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Abstract. A Bayesian network (BN) approach is used to model and predict shore-break related injuries and rip-current drown-

ing incidents based on detailed environmental conditions (wave, tide, weather, beach morphology) on the high-energy Gironde

coast, southwest France. Six years (2011-2017) of boreal summer (June 15 - September 15) surf zone injuries (SZIs) were

analysed, comprising 442 (fatal and non-fatal) drownings caused by rip currents and 715 injuries caused by shore-break waves.

Environmental conditions at the time of the SZIs were used to train two separate Bayesian networks (BNs), one for rip current5

drownings and the other one for shore-break wave injuries, each one with a hiddenhazard and exposure variables
:
.
::::
Each

::::
BN

:::::::
included

:::
two

::::::::
so-called

:::::::
’hidden’

::::::::
exposure

:::
and

::::::
hazard

::::::::
variables,

:::::
which

:::
are

:::
not

::::::::
observed

:::
yet

::::::
interact

::::
with

::::::
several

::
of

:::
the

::::::::
observed

:::::::::::::
(environmental)

::::::::
variables,

::::
that

::
in

:::
turn

:::::
limit

:::
the

::::::
amount

:::
of

:::
BN

:::::
edges. Both BNs were tested for varying complexity using K-

fold cross-validation based on multiple performance metrics. Validation (prediction) results slightly improve predictions of

SZIs with
::::::
Results

:::::
show a poor to fair skill based on a combination of

::::::::
predictive

::::::
ability

::
of

:::
the

::::::
models

::::::::
according

:::
to

::
the

:
different10

metrics. Shore-break related injuries appear more predictable than rip current drowning incidents
::::
using

:::
the

:::::::
selected

:::::::::
predictors

:::::
within

::
a

::::
BN, as the shore-break BN systematically performed better than the rip current BN. Sensitivity and scenario anal-

yses were performed to address the influence of environmental data variables and their interactions on exposure, hazard and

resulting life risk. Most of our findings are in line with earlier SZI and physical hazard-based work, that is, that more SZIs are

observed for warm sunny days with light winds, long-period waves, with specifically more shore-break related injuries at high15

tide and for steep beach profiles, and more rip current drownings near low tide with near shore-normal wave incidence and

strongly alongshore non-uniform surf zone morphology. The BNs also provided fresh insight, showing that rip current drown-

ing risk is approximately equally distributed between exposure (variance reduction V r = 14.4%) and hazard (V r = 17.4%),

while exposure of water user to shore-break waves is much more important (V r = 23.5%) than the hazard (V r = 10.9%).

Large surf is found to decrease beachgoer exposure to shore-break hazard, while this is not observed for rip currents. Rapid20

change in tide elevation during days with large tidal range was also found to result in more drowning incidents, presumably

because it favors the rapid onset of rip current activity and can therefore surprise unsuspecting bathers. We advocate that such
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BNs, providing a better understanding of hazard, exposure and life risk, can be developed to improve public safety awareness

campaigns, in parallel with the development of more skillful risk predictors to anticipate high life-risk days.

1 Introduction25

Wave-dominated beaches offer a playground for a variety of activities, but at the same time they pose a threat to water users.

::::::::
Following

::::::::::::::::::
Stokes et al. (2017) a

:::::::::
conceptual

::::::::
definition

:::
of

:::
life

::::
risk

::
at

:::::::
beaches

:::
can

::::::::
simplify

::
in

:::::
terms

::
of

::::
the

::::::
number

:::
of

::::::
people

:::::::
exposed

::
to

:::
life

:::::::::
threatening

::::::::
hazards.

::
As

::
a
:::::
result,

::
a
:::::
beach

::::
with

:
a
::::::::

relatively
:::::

high
:::::
hazard

:::::
level

:::::
could

::::::
exhibit

:
a
::::
low

::::
level

::
of

::::
risk

::
if

::
the

:::::::
number

::
of

:::::
beach

:::::
users

::
is

:::
low

:::
and

::::
vice

:::::
versa.

::::
This

::::
way,

:::
the

::::
level

:::
of

:::
life

:::
risk

:::
can

:::
be

::::::::
modelled

::::::::
indirectly

::
by

:::::::::
estimating

::::::
hazard

:::
and

::::::::
exposure.

:
30

There are two primary causes of surf zone injuries (SZIs), which can sometimes co-exit at the same beach (Castelle et al.,

2018): i) rip currents resulting in drowning incidents and ii) shore-break waves which can result in e.g. spine and shoulder

dislocations. Rip currents are intense seaward-flowing narrow currents which can form through different driving mechanisms

related to breaking waves (Dalrymple et al., 2011; Castelle et al., 2018). They form close to the shoreline and often extend be-

yond the surf zone. Therefore they can transport unsuspecting bathers offshore, who potentially panic and drown (Drozdzewski35

et al., 2012; Brighton et al., 2013). The shore-break wave hazard has received little attention in the literature compared to rip

current hazard. However, shore-break waves can cause a large amount of injuries (Puleo et al., 2016), including severe spine

injuries (Robbles, 2006). At certain beaches, shore-break waves can even be the primary cause of SZIs, e.g. up to 88% at Ocean

City, Maryland (Muller, 2018).

Rip flow speed, which is a proxy of rip current hazard, has been addressed on many beaches through both field measurements40

and numerical modelling (see Castelle et al., 2016, for a review). In brief, rip flow speed generally increases with increasing

wave height and period (e.g. MacMahan et al., 2006), more shore-normal incidence (e.g. MacMahan et al., 2005), generally

lower tide levels (e.g. Brander and Short, 2001; Austin et al., 2010; Bruneau et al., 2011; Houser et al., 2013)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Brander and Short, 2001; Austin et al., 2010; Bruneau et al., 2011; Houser et al., 2013; Scott et al., 2014) and

more alongshore-variable surf zone morphology (Moulton et al., 2017). It is also well known that shore-break waves are as-

sociated with steep beaches and longer period waves (Battjes, 1974; Balsillie, 1985). In addition, the number of SZIs is also45

greatly influenced by the number of beachgoers exposing themselves to surf zone hazards. Given that warm sunny days with

low winds typically result in increased beach attendance (Ibarra, 2011; Dwight et al., 2007), it is expected that during such

days the life risk, and thus the number of SZIs, are increased.

