
Reviewer 1 

The paper is interesting and presents a useful methodology for coastal flood modeling. The 

validation against a hydrodynamic model is OK but a bit questionable; this should be done 

against historical flood maps. A few assumptions should be also clarified. Limitations, 

uncertainties and implications need to be further discussed. I have recommended several 

edits and some comments in the PDF. Here are some additional comments: 

Response: Thank you for the detailed review and the constructive comments.  

Please provide more information on the study catchment, particularly those that affect your 
model results. This includes computational area, soil type, channels’ size, ground slope, 
land use etc. 

Response: We have included additional information in the revised manuscript regarding the 

study catchment (Section 2; Lines 148-159) and model domain (Section 3.1.1; Line 237). In 

short,  the average slope, length, and annual discharge of the Savannah River are 0.00011 

m/m, 505 km, and 320 m3/s, respectively. Also, the river bathymetry was deepened up to 12 

m for increasing the capacity of cargo transportation according to the U.S. Army Corps of 

Engineers. The model domain comprises an area of 1178 km2 approximately. 

Section 2: Present the source of drainage network data. Also, how detailed does that 
represent the drainage network? 

Response: Drainage network data including river streams, tidal channels, and creeks within 

wetland areas can be obtained from the U.S. National Wetlands Inventory 

(https://www.fws.gov/wetlands/data/Mapper.html). These publicly available data are 

continoulsy updated by the U.S. Fish and Wildlife Service (FWS) and are derived from 

multiple data sources including satellite imagery and aerial photos of 1 m (or less) digital color 

infrared imagery. We included this information in Section 2 (Lines 157-159). 

The verification of the approach against flood maps generated by a hydrodynamic model is 

questionable. How well is the model calibrated? For what historical events (how 

large/intense), it has been calibrated? Also, why not using satellite imagery like Dartmouth 

Flood Observatory? 

Response: The primary goal of this manuscript is to propose a low complexity flood mapping 

(LCFM) method whose accuracy is comparable with a computationally expensive 

hydrodynamic model. Therefore, we compare our results with a hydrodynamic model to 

assess if our method can be a proper replacement of these models. This is the idea of 

proposing surrogate models that mimic the performance of complex physically-based models. 

A similar approach has been presented recently where surrogate machine learning methods 

are trained and validated against a well-calibrated hydrodynamic model. The hydrodynamic 

model has been calibrated for both non-extreme events and two major Hurricanes in the 

region, namely Hurricanes Matthew and Irma. Please see details of the calibration in Figure 

4 and lines 382-398 in the revised manuscript.  

Using satellite imagery has major limitations. 1) These maps are rarely available for the peak 

date of a flood event while we are looking for the maximum flood hazard maps. 2) These 

https://www.fws.gov/wetlands/data/Mapper.html


maps only provide the extent of flooding (HDC=0) while we need floodwater depths to 

generate flood hazard maps for different levels of HDCs. For example, here we validate for 

both HDC=0 and HDC=0.6 m. 3. Daily satellite data, such as Dartmouth Flood Observatory 

uses coarse-scale satellite imagery, such as MODIS with 250-500 m spatial resolution that is 

not appropriate for validation. We need a much finer scale (<30 m) for validating our maps. 

Please discuss the properties of the high-performance computing system that was used for 
simulations (Section 3.1.2). 

Response: We used available computational resources of the University of Alabama (UA) 

for running model simulations in parallel. The UAHPC is a 87 node (1660 core) cluster 

featuring Dell PowerEdge M610s, M620s, and M630s. The nodes contain two Intel 8-Core 

E5-2650, E5-2640v2, or 10-core E5-2640v3 processors and at least 64GB of RAM per node. 

More information of UAHPC can be accessed in the following link: 

https://oit.ua.edu/services/research/. Nevertheles, we consider this information only relevant 

for the reviewer.     

More details on the LHS application are needed. How was it informed by Hurricane Matthew 
peak WLs? What parameters were considered as uncertain? What probability distributions 
were used and how were they characterized?  

Response: The Latin Hypercube Sampling (LHS) technique was used to sample 200 sets of 

roughness (n) values for model calibration. We considered a 7-day window around peak 

water levels (e.g., peak surge of Hurricane Matthew) to evaluate the model’s performance. In 

that way, we identify the optimal combination of n-values (among the 200 model simulations) 

that accurately represent both non-extreme (low water) and extreme WLs. For simplicity, we 

only considered n-values as uncertain parameters and assumed that any errors follow a 

Gaussian distribution as discussed in Helton and Davis (2003). The advantage of LHS over 

traditional Monte Carlo approaches is that the former results in a denser stratification over 

the range of each sampled parameter as compared to random sampling. Hence, LHS leads 

to more stable results that are closer to the true probability density function (PDF) of the 

parameter. We included this information in Section 3.1.2 (Lines 251-254). 

Please discuss how the performance of model was graded based on the fit metrics (RMSE, 
AUC and R2). You may refer to Moriasi et al. (2015) and Ahmadisharaf et al. (2019) for 
streamflow predictions via R2 or others for flood simulations. Neither RMSE nor R2 measure 
bias. Metrics like PBIAS need to be used along to measure the model performance.  

Response:  We have included additional metrics to evaluate model’s performance more 

rigorously: Kling-Gupta Efficiency (KGE), and Nash-Sutcliffe Efficiency (NSE). In addition, we 

have replaced R2 by mean absolute bias (MAB). NSE measures the relative magnitude of the 

error variance of model simulations compared to the variance of observational data (Nash 

and Sutcliffe, 1970). NSE ranges between -∞ to 1, where an efficiency of 1 indicates a perfect 

match between simulated and observed WLs. Kling-Gupta efficiency (KGE) is a robust 

evaluation metric that accounts for correlation, bias, and ratio of variances (Gupta et al., 

2009). KGE can take values between -∞ and 1, where an efficiency of 1 indicates a perfect 

match. Mean absolute bias (MAB) quantifies the bias of model simulations with respect to 

https://oit.ua.edu/services/research/


observational data. MAB of 0 suggests an absence of bias in the simulations. This information 

and further discussion of model results are included in Section 3.1.2 (Lines 260-268) and 

Section 4 (Lines 358-360), respectively. 

Please define what ‘error’ exactly is in the model evaluations under the Results section. 

Response: Error is the summation of rate of false positives and rate of false negatives in 

binary classification problems. We have defined this metric in Equation 5 and lines 349-353 

in the revised manuscript as follows: 

“In binary classification, positive and negative refer to a value of one and zero, respectively. 

True positive instances are those positive cells that are correctly predicted by the classifier 

and false positive instances represent those negative cells that are wrongly classified as 

positive. The error, reflecting all cells that are wrongly predicted by the classifier, is a 

commonly-used measure for validating the performance of binary classifiers for flood hazard 

mapping. “  

Please discuss what probability distributions exist in the MATLAB allfitdist tool. 

Response: ‘allfitdist’ tool includes the following parametric probability distributions: 

Continuous: Beta, Birnbaum-Saunders, Exponential, Extreme value, Gamma, Generalized 

extreme value, Generalized Pareto, Inverse Gaussian, Logistic, Log-logistic, Lognormal, 

Nakagami, Normal, Rayleigh, Rician, t location-scale, and Weibull. 

Discrete: Binomial, Negative binomial, and Poisson. We believe this information is not 

relevant for the main goal of this study. 

The underlying assumption of a univariate flood frequency analysis is that a peak WL with a 
given return period leads to a flood event with the same return period. However, studies 
(e.g., Brunner et al. 2016) have shown that a combination of peak flow and other attributes 
like volume may lead to a different return period. This limitation should be at least 
acknowledged in the paper. 

Response: Thank you for the great suggestion. We discussed this limitation and added an 

appropriate reference. Please refer to lines 560-564 in the revised manuscript.  

Further details are needed on how TH and HDC are derived. As of now, it appears that they 
are subjectively derived. 

Response: TH is the threshold of the hydrogeomorphic classifier that should be calibrated 
by optimizing the error measure calculated from the comparison of reference and simulated 
maps. Therefore, this variable is derived from optimization results and is not derived from 
subjective decisions. HDC, however, is the hazard depth cutoff that converts the continuous 
flood depth map to a binary flood hazard map. This is a control variable that the decision 
maker (emergency responder) should pick from. We use 21 HDC resulting from 0.1 
increments in the range of 0-2 m and show the results (TH) for all these HDCs. This 
provides 21 points for generating a smooth curve (Figure 7) so that the decision-maker can 



simply use this curve and pick the required TH according to different values of HDCs. 
Please refer to lines 356-378 in the revised manuscript.  

MAB has been reported in the Results section but not in the Methods section. Please either 
remove it from the Results section or discuss it in the Methods section. 

Response: We have included a description of MAB in the revised manuscript (Section 3.1.2, 

Lines 260-268). 

There should be a plot on calibrating w1 and w2 coefficients (for the H and D variables). 

Response: Yes, we already included this plot in the manuscript. Please see Figure 6b 
where we show how calibrated w1 and w2 values change for different HDCs. The higher 
weight of w1 compared to w2 shows that feature H is more important than feature D.  

L429-432: Reasons for this poor performance need to be discussed in the Discussion 
Section. 

Response: We added more text that explains the potential reasons for the discrepancies 

between the hydrogeomorphic method and hydrodynamic model results. Please refer to lines 

481-488 in the revised manuscript as follows: 

“The main discrepancies are some noisy scattered low-hazard areas located in the east and 

southeast of the study area. These areas can reflect the flooded surface depressions (sinks) resulting 

from the pluvial impacts of extreme precipitation. Hydrodynamic models simulate the fluvial and 

coastal processes that occur adjacent to rivers and oceans while disregarding the pluvial impacts.   

The red circle in the left part of the figures shows a region that the hydrogeomorphic method 

cannot properly simulate, especially for higher HDCs. This can be due to the inability of the 

hydrogeomorphic method to properly simulate physical processes.” 

The comparison of computational time against the hydrodynamic model is unclear to me. 
Did you compare your static model against an unsteady Delft3D-FM or the steady-state? 
The runtime of an unsteady hydrodynamic model should not be very long; therefore, this 
advantage of your presented model is not as strong as it is presented. 

