and false positive rate. The pairs of these rates are 

collected for different thresholds T and displayed in the ROC curve. “Lumping” all grid boxes of one 

map together, allows to evaluate the spatial accuracy and is in this way common practice for landslide 

susceptibility: Reichenbach et al. (2018) report that it was used as an accuracy measure in more than 

20% of the 565 susceptibility studies they reviewed. We will alter section 3.3 as follows:  

“To quantify how well a predicted LSS map represents observed landslide presences and absences, a BS 

can be used (see Equation 2). Alternatively, the Receiver Operating Characteristic (ROC) is commonly 

used as evaluation tool for categorical response values such as landslide presence and absence 

(Reichenbach et al., 2018). For the ROC, the true positive rate of one LSS map is displayed against its 

false positive rate for different possible thresholds in the continuous probability (here: LSS) that is 

predicted. The area under the ROC curve (AUC) is 1 for a perfect representation of the spatial LSS 

distribution, whereas an AUC value of 0.5 indicates that the model does not perform better than a 

uniform distribution. 

Depending on the reference landslide data, the ROC analysis can be conducted for specific grid cells from 

a CV subset (independent data not used in the training), or from other independent landslide inventories. 

Here, we use landslide presence and absence information from the grid cells of the fifth CV subset (test 

subset, see Figure 1) to assess the model fitting performance for each LSS ensemble member map “on 

the go”. To evaluate the final prediction performance of the complete ensemble averages and the 

corresponding ensemble members, we use 3 independent landslide inventories.” (Line 258-277) 

b. And the reference to one fully deterministic reference MELR equation (based on neither CV nor input 

perturbations) (ll. 220‐221) is confusing. Does it mean you have performed the validation on other 

outputs than the ones obtained from CV ? I have a similar question about the one deterministic MELR 

equation mentioned on ll. 355‐356. 

We are sorry to have caused confusion with this. We wanted to evaluate whether the general 

introduction of an ensemble in contrast to deterministic predictions improves the accuracy of the LSS 

map, as found for hydrological and meteorological modelling (Kalnay et al. 2006). For this reason we 

created – in addition to the full (LSS2500) and CV ensemble (LSS100) – this one fully deterministic MELR 

equation. The AUC values retrieved for the resulting deterministic LSS map for Russia, Italy and Africa 

were then compared against the AUC values of the ensemble averages (��������
���� and ��������

��� ).  



However, we realize that this is confusing for the reader and to some extent an unfair comparison 

because this fully deterministic MELR (without CV and predictor perturbations) is also trained on the 

complete set of landslide presence and absence grid cells (in contrast to the model training on 4 out of 

5 subsets as part of CV). Since this additional comparison does not add much to the results of our 

study, we have decided to remove any mention of it from the manuscript: 

We will alter section 3.3 as follows and hope that the procedure becomes more clear: “The AUC and BS 

metrics can be computed for individual ensemble members (of the CV ensemble LSS100, or the full 

ensemble LSS2500, yielding a distribution of metrics) or for ensemble averages (	

�����
��� and 	

�����


��� ). It 

will be assessed whether i) an ensemble average outperforms an individual member LSS realization and 

whether ii) the full ensemble average with ensemble input perturbations (	

�����

���) outperforms the CV 

ensemble average which does not include input perturbations (	

�����
���). This would be in line with the 

expectations for hydrological or meteorological models (Kalnay et al., 2006).” (Line 288-292) 

4. The authors write (ll. 357‐359) The finding of Kalnay et al. (2006) (show) that the introduction of 

ensembles increases the accuracy of the prediction does not hold for our LSS modelling. This is probably 

due to the non-linear characteristics of logistic regression and LSS being static. I understand the authors 

mean that the accuracy of the mean of the output ensemble is higher than the accuracy of an individual 

deterministic estimate (at least statistically). From what I understand, non‐linearity cannot be the 

problem here. Consider a process F(x) where there is uncertainty of the input x. Let {xi} a sample of 

independent realizations of the probability distribution for x. The ensemble {F(xi)} is a sample of 

independent realizations of the probability distribution for F(x). As such, the mean of that ensemble is 

the best estimate of F(x), at least in a least‐square sense. That is true whether the process F is linear or 

not. 

Thank you for this remark. Indeed you are right in that for one grid cell the mean of an ensemble 

{F(xi)} should remain the best estimate for the process F(x), independent of the linearity of the process, 

and the quoted finding was an error from our side, that will be corrected. 