Prominent environmental controls on SZIs were identified by comparing the frequency distribution of an environmental

variable (e.g. significant wave height Hs, tide elevation η) during an injury, with the background frequency distribution of that50

variable (Scott et al., 2014; Castelle et al., 2019). The difference between two frequency distributions shows the dispropor-

tionate amount of conditions that are associated with SZIs. At two different beaches along the Atlantic coast of Europe, Scott

et al. (2014) and Castelle et al. (2019) showed that the number of drowning incidents occur
:::::::
increases

:::::::::::::::
disproportionately

:
during

warm sunny days with light wind, maximizing beach attendance, and shore-normally incident long-period waves, maximizing

rip current activity. Although such analysis provides an indication of the prominent environmental controls, it does not uncover55
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the interplay between variables, and the relative magnitude of each variable. A related challenge based on current research is

filtering the effect of how water users choices are influenced by environmental conditions (e.g. wave height Hs). For instance

, it is expected
:::::::::::::::::::::
Stokes et al. (2017) found

:::
that

::::::
beach

::::::::::
morphology

::::
type

:::
has

::
an

::::::
impact

:::
on

:::
the

:::::::
number

::
of

:::::
water

:::::
users.

::
It

:::
can

::::
also

::
be

:::::::::::
hypothesized that high surf and heavy shore-break waves discourage an amount of the beachgoers from entering the water,

even on warm sunny days, resulting in less exposure. Finally, the respective contributions of hazard and exposure to the overall60

life risk for shore-break waves and rip current are virtually unknown.

Prediction of SZIs together with a better understanding of the interplay between weather and marine conditions and effect

on life risk at the beach, could help a better anticipation of high risk , mass rescue days and further improve public safety

awareness campaigns on surf zone hazards. This requires a high order statistical approach like a Bayesian Network (BN). BNs

are probabilistic graphical models that are based on a joint probability distribution of a set of variables with a possible mutual65

causal relationship. BNs have been previously successfully used in coastal science, estimating morphological changes, changes

in wave parameters in the surf-zone and coastal flood risks (Gutierrez et al., 2011; Plant and Holland, 2011; Fienen et al.,

2013; Pearson et al., 2017). Stokes et al. (2017) compared a BN to a multiple linear regression approach to model exposure,

hazard and, in turn, life risk to beach users at 113 lifeguarded beaches in UK. Even though the multiple linear regression

method moderately outperformed the BN, Stokes et al. (2017) acknowledged the benefits of a BN approach to identify of the70

characteristics of high risk beaches from a large data set. More recently, Doelp et al. (2019) used a BN to predict SZIs on the

Delaware Coast, which are primarily caused by shore-break waves (Puleo et al., 2016). They showed that a BN approach can

improve predictions 69.7 % of the time, but also acknowledged limitations in predicting anomalous injuries. A BN approach

has the potential both to show good prediction skill to assist decision-making and to provide a better understanding of rip

current and shore-break hazards.75

In this paper, a data set (2011-2017) of 442 drowning injuries (fatal and non-fatal) and 715 shore-break injuries occurring in

boreal summer (June 15 - September 15) and corresponding environmental conditions along the Gironde coast in south-west

France are used to create BNs for rip current related drownings and shore-break injuries. The study area and SZI dataset are

described in Section 2. Section 3 presents the development of the BNs and the method used to train them and address their

performance. Results are shown in Section 4 and are further discussed in Section 5 before conclusions are drawn.80

2 Environmental and SZI dataset along the Gironde Coast

2.1 Study area

The Gironde coast is located in southwest of France and stretches approximately 140 km from the La Salie Beach (La Teste) in

the south to the Gironde Estuary in the north, and is interrupted by the Arcachon tidal inlet (Figure 1a). It is a meso-macrotidal

environment with spring tidal range reaching 5 m. Wave conditions vary seasonally with a 99.5% exceedance significant wave85

height Hs of 5.6 m, and occasional severe storms with Hs> 8 m. Summers are associated with smaller waves with a mean Hs

of around 1.2 m and a dominant W-NW incidence (Castelle et al., 2019).
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The coast is composed of high-energy sandy beaches backed by high and wide coastal dunes. Beaches are intermediate

double barred, with deep and more or less regular rip channels incising the intertidal inner bar with an average spacing of

approximately 400 m (Figure 1a and b). Intense rip currents can flow through the rip channels, with rip flow intensity potentially90

exceeding 1 m/s even for low-energy (Hs < 1 m) long-period waves (Castelle et al., 2016). Rip current flow is strongly

modulated by the tide level, with maximum rip current activity occurring between low and mid tide in typical summer wave

conditions (Bruneau et al., 2011). In winter, more energetic wave conditions drive a more dissipative gently sloping beach face.

In contrast, the upper part of the beach is steeper in summer due to smaller waves. Beach slope and rip channel morphology

also show a large interannual variability enforced by large interannual variability in the wave climate (Dodet et al., 2019).95

Overall, beach states are similar along the coast but with increasingly steep beach face, deeper and more spaced rip channels

southwards. Noteworthy, beach morphology dramatically changes along sectors adjacent to the Arcachon lagoon and Gironde

estuary where rip current activity decreases, but tide-driven currents become substantial (> 0.2 m/s during ebb and flood).

The Gironde coast is known for a large population of tourists visiting the beaches, which results in large amounts of injuries

sustained by beachgoers and surfers of all levels (Figure 1c) (Castelle et al., 2018; Tellier et al., 2019). Beaches are patrolled100

by lifeguards during the summer months of July and August. Patrolled periods are extended approximately from the 15th of

June to the 15th of September at the busiest beaches. A designated and supervised bathing zone is delimited by two blue flags.

However, many remote beach access paths through coastal dune tracks and many access points are situated on unpatrolled

sections of beaches, kilometres away from any lifeguard presence (Castelle et al., 2019).
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Figure 1. (a) Location map of the Gironde Coast, southwest France. Black circles indicate municipalities where injuries were reported.

Locations of Truc Vert beach and wave and tide data used in this study are also indicated; (b) aerial photograph of Truc Vert beach at low

tide, exposing rip channels (Ph. V. Marieu); (c) crowded Lacanau beach at summer during a high tide (Ph. J. Lestage).
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2.1.1 SZI data105

The SZI dataset used herein is detailed in Tellier et al. (2021, ?). In short, SZIs were recorded by the medical emergency

call center SAMU (Service d’Aide Médicale d’Urgence) of Bordeaux for the Gironde department. Calls from beachgoers and

lifeguards dealing with drowning or rescues received between January 2011 and November 2017 were used here. Excluding

training calls, duplicates and calls lacking victims, a total of 5022 injuries were collected. Table 2 shows that the discrepancy

between the total number of injuries and the combined shore-break and rip current related SZIs is due to the large number of110

calls with insufficient information collected. Noteworthy, the 916 surfing-related injuries (Table 1) occurring during this period

were also disregarded for analysis. The reason for this being that a large number of surfer injuries involve collision with other

surfers and are likely influenced by other factors (e.g. surf break quality, surf school activity) which are not related to physical

hazards.