Response: The Delft3d-FM simulates the flood in an unsteady condition. Due to the high 

nonlinearity and complexity of extreme floods, flood modeling in a steady state is highly 

erroneous. The runtime of a hydrodynamic model depends on the scale of the study area, 

and the number of grid cells. For a fine scale simulation (<10 m) performed for medium-large 

scale problems (> 1000 km2), the computational time of hydrodynamic models can take a few 

days. The main goal of using LCFM methods is to reduce the computational time while 

providing acceptable accuracy (improve the efficiency of modeling). For emergency 

responders, timing is the most important factor, thus having access to more efficient models 

that estimate the hazardous areas in order of minutes is significantly beneficial. 

Broader impacts need to be discussed. The authors should discuss what implications these 
results have for coastal planners and floodplain managers etc. and what existing programs 
in the US (e.g., FEMA FIRMs) may benefit from this research.  



Response: The Discussion section already touches on this topic a bit. We have 
expanded this discussion on the implications for coastal planners, floodplain managers, 
and existing U.S. programs (e.g., the NWS) in the Discussion section. (Lines 580-609) 

“Operationally, the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model 

(Jelesnianski et al., 1984) is the storm surge model currently used by NWS to perform 

storm surge forecasting and create probabilistic flood inundation maps for real-time 

tropical storms (Sea, Lake, and Overland Surges from Hurricanes (SLOSH), 2022). The 

feature of SLOSH that makes it the preferred model of the NWS for storm surge 

forecasting and mapping is the model’s computational efficiency that allows the model to 

be run as an ensemble (Forbes et al., 2014). However, SLOSH is just one of several 

modeling options for storm surge modeling and mapping, each possessing strengths and 

weaknesses associated with their simulations. The inclusion of additional models that can 

create flood maps of storm surge for a given event should provide an enhanced 

understanding of the uncertainty of inundation at a given location (Teng et al., 2015). 

However, the higher computational burden of alternative models, such as Delft3D-FM, 

tend to preclude their use in real-time operations and certainly, their use in generating an 

ensemble necessary for probabilistic flood maps. The methodology we propose in this 

manuscript may offer the NWS and other agencies a means to utilize alternatives to 

SLOSH for flood inundation mapping and probabilistic flood inundation mapping on U.S. 

coastlines.  Models such as Delft3D-FM can generate reference maps to train the binary 

classifer and build the probabilistic operating curves.  The probabilistic operative curves 

would account for the major source of uncertainties and provide a computationally 

efficient and reliable decision-making tool for coastal planners and floodplain managers. 

The operative hydrogeomorphic threshold classifiers proposed for real-time coastal flood 

hazard mapping can be used as an alternative tool for the rapid estimation of hazardous 

areas during real-time flood events. In an operational mode, water level or meteorological 

forecasts can be used to estimate the return period of an upcoming coastal flood event 

and the methodology here can utilize this as an input to perform LCFM flood inundation 

mapping both deterministically and probabilistically.” 

Study limitations and potential areas for future research need to be expanded. 

Response: We have already included three areas of research for future studies. To expand 
this, we added more text explaining the study limitations and potential areas for future 
research. Please refer to lines 520-528 in the revised manuscript.  

“The proposed hydrogeomorphic index (𝐼𝐻𝐷) is the primary data for flood hazard mapping in 
this study. Thus, the quality of two main inputs of this index, namely the DEM and stream 
network used to calculate features H and D play a vital role in the overall accuracy of the 
proposed approach. To obtain maximum accuracy, here we used the best available DEM with 
the finest spatial resolution of 3 m that includes the bathymetry data. However, considering 
the limited access to such high-quality DEMs in many areas of the world, it is recommended 
to evaluate the sensitivity of the proposed approach to lower quality DEMs (e.g. 30 m and 90 



m DEMs without bathymetry information) in future studies. Another piece of research can 
investigate the sensitivity of the proposed approach to the density of the drainage network 
used for calculating the 𝐼𝐻𝐷 index.” 

In general here are the areas of research we recommended for future studies: 

1. Sensitivity of the hydrogeomorphic index to DEM quality and stream network density 
(Lines 520-528) 

2. Applying the proposed hydrogeomorphic operative curves to inland floods and to 
other deltas across the US.  (Lines 544-550) 

3. Improve the flood frequency analysis, considering its uncertainties, incorporating 
other sources of uncertainties in the modeling to generate probabilistic operative 
curves (Lines 556-577) 

4. A benchmark study that compares the performance of three LCFM methods (Lines 
617-620) 

Sources of uncertainty and how they may affect your findings need to be discussed. 

Response: This has been thoroughly addressed in the discussion section. Please refer to 
lines 556-579 in the revised manuscript.  

“The reference maps used for training the binary classifier are key components for generating 
reliable results. Since these reference maps are the outcomes of hydrodynamic modeling, 
they are prone to uncertainties stemming from unrealistic parametrization, imperfect model 
structure, and erroneous forcing. The design floods used as boundary conditions of the 
hydrodynamic model are estimated from flood frequency analysis that is prone to uncertainty 
as well. Here we used a bivariate approach that estimates the design flood based on the 
water level data. A more comprehensive flood frequency analysis that accounts for other flood 
attributes, such as volume can improve the reliability of flood frequency analysis in future 
studies (Brunner et al., 2016).  With access to less than 100 years of data for flood frequency 
analysis, the extreme return levels (i.e. 500- and 1000-year floods) pose high uncertainties 
due to the extrapolation of annual maxima data. This should warn decision-makers to be more 
cautious about using operative curves for extreme flood events. For future studies, the 
uncertainty bounds of flood frequency analysis (especially extrapolations for extreme cases) 
can be considered in the modeling. In a real-time scenario, the forecasted WL used for flood 
frequency analysis is also prone to uncertainties originating from imperfect forecasting 
methods and nonstationary climate data. In addition, the uncertainty of model parametrization 
can be accounted for by running the hydrodynamic model for different combinations of 
optimum parameters. Model structure uncertainty can be also considered by using different 
hydrodynamic models and combining the results. Finally, probabilistic reference maps 
together with uncertainties involved in WL forecasting and flood frequency analysis can be 
integrated to develop probabilistic hydrogeomorphic threshold operative curves in future 
studies.  This is in line with the report provided for the NOAA National Weather Service 
(NWS), showing the NWS stakeholder's preference for utilizing probabilistic storm surge 
inundation maps (Eastern Research Group, Inc, 2013).” 



Please discuss how your presented modeling framework can be used in other study areas. 
What considerations should be taken to do so? Guidelines should be provided in the 
Discussion section. 

Response: We added the following texts to address this concern of the reviewer. Please 
refer to lines 550-555 in the revised manuscript.  

“To implement this approach, first, a hydrodynamic model should be set up for the new 
study area and generate reference inundation maps for different return periods. Access to 
observed water level data (gauges or HWMs) and flood extent maps from past floods is 
required to properly calibrate the hydrodynamic model. Then the 𝐼𝐻𝐷 index calculated from a 
DEM is utilized together with the reference maps to provide the hydrogeomorphic threshold 
operative curves for future floods.” 

Please spell out all the abbreviations in the headings, figures and tables. These need to 
stand alone. 

Response: Done. 

Please italicize all variables/parameters in the text. 

Response: Done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer 2 

The authors present an interesting work on flood hazard assessment and mapping. The 

paper is well-written and easy to follow.  However, some issues need to be addressed 

before the paper can be accepted for publication as follows: 

Response: Thank you for your positive feedback and the constructive comments on our 

manuscript. Please see our detailed response to the comments below: 

The abstract should briefly state the purpose of the research, the principal results, and 

major conclusions. The abstract should be more descriptive rather than informative. More 

than half of this abstract is allocated to the research gaps which in my opinion is not 

appropriate (L24-36).  Please revise the abstract section with more focus on your methods, 

and significant results/conclusions. 

Response: Thanks for the suggestion on editing the abstract. We removed several lines 

from the first part of the abstract and added more texts to better describe the method and 

results of the proposed approach. Please see the revised abstract below: 

“In the last decade, DEM-based classifiers based on Height Above Nearest Drainage (HAND) 
have been widely used for rapid flood hazard assessment demonstrating satisfactory 
performance for inland floods. The main limitation is the high sensitivity of HAND to the 
topography which degrades the accuracy of these methods in flat coastal regions. In addition, 
these methods are mostly used for a given return period and generate static hazard maps for 
past flood events. To cope with these two limitations, here we modify HAND, propose a 
composite hydrogeomorphic index and develop hydrogeomorphic threshold operative curves 
for rapid real-time flood hazard assessment in coastal areas. We select the Savannah river 
delta as a testbed, calibrate the proposed hydrogeomorphic index on Hurricane Matthew and 
validate the performance of the developed operative curves for Hurricane Irma. The 
hydrogeomorphic index is proposed as the multiplication of two normalized geomorphic 
features, HAND and distance to the nearest drainage. The calibration procedure test different 
combinations of the weights of these two features and determine the most appropriate index 
for flood hazard mapping. Reference maps generated by a well-calibrated hydrodynamic 
model, Delft3D-FM model, are developed for different water level return periods. For each 
specific return period, a threshold of the proposed hydrogeomoprhic index that provide the 
maximum fit with the relevant reference map is determined. The collection of hydrogemorphic 
thresholds developed for different return periods are used to generate the operative curves. 
Validation results demonstrate that the total cells misclassified by the proposed 
hydrogeomophic threshold operative curves (summation of overprediction and 
underprediction) are less than 20% of the total area. The satisfactory accuracy of the 
validation results  indicates the high efficiency of our proposed methodology for fast and 
reliable estimation of hazard areas for an upcoming coastal flood event which can be 
beneficial for emergency responders and flood risk managers.” 

L167. Add one or two sentences to explain about Savanah model in Delft3D-FM. 

Response: We have included more details of the Delft3D-FM suite package (Line 186-189). 

For additional details of the Savannah model, the reviewer is referred to section 3.1. 



“Specifically, we used the 2021 Delft3D-FM suite package to model the complex 

interactions between riverine, estuarine, and intertidal flat hydrodynamics. The suite 

package can provide detailed information of water level, flow rates, and velocity (Delft3D 

Flexible Mesh Suite - Deltares, 2021)” 

Using a univariate flood frequency analysis in an estuary region should be justified with a 

detailed analysis that shows there is no correlation between high river flow and sea water 

level. Otherwise, a bivariate flood frequency analysis should be considered.  