Our naïve inference was that the ensemble average should also improve the spatial performance 

(assessed by AUC, as explained for comment 3) over that of an unperturbed realization. This, however, 

we did not find to be the case. A more correct assessment of the influence of the ensemble on the 

performance would be based on the accuracy per grid cell. A measure for this is the ensemble skill 

(ensk, see Equation A2), which is essentially the squared difference between (ensemble average) LSS 

and the observation. When averaged over a number of grid cells, ensk turns into the Brier Score (BS, 

see Equation 2). We do find that the BS based on intervals of CV ensemble ensk (enskLSS100) is improved 

through predictor variable perturbation (full ensemble) where enskLSS100 is not already close to its 

optimum value of 0:  



 

Figure 2 (Top) Difference in Brier Score (BS) between the full ensemble (LSS2500) and the CV ensemble (LSS100), for intervals of 

ensemble skill of the latter (enskLSS100). (Bottom) Number of grid cells within the enskLSS100  interval. 

These grid cells with very small enskLSS100, i.e. where the predictor perturbations do not improve the 

performance, comprise by far the largest proportion of all land grid cells. They mostly have very low 

LSS values close to 0, where the predictor variable perturbation was found to introduce a small bias 

towards higher LSS values: “Slightly increased (decreased) LSS2500 at the lower (upper) limits can be 

attributed to the resampling of predictor variable values if they exceed the definition interval of rescaled 

predictor variables (0,1).” (Line 445-446) For landslide absence grid cells, this slightly decreases the 

accuracy and results in a slightly increased BS value. In the spatial accuracy assessment, it is these grid 

cells that strongly dominate the resulting AUC values due to their large number.  

We will alter section 5.3 as follows: “The AUC analysis (Fig. 7) shows that the ensemble averages 

perform much better than individual ensemble members, and that 	

�����

��� and 	

�����

���  perform equally 

well. Not shown is that the BS (Equation 2) decreases (i.e. improves) for 	


��� in comparison to 	

��� 

where LSS is not very close to the observation already (landslide presence and absence). This effect is, 

however, not visible in the AUC comparison (spatial accuracy) for the validation data in Russia, Africa 

and Italy because the grid cells with BS improvement only make up for ~8%, ~9% and ~18% respectively. 

The AUC values of ensemble averages remain practically the same, and an LSS model without predictor 

perturbations would hence suffice for a general insight in the global spatial LSS pattern.” (Line 448-454) 

5. The authors write in their conclusion (ll. 373‐374) … predictor variable perturbations results in a 

reliable assessment of the associated total prediction uncertainty. It is of course more difficult to assess 

the uncertainty on an estimate than to obtain the estimate itself. But the authors’ statement seems to 

be a bit of an exaggeration. The AUC values given in the paper do show some reliability in the 

assessment of the uncertainty, but no more. Actually, the amplitude of the predictor variable 

perturbations has been evaluated on the same data set as the LSS values. The whole process is therefore 

subject to some form of inbreeding, the impact of which is difficult to assess. And the authors write 

themselves A comparison of σLSS2500 with independent global estimates is currently not possible for lack 

of uncertainty estimates (ll. 340‐341). I suggest the authors soften down their concluding statement.  



Thank you for this valid remark and we will soften the concluding statement. The “inbreeding” is, 

however, only partially true, because we also evaluate AUC values for the independent validation 

inventories (Russia, Africa, Italy). These were not part of the GLC, which we used for the tuning of the 

perturbations. We find the same tendencies in AUC spread for these validation inventories and the 

test data (not used for training) from the GLC (see Figure 7). We do agree though, that our assumption 

of reliability is strongly rooted in and connected to our trust in the tuning of the perturbations. We 

agree to change the text as follows: “The novel method of combining blocked random CV (B-CV) and 

predictor variable perturbations results in a reasonable assessment of the associated total prediction 

uncertainty.” (Line 482-484) 

 

I would have also comments on editing aspects of the paper, but I think they are of lesser importance at 

this stage. 

 

  



Reviewer #2 

 

I have revised the manuscript "Estimating global landslide susceptibility and its uncertainty through 

ensemble modelling” by Anne Felsberg and co‐authors. The procedure is very interesting and it would 

be interesting to apply it to a smaller area where you can control better the training and the validation 

landslide and thematic data. The manuscript is well written and well organized but there are few major 

thinks nor really convincing. 

