
The authors thank the reviewers for their constructive comments. The comments are shown in regular 

fonts, our responses are in bold italic, blue fonts. Changes made in the manuscript are printed in italic, 

underlined, blue fonts. Our line references refer to the updated manuscript with track-changes. 

 

Reviewer #1 

 

I must first apologize to the authors and to the editor for this late review. As an author, I have myself 

experienced how irritating it can be to wait for an overdue review. I can only mention heavy load of 

work as an excuse for my delayed response.  

Not being myself an expert on landslide causes and occurrences, I am not in a position to comment on 

the parts of the paper that specifically deal with those aspects, nor actually to evaluate the paper in 

comparison with what has already been done on estimation of landslide susceptibility and uncertainty. 

But I have comments on the methodological aspects of the paper, which may be useful for all readers.  

I must say I have had difficulties to clearly understand what the authors have done, as concerns both 

their methodological approach and the validation of the results they have obtained. I will limit myself to 

what are the most important points I want to stress. 

We thank the reviewer for the feedback on the methods. We improved the readability of the paper for 

people in various research fields, because we hope to bridge multiple disciplines in this paper and 

appreciate feedback from outside the landslide community. 

 

1. My first question has actually to do with landslides. The authors focus their study to hydrologically 

triggered landslides (l. 68). This means that they ignore, for instance, landslides triggered by 

earthquakes. What is the reason for that restriction ? How can the distinction be made between 

different kinds of landslides, once they have occurred ? And does the Global Landslide Catalog report 

only hydrologically triggered landslides ? These questions may look naïve to specialists, but some 

appropriate information (and references) may be useful to outsiders. 

Thank you for this valid question. As mentioned in lines 39-43, the susceptibility assessment carried 

out in this study is intended to be used with satellite soil moisture observations. Since the likelihood of 

earthquake triggered landslides is primarily dependent on the presence of an earthquake and its 

magnitude, the soil saturation is not a reliable indicator for occurrence of these landslides. For 

hydrologically triggered landslides, on the other hand, increased soil water content is the actual 

underlying condition that leads to slope failure by i) decreasing the shear strength and ii) increasing 

the shear stress.  

Landslide inventories (such as the GLC) based on media reports usually take the information on the 

trigger from the report itself. The GLC was designed mainly for the purpose of collecting information 

on hydrologically triggered landslides, namely triggered by “continuous rain”, “downpour”, 

“monsoon”, “flooding”, “rain” and “tropical cyclone” (GLC classifiers), but also contains a small 

number of landslides from other triggers (less than 5%) and for about 16% triggers are unknown. We 

will update section 2.1 as follows: “The GLC is a landslide inventory that contains information about 

location, date and trigger. It is originally based on media reports (Kirschbaum et al., 2010, 2015) but has 

recently been supplemented with the citizen science-based Landslide Reporter Catalog (LRC) data (Juang 



et al., 2019), see Stanley et al. (2021) for details. […] For this study, we use 12515 hydrologically 

triggered landslides (GLC classifiers “continuous rain”, “downpour”, “monsoon”, “flooding”, “rain” and 

“tropical cyclone”) reported mainly between January 2007 and November 2020.” (Line 95-104)  

2. The first purpose of the paper is to derive LSS model equations (ll. 66‐67). The authors do not actually 

show any equation that is explicitly identified as such. The model equations must be equations of form 

(1), where the quantity P(Y = 1) is what is called LSS elsewhere. Equations of form (1), which are defined 

as a form of logistic regression, are used on appropriate training sets for determining, through MELR and 

Cross Validation, values of the parameters α and βi (i=1,…,n). This raises a number of questions. 

a. What is the rationale for the logistic form of equation (1) ? What are the advantages of that specific 

approach ? It seems to me to be a rather arbitrary choice. In their conclusion, the authors mention the 

choice of the statistical model (l. 365) as one possible source of uncertainty in the whole estimation 

process. Do they refer there to Eq. (1) ? The authors give references concerning logistic regression, but 

some basic explanation would be useful. 

Thank you for your question. Indeed, the choice of logistic regression as statistical model was in a way 

arbitrary, but based on literature review and expert opinions. Many smaller scale LSS studies compare 

multiple statistical models and subsequently use the best performing one (for example Steger et al. 

2015, Zêzere et al. 2017 or Depicker et al. 2020). Larger scale studies usually choose a priori one 

statistical model to limit computational time (for example Stanley and Kirschbaum 2017, Lin et al. 