Response: In the first steps of this study, we had set up the calibrated Delt3D-FM model for 

different combinations of upstream flow and downstream water levels. However, we did not 

find a significant correlation (p-value < 0.05) between river discharge at Clyo station (USGS 

- 02198500) and coastal water levels at Fort Pulaski station (NOAA - 8670870). The latter 

was also reported in Ghanbari et al., 2021 and Muñoz et al., 2020. Furthermore, our results 

demonstrated that high river flow does not affect the inundation area in wetland areas. This 

indicates that flood inundation is highly dominated by coastal forcing as tides propagate into 

the Savannah river and lead to flow reversal at upstream gauge stations (see Figure 1 

below). The high proximity of wetlands to the Atlantic Ocean shows that the transitional 

zone, i.e., the area affected by both coastal and inland drivers, is located upstream Port 

Wentworth station (USGS - 02198920) where the Savannah river trifurcates into the Back 

River, Middle River, and Front River. Considering the dominant role of sea water level in 

coastal flooding as well as the negligible effect of river discharge on wetland inundation 

from the previous analyses, we can justify the proposed univariate flood frequency analysis. 

For the reviewer’s convenience we also generate a figure of maximum floodwater depth in 

Savannah under high river flow regimes (10 and 1000-year return period) and mean sea 

level (Figure 2). The flood maps indicate similar inundation patterns over coastal wetlands 

and clear differences in upstream zones. . Please refer to Section 3.2 (Lines 277-288) in the 

revised manuscript for additional justification of the univariate approach. 



Figure 1. Flow reversal (negative river flow) due to tidal propagation at Port Wentworth 

station (USGS – 02198920). Simulations of averaged cross section discharge correspond to 

(a) Hurricane Matthew (Oct/2016) and (b) Hurricane Irma (Sep/2017). 

 

Figure 2. Maximum floodwater depth in Savannah River delta. Simulations of mean sea 

level and river flow for a return period of (a) 10-year (1413 m3/s) and (b) 1000-year (2273 

m3/s). Black boxes outline differences of floodwater depth in the transitional zone. The 



water depth maps created for the lower parts of the transitional zone (wetland) suggest the 

negligible effect of river discharge on coastal wetland inundation.  

How did you test different combinations of W1 and W2 (Weight parameters)? Please 

clarify.  

Response: Knowing the condition of W1+W2=1, we uniformly pick 100 random w1 from the 

range of 0-1 which results in 100 set of w1 and w2 (1-w2) for our calibration. Please refer to 

lines 321-322 in the revised manuscript.  

It is not clear how the parameter of TH is derived. Please clarify.  

Response: The TH parameter is the result of solving a simple optimization problem by 

minimizing the total error. We added more information to better explain how to optimize the 

parameter TH in the revised manuscript. Please refer to lines 357-359. 

“To calibrate the binary classifier we minimize the error while searching for the optimum TH 

value. This means, we use a hundred TH values uniformly picked from the range of 𝐼𝐻𝐷
𝑚𝑖𝑛and 

𝐼𝐻𝐷
𝑚𝑎𝑥. For each TH, we use Eq. 2 to generate a binary hazard map and then compare this 

map with the reference map by calculating the error from Eqs. 3-5.” 

The manuscript would be significantly improved by providing more discussion about the 

broader contribution of the study. (e.g., How coastal planners and managers could benefit 

from the proposed methodology? How the proposed methodology can be utilized in other 

coastal regions?)  

Response: We provided more discussion on the broader impacts of this study and 

implementation of if in other coastal regions. Please refer to lines 550-555 and 580-609 in 

the revised manuscript.  

“To implement this approach, first, a hydrodynamic model should be set up for the new study area 

and generate reference inundation maps for different return periods. Access to observed water level 

data (gauges or HWMs) and flood extent maps from past floods is required to properly calibrate 

the hydrodynamic model. Then the 𝐼𝐻𝐷 index calculated from a DEM is utilized together with the 

reference maps to provide the hydrogeomorphic threshold operative curves for future floods.” 

“Operationally, the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model 

(Jelesnianski et al., 1984) is the storm surge model currently used by NWS to perform storm surge 

forecasting and create probabilistic flood inundation maps for real-time tropical storms (Sea, Lake, 

and Overland Surges from Hurricanes (SLOSH, 2022). The feature of SLOSH that makes it the 

preferred model of the NWS for storm surge forecasting and mapping is the model’s computational 

efficiency that allows the model to be run as an ensemble (Forbes et al., 2014). However, SLOSH 

is just one of several modeling options for storm surge modeling and mapping, each possessing 

strengths and weaknesses associated with their simulations. The inclusion of additional models 

that can create flood maps of storm surge for a given event should provide an enhanced 

understanding of the uncertainty of inundation at a given location (Teng et al., 2015). However, 

the higher computational burden of alternative models, such as Delft3D-FM, tend to preclude their 



use in real-time operations and certainly, their use in generating an ensemble necessary for 

probabilistic flood maps. The methodology we propose in this manuscript may offer the NWS and 

other agencies a means to utilize alternatives to SLOSH for flood inundation mapping and 

probabilistic flood inundation mapping on U.S. coastlines.  Models such as Delft3D-FM can 

generate reference maps to train the binary classifer and build the probabilistic operating curves.  

The probabilistic operative curves would account for the major source of uncertainties and provide 

a computationally efficient and reliable decision-making tool for coastal planners and floodplain 

managers. The operative hydrogeomorphic threshold classifiers proposed for real-time coastal 

flood hazard mapping can be used as an alternative tool for the rapid estimation of hazardous areas 

during real-time flood events. In an operational mode, water level or meteorological forecasts can 

be used to estimate the return period of an upcoming coastal flood event and the methodology here 

can utilize this as an input to perform LCFM flood inundation mapping both deterministically and 

probabilistically.” 

The limitations of the study and the possible enhancements of the proposed methodology 

should be discussed clearly 

Response: We have already included three areas of research for future studies. To expand 
this, we added more text explaining the study limitations and potential areas for future 
research. Please refer to lines 520-528 in the revised manuscript.  

“The proposed hydrogeomorphic index (𝐼𝐻𝐷) is the primary data for flood hazard mapping in 
this study. Thus, the quality of two main inputs of this index, namely the DEM and stream 
network used to calculate features H and D play a vital role in the overall accuracy of the 
proposed approach. To obtain maximum accuracy, here we used the best available DEM with 
the finest spatial resolution of 3 m that includes the bathymetry data. However, considering 
the limited access to such high-quality DEMs in many areas of the world, it is recommended 
to evaluate the sensitivity of the proposed approach to lower quality DEMs (e.g. 30 m and 90 
m DEMs without bathymetry information) in future studies. Another piece of research can 
investigate the sensitivity of the proposed approach to the density of the drainage network 
used for calculating the 𝐼𝐻𝐷 index.” 

In general here are the areas of research we recommended for future studies: 

1. Sensitivity of the hydrogeomorphic index to DEM quality and stream network density 
(Lines 520-528) 

2. Applying the proposed hydrogeomorphic operative curves to inland floods and to 
other deltas across the US.  (Lines 544-550) 

3. Improve the flood frequency analysis, considering its uncertainties, incorporating 
other sources of uncertainties in the modeling to generate probabilistic operative 
curves (Lines 556-577) 

4. A benchmark study that compares the performance of three LCFM methods (Lines 
617-620) 
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Abstract 23 

Deltas, estuaries, and wetlands are prone to frequent coastal flooding throughout the world.  In 24 

addition, a large number of people in the United States have settled in these low-lying regions. 25 

Therefore,  the ecological merit of wetlands for maintaining sustainable ecosystems highlights the 26 

importance of flood risk and hazard management in these regions. Typically, hydrodynamic 27 

models are used for coastal flood hazard mapping. The huge computational resources required for 28 

hydrodynamic modeling and the long-running time of these models (order of hours or days) are 29 

two major drawbacks that limit the application of these models for prompt decision-making by 30 

emergency responders. In the last decade, DEM-based classifiers based on Height Above Nearest 31 

Drainage (HAND) have been widely used for rapid flood hazard assessment demonstrating 32 

satisfactory performance for inland floods. The main limitation is the high sensitivity of HAND to 33 

the topography which degrades the accuracy of these methods in flat coastal regions. In addition, 34 

these methods are mostly used for a given return period and generate static hazard maps for past 35 

flood events. To cope with these two limitations, here we modify HAND, and propose a composite 36 

hydrogeomorphic index and develop hydrogeomorphic threshold operative curves for rapid real-37 

time flood hazard assessment in coastal areas. We also propose the development of 38 

hydrogeomorphic threshold operative curves for real-time flood hazard mapping. We select the 39 

Savannah river delta as a testbed, calibrate the proposed hydrogeomorphic index on Hurricane 40 

Matthew and validate the performance of the developed operative curves for Hurricane Irma. The 41 

hydrogeomorphic index is proposed as the multiplication of two normalized geomorphic features, 42 

HAND and distance to the nearest drainage. The calibration procedure tests different combinations 43 

of the weights of these two features and determines the most appropriate index for flood hazard 44 

mapping. Reference maps generated by a well-calibrated hydrodynamic model, Delft3D-FM 45 

model, are developed for different water level return periods. For each specific return period, a 46 



threshold of the proposed hydrogeomoprrphic index that provides the maximum fit with the 47 

relevant reference map is determined. The collection of hydrogeomorphic thresholds developed 48 

for different return periods areis used to generate the operative curves. Validation results 49 

demonstrate that the total cells misclassified by the proposed hydrogeomorphic threshold operative 50 

curves (summation of overprediction and underprediction) are less than 20% of the total area. can 51 

rapidly generate flood hazard maps with satisfactory accuracy. The satisfactory accuracy of the 52 

validation results This  indicates the high efficiency of our proposed methodology for fast and 53 

accurate reliable estimation of hazard areas for an upcoming coastal flood event which can be 54 

beneficial for emergency responders and flood risk managers. 55 

1. Introduction 56 

Densely populated coastal areas are some of the most productive ecosystems on Earth. Coastal 57 

wetlands provide important services to society, including flood attenuation, water storage, carbon 58 

sequestration, nutrient cycling, pollutant removal, and wildlife habitat (Barbier, 2019; Land et al., 59 