We thank the reviewer for the detailed feedback. We improved the rationale for large-scale landslide 

susceptibility estimates and spatial representativeness error, and addressed all comments in detail.  

1. It is possible to select the hydrologically triggered landslides from the Global Landslide Catalogue? 

Please see response to comment 1 of reviewer #1. 

2. Is not clear how you have used the road network density 

Thank you for pointing this out. We will extend the mentioning of the road network density in section 

2.1 to the following: “To address the remaining landslide presence bias originating from more landslide 

reporting in frequently accessed areas, we use stratified data on the [average road network density] 

(including highways and all types of roads, ranging from primary to local roads) provided by the Global 

Roads Inventory Project (GRIP) (Meijer et al., 2018) as a random effect, explained in sect. 3.1.” (Line 115-

118) 

3. In the analysis you have mentioned model uncertainty and input uncertainty. I think the uncertainty 

associated to a 36‐km spatial resolution grid is so large that the entire analysis is not relevant. As you 

mention at line 51 “coarser input data might be less representative for local events, such as landslides”. 

If data are not representative the entire modelling is not representative. 

Thank you for voicing your concern. There are indeed limitations of a susceptibility analysis at 36-km 

resolution for specific hillslopes and we used some unfortunate phrasing to address the spatial 

representativeness issue. We removed the confusing statement and the text is updated as follows: 

“Input uncertainty principally results from errors in the environmental data. To assess how input 

uncertainty propagates into the total prediction uncertainty, ensemble simulations can be used.”  (Line 

58-61) 

Furthermore, we will follow up on this and acknowledge the effect of spatial representativity and how 

that error is caught in the optimization of the “input” uncertainty. Please see our answer to comments 

5 and 6 below. Yet, at this stage, it may already be relevant to point out that the native resolution of 

many of our input layers (e.g. slope) was much finer than 36 km and the variability within these large 

grid cells is (at least partially) taken into account. As explained in the introduction, the main reason for 

constructing a model at such a coarse resolution (and assess the associated uncertainties) is to make a 

product that can be used in combination with currently existing soil moisture satellite observations 

(see below). 

4. Line 20 LSS maps derived from environmental conditions are a fundamental tool for informing local 

population, city planners and decision makers both on the immanent landslide likelihood, but also about 

secondary effects such as major sediment sources  this is true but very difficult to be applicable at the 

resolution of your analysis. 



We agree. This sentence was intended as a first introduction into the topic of landslide susceptibility. 

As we state in line 39-43, the susceptibility assessment in this study aims at a subsequent combination 

with satellite soil moisture products for spatio-temporal hazard assessment. This motivated the choice 

of a 36-km spatial resolution which is common for these satellite products. To prevent any 

misinterpretation, we will however update the sentence as follows: “Regional high-resolution LSS maps 

derived from environmental conditions are a fundamental tool for informing local population, city 

planners and decision makers both on the immanent landslide likelihood, but also about secondary 

effects such as major sediment sources (Crozier, 2013; Maeset al., 2017; Broeckx et al., 2020). Large 

scale low-resolution LSS maps can serve as background information to be downscaled for the above 

applications at the local scale, or they can be used in conjunction with large-scale satellite data to 

construct a spatio-temporal estimate of the likelihood for a landslide” (Line 23-28) 

We would also like to point out that although gridded landslide susceptibility is usually assessed at 

finer resolution, the end result is still frequently aggregated into communal or provincial units which 

often cover areas comparable to one of our grid cells.  

5. (Line 60) The total uncertainty is estimated by comparing the predicted average LSS against the 

observed presence and absence of landslides   in your case the presence/absence of landslide is 

related to a too coarse grid resolution. 

Thank you for your remark. Indeed, the evaluation suffers from representativeness error, and that 

uncertainty is now included in the LSS uncertainty. The text is updated as follows: “One such important 

source of uncertainty is spatial representativeness error (Blöschl and Sivapalan, 1995; van Leeuwen, 

2015), especially when evaluating spatially averaged grid cell LSS estimates using single landslide 

observations as reference data.” (Line 72-74) 

6. Due to their generalizing nature, LSS models are however prone to uncertainty.   true but the 

uncertainty it is also highly related to the thematic data/landslide distribution/model used for the 

assessment. In your case the uncertainty associated to data and landslide distribution is more relevant 

than the entire modelling.  