A SZI was classified as shore-break when the medical file stated explicitly: "shore-break" or a French equivalent. Given115

that along this coast approximately 80% of the drowning incidents involving bathers are caused by rip currents (Castelle et al.,

2018), rip-related SZIs (drownings) were determined if a drowning stage (according to standardized medical classification) was

reported in the medical file, with two notable exceptions. Drownings that were related to shore-break waves were classified as

shore-break, because they were presumably not associated with rip currents. Similarly, surfing related drownings were excluded

as there is no evidence that most of the drownings of surfers are related to rip currents. Six mutually exclusive classes were120

found based on activity (see Table 2). Even though the activity was unknown for 1943 of the SZIs, drowning stage and the

shore-break classifier provided the information to classify some of these SZIs as shore-break or rip related drowning. Amongst

the population, 45% was male, 33% female and for 21% the sex was not recorded. The population is relatively young with

43% between 6 and 19 years old. A slightly elevated number of SZIs was found for the age group between 36-45 years old

(see Figure 2). This demographics is in line with another, shorter, dataset described in Castelle et al. (2018). By far most SZIs125

occurred at Lacanau beaches (26%), which is one of the most popular beaches that consequently attracts crowds in summer

(see Figure 2).

Table 1. Activity distribution SZIs as indicated on the medical

files between 08-Jan-2011 and 18-Nov-2017

Activity nb SZIs

swimming 1229

surfing 827

body-boarding 89

beach-related 898

skim-boarding 36

unknown activity 1943

total 5022

Table 2. Post-processed categories to distinguish between rip

related drownings and shore-break injuries

Class nb SZIs

swimming (non-drowning) 282

rip related drowning 575

shore-break 750

surfing/body-boarding 916

beach-related 934

unknown 1565

total 5022
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Figure 2. Distribution of (a) age and (b) location of SZIs between 08-Jan-2011 and 18-Nov 2017. Beaches are ordered from North (left) to

South (right)

For the purpose of this study, only summer periods between June 15 and September 15 were taken for each year because

outside of this period SZIs become extremely rare events, which poses challenges for BN training. In the summer periods 442

drowning SZIs and 715 shore-break SZIs where found. This is the final population that was used in the Bayesian network.130

2.2 Environmental data

Environmental conditions were estimated at the time of each SZI by using a data set comprising tide, wave and weather data.

The dataset is described in detail in Castelle et al. (2019). Hourly weather data was collected at the Météo-France weather sta-

tion Cap Ferret (Figure 1a) from the RADOME (Réseau d’Acquisition de Données d’Observations Météorologiques Etendu).

A tidal component analysis of a 3-month time series of continuous, storm-free, Eyrac tide gauge data (Fig. 1) was performed135

to reconstruct a tide level time series at 10-min interval. The average phase lag between the Eyrac tide gauge and beaches of

the study area was estimated using tide charts from the Service Hydrographique et Océanographique de la Marine (France),

resulting in a
::
an

::::::::
estimated

:
maximum tide elevation error of 0.3 m at all sites

:
,
:::::
which

::
is

:::::::::::
conservative. A wave model hindcast

was used to provide continuous wave conditions at the coast. The WaveWatch 3 (Tolman, 2014) hindcast was performed on

an unstructured grid with a resolution increasing from 10 km offshore to 200 m near the coast (Boudière et al., 2013). Wave140

conditions were extracted at an in situ directional wave buoy location c. 10 km offshore of Truc Vert at ca. 50-m depth, and have
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been extensively validated with field data (e.g. Castelle et al., 2020). The primary metocean variables used are: tidal elevation

(η), significant wave height (Hs), mean wave period (T02), wave direction (θ), temperature (T ), wind speed (U ), Insolation

(I). From tidal elevation, tidal range (TR) and tidal gradient (dη) where derived. Maximum, minimum, mean and standard

deviation summer statistics are summarized in Table 3.145

Table 3. Statistics of environmental conditions of SZI records during summers between June 15 - September 15

Environmental variable maximum minimum mean standard deviation

Significant wave height Hs (m) 3.13 0.23 1.17 0.38

Mean wave period T02 (s) 11.64 2.66 6.19 1.94

Wave direction θ (◦) 340.10 247.30 291.67 7.82

Tidal elevation η (m) 2.21 -2.26 -0.03 1.09

Tidal range TR (m) 4.52 1.64 3.12 0.69

Tidal gradient dη (m H−1) 0.51 -0.51 0.05 0.26

Temperature T (C◦) 36.23 15.47 25.07 3.36

Insolation I (min H−1) 60 0 48.17 14.77

Wind speed U (m s−1) 12.65 1.2 4.56 1.26

Previous work along this stretch of coast showed, qualitatively, the importance of beach upper beach slope and rip channel

development on shore-break related injuries and drowning incidents, respectively (Castelle et al., 2019). To further quantita-

tively address this link with the longer dataset used herein, we used monthly to bimonthly topographic surveys performed at

Truc Vert beach since 2003 (the reader is referred to Castelle et al., 2020, for a detailed description of this beach monitoring

program). This dataset was used to derive two morphological metrics. First, the inverse foreshore slope (IFS) was calculated150

as:

IFS =
1

tan(β)
(1)

where tan(β) is the beach slope between 1 m and 3 m above mean sea level (amsl) from a linear regression. To filter out extreme

alongshore variations in IFS, the slope was averaged over four cross-shore transects that were systematically surveyed during

the monitoring program (Figure
:
3).155

Sinuosity (S) of the mean sea level iso-contour line was used to provide a measure rip channel development. It was defined

as:

S =
Lt

Ls
(2)

where Lt is the true length and Ls is the shortest Euclidean distance between the first and last point of the contour line (Figure

4). A value larger than 1 indicates a high degree of sinuosity, whereas values close to 1 indicate a low degree of sinuosity.160

Before calculating the sinuosity of the shoreline, a high pass filter was used to remove sinuous signals larger than 400 m. This

was done to filter out larger-scale undulating patterns that are not enforced by the inner-bar rip channels (Castelle et al., 2015).
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Figure 3. (a) Example of a digital elevation model of Truc Vert beach on 29-Apr-2013, with the colorbar showing elevation amsl. The four

cross-shore transects used to compute the inverse beach slope IFS between 1 m and 3 m amsl are indicated by the dashed black lines. (b)

Time series of IFS and (c) summer shore-break related injuries.

The metocean and topographic data collected at Cap Ferret or near Truc Vert are both located approximately in the centre

of the study area. This data was assumed to be representative of wave and weather conditions along the entire study area.

When constructing a BN (see next section), probabilities of a SZI occurrence must be compared to a probability of non-SZI.165
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Figure 4. (a) Example of a digital elevation model of Truc Vert beach on 29-Apr-2013, with the colorbar showing elevation amsl. The red

line indicates the shortest Euclidean distance. Time series of (b) sinuosity S and (c) number of summer rip-current related drownings.