2019; Wamsley et al., 2010). Characterizing the hydrological processes unique to coastal areas is 60 

tremendously important for ensuring the sustainability of these ecosystem services. Endangered 61 

coastal ecosystems are threatened by anthropogenic effects, including direct impacts of human 62 

activities (i.e. urbanization and navigational development) or indirect impacts (e.g. sea level rise 63 

(SLR), and hydroclimate extremes (e.g. floods) exacerbated by climate change (Alizad et al., 2018; 64 

Kirwan and Megonigal, 2013; Wu et al., 2017). Nearly 70% of global wetlands have been lost 65 

since the 1900s and rates of wetland loss have increased by a factor of 4 four in the late 20th and 66 

early 21st century (Davidson, 2014). Urbanization hinders wetland migration toward upland areas 67 

in an effort to cope with rising water levels (WLs) (Schieder et al., 2018).  Likewise, moderate to 68 

high Relative Sea Level Rise (RSLR) rates can influence the fate of sediments and nutrient 69 



availability to coastal wetlands (Schile et al., 2014); and eventually transform low marsh regions 70 

into open water or mudflat areas (Alizad et al., 2018). SLR and navigational development can alter 71 

the tidal regime and long-wave propagation characteristics inside estuaries/bays and so 72 

subsequently change the flooding inundation patterns (Familkhalili et al., 2020; Khojasteh et al., 73 

2021a, b). Similarly, hurricane impacts can create interior ponds, trigger shoreline erosion, and 74 

denude marshes (Morton and Barras, 2011). People and assets located in low-lying coastal regions 75 

and river deltas are frequently exposed to compound flooding. Challenges for flood hazard 76 

assessment unique to these systems include compounding effects of multiple flooding 77 

mechanisms, complex drainage systems with relatively low slopes, and periodically saturated 78 

soils. it It is expected that between 0.2-4.6% of the global population may be exposed to coastal 79 

flooding if no strategic adaptation takes place (Kulp and Strauss, 2019).  80 

Efficient flood risk reduction strategies require accurate real-time assessment of flooding hazards 81 

(Gutenson, 2020; USGS Surface Water Information, 2021).  In order tTo simulate the coastal flood 82 

hazard in wetlands, two-dimensional (2D) hydrodynamic models are commonly used for flood 83 

inundation mapping, as they allow for simulating complex oceanic, hydrological, meteorological, 84 

and anthropogenic processes based on process-based numerical schemes. The advanced circulation 85 

model (ADCIRC) (Luettich et al., 1992), DELFT3D (Roelvink and Banning, 1995), and 86 

LISFLOOD-FP (Bates et al., 2010) are among the most commonly used 2D hydrodynamic models 87 

for coastal flood hazard assessment in low-lying areas at local and regional scales (Bates et al., 88 

2021; Muis et al., 2019; Thomas et al., 2019). Nonetheless, hydrodynamic modeling approaches 89 

require huge computational resources to conduct flood hazard assessments at a large scale. This is 90 

even more challenging when emergency responders need timely flood risk information at a 91 

desirable accuracy and resolution on a real-time basis. Therefore, while 2D hydrodynamic models 92 



are still a key component in many frameworks for detailed analyses of the flood hazard, the use of 93 

low-complexity flood mapping (LCFM) methods is essential for the preliminary estimation of 94 

areas exposed to flooding in a short time. Applying LCFM methods together with detailed 95 

hydrodynamic models provide a more comprehensive set of information for emergency responders 96 

and improve the efficiency of flood risk management in practice.  97 

The advent of Digital Elevation Models (DEMs) has led to the development of a series of GIS-98 

based LCFM methods for rapid estimation of flood hazard in the last couple of decades (Afshari 99 

et al., 2018; Dodov and Foufoula-Georgiou, 2006; Manfreda et al., 2011; McGlynn and 100 

McDonnell, 2003; McGlynn and Seibert, 2003; Nardi et al., 2006; Samela et al., 2016; Teng et al., 101 

2015; Williams et al., 2000). Among these methods, binary classification of a hydrogeomorphic 102 

raster has been shown to be an efficient approach for reliable delineation of floodplains (Degiorgis 103 

et al., 2012; Manfreda et al., 2014). In a binary hydrogeomorphic classification approach, the study 104 

area is examined as a grid of cells, then a threshold of a hydrogeomorphic feature, typically 105 

calculated from a DEM, is chosen.  Comparing the hydrogeomorphic feature value of cells with 106 

the threshold, the entire study area is classified into flooded and non-flooded cells.  107 

The Federal Emergency Management Agency (FEMA) provides flood hazard maps across the 108 

United States. These maps, also referred to as Flood Insurance Rate Maps (FIRMs) identify flood-109 

prone areas corresponding to specific return periods. While these hazard maps provide useful 110 

information for a few recurrence intervals, they are no longer reliable for extreme flood events 111 

characterized by lower frequencies or longer return periods. In 2015, the National Water Center 112 

Innovators Program initiated the national flood interoperability experiment (NFIE) for real-time 113 

flood inundation mapping across the United States (Maidment, 2017; Maidment et al., 2014). The 114 

plan highlighted the tendency for event-based flood mapping which is more valuable and practical 115 



for emergency response and warning systems. Unlike past DEM-based methods that mostly 116 

focused on flood hazard mapping,  Zheng et al., (2018b) proposed the development of DEM-based 117 

synthetic rating curves for real-time flood inundation mapping.  In most current, real-time flood 118 

mapping methods, the forecasted river flows and/or water surface elevation are typically fed into 119 

flood inundation libraries to simulate the upcoming flood inundation areas (IWRSS, 2015, 2013; 120 

Maidment, 2017; Wing et al., 2019; Zheng et al., 2018a). The computationally intensive and time-121 

consuming nature of detailed hydrodynamic models to numerically route flood waves typically 122 

restricts their usage in supporting emergency response activities (Gutenson et al., 2021; 123 

Longenecker et al., 2020).  124 

An LCFM method based on Height Above Nearest Drainage (HAND) has been widely used and 125 

recognized as one of the best classifiers for identifying flood hazard areas (Degiorgis et al., 2012; 126 

Jafarzadegan et al., 2018; Jafarzadegan and Merwade, 2019; McGrath et al., 2018; Samela et al., 127 

2017; Zheng et al., 2018a). The performance assessment of HAND classifiers in different 128 

topographic settings suggests, despite an acceptable performance in most locations, the accuracy 129 

of hazard maps is significantly lower in low-lying coastal regions (Jafarzadegan and Merwade, 130 

(2017) and Samela et al., (2017)).  While the majority of DEM-based flood hazard mapping 131 

methods have been developed and tested for inland floods, access to an appropriate DEM-based 132 

method for coastal flooding is lacking in the literature. Since coastal flooding occurs rapidly and 133 

the time for hydrodynamic modeling and designing flood mitigation strategies is limited especially 134 

in data-scarce regions, efficient DEM-based approaches can be significantly beneficial for 135 

emergency and response-related decision-makers.   136 

The overarching goal of this study is to propose a DEM-based LCFM method for coastal wetlands, 137 

estuaries, and deltas. To our knowledge, this is the first study that investigates the application of 138 



hydrogeomorphic binary classifiers for flooding in semi-flat coastal zones. We modify the HAND 139 

commonly used for riverine inland flooding (Degiorgis et al., 2013; Jafarzadegan et al., 2020; 140 

Samela et al., 2017) and propose a composite hydrogeomorphic index for tidally-influenced 141 

coastal regions. We enhance the applicability of the proposed method by developing 142 

hydrogeomorphic threshold operative curves for coastal flood hazard mapping. Unlike previous 143 

studies that rely on binary classifiers for specific return periods, the operative curves here offer a 144 

unique opportunity for rapid assessment of hazardous areas in real-time. These curves have 145 

substantial benefits for emergency responders when wetlands are prone to coastal flooding.  146 

2. Study area and data  147 

We study the Savannah River delta located in the Southeast United States, at the border of Georgia 148 

and South Carolina in the southeast United States (Figure 1a). The Savannah River originates at 149 

the confluence of Tulagoo and Seneca rivers and drains the Lower Savannah watershed 150 

(HU08_03060109) comprising an area of 2603.96 km2. The morphology of this region is relatively 151 

complex due to the existence of a braided river followed by a dense drainage network of interior 152 

rivers and tidal creeks. The average slope, length, and annual discharge of the Savannah River are 153 

0.00011 m/m, 505 km, and 320 m3/s, respectively (Carlston, 1969). Moreover, the river 154 

bathymetry was deepened up to 12 m for increasing the capacity of cargo transportation (U.S. 155 

Army Corps of Engineers, 2017). This region is mostly characterized by its unique ecology, 156 

including vast wetlands and saltmarsh ecosystems. We obtain detailed drainage network data 157 

including river streams, tidal channels, and creeks within wetland areas from the U.S. National 158 

Wetlands Inventory (https://www.fws.gov/wetlands/data/Mapper.html). 159 

To simulate the flood hazard in this region, a mesh boundary encompassing the Savannah River 160 

delta, surrounding areas, and a portion of the Atlantic Ocean is generated (Figure 1b). Two U.S. 161 



Geological Survey (USGS) gauges, located at the Savannah River (#02198500, #02198690) and 162 

the Fort Pulaski station of the National Oceanic and Atmospheric Administration (NOAA) are 163 

used as upstream and downstream boundary conditions of the hydrodynamic model, respectively.  164 

Fort Pulaski station (NOAA – 8670870) counts with an 85-year length of records (since 1935) that 165 

enables a proper characterization of coastal flooding for design levels at lower frequencies or 166 

relatively large return periods. We select this region as a testbed because of 1) frequent coastal 167 

flooding induced by large semidiurnal tidal amplitudes at the estuary mouth (Cowardin et 168 

al., 2013) and 2) exposure of more than twenty thousand people settled in four developed areas, 169 

the Whitemarsh, Talahi, Wilmington, and Tybee Islands located in this region (Figure 1c).  170 