We agree about these different sources of uncertainty in landslide modelling. This is why later on in 

the introduction (line 44 onwards) we introduce the concept of input and model uncertainty and stress 

the need for assessing the input uncertainty, especially at a 36-km resolution. We would nevertheless 

like to highlight that most of the environmental data, and especially the ones building on topography, 

originally come from much finer resolution (see also the answer to comment 10) and by aggregating 

the information, the error is – in fact – reduced at the coarse resolution (aggregation of noise, purely 

statistically). We will include the original spatial resolutions in Table 1 (see below). 

Furthermore, the uncertainty of the exact landslide locations used for training of the LSS models 

(location accuracy ranging from 1 km to up to 25 km in the GLC) actually becomes less of a problem 

when aggregating the information into a 36-km grid cell.  



Table 1 Predictor variables used in this study 

 

7. (line 89) When you aggregate landslide data in a landslide location, do you check that your 

aggregation is reliable?  

Unfortunately, we do not fully understand this question. However, we have added some related text 

in response to other reviewer questions and hope this may help: 

“Since LSS informs about the static environmental landslide likelihood, it is common practice to exclude 

the temporal aspect of landslide occurrence and instead work with landslide presence and absence 

locations. Multiple landslides within the same 36-km EASEv2 grid cell are therefore aggregated into one 

‘landslide presence grid cell’, resulting in a total of NLS=3757 (orange grid cells, Fig. A1). While we 

acknowledge that grid cells with more frequent landslide reporting can in general be expected to have a 

higher LSS, we found that the information about the frequency of landslide occurrence within a grid cell 

strongly mirrors biases in the landslide inventory, e.g. more landslides are reported in English-speaking 

countries. The aggregation, on the contrary, reduces the landslide presence reporting bias of the GLC.” 

(Line 107-115) 

8. (Line 90) Multiple landslides within the same 36‐km grid cell are aggregated into one ‘landslide 

location ‐‐> The environmental condition selected in a 36 km grid cell can be completely inappropriate 

and not relevant to explain the landslide. 



Thank you for pointing this out. We are aware of the fact that a resolution of 36-km allows for rather 

large variations within the grid cell. This is caught in the ensemble uncertainty, because it implicitly 

accounts for spatial representativeness error. We would like to refer to the answer to comment 3 that 

this study’s intention was to retrieve the likelihood of landslide occurrence for an area (of one grid 

cell) rather than single slopes.  

Of course, one slope that is very prone for landslides can be situated in an area that is generally not 

susceptible to landslides. This is also visible in our results, where we do find low predicted LSS for some 

landslide presence grid cells (see e.g. grid cell 18 in Figure 5). We will include the following sentence in 

the discussion, section 5.2:  “At the same time, landslide presence grid cell 18 also has a very wide LSS 

distribution with a rather low average. This could either indicate that a non-hydrological process caused 

the landslide (misclassification) or that specific unrepresented features are present within the grid cell 

area.” (Line 425-427) 

9. (Line 111) Absence grid cells are hence selected from grid cells 7 to 15 around a landslide occurrence 

  How you can be sure that the selected conditions are not prone to landslides? 

Thank you for this remark. In our study, we follow the philosophy that “the past is the key to the 

future”, as commonly done for landslide susceptibility approaches. This entails that for simplicity, we 

assume that areas where landslides have occurred in the past will also be prone to landslides in the 

future. Areas without historical landslide observations, are hence assumed to be not prone for 

landslides. This of course generally calls for a reliable landslide absence reporting, which for the GLC is 

only the case to a certain degree: “For large or remote areas, however, no reported landslide does not 

necessarily mean that the site never experienced [a landslide].” (Line 122-123) The introduction of the 

buffer and maximum radius was intended to tackle some of this issue by excluding grid cells in the 

vicinity of known landslide locations to be selected as a landslide absence grid cell. To be 100% sure of 

landslide absence, we would need to be in the field or do intensive visual assessments based on google 

Earth as has for example been done by Depicker et al. (2021). The approach taken in this study can be 

regarded as our best educated guess. 