Therefore, a discretization in time is needed. A 1-hour time window was chosen to count the number of SZIs. To avoid a

spurious distribution of non-SZIs, only daily hours between 7h and 21h were used.
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3 Bayesian networks

3.1 Bayes’ Theorem and BN structure

Bayesian networks (BN) are based on Bayes Theorem (Korb and Nicholson, 2010). This theorem states that probabilities of a170

certain event can be updated, given new evidence and can be stated as (Bayes, 1763):

P (h|e) = P (e|h)P (h)
P (e)

(3)

where P (h|e) is the probability for a hypothesis h, given the evidence e. In Eq. (3), P (e|h) resembles the likelihood and

P (h) corresponds to the prior probability of h before any evidence was given. Dividing the numerator by P (e) is a means of

normalizing, so that conditional probabilities sum to 1. For example P (h|e) could be the probability of a rip-current hazard,175

given that the tide was low.

A BN is a graphical representation of the probabilistic relations between a set of variables, using Bayes’ Theorem to describe

the relation between variables (Korb and Nicholson, 2010). The links between nodes represent the direct dependency between

variables (or nodes). A constraint on linking variables is that links cannot return to the beginning node, completing the cycle.

Therefore the graphical representation of a BN is often referred to as a directed acyclic graph. If there is an arc from variable180

A to B, variable A is termed the parent variable and variable B the child variable. The relation between variables is often

assumed to be causal, but is not necessarily the case. Once the structure is established, relations between variables are quantified

according to conditional probability tables (CPTs), in the case of discrete variables. The probability of a value for a child

variable is calculated for each possible value that the parent variable can take. Given that this is done for all variable nodes in

the BN, two types of probabilistic reasoning become possible. Firstly, predictive reasoning, where a value is specified for each185

input variable. This results in a predicted probability for a target variable. Secondly, diagnostic reasoning is the other type for

which, for example, given a SZI the BN can specify the probability that it was low tide.

3.2 Construction of the rip-current and shore-break related BNs

Constructing a BN requires a trade-off between complexity and predictability. This is determined by the amount of variables

chosen, the way variables are discretized and how the variables are linked. In general a simpler model is preferred over a190

complex model with the same performance, according to the principle of Ockham’s razor (Jefferys and Berger, 1992). In this

section we describe the choices that were made related to this trade-off, using the BN software package Netica v. 6.05 (Norsys,

1998).

Based on earlier work on the environmental controls on SZIs in southwest France (Castelle et al., 2019) and some preliminary

BN tests, the rip-current BN is made of: i) a hazard component that depends on hydrodynamic forcing parametersHs, T02, θ, η195

and dη and a morphological component S and ii) an exposure component that depends on the hour of the dayH , temperature T

and
::::::
hourly insolation I

::::::
defined

::
as

::::::::
sunshine

:::::::
duration (see Figure 5). The shore-break BN has a similar set-up, but the shoreline

sinuosity is replaced by the inverse foreshore slope (IFS), and the tidal gradient (TG) is replaced by tidal range (TR). Such

10



structure was motivated by the fact that sometimes a simpler and computationally less expensive network can be obtained by

adding so-called hidden or latent variables that limit the amount of links between variables or the amount of variables to include200

in the network (Russel and Norvig, 2010, p.817). In this case, we used two hidden exposure and hazard variables which are

known to control life risk and the amount of SZIs (Stokes et al., 2017).
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(a) Rip current BN (b) Shore-break BN

Figure 5. Bayesian Networks for (a) Rip current related injuries and (b) Shore-break injuries. Both BN are defined by input variables, hidden

variables, an output variable and their linkages.

In order to compare the probability of an injury with the probability of a non-injury, injuries were counted per hour for

all summers. Consequently, the variable injury count was discretized as a binary variable with two possibilities: no injury or

an injury. Where the amount of injuries per hour exceeded 1, the cases were duplicated proportionally. Often hidden learned205

variables tend to be discretized with a small amount of bins, as they do not have any prior information available. After testing

both BNs, 3 dummy bins were chosen for the exposure variable and 2 dummy bins for the hazard variable. The amount of bins

chosen for the input variables determine the performance of the model to a larger extent. Therefore, different discretization

options were tested, keeping an equal bin width. This is shown in Section 3.4.

3.3 Bayesian network training210

The probability tables of the hidden variables were calculated by using an algorithm that calculates the most likely distribution

of the data, given the probability distributions of the other variables. The expectation maximization (EM) algorithm is widely
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used in BNs to determine the most likely model given the data (Russel and Norvig, 2010). In a similar manner the algorithm

finds the most likely value for occasionally missing data. The algorithm proceeds in the direction of the steepest gradient to

find the minimum negative log likelihood for a model, given the data. The amount of bins used to discretize variables in the215

BN determines how well data is described. The larger the number of bins, the better it describes the data until the point where

there might be a bin for each value. On the other hand, a larger number of bins degrades the prediction skill of the BN, as it

becomes harder to predict the correct bin. A BN might be trained slightly differently from one run to another, because it is

a probabilistic process. Therefore, we used K-fold cross-validation to eliminate any bias that single model runs might hold.

After Fienen and Plant (2015); Gutierrez et al. (2015); Pearson et al. (2017) the cases were separated in k random partitions,220

where n−n/k cases were used for training and calibration, and n/k cases were left out for testing/validation. We used k = 10

so that test cases make up 10 % of the total data set. After 10 folds, mean values of performance metrics were taken to evaluate

the performance of the BN.

3.4 BN performance metrics

Different performance metrics were used to address BN predictive performance. Here we used three relevant metrics: skill sk,225

log likelihood ratio LLR, area under ROC (receiver operating characteristic) AUC.

Skill was adapted from Fienen and Plant (2015) and was computed as:

sk = [1− σ2
e

σ2
o

]× 100% (4)

where σe is the mean squared error between observations and the BN forecast and σo is the variance of observations. The

skill metric in Eq. (4) expresses how close predictions of an injury match with observations of an injury, with sk = 1 meaning230

perfect prediction.

Because skill is not an optimal measure for binary output variables, the AUC (area under ROC curve) was chosen as a

complementary metric (Marcot, 2012). AUC is based on the ratio between the true positive predictions of the BN and the false

positive predictions. Figure 6a shows the sensitivity on the y-axis (true positive rate) and the specificity on the x-axis (false

positive rate) of a typical ROC curve from one of the model runs. If the dashed random classification line is equal to the ROC235

curve, this indicates that the model is not able to distinguish an injury from a non-injury. This corresponds to AUC = 0.5.

Figure 6b shows the confusion matrix on which the sensitivity and specificity is based.