The high-resolution DEM used as the base of our proposed hydrogeomorphic index is a 3 m light 171 

detection and ranging (LiDAR) that includes topographic and bathymetric  (topobathy) data. This 172 

dataset has been developed by the NOAA's National Centers for Environmental Information 173 

(NCEI) and is available at the NOAA's Data Access Viewer repository 174 

(https://coast.noaa.gov/dataviewer/). The topobathy data was further corrected for wetland 175 

elevation error using the DEM-correction tool developed by Muñoz et al., (2019) in order to 176 

minimize vertical bias errors commonly found in LiDAR-derived coastal DEMs (Alizad et al., 177 

2018; Medeiros et al., 2015; Rogers et al., 2018). The vertical and horizontal accuracy of the DEM 178 

are 50 and 100 cm, respectively and its vertical datum is the North American Vertical Datum 1988 179 

(NAVD88). Land cover maps are obtained from the 2016 National Land Cover Database (NLCD) 180 

available at (https://www.mrlc.gov/). River discharge and WL records are obtained from the USGS 181 

(https://maps.waterdata.usgs.gov/mapper/index.html) and NOAA 182 

(https://tidesandcurrents.noaa.gov/), respectively. In addition, post-flood high water marks 183 

(HWMs) of Hurricane Irma and Matthew are obtained from the USGS Flood Event Viewer 184 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020WR027544#wrcr24681-bib-0013
https://coast.noaa.gov/dataviewer/
https://www.mrlc.gov/
https://maps.waterdata.usgs.gov/mapper/index.html
https://tidesandcurrents.noaa.gov/


platform (https://stn.wim.usgs.gov/FEV/). These high-water marks are used for calibration and 185 

validation of the Savannah model in Delft3D-FM. Specifically, we used the 2021 Delft3D-FM 186 

suite package to model the complex interactions between riverine, estuarine, and intertidal flat 187 

hydrodynamics. The suite package can provide detailed information ofn water level, flow rates, 188 

and velocity (Delft3D Flexible Mesh Suite - Deltares, 2021). 189 

 190 
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Figure 1. Map of the study area and mesh boundary of the hydrodynamic model. (a) the geographic 194 

location of the study area in the southeast U.S., (b) The mesh boundary used by the hydrodynamic 195 

model (blue) for flood inundation mapping as well as the location of upstream (orange), 196 



downstream (yellow), and calibration/validation (green) gauges, and (c) the boundary of Savannah 197 

wetlands used as the case study along with urbanized areas. (ESRI 2018) 198 

3. Methods  199 

We propose a DEM-based LCFM approach for the rapid assessment of flood hazard areas in real-200 

time. The proposed approach consists of two phases (Figure 2). In phase 1, a 2D hydrodynamic 201 

model is calibrated based on observed WLs at USGS gauges and HWMs that are available during 202 

Hurricane Matthew in 2017.  We then use the calibrated hydrodynamic model to generate a flood 203 

inundation map that serves as a reference map in the next phase. In addition, for flood frequency 204 

analysisanalyses, we perform block maxima sampling approach to select the annual WL maxima 205 

at Fort Pulaski station. The selected samples are then used to estimate return levelsWLs for six 206 

return periods of 10, 50, 100, 200, 500, and 1000 year1000-year floods. Using these estimated 207 

WLs as the main boundary conditions of the hydrodynamic model, we also generate six flood 208 

inundation maps corresponding to these return periods. In phase 2, we use a high-resolution DEM 209 

together with the drainage network data to calculate the hydrogeomorphic index. Subsequently, 210 

the flood inundation map generated for Hurricane Matthew in phase 1, is used as a reference map 211 

to calibrate the hydrogeomorphic index. Then, the calibrated index uses the flood inundation maps 212 

provided for different return periods in phase 1 to develop the operative curves. These curves form 213 

the basis for the rapid assessment of flood hazard areas for any upcoming coastal flood event in 214 

the future. To validate the effectiveness and reliability of the developed operative curves, we use 215 

them to identify hazard areas corresponding to Hurricane Irma, and then we compare their 216 

accuracy with the reference map provided by the hydrodynamic model for this flood event. In the 217 

following sections, we further explain the hydrodynamic model, flood frequency analysis, and 218 

hydrogeomorphic method, respectively.  219 



 220 

221 

Figure 2. Flowchart of the proposed approach for generating hydrogeomorphic threshold 222 

operative curves. In Phase 1, the 2D hydrodynamic model is calibrated and generates the required 223 

reference maps for the next phase. In Phase 2, the reference maps are used in conjunction with the 224 

hydrogeomorphic index to generate the operative curves for fast and real-time coastal flood hazard 225 

assessment.  226 

3.1  Hydrodynamic Model 227 

3.1.1 Model setup 228 

We use the 2019 Delft3D-FM suite package (Deltares, 2019) to model the complex riverine, 229 

estuarine, and intertidal flat hydrodynamics in the Savannah River delta and wetland regions. The 230 

suite package has been used in similar coastal studies characterized by vast wetland regions with 231 

satisfactory results (Fagherazzi et al., 2014; Kumbier et al., 2018; Sullivan et al., 2019). Moreover, 232 

the model developed for Savannah has been used in other studies to simulate extreme and non-233 

extreme events including Hurricane Matthew that hit the southeast Atlantic Coast in October 2016 234 



(Muñoz et al., 2021, 2020). The 2D hydrodynamic model comprises nearly 85 km of the Savannah 235 

River extending from Fort Pulaski station (NOAA – 8670870) at the coast up to Clyo station 236 

(USGS – 02198500) and cover an area of 1178 km2 approximately. The model consists of an 237 

unstructured triangular mesh to ensure a correct representation of geomorphological settings 238 

including sinuous and braided river waterways and relatively narrow tidal inlets. Furthermore, the 239 

mesh has a spatially varying cell size ranging from 1.5 m in the upstream riverine area, 10 m over 240 

wetland regions, 120 m along the coast, and up to 1.4 km over the Atlantic Ocean (Figure 1b).  241 

3.1.2 Model calibration 242 

For calibration purposes, the model was forced with time series of river flow obtained from Clyo 243 

station as an upstream boundary condition (BC), coastal WL from Fort Pulaski station as a 244 

downstream BC, and with spatially varying Manning’s roughness values (n) classified into open 245 

water, wetland, urban, and riverine areas. The optimal (or calibrated) set of n-values weres was 246 

inferred from 200 model simulations of Hurricane Matthew, as this event reported the highest peak 247 

WL at Fort Pulaski station since the year 1935 (2.59 m w.r.t. NAVD88). Each simulation was 248 

conducted in a high-performance computing system and included a one-month warm-up period 249 

and a unique set of n-values for each land cover generated with the Latin Hypercube Sampling 250 

(LHS) technique (Helton and Davis, 2003). The advantage of LHS over traditional Monte Carlo 251 

approaches is that the former results in a denser stratification over the range of each sampled 252 

parameter and is therefore superior to random sampling. LHS leads to more stable results that are 253 

closer to the true probability density function of the parameter and has been used in similar studies 254 

(Jafarzadegan et al., 2021; Muñoz et al., 2022). The range of n-values was derived from pertinent 255 

literature and included hydrodynamic modeling and open channel flow studies (Arcement and 256 

Schneider, 1989; Chow Ven, 1959; Liu et al., 2019). The set of values achieving both the lowest 257 



Root Mean Square Error (RMSE) and highest correlation coefficient (R2)  and highest Kling-Gupta 258 

Efficiency (KGE) around the peak WL (e.g., 7-day window) was selected as the optimal one and 259 

further used for coastal flood simulations. KGE is a robust evaluation metric that accounts for 260 

correlation, bias, and the ratio of variances and can take values between -∞ and 1 (Gupta et al., 261 

2009). An efficiency of 1 indicates a perfect match between model simulations and observations. 262 

In addition to those metrics, we evaluate the model’s performance using the Nash-Sutcliffe 263 

Efficiency (NSE) and Mean Absolute Bias (MAB). NSE measures the relative magnitude of the 264 

error variance of model simulations compared to the variance of observational data (Nash and 265 

Sutcliffe, 1970). NSE ranges between -∞ to 1, where an efficiency of 1 indicates a perfect match. 266 

MAB quantifies the bias of model simulations with respect to observational data. MAB of 0 267 

suggests an absence of bias in the simulation. The calibrated n-values used in this the Savannah 268 

model are: open water (n = 0.027), wetland (n = 0.221), urban (n = 0.03), and 269 

downstream/upstream riverine areas (n = 0.037 and n = 0.086, respectively). 270 

3.2 Flood Frequency Analysis  271 

Preliminary model simulations indicate a negligible influence of river flow on coastal wetland 272 

inundation as compared to storm surge at onin the Wassaw Sound, Wilmington, and Tybee islands 273 

(Figure 1c). This can be explained by the proximity of the islands to the Atlantic Ocean as well as 274 

freshwater runoff regulation and flood controls by three large dams located upstream of the Clyo 275 

station (USGS – 02198500), namely J. Strom Thurmond, Richard B. Russell, and Hartwell 276 

(Zurqani et al., 2018). In addition, bivariate statistical analysis via copulas suggests no significant 277 

correlation between river flow at Clyo station (USGS - 02198500) and coastal water levels at Fort 278 

Pulaski station (NOAA - 8670870). The latter was also reported in Ghanbari et al., (2021) and 279 

Muñoz et al., (2020). Furthermore, our analysis demonstrated that high river flow does not affect 280 



the inundation area in wetlands areas. This indicates that flood inundation is highly dominated by 281 

coastal forcing as tides propagate into the Savannah River and lead to flow reversal at upstream 282 

gauge stations (see Figure 1 below). The high proximity of wetlands to the Atlantic Ocean shows 283 

that the transitional zone, i.e., the area affected by both coastal and inland drivers, is located 284 

upstream of Port Wentworth station (USGS - 02198920) where the Savannah river trifurcates into 285 

the Back River, Middle River, and Front River. Considering the dominant role of sea water level 286 

in coastal flooding as well as the negligible effect of river discharge on wetland inundation from 287 

the previous analyses, we can justify the proposed univariate flood frequency analysis. We, 288 

therefore, conduct a univariate flood frequency analysis based on annual block maxima sampling 289 

of WLs observed at the Fort Pulaski station (NOAA – 8670870). We use the ‘allfitdist’ tool in 290 