We will update the text as follows to reflect better on the issue:  “[…] it is still possible that an absence 

grid cell could experience a landslide, even if none has been reported in the GLC. A prominent example of 

this are absence grid cells 1 and 7, located in the East African Rift and India, respectively. Both grid cells 

have no reported landslide, but very wide LSS distributions, with relatively high LSS values. This 

discrepancy between prediction and observation could indicate the need to visit this location for 

landslide research. […] Overall, we find an average 	

�����

��� of 0.18 (0.82) for landslide absence 

(presence) grid cells (as displayed in Fig. A1) which makes us confident in our classification of these grid 

cells. “(Line 421-428) 

10. To compute the compound topographic index, you need the specific catchment area and the slope. 

How do you measure then in a 36 km grid? 

Indeed, the CTI was originally calculated per catchment based on 3’’ data from SRTM observation 

south of 60°N, and on 30’’ data from GTOPO30 for the high northern latitudes (as described in Verdin 

2013, see Table 1). The values that we use are the mean and maximum CTI per 36-km grid box (see 

Table 1). We have now added the resolution of the datasets that were used to generate CLSM model 

parameters in Table 1 (see comment 6). 

11. Why do you consider the peak ground acceleration if you want to evaluate hydrologically triggered 

landslides? 



Thank you for this question. While local lithology is an essential predictor for landslide susceptibility 

assessment, various studies have shown that lithological classes alone tell only part of the story. Even 

when accounting for topography and lithology, seismic proxies like PGA play a key role in explaining 

regional, continental and global patterns of landsliding. This is also the case across regions where 

seismicity is overall too weak to directly trigger landslides (e.g. Vanmaercke et al., 2017; Broeckx et 

al., 2018; Stanley et al., 2021). The most likely reason for this is that weak yet prolonged seismic and 

tectonic activity can have large effects on rock fracturation and, by extent, weathering and lithological 

strength (e.g. see discussion by Molnar et al., 2007). As such, peak ground acceleration can be a highly 

relevant preparatory factor that explains landslide susceptibility, even for hydrologically triggered 

landslides. We will extend this explanation to prevent confusion on this aspect: “Peak ground 

acceleration (PGA) is the likely level of ground motion from earthquake (Giardini et al., 2003). Here, we 

do not use it as the likelihood of a seismic landslide trigger, but rather as a proxy for the fracturation and 

weakening that lithologies have undergone due to seismic and tectonic activity (Lin et al., 2017; 

Vanmaercke et al., 2017; Broeckx et al., 2018)” (Line 162-166) 

12. (Line 161)  The mixed effects approach allows us to include a so‐called ‘random effect’, here the 

random intercept α, for which we use the average road network density stratified into 6 groups (divided 

by the global quintile thresholds)  not clear 

Thanks for pointing this out. For the logistic regression in this study, we decided to have the intercept 

vary with stratified road network density in order to prevent this bias in the landslide reporting from 

affecting the retrieved connection to the environmental predictors. We will update the text as follows: 

“The mixed effects approach allows us to include a categorically scaled variable as a so-called ‘random 

effect’, here the random intercept α, for which we use the average road network density (RND) stratified 

into 6 classes. We summarize all land grid cells where average RND is negligible (< 1 m/km²) into the first 

class and use quantiles 20, 40, 60 and 80 of those grid cells with non-negligible RND to divide the rest 

into additional 5 classes. The mixed effects approach will then result in one global logistic regression 

equation that has the same � -factors for all grid cells, but different α values according to each grid cell’s 

RND class. The 6 α values are assumed to come from a zero-mean normal distribution (Zuur, 2009).” 

(Line 190-196) 

13. (Line 185) We group the grid cells into a total of 100 blocks according to climatological conditions 

within 10 predefined regions (roughly two per continent), independent of landslide absence or presence 

 a) this means that each block has about 75 pixel?  

This is approximately correct. Since we do not enforce each block to consist of the same number of 

grid cells (pixels), the number of grid cells per block varies, with the median being 55. We will mention 

this as part of the alterations in answer to comment 14. 

b) What is the rational to select roughly two climatological conditions per continent? If this is not a 

consistent selection is not representative. 

Thank you for your concern. The described method does not aim at concrete climatologic classification 

but rather at an appropriate process to delineate the aforementioned “blocks”. The (sub-)continents 

were delineated based on our expert opinion, with the intention of a very broad first climatological 

stratification: North America west, North America east, South America west, South America east, 

Europe, Africa west, Africa east, Asia east, Asia west, Australia-Oceania. Within those (sub-) 

continents, the kmeans clustering according to average climatological conditions divided grid cells 

with similar climatological regimes into 10 groups that we refer to as “blocks”. We assume the 

climatological regimes to also be representative of the landslide regimes. The so grouped grid cells of 



one block do not necessarily have to be neighboring. (Please see our answer to comment 14 for some 

additional details.) 

