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Abstract. A Bayesian network (BN) approach is used to model and predict shore-break related injuries and rip-current drown-
ing incidents based on detailed environmental conditions (wave, tide, weather, beach morphology) on the high-energy Gironde
coast, southwest France. Six years (2011-2017) of boreal summer (June 15 - September 15) surf zone injuries (SZIs) were
analysed, comprising 442 (fatal and non-fatal) drownings caused by rip currents and 715 injuries caused by shore-break waves.
Environmental conditions at the time of the SZIs were used to train two separate Bayesian networks (BNs), one for rip current
drownings and the other one for shore-break wave injuries. Each BN included two so-called "hidden’ exposure and hazard
variables, which are not observed yet interact with several of the observed (environmental) variables, that in turn limit the
amount of BN edges. Both BNs were tested for varying complexity using K -fold cross-validation based on multiple perfor-
mance metrics. Results show a poor to fair predictive ability of the models according to the different metrics. Shore-break
related injuries appear more predictable than rip current drowning incidents using the selected predictors within a BN, as the
shore-break BN systematically performed better than the rip current BN. Sensitivity and scenario analyses were performed to
address the influence of environmental data variables and their interactions on exposure, hazard and resulting life risk. Most of
our findings are in line with earlier SZI and physical hazard-based work, that is, that more SZIs are observed for warm sunny
days with light winds, long-period waves, with specifically more shore-break related injuries at high tide and for steep beach
profiles, and more rip current drownings near low tide with near shore-normal wave incidence and strongly alongshore non-
uniform surf zone morphology. The BNs also provided fresh insight, showing that rip current drowning risk is approximately
equally distributed between exposure (variance reduction Vr = 14.4%) and hazard (Vr = 17.4%), while exposure of water user
to shore-break waves is much more important (Vr = 23.5%) than the hazard (Vr = 10.9%). Large surf is found to decrease
beachgoer exposure to shore-break hazard, while this is not observed for rip currents. Rapid change in tide elevation during
days with large tidal range was also found to result in more drowning incidents. We advocate that such BNs, providing a better
understanding of hazard, exposure and life risk, can be developed to improve public safety awareness campaigns, in parallel

with the development of more skillful risk predictors to anticipate high life-risk days.
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1 Introduction

Wave-dominated beaches offer a playground for a variety of activities, but at the same time they pose a threat to water users.
Following Stokes et al. (2017) a conceptual definition of life risk at beaches can simplify in terms of the number of people
exposed to life threatening hazards. As a result, a beach with a relatively high hazard level could exhibit a low level of risk if
the number of beach users is low and vice versa. This way, the level of life risk can be modelled indirectly by estimating hazard
and exposure.

There are two primary causes of surf zone injuries (SZIs), which can sometimes co-exit at the same beach (Castelle et al.,
2018): 1) rip currents resulting in drowning incidents and ii) shore-break waves which can result in e.g. spine and shoulder
dislocations. Rip currents are intense seaward-flowing narrow currents which can form through different driving mechanisms
related to breaking waves (Dalrymple et al., 2011; Castelle et al., 2018). They form close to the shoreline and often extend be-
yond the surf zone. Therefore they can transport unsuspecting bathers offshore, who potentially panic and drown (Drozdzewski
et al., 2012; Brighton et al., 2013). The shore-break wave hazard has received little attention in the literature compared to rip
current hazard. However, shore-break waves can cause a large amount of injuries (Puleo et al., 2016), including severe spine
injuries (Robbles, 2006). At certain beaches, shore-break waves can even be the primary cause of SZIs, e.g. up to 88% at Ocean
City, Maryland (Muller, 2018).

Rip flow speed, which is a proxy of rip current hazard, has been addressed on many beaches through both field measurements
and numerical modelling (see Castelle et al., 2016, for a review). In brief, rip flow speed generally increases with increasing
wave height and period (e.g. MacMahan et al., 2006), more shore-normal incidence (e.g. MacMahan et al., 2005), generally
lower tide levels (e.g. Brander and Short, 2001; Austin et al., 2010; Bruneau et al., 2011; Houser et al., 2013; Scott et al., 2014)
and more alongshore-variable surf zone morphology (Moulton et al., 2017). It is also well known that shore-break waves are
associated with steep beaches and longer period waves (Battjes, 1974; Balsillie, 1985). In addition, the number of SZIs is also
greatly influenced by the number of beachgoers exposing themselves to surf zone hazards. Given that warm sunny days with
low winds typically result in increased beach attendance (Ibarra, 2011; Dwight et al., 2007), it is expected that during such
days the life risk, and thus the number of SZIs, are increased.

Prominent environmental controls on SZIs were identified by comparing the frequency distribution of an environmental
variable (e.g. significant wave height H, tide elevation 1) during an injury, with the background frequency distribution of that
variable (Scott et al., 2014; Castelle et al., 2019). The difference between two frequency distributions shows the dispropor-
tionate amount of conditions that are associated with SZIs. At two different beaches along the Atlantic coast of Europe, Scott
et al. (2014) and Castelle et al. (2019) showed that the number of drowning incidents increases disproportionately during warm
sunny days with light wind, maximizing beach attendance, and shore-normally incident long-period waves, maximizing rip
current activity. Although such analysis provides an indication of the prominent environmental controls, it does not uncover
the interplay between variables, and the relative magnitude of each variable. A related challenge based on current research is
filtering the effect of how water users choices are influenced by environmental conditions (e.g. wave height H). For instance

Stokes et al. (2017) found that beach morphology type has an impact on the number of water users. It can also be hypothesized
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that high surf and heavy shore-break waves discourage an amount of the beachgoers from entering the water, even on warm
sunny days, resulting in less exposure. Finally, the respective contributions of hazard and exposure to the overall life risk for
shore-break waves and rip current are virtually unknown.