The third metric is the log likelihood ratio (LLR), adapted from Plant and Holland (2011) and Fienen et al. (2013). The

LLR compares the prior probability of an injury with the posterior probability of a prediction, given the evidence (the input

variables), which reads:240

LLR= log10(p(Fi|Oj)Fi=O′
j
)− log10(p(Fi)Fi=O′

j
) (5)

where Fi is a forecast, in this case of a SZI, Oj is an independent observation that was withheld from the forecast (e.g. a

tidal elevation of -2.0 m). The LLR expresses the change in likelihood due to certain evidence in the form of observations. A

LLR that exceeds zero indicates that the BN offers a better forecast than the prior probability. A LLR that is lower than zero,
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Figure 6. (a) Receiver operating characteristic curve (ROC) of the shore-break BN of one of the fold runs; (b) Confusion matrix with false

positives in orange and true positives in green.

indicates that the prior probability is a better forecast than the BN forecast. The LLR can be calculated for each predicted case245

and each variable and can then be summed over the entire BN (
∑
LLR). The LLR penalizes wrong but confident predictions

more than wrong predictions that are uncertain (Plant and Holland, 2011; Pearson et al., 2017). Therefore, it is a suitable metric

to verify whether the BN is over fitting or not.

Finally, in order to address how each input variable influences the target variable (SZI), the percentage of variance reduction

V r that was caused by updating the BN based on the evidence was computed as:250

V r =
V (F )−V (F |O)

V (F )
× 100% (6)

where V (F ) is the variance of a forecast prior to any evidence, and V (F |O) is the variance of the forecast, given the new

evidence. V (F ) and V (F |O) are calculated as:

V (F ) =

N∑
j=1

p(fj)(fj −E(fj))
2 (7)

255

V (F ) =
∑
i=1

NM
:

N∑
j=1

p(fj |oi)(fj −E(fj |oi))2 (8)

where p(fj) is the prior probability of the jth forecast, fj is the current value of the jth forecast, E(fj) is the expected value

predicted by the BN of the jth forecast, p(fj |oi) is the predicted value of the jth forecast given the ith evidence case, E(fj |oi)
is the predicted value of the jth forecast given the ith evidence case, M represents the number of evidence data and N the

number of predictions.260
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4 Results

4.1 BN performance

To find the best BNs, a varying number of bins was tested to evaluate the trade-off between calibration and validation. For

calibration, the BN was used
::::::
trained to make predictions of an injury based on the input variables of

::
90%

::
of the training cases.

For validation, predictions of an injury were made based on the input variables of the 10 % left-out cases. Generally an increase265

in complexity
::::
level

::
of

:::::::::
definition,

:::
i.e.

::::::
number

:::
of

::::
bins,

:
leads to a decrease in predictive capability and vice versa (Fienen and

Plant, 2015; Fienen et al., 2013). Figure 7 and 8 show performance metrics for both the shore-break and rip-current BNs,

respectively, as a function of the number of bins for the input variables.
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Figure 7. Performance metrics of shore-break BN as a function of the number of bins of the input variables and for validation and calibration

: (a) skill sk, (b) area under ROC curve AUC and (c) the summed log likelihood ratio
∑
LLR.

It can be observed that the shore-break BN performs slightly better than the rip-current BN, as all performance metrics

score better. Calibration results of the BNs are fair with sk and AUC ranging 0.15-0.43 and 0.89-0.98, respectively. Validation270

sk is smaller and ranges 0.078-0.12 and 0.035-0.06 for the shore-break and rip-currents BNs, respectively. Validation AUC

are better, ranging 0.71-0.8 and 0.63-0.68 for the shore-break and rip-current BNs, respectively. The sum of the LLR is

systematically smaller than 0 for the validation of both BNs. This is either an indication that the prior estimate is on average

better than the prediction of the model, or that there are anomalous cases where the wrong but confident prediction is heavily

punished by highly negative LLR values that result in a negative or near zero LLR sum.275

Table 4 and 5 show that, depending on the number of bins chosen, model predictions are better than the prior probability

estimate 62.21% - 79.9% of the time. When 5 bins are chosen for the rip current BN, 79% of the time the model prediction

is of added value. When 5 bins are chosen for the shore-break BN, 72% of time the model prediction performs better. This

shows that the negative and near zero sums of the LLR displayed in Figure 7 and 8 must be caused by anomalous events (the

remaining percentages) that are confidently predicted wrong.280
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Figure 8. Performance metrics of rip-current BN as a function of the number of bins of the input variables and for validation and calibration

: (a) skill sk, (b) area under ROC curve AUC and (c) the summed log likelihood ratio
∑
LLR.

Table 4. The percentage of LLR > 0 for rip current SZIs, in-

dicating whether the prediction of the model is better than the

prior probability

Nb bins Prediction rip current SZIs (% LLR>0)

3 bins 73.86%

4 bins 77.30%

5 bins 79.90%

6 bins 61.60%

7 bins 62.21%

Table 5. The percentage of LLR > 0 for shore-break SZIs, in-

dicating whether the prediction of the model is better than the

prior probability

Nb bins Prediction shore-break SZIs (% LLR>0)

3 bins 70.18%

4 bins 70.08%

5 bins 72.56%

6 bins 65.10%

7 bins 69.50%

The amount of bins was varied from 3 to 7 bins to choose the best trade-off between complexity and accuracy. Only the

number of input variable bins were adjusted, keeping the output variables exposure, hazard and injury count the same. In

general, an increase of the number of bins leads to a better descriptive capability and a worse predictive capability (Fienen and

Plant, 2015). When the number of bins is increased from 3 to 4, a small decrease in sk and AUC can be noticed. However, a

further increase in the number of bins does not significantly lead to worse sk, AUC or
∑
LLR. AUC and sk show a small285

increase at 6 bins for the shore-break BN (Figure 7a,b) and at 6 / 7 bins for the rip BN (Figure 7). Contrary to what is generally

observed, validation sk,AUC and
∑
LLR did not drop dramatically when complexity was increased. However, the percentage

LLR > 0 did drop for both BNs, when increasing the number of bins, which is in line with expectations.
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4.1.1 Input variable sensitivity

Figure 9a shows the sensitivity of the shore-break BN to the input variables (6 bins) and to the hidden variables exposure and290

shore-break hazard. For the shore-break BN, the learned variable exposure (V r =23.5%) has the strongest influence followed

by the shore-break hazard variable (V r = 10.9%). This suggests that exposure of water users has a more dominant control

on the injury count than the shore-break hazard forcing variables. This is also reflected in Figure 9b, where the hour of the

day, temperature and insolation have larger values for V r. These variables are followed by tide elevation which is the most

important shore-break hazard control (V r = 0.17%). Consequently, mean wave period (V r = 0.07%), tidal range (V r = 0.06%),295

significant wave height (V r = 0.05%) and wind speed (V r = 0.039%) follow. Even though beach profiles were taken at only

one location along the coast, the
:::
The inverse foreshore slope IFS still

::::::::
averaged

::::
over

:::
four

:::::::
profiles

:::::::::
distributed

:::::
along

:::
the

:::::
coast

has a noticeable impact (V r = 0.065%) on the shore-break hazard. Wave direction is least sensitive to the injury count with V r