This grouping varies per CV model creation (with changing subsets used for training and testing), but 

we don’t see this as an issue. Had we opted for a random selection of pixels, which is the most 

common approach in LSS modelling, there would also not have been any consistency in the assigning 

to different subsets.  

We will add the following sentence: “Note that the definition of the individual blocks varies between 

each repetition of absence grid cell sampling due to the kmeans clustering algorithm.” (Line 239-240) 

14. (Line 183) One subset consists of 20 randomly sampled ‘blocks’, i.e. small groups, of the 7514 grid 

cells selected for model creation. We group the grid cells into a total of 100 blocks according to 

climatological conditions within 10 predefined regions (roughly two per continent), independent of 

landslide absence or presence. Within these regions, we mimic typical climatological zonations (for 

example that of Köppen) through k‐means clustering (Lloyd, 1982) of 30‐year average soil surface 

temperature and rainfall (see Table 1), dividing each region into 10 blocks.  Not clear the relation 

between the blocks and the 5 subset. 

Thank you for this remark.  In line with our reply to comment 13, we will alter the text as follows: “We 

employ a blocked random CV (B-CV), as recommended by Roberts et al. (2017), which we found to indeed 

yield most realistic error estimates in comparison to random or spatial sampling (not shown). This means 

that instead of randomly sampling individual grid cells into the 5 subsets for training and testing the 

model as part of CV, we randomly sample small groups of grid cells with similar environmental 

conditions, so-called “blocks” (see Fig. 1). We expect that the environmental conditions are similar in 

neighboring pixels (for example same subcontinent) and for similar climate zones. We therefore derive 

blocks in 2 steps. First, the 7514 grid cells selected for model creation are divided according to 10 

predefined (sub-) continents. Within each (sub-) continent, we then derive in a second step 10 blocks 

through kmeans clustering (Lloyd, 1982) of 30-year average soil surface temperature and rainfall (see 

Table 1). In total we retrieve 100 blocks comprising different numbers of grid cells (median: 55) that are 

not necessarily located next to each other. The 100 blocks are then randomly divided into the 5 subsets 

for model creation (20 each).” (Line 221-234) 

A final distribution of the 5 subsets might then look like this: 

 

Figure 3 Spatial distribution of landslide presence and absence grid cells selected for LSS model creation. Colors indicate the 

subset they were sampled into, based on blocked random selection. One point on the map indicates the center of a grid cell. 



15. (Line 224) Aggregated data vs observations  Do you really think is reliable to aggregate original 

observations? In Italy for example you have aggregated 5438 observations in 309 points. I think the two 

data are completely different and infact you get very low ROC curve. 

Indeed, the aggregation has a quite extreme effect for Italy as compared to the other validation data 

sets of Russia and Africa. Please note, however, that the aggregation transforms the original landslide 

observation points into landslide presence grid cells. Essentially, what we learn is that in most areas of 

Italy, you can find landslides and should expect a high landslide susceptibility. The reason for the low 

AUC value was actually introduced by a mistake on our side that we now discovered: For the ROC 

analysis, we had selected a box around the reference validation data set region rather than really 

cutting at the country or continental borders. For Italy that meant that a large number of very high 

susceptibility grid cells in the Alps joined the analysis as false positives, while we actually did not have 

validation data for these grid cells. This mistake has been corrected, and we now obtain great AUC 

values of 0.91 for Italy, 0.84 for Africa and 0.92 for Russia.  

 

Figure 4 Corrected ROC curves and AUC values for the validation landslide inventories, see Figures 6 and 7 in manuscript 

In addition, we will add the following thought in the text: “Future research could explore the additional 

information, such as landslide sizes, types or the frequency of occurrence per grid cell instead of reducing 

the data to landslide presence and absence. For the latter, one would need to find ways to counteract 

the English-language and economic bias of the GLC which is more pronounced when using the actual 

number of reports instead of the presence-absence method chosen in this study.”(Line 475-479) 

16. (Line 236) Values of the intercept, which is part of all models, vary with road network density as part 

of the MELR and mostly have and average close to zero (not shown)  can you explain better this 

statement? 