Prediction of SZIs together with a better understanding of the interplay between weather and marine conditions and effect on
life risk at the beach, could help a better anticipation of high risk days and further improve public safety awareness campaigns
on surf zone hazards. This requires a high order statistical approach like a Bayesian Network (BN). BNs are probabilistic
graphical models that are based on a joint probability distribution of a set of variables with a possible mutual causal relationship.
BN have been previously successfully used in coastal science, estimating morphological changes, changes in wave parameters
in the surf-zone and coastal flood risks (Gutierrez et al., 2011; Plant and Holland, 2011; Fienen et al., 2013; Pearson et al.,
2017). Stokes et al. (2017) compared a BN to a multiple linear regression approach to model exposure, hazard and, in turn,
life risk to beach users at 113 lifeguarded beaches in UK. Even though the multiple linear regression method moderately
outperformed the BN, Stokes et al. (2017) acknowledged the benefits of a BN approach to identify the characteristics of high
risk beaches from a large data set. More recently, Doelp et al. (2019) used a BN to predict SZIs on the Delaware Coast, which
are primarily caused by shore-break waves (Puleo et al., 2016). They showed that a BN approach can improve predictions
69.7 % of the time, but also acknowledged limitations in predicting anomalous injuries. A BN approach has the potential both
to show good prediction skill to assist decision-making and to provide a better understanding of rip current and shore-break
hazards.

In this paper, a data set (2011-2017) of 442 drowning injuries (fatal and non-fatal) and 715 shore-break injuries occurring in
boreal summer (June 15 - September 15) and corresponding environmental conditions along the Gironde coast in south-west
France are used to create BNs for rip current related drownings and shore-break injuries. The study area and SZI dataset are
described in Section 2. Section 3 presents the development of the BNs and the method used to train them and address their

performance. Results are shown in Section 4 and are further discussed in Section 5 before conclusions are drawn.

2 Environmental and SZI dataset along the Gironde Coast
2.1 Study area

The Gironde coast is located in southwest France and stretches approximately 140 km from the La Salie Beach (La Teste) in
the south to the Gironde Estuary in the north, and is interrupted by the Arcachon tidal inlet (Figure 1a). It is a meso-macrotidal
environment with spring tidal range reaching 5 m. Wave conditions vary seasonally with a 99.5% exceedance significant wave
height H, of 5.6 m, and occasional severe storms with H,> 8 m. Summers are associated with smaller waves with a mean H
of around 1.2 m and a dominant W-NW incidence (Castelle et al., 2019).

The coast is composed of high-energy sandy beaches backed by high and wide coastal dunes. Beaches are intermediate
double barred, with deep and more or less regular rip channels incising the intertidal inner bar with an average spacing of
approximately 400 m (Figure 1a and b). Intense rip currents can flow through the rip channels, with rip flow intensity potentially

exceeding 1 m/s even for low-energy (Hy < 1 m) long-period waves (Castelle et al., 2016). Rip current flow is strongly
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modulated by the tide level, with maximum rip current activity occurring between low and mid tide in typical summer wave
conditions (Bruneau et al., 2011). In winter, more energetic wave conditions drive a more dissipative gently sloping beach face.
In contrast, the upper part of the beach is steeper in summer due to smaller waves. Beach slope and rip channel morphology
also show a large interannual variability enforced by large interannual variability in the wave climate (Dodet et al., 2019).
Overall, beach states are similar along the coast but with increasingly steep beach face, deeper and more spaced rip channels
southwards. Noteworthy, beach morphology dramatically changes along sectors adjacent to the Arcachon lagoon and Gironde
estuary where rip current activity decreases, but tide-driven currents become substantial (> 0.2 m/s during ebb and flood).
The Gironde coast is known for a large population of tourists visiting the beaches, which results in large amounts of injuries
sustained by beachgoers and surfers of all levels (Figure 1c) (Castelle et al., 2018; Tellier et al., 2019). Beaches are patrolled
by lifeguards during the summer months of July and August. Patrolled periods are extended approximately from the 15th of
June to the 15th of September at the busiest beaches. A designated and supervised bathing zone is delimited by two blue flags.
However, many remote beach access paths through coastal dune tracks and many access points are situated on unpatrolled

sections of beaches, kilometres away from any lifeguard presence (Castelle et al., 2019).

Gironde
estuary

Latitude

-0.75° -0.25°
Longitude

-1.25°

Figure 1. (a) Location map of the Gironde Coast, southwest France. Black circles indicate municipalities where injuries were reported.
Locations of Truc Vert beach and wave and tide data used in this study are also indicated; (b) aerial photograph of Truc Vert beach at low

tide, exposing rip channels (Ph. V. Marieu); (c) crowded Lacanau beach at summer during a high tide (Ph. J. Lestage).

2.1.1 SZI data

The SZI dataset used herein is detailed in Tellier et al. (2021, ?). In short, SZIs were recorded by the medical emergency
call center SAMU (Service d’Aide Médicale d’Urgence) of Bordeaux for the Gironde department. Calls from beachgoers and
lifeguards dealing with drowning or rescues received between January 2011 and November 2017 were used here. Excluding

training calls, duplicates and calls lacking victims, a total of 5022 injuries were collected. Table 2 shows that the discrepancy
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between the total number of injuries and the combined shore-break and rip current related SZIs is due to the large number of
calls with insufficient information collected. Noteworthy, the 916 surfing-related injuries (Table 1) occurring during this period
were also disregarded for analysis. The reason for this being that a large number of surfer injuries involve collision with other
surfers and are likely influenced by other factors (e.g. surf break quality, surf school activity) which are not related to physical
hazards.