= 0.025%.
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Figure 9. Variance reduction V r without hidden learned variables for the shore-break BN (7 bins) (a) with hidden learned variables and

(b) without learned hidden variables and for the rip-current BN (6 bins) (c) with hidden learned variables and (d) without hidden learned

variables

Figure 9c shows the sensitivity of the rip-current BN to the input variable (7 bins) including the hidden variables exposure300

and rip-current hazard. Rip-current hazard
::::::::
exposure (V r = 17.6%) and exposure

:::::
hazard

:
(V r = 15.4%) have similar influence,

even though parents of exposure (insolation, temperature and hour) are more dominant in Figure 9d. It suggests that it is the

combined effects of input variables that cause a rip current (e.g. tide, wave direction and wave height) that have a strong

influence on the occurrence of drowning incidents. This is different from what was observed for the shore-break BN. Most

sensitive input variables
::::::
Within

:::
the

::::::::
exposure

::::::::
variables,

:::
the

::::
most

::::::::
sensitive for the rip-current BN are insolation (V r = 1.67%),305

temperature(V r = 1.7%) and hour of the day (V r = 1.56%). These are followed respectively by the
::::::
Within hazard-related

variables , tidal elevation, wave direction, significant wave height, tidal range, wave period and sinuosity of the shoreline.
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Hs and T02 have the highest V r with 0.36% and 0.26%, suggesting that wave energy is
::::::
closely

::::::::
followed

::
by

:::::
wave

::::::::
direction

::::
with

::::
0.25%

:
,
:::::::::
suggesting

::::
that

:::::::
incident

::::
wave

:::::::::
conditions

:::
are

:
the most important control on rip-current hazard. They are closely

followed by wave direction with 0.25. Shoreline sinuosity S reduces variance by 0.065%.
::::::::::
Interestingly

:::::::
enough,

:::
the

:::::::::
percentage310

::
of

:::::::
variance

::::::::
reduction

::
of

::::::::
exposure

:::::::
variables

:::
are

::
of

::::::
similar

::::::::::
magnitude,

:::::::
although

::::
with

:::::::
different

::::::::
ordering,

::
in

::::
both

:::::::
hazards

:::::::
(Figures

:::::
9b,d).

4.2 Scenario analysis

Apart from the predictive ability of a BN, probabilistic scenario analysis can be a useful tool to understand how multiple

variables interact. Figure 10a shows the prior joint probability distribution of the shore-break BN without updating based on315

any evidence. The two hidden variables, exposure (3 bins) and hazard (2 bins) do not contain any prior information and thus

have equal probabilities for each bin. Figure 10b shows the joint probability distribution for a trained shore-break BN updated

for the evidence that there was a shore-break SZI. In the latter, the distribution of tidal elevation shifts towards high tide.

Additionally, there is a shift towards higher mean wave periods (T02) and a slight increase in probabilities of larger wave

heights (Hs). Furthermore, temperature, hour of the day and insolation show a pronounced shift towards higher temperatures,320

less cloud cover and the afternoon between 14h and 16h30.

Noteworthy, when the BN was updated for larger wave heights, the probability of a shore-break related injury increased.

However, when the BN was updated with the evidence of an injury, intermediate wave height bins 0.75-1.5 m and 1.5-2.25 m

showed increased probability. This supports our hypothesis that large shore-break waves (Hs > 2.5 m) can discourage bathers

from entering the water, which results in less SZIs despite that the shore-break hazard is increased.325

Apart from an injury hindcast scenario, various other scenarios provided insight in variable interaction. For the shore-break

BN an intermediate slope during a shore-break hazard is slightly more likely during low tide (18.9) than during high tide (13)

(see Figure ??a and b). This might be explained by the hypothesis that different parts of the foreshore slope are active during

different tidal elevation levels. (a) Scenario with high tide resulting in a steep slope with a high probability; (b) Scenario with

low tide resulting in a steep slope with a high probability and a intermediate slope with a slightly elevated probability330

A similar scenario analysis was performed for the rip current BN. Figure 11a shows prior probabilities of the rip-current

BN. The rip current BN shows that according to the prior probability a shore-break
::::::
related injury (5.60%) is more likely than

a rip-current related injury
::::
(fatal

::
or

::::::::
non-fatal)

:::::::
droning

:
(3.23%). Figure 11b shows the updated probability distributions for the

rip current BN, given that there is a 100% chance of an injury.
::::::::
Although

:::
the

:::::::::
probability

::::::::::
distribution

::
of

:::
the

::::::
central

::::
bins

::
of

::::
tidal

:::::::
gradients

:::
are

:::::::
similar

::
in

::::::
pattern,

:::::::
extreme

::::
tidal

::::::::
gradients

:::::
(|dη|

::
>

::::
0.43

:::::
m/h)

::::
show

:::
an

:::::::
increase

::
in

:::::::::
probability

:::
by

::
c.

:::
50%

:
. Larger335

tidal gradients (both negative and positive) show a slight increase in probability, supporting the hypothesis that a rapid change

in tidal elevation can surprise water users by driving the rapid onset of rip current activity. Low tides become
:::
Rip

::::::
current

::::::
related

::::::::
drownings

:::
are

:
slightly more likely when there is evidence of a rip-current related drowning incident. Increased probabilities

of
::
to

:::::
occur

:::::
when

::::
tides

:::
are

::::
low,

::::
with

:::::::::
increased

::::::::::
probabilities

:::
for

:
larger Hs and T02suggest such drowning incidents occur for

increased incident wave energy. Wave direction shows small increase in drowning probability for the NW oriented directions.340

More sinuous shorelines (larger S values) show
::::::
slightly

:
increased probability of rip-current related drowning , indicating
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Figure 10. (a) Prior probability distribution of the shore-break BN; (b) Updated probability distribution where the probability of an injury

occurring was set to 100%

:::
(see

:::
for

::
S
::
>
:::::

1.23
::
in

::::::
Figure

:::::
11b),

:::::::::
suggesting that more alongshore-variable surf zone morphology increases the rip-current

hazard. Wind speed has only little influence, although low wind speeds are slightly more likely during a drowning incident.