MATLAB to find the best parametric probability distribution fit to the data, based on Maximum 291 

Likelihood, Bayesian information criterion (BIC), or Akaike information criterion (AIK).  292 

3.3 Hydrogeomorphic index  293 

Among different hydrogeomorphic features used for flood hazard mapping, HAND (sometimes 294 

also referred to as feature H) has been widely used as one of the best indicators of floodplains. 295 

However, due to the weakness of this feature for proper characterization of floodplains in flat 296 

regions and coastal areas, here we develop a composite hydrogeomorphic index that considers H 297 

as well as the distance to the nearest drainage (D). Although the overall performance of feature D 298 

is less than H in most case studies (Degiorgis et al., 2012; Manfreda et al., 2015a; Samela et al., 299 

2016), feature D can be a better descriptor of floodplains in highly flat regions according to the 300 

study conducted by Samela et al., (2017). In another study, Gharari et al., (2011) proposed a 301 

composite index by multiplying both features H and D and demonstrated that H is a better feature 302 

compared to the case that both features are used for landscape classification. The main drawback 303 



of their proposed index was that they used the same weights for both features which result in 304 

degrading the classification performance. To overcome the limitation of the proposed index and 305 

to consider the key role of feature D in flat areas, we maintain feature D in our composite index 306 

and add different weights to H and D using Eq. 1 as follows: 307 

𝐼𝐻𝐷 = (
𝐻

𝐻𝑚𝑎𝑥
)𝑤1 × (

𝐷

𝐷𝑚𝑎𝑥
)𝑤2            𝑤ℎ𝑒𝑟𝑒                  𝑤1 + 𝑤2 = 1    (1) 308 

In Eq.1, 𝐻𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥 denote the maximum value of raster H and D used for normalizing the 309 

hydrogeomorphic index whereas 𝑤1 and 𝑤2 refer to the weights of feature H and D, respectively. 310 

The conditional equation of 𝑤1 + 𝑤2 = 1 helps lower the computational burden of the calibration 311 

procedure by reducing the number of unknown parameters from two to one. Figure 3 illustrates an 312 

example of calculating the 𝐼𝐻𝐷 index with a given set of weights (𝑤1=0.6 and 𝑤2=0.4) for the 313 

study area. Using a high-resolution coastal DEM (Figure 3a), raster H and D are calculated 314 

(Figures 3b and 3c). Considering a DEM with N cells, the main step is to find a coordinate matrix 315 

that indicates the location of the nearest stream cell to each grid cell. Knowing this matrix and the 316 

number of cells required to cross the nearest stream cell, the feature D is calculated. The coordinate 317 

matrix can also be used in conjunction with the DEM to calculate the feature H. In order tTo 318 

calculate the hydrogeomorphic index 𝐼𝐻𝐷  index, the weights in Eq. 1 are calibrated using a 319 

reference flood hazard map obtained from hydrodynamic simulation (e.g., Hurricane Matthew). 320 

We tested different a hundred combinations of weight parameters ( 𝑤1 𝑎𝑛𝑑 𝑤2 = 1 − 𝑤1 ), 321 

derived from random generation of 100 𝑤1 in the range of (0-1),  to find the importance of features 322 

H and D, and then finalized the 𝐼𝐻𝐷 hydrogeomorphic index with known parameters for future 323 

flood hazard mapping. We further validated the weight parameters with through the simulations 324 

of Hurricane Irma. 325 
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 329 

Figure 3. The required steps for calculating the proposed hydrogeomorphic index. A high-330 

resolution coastal DEM (3 m)  is used as the source data to (a) generate the Height Above nNearest 331 

Drainage (H) and the Distance to the nearest Drainage (D), respectively (b, c). Using Eq. 1, the 332 

normalized features H and D are multiplied with different weights to generate the 𝐼𝐻𝐷 333 

hydrogeomorphic index (d). 334 



3.4 Binary classifiers for flood hazard mapping 335 

Considering the study area as a grid of cells, a binary classifier assigns a value of zero or one to 336 

each cell and generates a map of two different classes.  In flood hazard mapping, the common 337 

approach is to define a threshold on a hydrogeomorphic index (e.g. 𝐼𝐻𝐷) and use the following if-338 

and-else rule for the classification: 339 

𝑓(𝑖) = {
1                                   𝐼𝐻𝐷

𝑖 ≤ 𝑇𝐻

0                                  𝐼𝐻𝐷
𝑖 > 𝑇𝐻

       (2) 340 

where 𝑓(𝑖)  and 𝐼𝐻𝐷
𝑖  denote the label of flood hazard map and the proposed hydrogeomorphic 341 

index value at cell i, respectively, and TH denotes the threshold of the hydrogeomorphic classifier 342 

that should be calibrated. The flood hazard map generated with the binary classifier is compared 343 

with a binary reference hazard map, and the rate of true positive (rtp), rate of false positive (rfp), 344 

and error are calculated as follows (Jafarzadegan and Merwade, 2017): 345 

𝑟𝑡𝑝 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
         (3) 346 

𝑟𝑓𝑝 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
         (4) 347 

𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑓𝑝 + (1 − 𝑟𝑡𝑝)         (5) 348 

In binary classification, positive and negative refer to a value of one and zero, respectively. True 349 

positive instances are those positive cells that are correctly predicted by the classifier and false 350 

positive instances represent those negative cells that are wrongly classified as positive. The error, 351 

reflecting all cells that are wrongly predicted by the classifier, is a commonly-used measure for 352 

validating the performance of binary classifiers for flood hazard mapping. Another useful 353 



performance measure to validate the binary classifier is the area under the curve (AUC) of the 354 

Receiver Operating Characteristic (ROC) graph proposed by Fawcett, (2006). 355 

To calibrate the binary classifier we minimize the error while searching for the optimum TH value. 356 

This means, we use a hundred TH values uniformly picked from the range of 𝐼𝐻𝐷
𝑚𝑖𝑛and 𝐼𝐻𝐷

𝑚𝑎𝑥. For 357 

each TH, we use Eq. 2 to generate a binary hazard map and then compare this map with the 358 

reference map by calculating the error from Eqs. 3-5. In this optimization problem, the reference 359 

flood hazard map used for calculating the error is the key input that should be further described. 360 

The flood inundation maps generated by the hydrodynamic model indicate WLs at different cells 361 

in different time steps and should be converted to a single binary map. A common approach used 362 

for inland floods is to find the maximum inundation area over the entire flooding period and then 363 

assign all cells with zero WL to “dry” or “non-flooded” and other cells with positive values as 364 

“wet” or “flooded”. In delta estuaries and coastal regions nearby the ocean, however, almost all 365 

cells can be flooded with small WL values. Therefore, after finding the maximum inundation over 366 

the flooding period, we use another set of binary labels as “low hazard” vs “high hazard” and 367 

define the hazard depth cutoff (HDC) as a threshold used to convert a continuous map of WL to a 368 

binary map with only two labels.  Depending on the HDC used for distinguishing low from high 369 

hazard regions, the reference flood map is changed which results in a different calibrated TH.  In 370 

addition to HDC, the intensity of the flood event shown with the return period (T) also changes 371 

the reference flood hazard map. Therefore, the calibrated parameter TH is a function of both HDC 372 

and T and the main goal of this study is to provide operative curves showing the variation of TH 373 

with these two factors. We run the hydrodynamic model for 6 different return periods of 10, 50, 374 

100, 200, 500, and 1000 year events and then convert the WL maps to binary maps using 21 HDC 375 

resulting from 0.1 increments in the range of 0-2 m. The binary classification and calibration of 376 



TH are performed for different reference maps generated from various combinations of T and 377 

HDC. 378 

4. Results 379 

A comprehensive calibration and validation of the Savannah River model is shown in Figure 4. 380 

This step is crucial to ensure that the flood hazard maps provided by the model are reliable enough 381 

to be used as the reference of the hydrogeomorphic method. We assess the performance of the 382 

model by first comparing simulated and observed WLs at four USGS stations along the Savannah 383 

River (Figure 1b, green circles). For convenience, we only present simulated and observed WLs 384 

of Hurricane Matthew and Irma at Garden City (Figure 4c and 4d, respectively) located at ~29.5 385 

km from the river mouth (Figure 4a, yellow square). The results of the remaining stations are 386 

included in the supplementary material (Figure S1). The RMSE and MAEB remain below 30 cm 387 

and 25 cm whereas KGE and NSE and R2 of the gauges stations remain below 30 cm and 388 

aboveachieve values above 0.900.75 and 0.85, respectively, for the two hurricane events, which is 389 

reflective of satisfactory model performance. Overall, the magnitude and timing of the highest 390 

peak WL observed during the hurricanes are well captured by the Savannah River model. To 391 

further evaluate the model performance in coastal flood propagation analysis, we compare 392 

maximum WLs resulting from model simulations with the USGS HWMs collected in urban and 393 

surrounding wetland areas (Figure 4b). The 1:1 line represents a perfect fit between simulated and 394 

observed maximum WLs and helps visualize overestimation (above the 1:1 line) and 395 

underestimation of the model. Similarly, the evaluation metrics indicate a satisfactory performance 396 

of the model with a slightly over- and underestimation during Matthew and Irma. Moreover, the 397 

model achieves a relatively small RMSE (< 35 cm) and MAE (< 30 cm).  398 

 399 



 400 

 401 

Figure 4. Calibration and validation of the Savannah Delft3D-FM model. (a) Location of high-402 

water marks (HWMs) in the Savannah River delta for Hurricane Mathew (blue triangles) and 403 

Hurricane Irma (red circles). (b) Comparison between simulated maximum water levels (WLs) 404 

and HWMs in Savannah. (c and d) Time series of simulated and observed WLs at Garden station 405 

for Hurricane Matthew and Hurricane Irma, respectively. 406 



To generate boundary conditions for coastal flood modeling simulations associated with the 407 

proposed return periods, we perform flood frequency analysis of coastal WL at the Fort Pulaski 408 

station (in Figure 5) located at the mouth of the Savannah River (Figure 1b, yellow circle).  In this 409 

study, we select Generalized Extreme Value (GEV) because of its smallest estimated BIC 410 

compared to other parametric distributions available at the Matlab ‘allfitdist’ tool. In addition, we 411 

show the 95% confidence bounds of the GEV distribution and fit a non-parametric Weibull 412 

distribution to the data for comparison purposes. Hereinafter, we will use the GEV distribution to 413 

estimate WLs for 10, 50, 100, 200, 500, and 1000-year return periods. 414 

 415 

Figure 5. Return water levels (WLs) for Fort Pulaski station in Savannah GA (NOAA - 8670870). 416 