A SZI was classified as shore-break when the medical file stated explicitly: "shore-break" or a French equivalent. Given
that along this coast approximately 80% of the drowning incidents involving bathers are caused by rip currents (Castelle et al.,
2018), rip-related SZIs (drownings) were determined if a drowning stage (according to standardized medical classification) was
reported in the medical file, with two notable exceptions. Drownings that were related to shore-break waves were classified as
shore-break, because they were presumably not associated with rip currents. Similarly, surfing related drownings were excluded
as there is no evidence that most of the drownings of surfers are related to rip currents. Six mutually exclusive classes were
found based on activity (see Table 2). Even though the activity was unknown for 1943 of the SZIs, drowning stage and the
shore-break classifier provided the information to classify some of these SZIs as shore-break or rip related drowning. Amongst
the population, 45% was male, 33% female and for 21% the sex was not recorded. The population is relatively young with
43% between 6 and 19 years old. A slightly elevated number of SZIs was found for the age group between 36-45 years old
(see Figure 2). This demographics is in line with another, shorter, dataset described in Castelle et al. (2018). By far most SZIs

occurred at Lacanau beaches (26%), which is one of the most popular beaches that consequently attracts crowds in summer

(see Figure 2).
Table 1. Activity distribution SZIs as indicated on the medical Table 2. Post-processed categories to distinguish between rip
files between 08-Jan-2011 and 18-Nov-2017 related drownings and shore-break injuries
Activity | nbSzIs | Class | nbszs |
swimming 1229 swimming (non-drowning) 282
surfing 827 rip related drowning 575
body-boarding 89 shore-break 750
beach-related 898 surfing/body-boarding 916
skim-boarding 36 beach-related 934
unknown activity 1943 unknown 1565
total 5022 total 5022

For the purpose of this study, only summer periods between June 15 and September 15 were taken for each year because
outside of this period SZIs become extremely rare events, which poses challenges for BN training. In the summer periods 442

drowning SZIs and 715 shore-break SZIs where found. This is the final population that was used in the Bayesian network.
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Figure 2. Distribution of (a) age and (b) location of SZIs between 08-Jan-2011 and 18-Nov 2017. Beaches are ordered from North (left) to
South (right)

2.2 Environmental data

Environmental conditions were estimated at the time of each SZI by using a data set comprising tide, wave and weather data.
The dataset is described in detail in Castelle et al. (2019). Hourly weather data was collected at the Météo-France weather sta-
tion Cap Ferret (Figure 1a) from the RADOME (Réseau d’ Acquisition de Données d’Observations Météorologiques Etendu).
A tidal component analysis of a 3-month time series of continuous, storm-free, Eyrac tide gauge data (Fig. 1) was performed
to reconstruct a tide level time series at 10-min interval. The average phase lag between the Eyrac tide gauge and beaches of
the study area was estimated using tide charts from the Service Hydrographique et Océanographique de la Marine (France),
resulting in an estimated maximum tide elevation error of 0.3 m at all sites, which is conservative. A wave model hindcast
was used to provide continuous wave conditions at the coast. The WaveWatch 3 (Tolman, 2014) hindcast was performed on
an unstructured grid with a resolution increasing from 10 km offshore to 200 m near the coast (Boudiere et al., 2013). Wave
conditions were extracted at an in situ directional wave buoy location c. 10 km offshore of Truc Vert at ca. 50-m depth, and have
been extensively validated with field data (e.g. Castelle et al., 2020). The primary metocean variables used are: tidal elevation

(n), significant wave height (H), mean wave period (Ty2), wave direction (), temperature (7'), wind speed (U), Insolation
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(). From tidal elevation, tidal range (I'R) and tidal gradient (dn) where derived. Maximum, minimum, mean and standard

deviation summer statistics are summarized in Table 3.

Table 3. Statistics of environmental conditions of SZI records during summers between June 15 - September 15

Environmental variable maximum ‘ minimum ‘ mean ‘ standard deviation
Significant wave height H, (m) 3.13 0.23 1.17 0.38
Mean wave period o2 (s) 11.64 2.66 6.19 1.94
Wave direction 6 (°) 340.10 247.30 291.67 7.82
Tidal elevation n (m) 2.21 -2.26 -0.03 1.09
Tidal range T'R (m) 4.52 1.64 3.12 0.69
Tidal gradient d (m H™1) 0.51 -0.51 0.05 0.26
Temperature T' (C°) 36.23 15.47 25.07 3.36
Insolation 7 (min H™") 60 0 48.17 14.77
Wind speed U (m s™h 12.65 1.2 4.56 1.26

Previous work along this stretch of coast showed, qualitatively, the importance of upper beach slope and rip channel devel-
opment on shore-break related injuries and drowning incidents, respectively (Castelle et al., 2019). To further quantitatively
address this link with the longer dataset used herein, we used monthly to bimonthly topographic surveys performed at Truc Vert
beach since 2003 (the reader is referred to Castelle et al., 2020, for a detailed description of this beach monitoring program).
This dataset was used to derive two morphological metrics. First, the inverse foreshore slope (1 F'S) was calculated as:

1
tan(/3)

where tan(f3) is the beach slope between 1 m and 3 m above mean sea level (amsl) from a linear regression. To filter out extreme

IFS =

ey

alongshore variations in I F'.S, the slope was averaged over four cross-shore transects that were systematically surveyed during
the monitoring program (Figure 3).

Sinuosity (S) of the mean sea level iso-contour line was used to provide a measure rip channel development. It was defined
as:

_ L

SLS

(@)

where L; is the true length and L is the shortest Euclidean distance between the first and last point of the contour line (Figure
4). A value larger than 1 indicates a high degree of sinuosity, whereas values close to 1 indicate a low degree of sinuosity.
Before calculating the sinuosity of the shoreline, a high pass filter was used to remove sinuous signals larger than 400 m. This
was done to filter out larger-scale undulating patterns that are not enforced by the inner-bar rip channels (Castelle et al., 2015).

The metocean and topographic data collected at Cap Ferret or near Truc Vert are both located approximately in the centre

of the study area. This data was assumed to be representative of wave and weather conditions along the entire study area.
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Figure 3. (a) Example of a digital elevation model of Truc Vert beach on 29-Apr-2013, with the colorbar showing elevation amsl. The four
cross-shore transects used to compute the inverse beach slope I F'S between 1 m and 3 m amsl are indicated by the dashed black lines. (b)

Time series of I F'S and (c) summer shore-break related injuries.