Thank you for your question. Hopefully, we were already able to provide some clarification concerning 

the varying intercepts in MELR in answer to comment 12 . For each average road network density 

(����������)  group, we retrieve one intercept (α ). These are both positive and negative, i.e. increase or 

decrease the susceptibility resulting from the predictor variables depending on ���������� within the grid 

cell. That they have an average of zero is actually an initial condition, which we mention now already 

in section 3.1 (please see our answer to comment 12 for more details): “The 6 α values are assumed to 

come from a zero-mean normal distribution (Zuur, 2009).” (Line 195-196) 



 For low (high) ����������, �  takes  negative (positive) values. This means we move the connection between 

���������� and landslide presence into the intercept instead of using  ���������� as a predictor variable itself. We 

will alter the sentence as follows: “The values of the intercept α take negative values for low RND and 

positive values for high RND (by design, not shown).” (Line 300) 

17. Fig. 3  how much all this complex analysis improves/enhances at worldwide scale a simple 

regression model applied to obtain an LLS? 

Thank you for this question. For individual grid cells where the accuracy was low, i.e. where the 

difference between predicted LSS and observed absence (0) or presence (1) is large, the ensemble 

approach was able to improve the accuracy in comparison to the CV ensemble (see answer to 

comment 3 from reviewer #1). If the interest lies only in average LSS assessment (without uncertainty) 

to retrieve information on the general global patterns, it is not much of a drawback to use a simple 

regression model. 

We will expand the changes made in answer to comment 4 from reviewer #1:  “The AUC values of 

ensemble averages remain practically the same, and an LSS model without predictor perturbations 

would hence suffice for a general insight in the global spatial LSS pattern. ” (Line 452-454) 

The key advantage of this study is that we obtain uncertainty estimates that can be used in 

conjunction with satellite data in a Bayesian framework, which is now better clarified in the text: “A 

reliable uncertainty assessment of global LSS estimates is moreover crucial when subsequently 

combining them in a statistically optimal way with, for example, satellite soil moisture products from Soil 

Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP) as used by Felsberg et al. (2021).” 

(Line 40-43) 

18. (Line 265) The LSS2500 map hence performs very well over Russia and Africa, while showing some 

difficulties to capture the patterns for Italy This is the situation where you have modelled 309 points 

aggregated from 5438 observation. Are you sure that the aggregated points are representative of the 

failure distribution around the world? 

In answer to this, we would like to point to the answers of comments 3, 8, and 15. The aggregation of 

5438 observation points into 309 landslide presence grid cells of 36-km resolution is reasonable when 

interested in an area’s likelihood of landslides. We are convinced that the aggregated landslide 

presence grid cells for Africa, Russia and Italy paint a realistic pattern of areas that are prone to 

landslides within the continent or country. 

Concerning the failure distribution around the world, Figure A.1 shows the 3757 landslide presence 

grid cells as aggregated from 12515 landslides reported in the GLC (see lines 103-108). The landslide 

presence grid cells cover all prominent landslide hot spots, as for example also visible in the original 

GLC point observations (Kirschbaum et al. 2015) or found by Froude and Petley (2018). 

19. The procedure is quite complex and the real meaning between the LSS2500 and LSS100 is not very 

easy to understand 

The LSS100 is an ensemble of 100 LSS maps that is the direct result of MELR with blocked random cross 

validation (5 subsets) and 20 times repetition of the absence grid cell subsampling. In addition to that, 

LSS2500 includes predictor variable perturbations, so that per 1 map in LSS100, you have 25 maps in 

LSS2500. This is introduced in lines 235-245:  

“[…] the MELR […] results in 5 different model equations and corresponding LSS maps. By repeating the 

absence sampling 20 times, we obtain a total of 100 LSS maps (referred to as CV ensemble or LSS100, see 

Fig. 1)[…]  



For the input ensemble perturbations, we apply one fitted model equation to a slightly perturbed set of 

its predictor variable values. In total, 25 repetitions of this process are conducted […], this results in a 

total amount of 2500 LSS maps (referred to as full ensemble or LSS2500) […]”  

We will nevertheless update the text in a later part of the manuscript to be clearer about both types of 

ensembles in section 4.3: “The above discussion of the full ensemble LSS2500 includes perturbations to the 

predictor variables on top of the CV ensemble LSS100 obtained by the CV techniques alone.” (Line 343-

345) 

 