Furthermore, the hour of the day shows a distribution that corresponds with the expected beach attendance. However, there is

a disproportionate peak in the evening between 19h and 21h. Furthermore, the highest peak is much earlier between 13h-15h345

::::::
(Figure

::::
11b)

:
compared to shore-break injuries. This might be explained by the fact that in summer more high tides with larger

tidal ranges occur during late afternoon (Castelle et al., 2019) ,
::::::::
although

:::
the

::::
bins

::::::
slightly

:::::::
overlap

:::::::::::
(14h-16.33h,

::::::
Figure

::::
10b).

Temperature and insolation show comparable patterns to the shore-break BN with warm sunny days between 20-28 C° having

the highest probability.

Other rip-current BN scenarios were tested, providing insight in
::::
into variable interactions. For instance, an interaction be-350

tween the magnitude of shoreline sinuosity S and wave angle of incidence was explored, given average wave energy conditions

::::::::
conditions

::::::
(wave

:::::
height

::::
and

::::::
period) and a 100% chance that there was a rip hazard (Figure 12a and b). It can be observed that

a low
::
for

::
a
:::
low

::::::
beach sinuosity (1-1.06) is correlated with higher probabilities for the shore-normal angle of wave incidence

::::::::::::
shore-normally

:::::::
incident

::::::
waves

:
(around 279◦)and a high ,

:::::
while

:::::
large

:::::
beach

:
sinuosity is associated with a larger probabil-

ity for more NW angles of incidence (295.43-311.57°).
:
It

::::::::
indicates

::::
that

:::
for

:::::::::
reasonably

:::::::::::::::::
alongshore-uniform

:::::::
beaches

:::::
more355

::::::::::::
shore-normally

:::::::
incident

:::::
wave

:::::::::
conditions

:::
are

:::::::
required

:::
to

::::
have

:
a
:::

rip
:::::::
current

::::::
hazard,

::::::
which

::
is

:::
not

::::::::
necessary

:::
for

::::::::::::
rip-channeled

:::::::
beaches.
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(a) Prior probability rip current BN (b) Updated probability rip current BN

Figure 11. (a) Prior probability distribution of the rip-current BN; (b) updated probability distribution of the rip current BN when the

probability of an injury occurring was set to 100%
:
.

5 Discussion

5.1 BNs as a predictive tool for SZIs

Contrary to previous works, a same BN approach was used to address shore-break and rip-current related SZIs co-existing at360

a given site. Two separate BNs were created for shore-break SZIs and rip current SZIs. This allowed to
::
of use different beach

morphology metrics based on prior understanding of the physics of shore-break waves and rip current dynamics. In addition, in

line with Stokes et al. (2017) two hidden variables (exposure and hazard) were introduced for both BNs to decrease the amount

of connections and increase BN efficiency. Importantly, Doelp et al. (2019) used population data to test a SZI ratio, normalized

by the population, in addition to the binary injury likelihood. Although results were not dramatically improved in Doelp et al.365

(2019), including accurate water user data should improve BN model predictions along the Gironde Coast. However, such data

does not exist and will require future research effort.

Performance metrics indicate that the BNs improve prior estimates, but that BNs still have a significant percentage of wrong

but confident predictions. This is due to over fitting, which is a common issue with training a BN on rare events (unbal-
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(a) Scenario low sinuosity rip current BN (b) Scenario high sinuosity rip current BN

Figure 12. (a) Scenario with low sinuosity and
::::::
resulting

::
in

::::
more

:
shore-normal

::::
wave

:::::::
direction (around 279°) wave direction

:::
with

:::
the

:::
rip

:::::
current

:::
BN; (b) Scenario with medium sinuosity and

::::::
resulting

::
in
::::
more

::::::::
obliquely

::::::
incident

:
(NW

:
) wave angle

:::::::
conditions

::::
with

:::
the

::
rip

::::::
current

:::
BN.

anced dataset) (Cheon et al., 2009). When the primary objective of a BN is prediction rather than description, a synthetic370

data set can be created with an even distribution of events although it degrades the BN descriptive ability. A similar sug-

gestion to cope with this problem, is to remove anomalous confident but wrong predictions (Doelp et al., 2019). Another

issue limiting the BN predictive ability is that simple beach morphology parameters S and IFS were derived from a single

site (Truc Vert). Summer beach profiles acquired along the different beaches
:::::::::::
morphologies

:::::::
surveyed

:::::
along

::::::::
different

:::::::
beaches

:::::::::
distributed

:::::
along

:::
the

::::
coast

:
should help improving IFS

:::
and

::
S
:
estimation and, in turn, prediction of rip-current drowning in-375

cidents
:::
and

::::::::::
shore-break

::::::
related

:::::::
injuries. Similarly, optical satellite images should be explored to derive beach sinuosity S at

the different beaches along the coast
::::::::::::::::::
(Castelle et al., 2021) . As indicated earlier, an estimation of beach attendance or water

users should also improve BN predictive ability. Therefore, at this stage other tools should be used for life-risk prediction,

like for instance models based on simple correlations between meteorological, oceanographic conditions and the incidence

(Lushine, 1991; Lascody, 1998; Dusek and Seim, 2013) or
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lushine, 1991; Lascody, 1998; Dusek and Seim, 2013; Scott et al., 2014) ,380

on the numerical modelling of rip flow speed (Austin et al., 2013)
::
or

::
on

::::
the

::::::::::
combination

:::
of

:::::
video

::::::
images

::::
and

:::::::::
numerical
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::::::::
modelling

:::::::::::::::::::
(Jiménez et al., 2007) . Recently, using the same SZI dataset a logistic regression model was found to predict the

risk of drowning the Gironde
::::
along

:::
the

:::::::
Gironde

:::::
coast up to three days in advance with good skill (Tellier et al., 2021).

Lastly, there were 1565 unknown injuries that could not be retrieved
:::::::
attributed

:
to either a shore-break or a rip-current related

injury. Theoretically, a well trained BN could estimate which of the SZI is more likely based on the environmental conditions.385

However, since the BNs are still limited in prediction this should be explored in the future using improved BNs. Such BN could

help to retrospectively improve SZI statistics along surf coasts.

5.2 Environmental controls on SZIs and implications for beach safety management

In other studies frequency analysis was used to identify disproportionate environmental conditions during SZIs (Scott et al.,

2014; Castelle et al., 2019). Some of the BN results are essentially in line with previous work. In short, more SZIs are observed390

for warm sunny days with light winds. Rip-current related drowning incidents increase with increasing incident wave energy

(height and period), more shore-normal incidence, and lower tide level. In contrast, shore-break related injuries are sustained

at high tide levels and moderate wave height. In addition to previous work, here we proposed a method to quantify the role

of beach morphology on SZIs. Beach sinuosity S, which is a measure of the alongshore variability of surf zone morphology,

and inverse beach slope IFS were found to influence the occurrence of rip-current related drowning incidents and shore-395

break-related injuries, respectively. These results are in agreement with current knowledge of rip flow intensity increasing with

increasingly alongshore-variable surf zone morphology (Moulton et al., 2017), and shore-break waves occurring for steeper

beach face (Battjes, 1974; Balsillie, 1985). We also found that rapid, positive or negative, change in tide level elevation (large

dη) increase the probability of rip current related drownings. This can explain why in previous work large tidal ranges were

found to result in more rip current drownings (Scott et al., 2014; Castelle et al., 2019) . Although this essentially applies to400

meso- to macro-tidal beaches and given that dη does not affect the hazard posed, this demonstrates
:::::::
drowning

:::::::::
incidents,

::::
with

::
no

:::::::::
difference

:::::::
between

:::
ebb

:::
and

:::::
flood.