When constructing a BN (see next section), probabilities of a SZI occurrence must be compared to a probability of non-SZI.
Therefore, a discretization in time is needed. A 1-hour time window was chosen to count the number of SZIs. To avoid a

spurious distribution of non-SZIs, only daily hours between 7h and 21h were used.
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3 Bayesian networks
3.1 Bayes’ Theorem and BN structure

Bayesian networks (BN) are based on Bayes Theorem (Korb and Nicholson, 2010). This theorem states that probabilities of a

certain event can be updated, given new evidence and can be stated as (Bayes, 1763):

e[h)P(h)

P(hle) = 1 e 3

where P(hle) is the probability for a hypothesis &, given the evidence e. In Eq. (3), P(e|h) resembles the likelihood and
P(h) corresponds to the prior probability of h before any evidence was given. Dividing the numerator by P(e) is a means of
normalizing, so that conditional probabilities sum to 1. For example P(hle) could be the probability of a rip-current hazard,
given that the tide was low.

A BN is a graphical representation of the probabilistic relations between a set of variables, using Bayes” Theorem to describe
the relation between variables (Korb and Nicholson, 2010). The links between nodes represent the direct dependency between
variables (or nodes). A constraint on linking variables is that links cannot return to the beginning node, completing the cycle.
Therefore the graphical representation of a BN is often referred to as a directed acyclic graph. If there is an arc from variable
A to B, variable A is termed the parent variable and variable B the child variable. The relation between variables is often
assumed to be causal, but is not necessarily the case. Once the structure is established, relations between variables are quantified
according to conditional probability tables (CPTs), in the case of discrete variables. The probability of a value for a child
variable is calculated for each possible value that the parent variable can take. Given that this is done for all variable nodes in
the BN, two types of probabilistic reasoning become possible. Firstly, predictive reasoning, where a value is specified for each
input variable. This results in a predicted probability for a target variable. Secondly, diagnostic reasoning is the other type for

which, for example, given a SZI the BN can specify the probability that it was low tide.
3.2 Construction of the rip-current and shore-break related BNs

Constructing a BN requires a trade-off between complexity and predictability. This is determined by the amount of variables
chosen, the way variables are discretized and how the variables are linked. In general a simpler model is preferred over a
complex model with the same performance, according to the principle of Ockham’s razor (Jefferys and Berger, 1992). In this
section we describe the choices that were made related to this trade-off, using the BN software package Netica v. 6.05 (Norsys,
1998).

Based on earlier work on the environmental controls on SZIs in southwest France (Castelle et al., 2019) and some preliminary
BN tests, the rip-current BN is made of: i) a hazard component that depends on hydrodynamic forcing parameters H, T2, 0, 1
and dn and a morphological component S and ii) an exposure component that depends on the hour of the day H, temperature 7'
and hourly insolation I defined as sunshine duration (see Figure 5). The shore-break BN has a similar set-up, but the shoreline

sinuosity is replaced by the inverse foreshore slope (1 F'S), and the tidal gradient (T'G) is replaced by tidal range (7T'R). Such

10



structure was motivated by the fact that sometimes a simpler and computationally less expensive network can be obtained by
adding so-called hidden or latent variables that limit the amount of links between variables or the amount of variables to include

in the network (Russel and Norvig, 2010, p.817). In this case, we used two hidden exposure and hazard variables which are

known to control life risk and the amount of SZIs (Stokes et al., 2017).

(a) Rip current BN (b) Shore-break BN
() hidden variables (learned) [ hidden variables (learned)
[ input variables [ input variables

[ output variable [ output variable

Figure 5. Bayesian Networks for (a) Rip current related injuries and (b) Shore-break injuries. Both BN are defined by input variables, hidden

variables, an output variable and their linkages.

200 In order to compare the probability of an injury with the probability of a non-injury, injuries were counted per hour for
all summers. Consequently, the variable injury count was discretized as a binary variable with two possibilities: no injury or
an injury. Where the amount of injuries per hour exceeded 1, the cases were duplicated proportionally. Often hidden learned
variables tend to be discretized with a small amount of bins, as they do not have any prior information available. After testing
both BNs, 3 dummy bins were chosen for the exposure variable and 2 dummy bins for the hazard variable. The amount of bins

205 chosen for the input variables determine the performance of the model to a larger extent. Therefore, different discretization

options were tested, keeping an equal bin width. This is shown in Section 3.4.
3.3 Bayesian network training

The probability tables of the hidden variables were calculated by using an algorithm that calculates the most likely distribution

of the data, given the probability distributions of the other variables. The expectation maximization (EM) algorithm is widely

11
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used in BNs to determine the most likely model given the data (Russel and Norvig, 2010). In a similar manner the algorithm
finds the most likely value for occasionally missing data. The algorithm proceeds in the direction of the steepest gradient to
find the minimum negative log likelihood for a model, given the data. The amount of bins used to discretize variables in the
BN determines how well data is described. The larger the number of bins, the better it describes the data until the point where
there might be a bin for each value. On the other hand, a larger number of bins degrades the prediction skill of the BN, as it
becomes harder to predict the correct bin. A BN might be trained slightly differently from one run to another, because it is
a probabilistic process. Therefore, we used K-fold cross-validation to eliminate any bias that single model runs might hold.
After Fienen and Plant (2015); Gutierrez et al. (2015); Pearson et al. (2017) the cases were separated in k random partitions,
where n — n/k cases were used for training and calibration, and n/k cases were left out for testing/validation. We used k = 10
so that test cases make up 10 % of the total data set. After 10 folds, mean values of performance metrics were taken to evaluate

the performance of the BN.
3.4 BN performance metrics

Different performance metrics were used to address BN predictive performance. Here we used three relevant metrics: skill sk,
log likelihood ratio L L R, area under ROC (receiver operating characteristic) AUC.
Skill was adapted from Fienen and Plant (2015) and was computed as:

0_2
sk =[1— %] x 100% “)
ag

where o is the mean squared error between observations and the BN forecast and o, is the variance of observations. The
skill metric in Eq. (4) expresses how close predictions of an injury match with observations of an injury, with sk = 1 meaning
perfect prediction.

Because skill is not an optimal measure for binary output variables, the AUC (area under ROC curve) was chosen as a
complementary metric (Marcot, 2012). AUC' is based on the ratio between the true positive predictions of the BN and the false
positive predictions. Figure 6a shows the sensitivity on the y-axis (true positive rate) and the specificity on the x-axis (false
positive rate) of a typical ROC curve from one of the model runs. If the dashed random classification line is equal to the ROC
curve, this indicates that the model is not able to distinguish an injury from a non-injury. This corresponds to AUC' = 0.5.
Figure 6b shows the confusion matrix on which the sensitivity and specificity is based.