Plotting positions (black crosses) are derived from the Weibull formula based on annual block 417 

maxima time series (AMAX) and comparable to the Generalized Extreme Value (GEV) 418 

distribution (blue circles). 95% confidence intervals (CI) for the distribution parameters of the 419 

GEV distribution are shown with a shaded blue band. 420 

 421 



After calibrating the Delft3D-FM model, we generate daily flood inundation maps for Hurricane 422 

Matthew, determine the maximum flood extent among all days, and then use an HDC to convert 423 

the maximum inundation map to a binary map of low and high hazard classes. Using 21 different 424 

HDCs ranging from 0 to 2 m, we perform 21 calibrations corresponding to a given reference flood 425 

hazard map generated from a specific HDC value. Figure 6a shows the error and AUC of 426 

calibration corresponding to different HDC values. As can be seen, increasing the HDC decreases 427 

the accuracy of the hydrogeomorphic method for flood hazard mapping. Looking into the errors 428 

and AUC values reported in the literature of binary flood hazard mapping studies, we consider an 429 

error of 0.2 and an AUC of 0.9 (dash lines) as the limits for distinguishing acceptable models from 430 

unacceptable ones. The grey region indicates the rejected HDC values above 1.1 m that result in 431 

unacceptable accuracy (e.g., Error> 0.2 or AUC<0.9).  Figure 6b indicates the optimum weights 432 

calculated from the calibration of the hydrogeomorphic method corresponding to different HDC 433 

values. The higher value of 𝑤1 compared to 𝑤2 demonstrates that feature H is a more important 434 

factor than feature D in representing the flood hazard areas, and a combination of both features is 435 

the best indicator of floodplains compared to using each feature individually (𝑤1= 0 or 𝑤2=0). 436 

Figure 6b also shows that for the HDC=0 (wet vs dry classification), feature D shows the highest 437 

contribution (30%) while using the high HDC value of 2 m decreases the contribution of this 438 

feature to almost zero.  439 



 440 

Figure 6. Calibration of 𝐼𝐻𝐷 Hydrogeomorphic index for Hurricane Matthew. (a) the variation of 441 

performance measures AUC (red) and error (blue) for different hazard depth cutoff (HDC) values 442 

and (b) the optimum weights of the 𝐼𝐻𝐷 hydrogeomorphic index for different HDC values. The 443 

dash lines show the maximum error (0.2) and minimum AUC (0.9) that are acceptable for flood 444 

hazard mapping. Using these criteria, the gray regions show that the hydrogeomorphic model 445 

cannot provide acceptable results for HDC values higher than 1.1 m. 446 

To generate the operative curves for future flood events, we design 36 scenarios that include 6 six 447 

HDCs (0, 0.2, 0.4, 0.6, 0.8, 1 m) from the acceptable range of 0-1 m for six different reference 448 

hazard maps, provided by the Delft3D-FM model for return periods of 10, 50, 100, 200, 500, and 449 

1000 years.  Each scenario provides a reference hazard map, so a binary classification is performed 450 

to estimate TH corresponding to each scenario. Figure 7a indicates the error curves for different 451 

return period events. For low HDCs, increasing the magnitude of the flood (higher return period) 452 

results in more accuracy of the hydrogeomorphic method. This pattern is opposite for high HDCs 453 

where flood event with a 10 year return period provides the highest accuracy. In general, the grey 454 



region shows that for high HDCs, the performance of the hydrogeomorphic method is poor for 455 

almost all return periods while for low HDCs, all flood events can be accurately used for flood 456 

hazard mapping. Figure 7b illustrates the hydrogeomorphic threshold operative curves for future 457 

flood hazard mapping. The TH in the y-axis is the key value that can be estimated for each 458 

combination of HDC and return period. Knowing this threshold, Eq. 2 can be used to rapidly 459 

estimate the hazard areas for future floods. As expected, a higher magnitude of flood needs a higher 460 

hydrogeomorphic threshold while increasing HDC (smaller high-hazard areas) requires a smaller 461 

threshold for binary classification. The grey parts of the curves refer to those scenarios that have 462 

unacceptable accuracy so it is recommended to not use HDCs corresponding to these parts. 463 

 464 

Figure 7. (a) The errors of flood hazard maps generated by the calibrated hydrogeomorphic 465 

method for different return period flood events and hazard depth cutoff (HDC) values. (b) The 466 

hydrogeomorphic threshold operative curves provided for different HDC values. These operative 467 



curves are the major tool for fast flood hazard mapping as depending on the return period of a 468 

future flood event and the HDC value chosen by the decision-maker, the operative curves estimate 469 

the hydrogeomorphic threshold. Knowing this threshold, the flood hazard map will be generated 470 

in a few minutes.  471 

Finally, we evaluate the accuracy and effectiveness of the proposed operative curves by validating 472 

their performance in generating flood hazard areas during Hurricane Irma.  The maximum WL 473 

during this flood event was 2.49 m that which corresponds to a 223-year flood event according to 474 

our flood frequency analysis (e.g., GEV distribution). For two HDCs of 0 and 0.6 m, the operative 475 

curves suggest the hydrogeomorphic thresholds of 0.1 and 0.08, respectively. Using these 476 

thresholds and Eq.2, the flood hazard maps corresponding to Hurricane Irma can be generated. 477 

Figure 8 indicates a side by side comparison of flood hazard maps generated by the Delft3D-FM 478 

model (Figures 8a and 8c) and the hydrogeomorphic threshold operative curves (Figures 8b and 479 

8d) for two different HDCs of 0 (Figures 8a and 8b) and 0.6 m (Figures 8c and 8d). For both HDCs, 480 

errors (0.152 and 0.186)  are less than a 0.2 limit used for reliable flood hazard mapping. The main 481 

errors of the hydrogeomorphic methoddiscrepancies are some noisy scattered low-hazard areas 482 

located in the east and southeast of the study area. These areas can reflect the flooded surface 483 

depressions (sinks) resulting from the pluvial impacts of extreme precipitation. Hydrodynamic 484 

models simulate the fluvial and coastal processes that occur adjacent to rivers and oceans while 485 

disregarding the pluvial impacts.   The red circle in the left part of the figures also shows a region 486 

that the hydrogeomorphic method cannot properly simulate, especially for higher HDCs. This can 487 

be due to the inability of the hydrogeomorphic method to properly simulate physical processes. 488 

On the other hand, the red eclipse at the right side of the figures illustrates an urbanized region 489 

where the hydrogeomorphic method properly classifies the area compared to the reference map. 490 



Overall, the high overlap of the flood hazard maps provided by the hydrogeomorphic method with 491 

the reference maps provided by the hydrodynamic model (error <0.2) illustrates the reliability and 492 

effectiveness of the proposed hydrogeomorphic method for flood hazard mapping. Besides, the 493 

high efficiency of this approach for rapid estimation of flood hazard maps (order of minutes) 494 

compared to the long computational time required for detailed hydrodynamic modeling (order of 495 

hours) suggests the proposed hydrogeomorphic method as an alternative for efficient flood hazard 496 

mapping during emergencies.  497 

 498 

Figure 8. Validation results for Hurricane Irma showing a side-by-side comparison of flood 499 

hazard maps generated by the hydrodynamic model and hydrogeomorphic method for two 500 



different hazard depth cutoffs (HDCs), HDC=0 (a, b) and HDC=0.6 m (c, d). To generate the 501 

flood hazard maps by the hydrogeomorphic method, the operative curves estimate two 502 

hydrogeomorphic thresholds of 0.1 and 0.08 for HDC= 0 m and HDC= 0.6 m, respectively while 503 

the return period of Hurricane Irma is estimated as a 223 years flood event.  504 

5. Discussion 505 

This study develops hydrogeomorphic threshold operative curves for rapid estimation of hazardous 506 

areas during emergencies of future coastal floods in deltas and estuaries.  The low errors (<0.2) of 507 

estimated hazard maps for Hurricane Irma generated by the proposed approach compared to the 508 

reference hydrodynamic model results demonstrate the high accuracy of the proposed operative 509 

curves for future flood events in this region. According to studies conducted on the binary 510 

classification of hydrogeomorphic features in the literature, the errors of the best classifiers were 511 

mostly in the range of 0.2-0.3 for inland floods (Degiorgis et al., 2012; Manfreda et al., 2014). 512 

Therefore, given the more complexity of terrain and drainage network in deltas, predicting the 513 

hazard maps with errors less than 0.2 (e.g. error of 0.152 for HDC=0) is a promising achievement. 514 

The potential reasons explaining a high accuracy of the proposed binary classifier for wetlands 515 

include the high-resolution DEM used for mapping (~3m), and the incorporation of bathymetry 516 

into DEM. In addition, the flexible structure of the proposed hydrogeomorphic index, with two 517 

varying weights of H and D features, allows for calibrating the index with the optimum 518 

contribution of each feature, which in return results in the highest accuracy.   519 

The proposed hydrogeomorphic index (𝐼𝐻𝐷) is the primary data for flood hazard mapping in this 520 

study. Thus, the quality of two main inputs of this index, namely the DEM and stream network 521 

used to calculate features H and D play a vital role in the overall accuracy of the proposed 522 

approach. To obtain maximum accuracy, here we used the best available DEM with the finest 523 



spatial resolution of 3 m that includes the bathymetry data. However, considering the limited 524 

access to such high-quality DEMs in many areas of the world, it is recommended to evaluate the 525 

sensitivity of the proposed approach to lower quality DEMs (e.g. 30 m and 90 m DEMs without 526 

bathymetry information) in future studies. Another piece of research can investigate the sensitivity 527 

of the proposed approach to the density of the drainage network used for calculating the 𝐼𝐻𝐷 index.  528 