::::::
Given

:::
that

:::::::::
tide-driven

::::::
current

:::
are

:::::::::
negligible

::::::::
compared

::::
with

:::
rip

::::::
currents

:::::
along

:::::
most

::
of

:::
the

::::::
beaches

::
in
:::::::::

southwest
:::::::
France,

:::
this

:::::::
suggests

:
that rapid changes in tidal elevation driving the rapid onset of rip current activity

can surprise unsuspecting bathers and carry them offshore. To our knowledge, the rapid onset of hazardous surf zone currents

for days with large tidal range is not emphasized in current public safety awareness campaigns on rip currents
:::::::
However,

:::::::
another405

:::::::::
explanation

::
is
::::
that

:::::
some

::
of

:::
the

::::::::
drowning

::::::::
incidents

::::::::
occurred

::
in

::::::
sectors

:::::::
adjacent

::
to

:::
the

:::::::::
Arcachon

::::::
lagoon

:::
and

:::::::
Gironde

:::::::
estuary

:::::
where

:::::::::
tide-driven

::::::::
currents,

:::::
which

:::
are

:::::::::
maximized

::::::
during

:::
ebb

::::
and

::::
flood

:::::
(large

:::::
|dη|),

::::
can

::
be

::::::
intense.

In addition to the primary environmental controls on SZIs, in this study it was for the first time possible to identify the

interaction between multiple input variables. For instance, it was found that it is the combined effects of tide elevation, wave

direction and wave height that control rip-current hazard. In other words, even if you have shore-normally incident waves near410

low tide, if wave height is very small, there is no hazard and consequently a low probability of rip-current related drownings.

Such interactions, which were not possible to address in previous work (Scott et al., 2014; Castelle et al., 2019), are in line

with the understanding of rip flow response to wave and tide conditions (Castelle et al., 2016). Similarly, evidence was found

thatrips can be activated during various angles of wave incidence, depending on the degree of shoreline sinuosity S
:::
Our

:::::::
scenario

::::::
analysis

::::
also

::::::::
indicates

::::
that,

:::
for

::::::::::
reasonably

::::::::::::::::
alongshore-uniform

::::::::
beaches,

:::::
more

:::::::::::::
shore-normally

:::::::
incident

:::::
wave

:::::::::
conditions

:::
are415
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:::::::
required

::
to

::::
have

::
a

::
rip

:::::::
current

::::::
hazard

::::::::
compared

::::
with

::::::::::::
rip-channeled

:::::::
beaches. This is also in line with observations and model

outputs showing that, for the same obliquely incident wave conditions, rip cell circulation are transformed into an undulating,

less hazardous, longshore current for weakly (small S) alongshore variable surf zone morphology, while rip cell circulation can

be sustained for deep rip channels (MacMahan et al., 2008; Dalrymple et al., 2011). This shows that BNs including a wisely

pre-defined hidden hazard variable can provide insight into the influence of the primary input variables and their interactions420

on the hazard posed. Therefore, it could also be applied to other injuries, e.g. related to surfing activity, for which the causes

(e.g. environmental, behavioural) and their interplay are poorly understood.

Studies addressing the environmental controls on shore-break related SZIs are scarce (Puleo et al., 2016; Doelp et al., 2019)

compared to drowning studies. The shore-break BN developed herein for the Gironde coast suggests that , with decreased
:::
the

:::::::
predicted

::::::::
decrease

::
in

:
exposure for Hs >

:
>
:

2.5 m, large surf, and thus
::::::::::
representing heavy shore-break waves at the shoreline,425

discourage the beachgoers to enter
:
is
:::::::
thought

::
to

:::::::::
discourage

:::::::::
beachgoers

:::::
from

:::::::
entering the water near high tide. Importantly, this

was not observed for rip-current related drownings, which have a tendency to occur at low tide with the inner surf zone located

on a much more gently sloping part of the beach profile. We hypothesize that in such less adverse conditions, beachgoers are

less discouraged to enter the water, as opposed to facing large shore-break waves. However, further investigation on beachgoer

behaviour in the presence of shore-break waves is required to test this hypothesis.
::::
This

:::
will

::::
also

::::::
involve

:::::::::
estimation

::
of

:::::::::
beachgoer430

::::::::
affluence,

:::
and

:::::::::
estimation

::
of

:::
the

:::::::
number

::
of

::::::
people

::
in

:::
the

:::
surf

::::::::
exposing

:::::::::
themselves

::
to
:::
the

::::::::
physical

:::::::
hazards.

In addition, our variable sensitivity analysis indicates the shore-break related injuries are more controlled by the exposure

:::::::
exposure

::::::
related

::::::::
variables

:
than by hazard

::::::
related

::::::::
variables, contrary to rip-current related drowning for which life risk is

approximately equally distributed between hazard and exposure. This indicates that shore-break injuries are more likely to

occur during busy days, whether moderate or heavy shore-break conditions are present. In contrast, the presence of intense rip435

currents is critical to drowning incidents.

6 Conclusions

A Bayesian network (BN) approach was used to model life risk and the controls and interactions of environmental (metocean

and morphological) data on SZIs along a high-energy meso-macrotidal coast where shore-break and rip-current hazards co-

exist. In line with previous work, the BNs show limited predictive skill. Although the shore-break and rip-current BNs improves440

:::::::
improve prior estimates, they still have a large percentage of wrong but confident predictions, which is not tenable for life-risk

prediction on beaches. However, the BNs provide fresh insight into the different environmental controls, their interactions, and

their respective contribution to hazard and exposure. For the first time, the respective contributions of exposure and hazards

to the overall life risk were quantified, showing the shore-break related injuries are more controlled by the exposure than by

hazard, contrary to rip-current related drowning for which contributions are approximately equal. These results can guide the445

future development, or modification, of public education messaging, particularly on the shore-break hazard that received little

attention so far compared to rip currents, despite the large number of severe injuries sustained in shore-break waves along the
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Gironde Coast. We advocate that such BNs should be developed in parallel with other risk predictors showing high predictive

skill but providing much less diagnostic
::::::::
capability

:
Tellier et al. (2021).
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