The third metric is the log likelihood ratio (LLR), adapted from Plant and Holland (2011) and Fienen et al. (2013). The
LLR compares the prior probability of an injury with the posterior probability of a prediction, given the evidence (the input

variables), which reads:

LLR= 50910(1?(1?@'\0]')3-:03) - lng(p(E)Fi:o;) &)

where F; is a forecast, in this case of a SZI, O; is an independent observation that was withheld from the forecast (e.g. a
tidal elevation of -2.0 m). The LLR expresses the change in likelihood due to certain evidence in the form of observations. A

L LR that exceeds zero indicates that the BN offers a better forecast than the prior probability. A LL R that is lower than zero,

12
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Figure 6. Receiver operating characteristic curve (ROC) of the shore-break BN of one of the fold runs.

indicates that the prior probability is a better forecast than the BN forecast. The L LR can be calculated for each predicted case
and each variable and can then be summed over the entire BN (3" LLR). The LLR penalizes wrong but confident predictions
more than wrong predictions that are uncertain (Plant and Holland, 2011; Pearson et al., 2017). Therefore, it is a suitable metric
to verify whether the BN is over fitting or not.

Finally, in order to address how each input variable influences the target variable (SZI), the percentage of variance reduction
V'r that was caused by updating the BN based on the evidence was computed as:

V(F) = V(F|O)

Vr= VF)

x 100% (6)

where V(F) is the variance of a forecast prior to any evidence, and V(F'|O) is the variance of the forecast, given the new

evidence. V(F') and V(F'|O) are calculated as:

V(F)=> p(f;))(f; — E(f;)? )
J=1
M N

VIE)=D_ > p(filod(f; = E(filor))’ (®)

where p( f;) is the prior probability of the jth forecast, f; is the current value of the jth forecast, E( f;) is the expected value
predicted by the BN of the jth forecast, p(f;]o;) is the predicted value of the jth forecast given the ith evidence case, E( f;]o;)
is the predicted value of the jth forecast given the ¢th evidence case, M represents the number of evidence data and N the

number of predictions.
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4 Results
4.1 BN performance

To find the best BNs, a varying number of bins was tested to evaluate the trade-off between calibration and validation. For
calibration, the BN was trained to make predictions of an injury based on the input variables of 90% of the training cases. For
validation, predictions of an injury were made based on the input variables of the 10 % left-out cases. Generally an increase
in level of definition, i.e. number of bins, leads to a decrease in predictive capability and vice versa (Fienen and Plant, 2015;
Fienen et al., 2013). Figure 7 and 8 show performance metrics for both the shore-break and rip-current BNs, respectively, as a

function of the number of bins for the input variables.

Skill AUC 2 LLR
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Figure 7. Performance metrics of shore-break BN as a function of the number of bins of the input variables and for validation and calibration

: (a) skill sk, (b) area under ROC curve AUC and (c) the summed log likelihood ratio Y, LLR.

It can be observed that the shore-break BN performs slightly better than the rip-current BN, as all performance metrics
score better. Calibration results of the BNs are fair with sk and AUC ranging 0.15-0.43 and 0.89-0.98, respectively. Validation
sk is smaller and ranges 0.078-0.12 and 0.035-0.06 for the shore-break and rip-currents BN, respectively. Validation AUC'
are better, ranging 0.71-0.8 and 0.63-0.68 for the shore-break and rip-current BNs, respectively. The sum of the LLR is
systematically smaller than O for the validation of both BNs. This is either an indication that the prior estimate is on average
better than the prediction of the model, or that there are anomalous cases where the wrong but confident prediction is heavily
punished by highly negative L L R values that result in a negative or near zero LLR sum.

Table 4 and 5 show that, depending on the number of bins chosen, model predictions are better than the prior probability
estimate 62.21% - 79.9% of the time. When 5 bins are chosen for the rip current BN, 79% of the time the model prediction
is of added value. When 5 bins are chosen for the shore-break BN, 72% of time the model prediction performs better. This
shows that the negative and near zero sums of the LL R displayed in Figure 7 and 8 must be caused by anomalous events (the

remaining percentages) that are confidently predicted wrong.
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Figure 8. Performance metrics of rip-current BN as a function of the number of bins of the input variables and for validation and calibration

: () skill sk, (b) area under ROC curve AUC and (c) the summed log likelihood ratio > LLR.

Table 4. The percentage of LLR > 0 for rip current SZIs, in-

dicating whether the prediction of the model is better than the

prior probability

‘ Nb bins ‘ Prediction rip current SZIs (% LLR>0)

prior probability

Table 5. The percentage of LLR > 0 for shore-break SZIs, in-

dicating whether the prediction of the model is better than the

‘ Nb bins ‘ Prediction shore-break SZIs (% LLR>0)

3 bins 73.86% 3 bins 70.18%
4 bins 77.30% 4 bins 70.08%
5 bins 79.90% 5 bins 72.56%
6 bins 61.60% 6 bins 65.10%
7 bins 62.21% 7 bins 69.50%

The amount of bins was varied from 3 to 7 bins to choose the best trade-off between complexity and accuracy. Only the
number of input variable bins were adjusted, keeping the output variables exposure, hazard and injury count the same. In
general, an increase of the number of bins leads to a better descriptive capability and a worse predictive capability (Fienen and
Plant, 2015). When the number of bins is increased from 3 to 4, a small decrease in sk and AUC can be noticed. However, a
further increase in the number of bins does not significantly lead to worse sk, AUC or > LLR. AUC and sk show a small
increase at 6 bins for the shore-break BN (Figure 7a,b) and at 6 / 7 bins for the rip BN (Figure 7). Contrary to what is generally
observed, validation sk, AUC and Y LLR did not drop dramatically when complexity was increased. However, the percentage

LLR >0 did drop for both BNs, when increasing the number of bins, which is in line with expectations.
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4.1.1 Input variable sensitivity