2017 or Broeckx et al. 2018). The findings of Zêzere et al. 2017 also show that the choice of statistical 

model has less impact on the final LSS results than the choice of mapping unit. We opted for a logistic 

regression because it is a very simple approach and one of the earliest statistical, data-driven models 

used for LSS (Reichenbach et al. 2018). The advantage lies in its rather robust nature, that is not as 

prone to overfitting as certain machine learning algorithms. As such, logistic regression is also the 

most commonly used technique (Reichenbach et al. 2018). We will extend the manuscript as follows:  

“Logistic regression is the most commonly used approach for statistical LSS mapping (Reichenbach et al., 

2018). It is associated with strong generalizing capabilities (Brenning, 2005), which is a necessity when 

working at the global scale, and it has proven to be reliable in continental to global LSS assessments 

(Broeckx et al., 2018; Lin et al., 2017).” (Line 164-167)  

“Because Zêzere et al. (2017) found that the choice of spatial mapping unit influences LSS estimates 

stronger than the choice of statistical model, we do not expect that our results would fundamentally 

change for approaches other than MELR.” (Line 450-452) 

b. In MELR, what is the criterion for quality ? Given a tentative set of values (α, βi,i=1,…,n), by which 

measure is the corresponding fit to P(Y = 1) evaluated ? A simple quadratic fit, or what ? 

For this study we used the lme4 package in R, specifically the glmer function, in which the fit is 

optimized based on maximum likelihood estimation, which involves a minimization of squared 

deviances with penalty terms. Subsequently, we evaluate the model fitting performance of each fitted 

equation by means of AUC on the test data, but this information is not used for optimization.  We will 

extend section 3.1 by the following statement in hope for clarification: “We use the glmer function 

from the lme4 package (Bates et al. 2015) to create MELR models in R version 4.0.3 (R Core Team, 2020) 

where the best fitting parameters are obtained by maximum likelihood estimation.”  (Line 201-203). 

In addition, note that: “a measure that is proportional to the sum of squared errors [...]” (L.177-178) is 

used to identify the most useful predictor variables. 

c. I understand that the values P(Y = 1) in the training sets are taken in the data set built in subsection 

2.1 from the GLC catalog, so that these values are restricted to 0 and 1 (absence or presence of 



landslides). It would a priori seem more appropriate to consider a quantity such as the frequency of 

occurrence of landslides (that would not be impossible from GLC since the latter mentions more than 

one landslide for a number of individual grid cells). That may not be practically possible, but it would in 

my mind be appropriate to mention, and preferably briefly discuss, that alternative approach. 

That is a valid point that also crossed our mind. A posterior analysis of average LSS (��������
����) against 

the number of landslide reports per grid cell showed indeed mostly an increased median ��������
����  for 

higher reporting frequency (see Figure 1 below).  

 

Figure 1 Ensemble average LSS ( ��������
����) for grid cells with different number of reported landslides in the GLC, stratified for the 

official language denoted by the United Nations Group of Experts on Geographical Names. 

However, this connection significantly differed between grid cells located in English-speaking countries 

and those of other official languages. One reported landslide in an English-speaking country is 

associated with lower LSS than in a non-English-speaking country. Hence, keeping the possible  

response values restricted to 0 or 1 also contributes to mitigating observation biases from the GLC. 

This posterior analysis nevertheless gives confidence that locations with a higher frequency of 

landslide reports have also been assigned a higher LSS by the statistical method of MELR. We will add 

the following short discussions of this: 

“While we acknowledge that grid cells with more frequent landslide reporting can in general be expected 

to have a higher LSS, we found that the information about the frequency of landslide occurrence within a 

grid cell strongly mirrors biases in the landslide inventory, e.g. more landslides are reported in English-

speaking countries. The aggregation, on the contrary, reduces the landslide presence reporting bias of 

the GLC.” (Line 108-111) 

 “Future research could explore the additional information, such as landslide sizes, types or the frequency 

of occurrence per grid cell instead of reducing the data to landslide presence and absence. For the latter, 

one would need to find ways to counteract the English-language and economic bias of the GLC which is 

more pronounced when using the actual number of reports instead of the presence-absence method 

chosen in this study. ” (Line 452-456) 

3. a. Concerning the quality of the uncertainty of their LSS estimates, the authors use as diagnostic the 

Receiver Operation Characteristic (ROC) and the associated area under the ROC curve (AUC). They 

mention AUC values for individual members of ensembles, i.e. LSS maps (ll. 214‐217, l. 275 and Fig. 7), as 



well as for global ensembles (ensembles of maps). The latter are all right for me, but I do not understand 

what AUC values for individual maps can be. ROC curves (https://en.wikipedia.org/wiki/Receiver 

operating characteristic) are parameterized by a threshold T, each point on the curve corresponding to a 

value of T. The corresponding coordinates are relative to the circumstances when the value of a given 

parameter is larger than T (in the context of the present paper, that parameter must be LSS). Unless all 

grid cells are lumped together, which does not seem to be reasonable, it does not make sense to 

consider the situation LSS > T on a single map. That makes sense only on an ensemble of maps, with grid 

cells being considered independently of each other. I may of course be mistaken as to what the authors 

have exactly done, but clarification is necessary. 