Unlike past studies that used binary classifiers for detecting hazard areas corresponding to past 529 

floods or generated static maps for a specific return period event (Degiorgis et al., 2012; 530 

Jafarzadegan et al., 2018; Manfreda et al., 2015b; Samela et al., 2017), here we propose the 531 

hydrogeomorphic threshold operative curves for real-time flood hazard mapping. Considering the 532 

rapid occurrence of hurricane-induced flooding in deltas and estuaries, these curves can be highly 533 

beneficial for emergency responders to provide a preliminary estimation of hazard areas for an 534 

upcoming flood in these regions and design the appropriate evacuation strategies. In addition, the 535 

proposed operative curves demonstrate the hydrogeomorphic threshold variations with HDCs. 536 

This feature of the operative curves gives additional flexibility to decision-makers for estimating 537 

the hazard maps based on the HDC that is considered given the momentary safety issues. For 538 

example, identifying the hazard map based on HDC<0.3 is useful for checking the operability and 539 

accessibility of essential facilities and infrastructure, while a hazard map corresponding to HDC=1 540 

indicates those areas that experience high WLs above 1 m as hazardous areas, with greater potential 541 

for casualties and significant structural damage.  Overall, the hydrogeomorphic threshold operative 542 

curves are a function of both the return period (flood severity) and HDC (a decision-making option 543 

that controls the definition of high hazard). Using a similar approach, future studies can provide 544 

these curves for inland floods as well. In addition, due to the practical benefits of these curves for 545 

efficient coastal flood hazard assessment, the hydrogeomorphic threshold operative curves can be 546 



extended to other deltas and estuaries that experience frequent flooding across the US (e.g., 547 

Mississippi -– Louisiana (LA), Galveston Bay -– Texas (TX), Delaware Bay -– Delaware (DE), 548 

Chesapeake Bay -– Virginia (VA), among others) and the world (e.g. Yangtze - China, 549 

Brahmaputra - Bangladesh, among others). To implement this approach, first, a hydrodynamic 550 

model should be set up for the new study area and generate reference inundation maps for different 551 

return periods. Access to observed water level data (gauges or HWMs) and flood extent maps from 552 

past floods is required to properly calibrate the hydrodynamic model. Then the 𝐼𝐻𝐷  index 553 

calculated from a DEM is utilized together with the reference maps to provide the 554 

hydrogeomorphic threshold operative curves for future floods.  555 

The reference maps used for training the binary classifier are key components for generating 556 

reliable results. Since these reference maps are the outcomes of hydrodynamic modeling, they are 557 

prone to uncertainties stemming from unrealistic parametrization, imperfect model structure, and 558 

erroneous forcing. The design floods used as boundary conditions of the hydrodynamic model are 559 

estimated from flood frequency analysis that is prone to uncertainty as well. Here, we used a 560 

bivariate approach that estimates the design flood based on the water level data. A more 561 

comprehensive flood frequency analysis that accounts for other flood attributes, such as volume, 562 

spatial dependencies, or nonstationarity  can improve the reliability of flood frequency analysis in 563 

future studies (Brunner et al., 2016; Yan and Moradkhani, 2015; Bracken et al., 2018).  With access 564 

to less than 100 years of data for flood frequency analysis, the extreme return levels (i.e. 500 and 565 

1000 year500- and 1000-year floods) pose high uncertainties due to the extrapolation of annual 566 

maxima data. This should warn decision-makers to be more cautious about using operative curves 567 

for extreme flood events. For future studies, the uncertainty bounds of flood frequency analysis 568 

(especially extrapolations for extreme cases) can be considered in the modeling. In a real-time 569 



scenario, the forecasted WL used for flood frequency analysis is also prone to uncertainties 570 

originating from imperfect forecasting methods and nonstationary climate data. In addition, the 571 

uncertainty of model parametrization can be accounted for by running the hydrodynamic model 572 

for different combinations of optimum parameters. Model structure uncertainty can be also 573 

considered by using different hydrodynamic models and combining the results. Finally, 574 

probabilistic reference maps together with uncertainties involved in WL forecasting and flood 575 

frequency analysis can be integrated to develop probabilistic hydrogeomorphic threshold operative 576 

curves in future studies.  This is in line with the report provided for the NOAA National Weather 577 

Service (NWS), showing the NWS stakeholder's preference for utilizing probabilistic storm surge 578 

inundation maps in the future (Eastern Research Group, Inc, 2013).  579 

Operationally, The probabilistic operative curves account for the major source of uncertainties and 580 

provide a more reliable decision-making tool for coastal flood hazard mapping.  581 

The operative hydrogeomorphic threshold classifiers proposed for real-time coastal flood hazard 582 

mapping can be used as an alternative tool for the rapid estimation of hazardous areas. In the 583 

operational mode, the water level forecasts provided by the NWS can be used to estimate the return 584 

period of an upcoming coastal flood event. the Sea, Lake, and Overland Surges from Hurricanes 585 

(SLOSH) model (Jelesnianski et al., 1984) is the storm surge model currently used by NWS to 586 

perform storm surge forecasting and create probabilistic flood inundation maps for real-time 587 

tropical storms (Sea, Lake, and Overland Surges from Hurricanes (SLOSH), 2022). The feature of 588 

SLOSH that makes it the preferred model of the NWS for storm surge forecasting and mapping is 589 

the model’s computational efficiency that allows the model to be ruan as an ensemble (Forbes et 590 

al., 2014). However, SLOSH is just one of several modeling options for storm surge modeling and 591 

mapping, each possessing strengths and weaknesses associated with their simulations. The 592 



inclusion of additional models that can create flood maps of storm surges for a given event should 593 

provide an enhanced understanding of the uncertainty of inundation at a given location (Teng et 594 

al., 2015). However, the higher computational burden of alternative models, such as Delft3D-FM, 595 

tend to preclude their use in real-time operations and certainly, their use in generating an ensemble 596 

necessary for probabilistic flood maps. The methodology we propose in this manuscript may offer 597 

the NWS and other agencies a means to utilize alternatives to SLOSH for flood inundation 598 

mapping and probabilistic flood inundation mapping on U.S. coastlines.  Models such as Delft3D-599 

FM can generate reference maps to train the binary classifier and build the probabilistic operating 600 

curves. Using the proposed operative curves, the hydrogeomorphic threshold is determined and t 601 

The probabilistic operative curves would account for the major source of uncertainties and provide 602 

a computationally efficient and reliable decision-making tool for coastal planners and floodplain 603 

managers. The operative hydrogeomorphic threshold classifiers proposed for real-time coastal 604 

flood hazard mapping can be used as an alternative tool for the rapid estimation of hazardous areas 605 

during real-time flood events. In an operational mode, water level or meteorological forecasts can 606 

be used to estimate the return period of an upcoming coastal flood event and the methodology here 607 

can utilize this as an input to perform LCFM flood inundation mapping both deterministically and 608 

probabilistically.  609 

he flood hazard map is generated. The Sea, Lake, and Overland Surges from Hurricanes (SLOSH) 610 

model is an LCFM tool currently used by NWS to estimate probabilistic storm surge forecasts. 611 

The flood inundation maps generated by this model are the results of overlaying storm surge 612 

forecast with DEM. The model doesn’t consider the streamflow network and riverine flood 613 

mechanisms. On the other hand, our proposed hydrogeomorphic index uses both streamflow 614 

network and DEM to provide a more detailed representation of the flooding in coastal areas. 615 



Another LCFM approach is to train machine learning algorithms on reference inundation maps 616 

provided by well-calibrated hydrodynamic models (Bass and Bedient, 2018). A benchmark study 617 

that compares the performance (accuracy and efficiency) of three two LCFM methods, including 618 

our proposed DEM-based hydrogeomorphic classifier, and the surrogate machine learning-based 619 

algorithm, and the SLOSH model is highly recommended for future studies.  620 

The probabilistic operative curves account for the major source of uncertainties and provide a more 621 

reliable decision-making tool for coastal flood hazard mapping. The operative hydrogeomorphic 622 

threshold classifiers proposed for real-time coastal flood hazard mapping can be used as an 623 

alternative tool for the rapid estimation of hazardous areas. In the operational mode, the water level 624 

forecasts provided by the NWS can be used to estimate the return period of an upcoming coastal 625 

flood event. 626 

6. Summary and Conclusions 627 

In this study, we proposed binary classifiers for efficient flood hazard mapping in deltas and 628 

estuaries. The HAND, typically used for modeling inland floodingfloods, is modified for flat 629 

regions along the coastline, and a new hydrogeomorphic index (𝐼𝐻𝐷) that comprises both HAND 630 

and distance to nearest drainage was developed. The DEM used as the base of these binary 631 

classifiers is a 3 m Lidar that includes bathymetric information. This is another improvement 632 

compared to previous DEM-based classifiers that commonly used 10-30 m DEMs without 633 

bathymetric data. The 𝐼𝐻𝐷  index has two unknown weights that show the contribution of both 634 

HAND and feature D. We simulated Hurricane Matthew with the Delft3D-FM model and used the 635 

results as a reference flood hazard map to calibrate the 𝐼𝐻𝐷 index. Using Delft3D-FM again, we 636 

generated six flood hazard maps corresponding to different return periods and employed these 637 

maps as a reference to generate the hydrogeomorphic threshold operative curves. Finally, we 638 



validated the proposed operative curves for reliable and efficient flood hazard mapping by 639 

comparing the flood hazard maps generated for Hurricane Irma with the proposed curves and the 640 

Delft3D-FM model. The high accuracy of validation results (<0.2 error) together with the rapid 641 

fashioncomputational efficiency of this approach for real-time flood hazard mapping suggests the 642 

proposed operative curves as a practical decision-making tool for on-time and reliable estimation 643 

of hazard areas in estuaries.  644 
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Supplementary Material 663 



 664 

Figure S1. Calibration and validation of the Savannah Delft3D-FM model. Time series of 665 

simulated and observed WLs at (a, b) Port Wentworth and (c, d) Savannah River at USACE dock. 666 

Top and bottom panel show times series of Hurricane Matthew and Irma, respectively. Note that 667 



the model can simulate water level variability, and so fill the data gaps observed during the 668 

Hurricanes. 669 
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