Figure 9a shows the sensitivity of the shore-break BN to the input variables (6 bins) and to the hidden variables exposure and
shore-break hazard. For the shore-break BN, the learned variable exposure (V1 =23.5%) has the strongest influence followed
by the shore-break hazard variable (Vr = 10.9%). This suggests that exposure of water users has a more dominant control
on the injury count than the shore-break hazard forcing variables. This is also reflected in Figure 9b, where the hour of the
day, temperature and insolation have larger values for Vr. These variables are followed by tide elevation which is the most
important shore-break hazard control (Vr =0.17%). Consequently, mean wave period (Vr =0.07%), tidal range (V'r = 0.06%),
significant wave height (Vr = 0.05%) and wind speed (V7 = 0.039%) follow. The inverse foreshore slope I F'S averaged over
four profiles distributed along the coast has a noticeable impact (Vr = 0.065%) on the shore-break hazard. Wave direction is

least sensitive to the injury count with Vr = 0.025%.

Shore-break

Shore-break w/o hidden

Rip current

Rip current w/o hidden
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Figure 9. Variance reduction Vr without hidden learned variables for the shore-break BN (7 bins) (a) with hidden learned variables and
(b) without learned hidden variables and for the rip-current BN (6 bins) (c) with hidden learned variables and (d) without hidden learned

variables

Figure 9c shows the sensitivity of the rip-current BN to the input variable (7 bins) including the hidden variables exposure
and rip-current hazard. Rip-current exposure (Vr = 17.6%) and hazard (Vr = 15.4%) have similar influence, even though
parents of exposure (insolation, temperature and hour) are more dominant in Figure 9d. It suggests that it is the combined
effects of input variables that cause a rip current (e.g. tide, wave direction and wave height) that have a strong influence on
the occurrence of drowning incidents. This is different from what was observed for the shore-break BN. Within the exposure
variables, the most sensitive for the rip-current BN are insolation (Vr = 1.67%), temperature(Vr = 1.7%) and hour of the
day (Vr = 1.56%). Within hazard-related variables H, and T2 have the highest Vr with 0.36% and 0.26%, closely followed

by wave direction with 0.25%, suggesting that incident wave conditions are the most important control on rip-current hazard.
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Shoreline sinuosity S reduces variance by 0.065%. Interestingly enough, the percentage of variance reduction of exposure

305 variables are of similar magnitude, although with different ordering, in both hazards (Figures 9b,d).
4.2 Scenario analysis

Apart from the predictive ability of a BN, probabilistic scenario analysis can be a useful tool to understand how multiple
variables interact. Figure 10a shows the prior joint probability distribution of the shore-break BN without updating based on
any evidence. The two hidden variables, exposure (3 bins) and hazard (2 bins) do not contain any prior information and thus
310 have equal probabilities for each bin. Figure 10b shows the joint probability distribution for a trained shore-break BN updated
for the evidence that there was a shore-break SZI. In the latter, the distribution of tidal elevation shifts towards high tide.
Additionally, there is a shift towards higher mean wave periods (7j2) and a slight increase in probabilities of larger wave
heights (H). Furthermore, temperature, hour of the day and insolation show a pronounced shift towards higher temperatures,
less cloud cover and the afternoon between 14h and 16h30. Noteworthy, when the BN was updated for larger wave heights,
315 the probability of a shore-break related injury increased. However, when the BN was updated with the evidence of an injury,
intermediate wave height bins 0.75-1.5 m and 1.5-2.25 m showed increased probability. This supports our hypothesis that large
shore-break waves (Hs > 2.5 m) can discourage bathers from entering the water, which results in less SZIs despite that the

shore-break hazard is increased.
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Figure 10. (a) Prior probability distribution of the shore-break BN; (b) Updated probability distribution where the probability of an injury

occurring was set to 100%
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A similar scenario analysis was performed for the rip current BN. Figure 11a shows prior probabilities of the rip-current
BN. The rip current BN shows that according to the prior probability a shore-break related injury (5.60%) is more likely than
a rip-current related (fatal or non-fatal) droning (3.23%). Figure 11b shows the updated probability distributions for the rip
current BN, given that there is a 100% chance of an injury. Although the probability distribution of the central bins of tidal
gradients are similar in pattern, extreme tidal gradients (|dn| > 0.43 m/h) show an increase in probability by c. 50%. Larger
tidal gradients (both negative and positive) show a slight increase in probability, supporting the hypothesis that a rapid change
in tidal elevation can surprise water users by driving the rapid onset of rip current activity. Rip current related drownings are
slightly more likely to occur when tides are low, with increased probabilities for larger H, and Tpe. Wave direction shows
small increase in drowning probability for the NW oriented directions. More sinuous shorelines (larger S values) show slightly
increased probability of rip-current related drowning (see for S > 1.23 in Figure 11b), suggesting that more alongshore-
variable surf zone morphology increases the rip-current hazard. Wind speed has only little influence, although low wind speeds
are slightly more likely during a drowning incident. Furthermore, the hour of the day shows a distribution that corresponds with
the expected beach attendance. However, there is a disproportionate peak in the evening between 19h and 21h. Furthermore,
the highest peak is earlier between 13h-15h (Figure 11b) compared to shore-break injuries, although the bins slightly overlap
(14h-16.33h, Figure 10b). Temperature and insolation show comparable patterns to the shore-break BN with warm sunny days
between 20-28 C° having the highest probability.

Other rip-current BN scenarios were tested, providing insight into variable interactions. For instance, an interaction between
the magnitude of shoreline sinuosity S and wave angle of incidence was explored, given average wave conditions (wave
height and period) and a 100% chance that there was a rip hazard (Figure 12a and b). It can be observed that for a low beach
sinuosity (1-1.06) is correlated with higher probabilities for the shore-normally incident waves (around 279°), while large
beach sinuosity is associated with a larger probability for more NW angles of incidence (295.43-311.57°). It indicates that
for reasonably alongshore-uniform beaches more shore-normally incident wave conditions are required to have a rip current

hazard, which is not necessary for rip-channeled beaches.