Thank you for this valid question. All ROC curves and connected AUC values mentioned in this study 

were derived for individual LSS maps, i.e. “all grid cells lumped together”, or a subset of these grid 

cells. In case of the ensemble, this means one AUC value is computed for each member map (or parts 

of it, such as Africa, Russia and Italy). The ROC allows to validate a continuous probability value 

against a discrete outcome (landslide presence and absence) by means of applying, as you correctly 

state, different threshold values T. For grid cells below (above) T, the prediction is assumed to be 

landslide absence (presence), and comparison against the validation data in form of a confusion 

matrix allows to compute the according true and false positive rate. The pairs of these rates are 

collected for different thresholds T and displayed in the ROC curve. “Lumping” all grid boxes of one 

map together, allows to evaluate the spatial accuracy and is in this way common practice for landslide 

susceptibility: Reichenbach et al. (2018) report that it was used as an accuracy measure in more than 

20% of the 565 susceptibility studies they reviewed. We will alter section 3.3 as follows:  

“To quantify how well a predicted LSS map represents observed landslide presences and absences, a BS 

can be used (see Equation 2). Alternatively, the Receiver Operating Characteristic (ROC) is commonly 

used as evaluation tool for categorical response values such as landslide presence and absence 

(Reichenbach et al., 2018). For the ROC, the true positive rate of one LSS map is displayed against its 

false positive rate for different possible thresholds in the continuous probability (here: LSS) that is 

predicted. The area under the ROC curve (AUC) is 1 for a perfect representation of the spatial LSS 

distribution, whereas an AUC value of 0.5 indicates that the model does not perform better than a 

uniform distribution. 

Depending on the reference landslide data, the ROC analysis can be conducted for specific grid cells from 

a CV subset (independent data not used in the training), or from other independent landslide inventories. 

Here, we use landslide presence and absence information from the grid cells of the fifth CV subset (test 

subset, see Figure 1) to assess the model fitting performance for each LSS ensemble member map “on 

the go”. To evaluate the final prediction performance of the complete ensemble averages and the 

corresponding ensemble members, we use 3 independent landslide inventories.” (Line 252-272) 

b. And the reference to one fully deterministic reference MELR equation (based on neither CV nor input 

perturbations) (ll. 220‐221) is confusing. Does it mean you have performed the validation on other 

outputs than the ones obtained from CV ? I have a similar question about the one deterministic MELR 

equation mentioned on ll. 355‐356. 

We are sorry to have caused confusion with this. We wanted to evaluate whether the general 

introduction of an ensemble in contrast to deterministic predictions improves the accuracy of the LSS 

map, as found for hydrological and meteorological modelling (Kalnay et al. 2006). For this reason we 

created – in addition to the full (LSS2500) and CV ensemble (LSS100) – this one fully deterministic MELR 

equation. The AUC values retrieved for the resulting deterministic LSS map for Russia, Italy and Africa 

were then compared against the AUC values of the ensemble averages (��������
���� and ��������

��� ).  



However, we realize that this is confusing for the reader and to some extent an unfair comparison 

because this fully deterministic MELR (without CV and predictor perturbations) is also trained on the 

complete set of landslide presence and absence grid cells (in contrast to the model training on 4 out of 

5 subsets as part of CV). Since this additional comparison does not add much to the results of our 

study, we have decided to remove any mention of it from the manuscript: 

We will alter section 3.3 as follows and hope that the procedure becomes more clear: “The AUC and BS 

metrics can be computed for individual ensemble members (of the CV ensemble LSS100, or the full 

ensemble LSS2500, yielding a distribution of metrics) or for ensemble averages (	

�����
��� and 	

�����


��� ). It 

will be assessed whether i) an ensemble average outperforms an individual member LSS realization and 

whether ii) the full ensemble average with ensemble input perturbations (	

�����

���) outperforms the CV 

ensemble average which does not include input perturbations (	

�����
���). This would be in line with the 

expectations for hydrological or meteorological models (Kalnay et al., 2006).” (Line 282-286) 

4. The authors write (ll. 357‐359) The finding of Kalnay et al. (2006) (show) that the introduction of 

ensembles increases the accuracy of the prediction does not hold for our LSS modelling. This is probably 

due to the non-linear characteristics of logistic regression and LSS being static. I understand the authors 

mean that the accuracy of the mean of the output ensemble is higher than the accuracy of an individual 

deterministic estimate (at least statistically). From what I understand, non‐linearity cannot be the 

problem here. Consider a process F(x) where there is uncertainty of the input x. Let {xi} a sample of 

independent realizations of the probability distribution for x. The ensemble {F(xi)} is a sample of 

independent realizations of the probability distribution for F(x). As such, the mean of that ensemble is 

the best estimate of F(x), at least in a least‐square sense. That is true whether the process F is linear or 

not. 