5 Discussion
5.1 BNs as a predictive tool for SZIs

Two separate BNs were created for shore-break SZIs and rip current SZIs. This allowed of use different beach morphology
metrics based on prior understanding of the physics of shore-break waves and rip current dynamics. In addition, two hidden
variables (exposure and hazard) were introduced for both BNs to decrease the amount of connections and increase BN effi-
ciency. Doelp et al. (2019) used population data to test a SZI ratio, normalized by the population, in addition to the binary
injury likelihood. Although results were not dramatically improved in Doelp et al. (2019), including accurate water user data
should improve BN model predictions along the Gironde Coast. However, such data does not exist and will require future

research effort.

18



355

360

Tidal . s, . i e .
O ETTOR) = (a) Prior probability rip current BN TS o (b) Updated probability rip current BN wind Speed (mis)
-043t0-0.26 20.7 — ‘wind Speed (m/s) -0.4310-0.26 19.0 p— 010357 17.4 m
Qw3s ok 026100086 105 - 3570714 54
-0.2610-0.088 19.9 f— 357107.14 1 f— 0086100.086 141 jumm 7.141010.71 134m
0086100086 135 hakien BIE Ll 07101420 1aspm
0.086100.26 236 — i e 0.26100.43 17.4 j— 14201017.86 042
0.26100.43 16.3 j— 17.86 10 21.43 12 0431006 3438 17.86 10 21.43 0.14]
) e it &8 oirica 2143025 033
001582027 835438 63235
Hour of Day
Hour of (h) 709 598
ek 7109 j— Tida Elevation () 9to 11 129
-2310-164 418 9to 11 f— -2310-164 5.35m 1Mt013 16.0 —
Ae4to-0s 177 ot 133 = 4640000 104 131015 220 mm—
-0.9910-0.33 17.4 ju— Bo17 = e 168— 151017 16,4
-0.33100.33 17.0 — 17t0 19 f— ! [— 171019 916
— 19t0 21 J— 0.33100.99 19.3 — 1910 21 15.6 j—
IR a1 YY) 09910164 151 jumm
osoies 183 164023 404 14536
164023 4ol FTren
0.0329+ 1.1
Mean Wave Period (s) Tomperature (deg C) Mean Wave Period (s) ASTpMAHICS(degIC)
210343 283 126101637 20.2 ju— 210343 52 126101637 10.3/m
16.37 10 20.14. 19.1 f— o j— 16.371020.14 E
343104.86 261 ° Sasiens 102 20.14 102391 36.2 —
ppdiordio 2014102301 31— 48610629 0.1 mmem s o
== 771 o —
P — notwTe 169 sastorrt  23m Tosiosras  75oMm
77110914 660 M 2769103146 491 [ e A 3146103523 425
s1a01057 145 SKDED XD e & ®23039 250
o
105710 12 022 / 591216 - Exposure / 23715
571215 = Exposure 214453 Rip Hazard
ip Hazard low 0+ [ 411
H low 333 ] true 100 [mmm— high 100
t o ?33: ] hgn 333 ; T nedumo+ [ 1 |
Wave Height (m) 05205 medum3s3 Insolation (minhour) Wave Height (m) Ciede B0 00020 11000042 \ = e
010064 sos [l Lo \ 010857 43,8 j— 010064 13.2fm 010857 19.5[m
0641t01.29 53.0 85710 17.14 361 0.64101.29 41.8 p— 857101714 218
mai o w2
19310257 616 257110343 329 25710321 346 34.310 42.86 272
25710321 210 34.3104286 280 321103.86 0.89 4286105143 4.03
3210385 057 _ 280514 417 381045 029 51431060
381045 026 Injury Hourly Count 51431060 39,2 ju— BN Goir
[] 9.8
12306 289124 I
Wave Direction (dog) Wave Direction (dog)
2T t0263.14 044 w2314 089
2631410 279.20 434 263141027929 687
270201020543 507 e Mmapusa  402B
2954303157 041 jmmm zacsis o
311.57 10 327.71 896 M 327.7110 343.86 2.56]
327.7110 343.86 1.38 343.86 to 360 0+
3438610360 ot e
296+ 14
Sin Sin
110 1.06 109 M 1101.06 126
10600111 472 p—— 1.06101.11
Tiio1y7 207 tedy 248
$i7p.20 80 27 12310129 6198
1230120 s4cf 12k1zaR et
129013 344 1314 0%
134014 012 1.121 £ 0.074
11220060

Figure 11. (a) Prior probability distribution of the rip-current BN; (b) updated probability distribution of the rip current BN when the

probability of an injury occurring was set to 100%.

Performance metrics indicate that the BNs improve prior estimates, but that BNs still have a significant percentage of wrong
but confident predictions. This is due to over fitting, which is a common issue with training a BN on rare events (unbalanced
dataset) (Cheon et al., 2009). When the primary objective of a BN is prediction rather than description, a synthetic data set
can be created with an even distribution of events although it degrades the BN descriptive ability. A similar suggestion to cope
with this problem, is to remove anomalous confident but wrong predictions (Doelp et al., 2019). Another issue limiting the
BN predictive ability is that simple beach morphology parameters S and IF'S were derived from a single site (Truc Vert).
Summer beach morphologies surveyed along different beaches distributed along the coast should help improving I F'S and S
estimation and, in turn, prediction of rip-current drowning incidents and shore-break related injuries. Similarly, optical satellite
images should be explored to derive beach sinuosity S at the different beaches along the coast (Castelle et al., 2021). As
indicated earlier, an estimation of beach attendance or water users should also improve BN predictive ability. Therefore, at
this stage other tools should be used for life-risk prediction, like for instance models based on simple correlations between
meteorological, oceanographic conditions and the incidence (Lushine, 1991; Lascody, 1998; Dusek and Seim, 2013; Scott

et al., 2014), on the numerical modelling of rip flow speed (Austin et al., 2013) or on the combination of video images and
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Figure 12. (a) Scenario with low sinuosity resulting in more shore-normal wave direction (around 279°) with the rip current BN; (b) Scenario

with medium sinuosity resulting in more obliquely incident (NW) wave conditions with the rip current BN.

numerical modelling (Jiménez et al., 2007). Recently, using the same SZI dataset a logistic regression model was found to
predict the risk of drowning along the Gironde coast up to three days in advance with good skill (Tellier et al., 2021).

Lastly, there were 1565 unknown injuries that could not be attributed to either a shore-break or a rip-current related injury.
Theoretically, a well trained BN could estimate which of the SZI is more likely based on the environmental conditions. How-
ever, since the BN are still limited in prediction this should be explored in the future using improved BNs. Such BN could

help to retrospectively improve SZI statistics along surf coasts.
5.2 Environmental controls on SZIs and implications for beach safety management

In other studies frequency analysis was used to identify disproportionate environmental conditions during SZIs (Scott et al.,
2014; Castelle et al., 2019). Some of the BN results are essentially in line with previous work. In short, more SZIs are observed
for warm sunny days with light winds. Rip-current related drowning incidents increase with increasing incident wave energy
(height and period), more shore-normal incidence, and lower tide level. In contrast, shore-break related injuries are sustained
at high tide levels and moderate wave height. In addition to previous work, here we proposed a method to quantify the role

of beach morphology on SZIs. Beach sinuosity .S, which is a measure of the alongshore variability of surf zone morphology,
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and inverse beach slope IF'S were found to influence the occurrence of rip-current related drowning incidents and shore-
break-related injuries, respectively. These results are in agreement with current knowledge of rip flow intensity increasing with
increasingly alongshore-variable surf zone morphology (Moulton et al., 2017), and shore-break waves occurring for steeper
beach face (Battjes, 1974; Balsillie, 1985). We also found that rapid, positive or negative, change in tide level elevation (large
dn) increase the probability of drowning incidents, with no difference between ebb and flood. Given that tide-driven current are
negligible compared with rip currents along most of the beaches in southwest France, this suggests that rapid changes in tidal
elevation driving the rapid onset of rip current activity can surprise unsuspecting bathers and carry them offshore. However,
another explanation is that some of the drowning incidents occurred in sectors adjacent to the Arcachon lagoon and Gironde
estuary where tide-driven currents, which are maximized during ebb and flood (large |dn|), can be intense.

In addition to the primary environmental controls on SZIs, in this study it was for the first time possible to identify the
interaction between multiple input variables. For instance, it was found that it is the combined effects of tide elevation, wave
direction and wave height that control rip-current hazard. In other words, even if you have shore-normally incident waves near
low tide, if wave height is very small, there is no hazard and consequently a low probability of rip-current related drownings.
Such interactions, which were not possible to address in previous work (Scott et al., 2014; Castelle et al., 2019), are in line
with the understanding of rip flow response to wave and tide conditions (Castelle et al., 2016). Our scenario analysis also
indicates that, for reasonably alongshore-uniform beaches, more shore-normally incident wave conditions are required to have
a rip current hazard compared with rip-channeled beaches. This is also in line with observations and model outputs showing
that, for the same obliquely incident wave conditions, rip cell circulation are transformed into an undulating, less hazardous,
longshore current for weakly (small .S) alongshore variable surf zone morphology, while rip cell circulation can be sustained
for deep rip channels (MacMahan et al., 2008; Dalrymple et al., 2011). This shows that BNs including a pre-defined hidden
hazard variable can provide insight into the influence of the primary input variables and their interactions on the hazard posed.
Therefore, it could also be applied to other injuries, e.g. related to surfing activity, for which the causes (e.g. environmental,
behavioural) and their interplay are poorly understood.

Studies addressing the environmental controls on shore-break related SZIs are scarce (Puleo et al., 2016; Doelp et al., 2019)
compared to drowning studies. The shore-break BN developed herein for the Gironde coast suggests that the predicted decrease
in exposure for Hs; > 2.5 m, representing heavy shore-break waves at the shoreline, is thought to discourage beachgoers from
entering the water near high tide. Importantly, this was not observed for rip-current related drownings, which have a tendency
to occur at low tide with the inner surf zone located on a much more gently sloping part of the beach profile. We hypothesize
that in such less adverse conditions, beachgoers are less discouraged to enter the water, as opposed to facing large shore-
break waves. However, further investigation on beachgoer behaviour in the presence of shore-break waves is required to test
this hypothesis. This will also involve estimation of beachgoer affluence, and estimation of the number of people in the surf
exposing themselves to the physical hazards.

In addition, our variable sensitivity analysis indicates the shore-break related injuries are more controlled by exposure related
variables than by hazard related variables, contrary to rip-current related drowning for which life risk is approximately equally

distributed between hazard and exposure. This indicates that shore-break injuries are more likely to occur during busy days,
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whether moderate or heavy shore-break conditions are present. In contrast, the presence of intense rip currents is critical to

drowning incidents.

6 Conclusions

A Bayesian network (BN) approach was used to model life risk and the controls and interactions of environmental (metocean
and morphological) data on SZIs along a high-energy meso-macrotidal coast where shore-break and rip-current hazards co-
exist. In line with previous work, the BNs show limited predictive skill. Although the shore-break and rip-current BNs improve
prior estimates, they still have a large percentage of wrong but confident predictions, which is not tenable for life-risk prediction
on beaches. However, the BNs provide fresh insight into the different environmental controls, their interactions, and their
respective contribution to hazard and exposure. For the first time, the respective contributions of exposure and hazards to
the overall life risk were quantified, showing the shore-break related injuries are more controlled by the exposure than by
hazard, contrary to rip-current related drowning for which contributions are approximately equal. These results can guide the
future development, or modification, of public education messaging, particularly on the shore-break hazard that received little
attention so far compared to rip currents, despite the large number of severe injuries sustained in shore-break waves along the
Gironde Coast. We advocate that such BNs should be developed in parallel with other risk predictors showing high predictive
skill but providing much less diagnostic capability Tellier et al. (2021).

Data availability. The wave buoy data are publicly available through the French Candhis network operated by CEREMA. Weather station
and tide gauge data are available from the Météo France Radome network and the SHOM, respectively. Wave hindcast is available from
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