Thank you for this remark. Indeed you are right in that for one grid cell the mean of an ensemble 

{F(xi)} should remain the best estimate for the process F(x), independent of the linearity of the process, 

and the quoted finding was an error from our side, that will be corrected. 

Our naïve inference was that the ensemble average should also improve the spatial performance 

(assessed by AUC, as explained for comment 3) over that of an unperturbed realization. This, however, 

we did not find to be the case. A more correct assessment of the influence of the ensemble on the 

performance would be based on the accuracy per grid cell. A measure for this is the ensemble skill 

(ensk, see Equation A2), which is essentially the squared difference between (ensemble average) LSS 

and the observation. When averaged over a number of grid cells, ensk turns into the Brier Score (BS, 

see Equation 2). We do find that the BS based on intervals of CV ensemble ensk (enskLSS100) is improved 

through predictor variable perturbation (full ensemble) where enskLSS100 is not already close to its 

optimum value of 0:  



 

Figure 2 (Top) Difference in Brier Score (BS) between the full ensemble (LSS2500) and the CV ensemble (LSS100), for intervals of 

ensemble skill of the latter (enskLSS100). (Bottom) Number of grid cells within the enskLSS100  interval. 

These grid cells with very small enskLSS100, i.e. where the predictor perturbations do not improve the 

performance, comprise by far the largest proportion of all land grid cells. They mostly have very low 

LSS values close to 0, where the predictor variable perturbation was found to introduce a small bias 

towards higher LSS values: “Slightly increased (decreased) LSS2500 at the lower (upper) limits can be 

attributed to the resampling of predictor variable values if they exceed the definition interval of rescaled 

predictor variables (0,1).” (Line 421-423) For landslide absence grid cells, this slightly decreases the 

accuracy and results in a slightly increased BS value. In the spatial accuracy assessment, it is these grid 

cells that strongly dominate the resulting AUC values due to their large number.  

We will alter section 5.3 as follows: “The AUC analysis (Fig. 7) shows that the ensemble averages 

perform much better than individual ensemble members, and that 	

�����

��� and 	

�����

���  perform equally 

well. Not shown is that the BS (Equation 2) decreases (i.e. improves) for 	


��� in comparison to 	

��� 

where LSS is not very close to the observation already (landslide presence and absence). This effect is, 

however, not visible in the AUC comparison (spatial accuracy) for the validation data in Russia, Africa 

and Italy because the grid cells with BS improvement only make up for ~8%, ~9% and ~18% respectively. 

The AUC values of ensemble averages remain practically the same, and an LSS model without predictor 

perturbations would hence suffice for a general insight in the global spatial LSS pattern.” (Line 425-431) 

5. The authors write in their conclusion (ll. 373‐374) … predictor variable perturbations results in a 

reliable assessment of the associated total prediction uncertainty. It is of course more difficult to assess 

the uncertainty on an estimate than to obtain the estimate itself. But the authors’ statement seems to 

be a bit of an exaggeration. The AUC values given in the paper do show some reliability in the 

assessment of the uncertainty, but no more. Actually, the amplitude of the predictor variable 

perturbations has been evaluated on the same data set as the LSS values. The whole process is therefore 

subject to some form of inbreeding, the impact of which is difficult to assess. And the authors write 

themselves A comparison of σLSS2500 with independent global estimates is currently not possible for lack 

of uncertainty estimates (ll. 340‐341). I suggest the authors soften down their concluding statement.  



Thank you for this valid remark and we will soften the concluding statement. The “inbreeding” is, 

however, only partially true, because we also evaluate AUC values for the independent validation 

inventories (Russia, Africa, Italy). These were not part of the GLC, which we used for the tuning of the 

perturbations. We find the same tendencies in AUC spread for these validation inventories and the 

test data (not used for training) from the GLC (see Figure 7). We do agree though, that our assumption 

of reliability is strongly rooted in and connected to our trust in the tuning of the perturbations. We 

agree to change the text as follows: “The novel method of combining blocked random CV (B-CV) and 

predictor variable perturbations results in a reasonable assessment of the associated total prediction 

uncertainty.” (Line 459-461) 

 

I would have also comments on editing aspects of the paper, but I think they are of lesser importance at 

this stage. 

 


