
The paper is interesting and presents a useful methodology for coastal flood modeling. The 

validation against a hydrodynamic model is OK but a bit questionable; this should be done 

against historical flood maps. A few assumptions should be also clarified. Limitations, 

uncertainties and implications need to be further discussed. I have recommended several 

edits and some comments in the PDF. Here are some additional comments: 

Response: Thank you for the detailed review and the constructive comments.  

Please provide more information on the study catchment, particularly those that affect your 
model results. This includes computational area, soil type, channels’ size, ground slope, 
land use etc. 

Response: We have included additional information in the revised manuscript regarding the 

study catchment (Section 2; Lines 148-159) and model domain (Section 3.1.1; Line 237). In 

short,  the average slope, length, and annual discharge of the Savannah River are 0.00011 

m/m, 505 km, and 320 m3/s, respectively. Also, the river bathymetry was deepened up to 12 

m for increasing the capacity of cargo transportation according to the U.S. Army Corps of 

Engineers. The model domain comprises an area of 1178 km2 approximately. 

Section 2: Present the source of drainage network data. Also, how detailed does that 
represent the drainage network? 

Response: Drainage network data including river streams, tidal channels, and creeks within 

wetland areas can be obtained from the U.S. National Wetlands Inventory 

(https://www.fws.gov/wetlands/data/Mapper.html). These publicly available data are 

continoulsy updated by the U.S. Fish and Wildlife Service (FWS) and are derived from 

multiple data sources including satellite imagery and aerial photos of 1 m (or less) digital color 

infrared imagery. We included this information in Section 2 (Lines 157-159). 

The verification of the approach against flood maps generated by a hydrodynamic model is 

questionable. How well is the model calibrated? For what historical events (how 

large/intense), it has been calibrated? Also, why not using satellite imagery like Dartmouth 

Flood Observatory? 

Response: The primary goal of this manuscript is to propose a low complexity flood mapping 

(LCFM) method whose accuracy is comparable with a computationally expensive 

hydrodynamic model. Therefore, we compare our results with a hydrodynamic model to 

assess if our method can be a proper replacement of these models. This is the idea of 

proposing surrogate models that mimic the performance of complex physically-based models. 

A similar approach has been presented recently where surrogate machine learning methods 

are trained and validated against a well-calibrated hydrodynamic model. The hydrodynamic 

model has been calibrated for both non-extreme events and two major Hurricanes in the 

region, namely Hurricanes Matthew and Irma. Please see details of the calibration in Figure 

4 and lines 371-389 in the revised manuscript.  

Using satellite imagery has major limitations. 1) These maps are rarely available for the peak 

date of a flood event while we are looking for the maximum flood hazard maps. 2) These 

maps only provide the extent of flooding (HDC=0) while we need floodwater depths to 

https://www.fws.gov/wetlands/data/Mapper.html


generate flood hazard maps for different levels of HDCs. For example, here we validate for 

both HDC=0 and HDC=0.6 m. 3. Daily satellite data, such as Dartmouth Flood Observatory 

uses coarse-scale satellite imagery, such as MODIS with 250-500 m spatial resolution that is 

not appropriate for validation. We need a much finer scale (<30 m) for validating our maps. 

Please discuss the properties of the high-performance computing system that was used for 
simulations (Section 3.1.2). 

Response: We used available computational resources of the University of Alabama (UA) 

for running model simulations in parallel. The UAHPC is a 87 node (1660 core) cluster 

featuring Dell PowerEdge M610s, M620s, and M630s. The nodes contain two Intel 8-Core 

E5-2650, E5-2640v2, or 10-core E5-2640v3 processors and at least 64GB of RAM per node. 

More information of UAHPC can be accessed in the following link: 

https://oit.ua.edu/services/research/. Nevertheles, we consider this information only relevant 

for the reviewer.     

More details on the LHS application are needed. How was it informed by Hurricane Matthew 
peak WLs? What parameters were considered as uncertain? What probability distributions 
were used and how were they characterized?  

Response: The Latin Hypercube Sampling (LHS) technique was used to sample 200 sets of 

roughness (n) values for model calibration. We considered a 7-day window around peak 

water levels (e.g., peak surge of Hurricane Matthew) to evaluate the model’s performance. In 

that way, we identify the optimal combination of n-values (among the 200 model simulations) 

that accurately represent both non-extreme (low water) and extreme WLs. For simplicity, we 

only considered n-values as uncertain parameters and assumed that any errors follow a 

Gaussian distribution as discussed in Helton and Davis (2003). The advantage of LHS over 

traditional Monte Carlo approaches is that the former results in a denser stratification over 

the range of each sampled parameter as compared to random sampling. Hence, LHS leads 

to more stable results that are closer to the true probability density function (PDF) of the 

parameter. We included this information in Section 3.1.2 (Lines 251-254). 

Please discuss how the performance of model was graded based on the fit metrics (RMSE, 
AUC and R2). You may refer to Moriasi et al. (2015) and Ahmadisharaf et al. (2019) for 
streamflow predictions via R2 or others for flood simulations. Neither RMSE nor R2 measure 
bias. Metrics like PBIAS need to be used along to measure the model performance.  

Response:  We have included additional metrics to evaluate model’s performance more 

rigorously: Kling-Gupta Efficiency (KGE), and Nash-Sutcliffe Efficiency (NSE). In addition, we 

have replaced R2 by mean absolute bias (MAB). NSE measures the relative magnitude of the 

error variance of model simulations compared to the variance of observational data (Nash 

and Sutcliffe, 1970). NSE ranges between -∞ to 1, where an efficiency of 1 indicates a perfect 

match between simulated and observed WLs. Kling-Gupta efficiency (KGE) is a robust 

evaluation metric that accounts for correlation, bias, and ratio of variances (Gupta et al., 

2009). KGE can take values between -∞ and 1, where an efficiency of 1 indicates a perfect 

match. Mean absolute bias (MAB) quantifies the bias of model simulations with respect to 

observational data. MAB of 0 suggests an absence of bias in the simulations. This information 

https://oit.ua.edu/services/research/


and further discussion of model results are included in Section 3.1.2 (Lines 260-268) and 

Section 4 (Lines 358-360), respectively. 

Please define what ‘error’ exactly is in the model evaluations under the Results section. 

Response: Error is the summation of rate of false positives and rate of false negatives in 

binary classification problems. We have defined this metric in Equation 5 and lines 340-344 

in the revised manuscript as follows: 

“In binary classification, positive and negative refer to a value of one and zero, respectively. 

True positive instances are those positive cells that are correctly predicted by the classifier 

and false positive instances represent those negative cells that are wrongly classified as 

positive. The error, reflecting all cells that are wrongly predicted by the classifier, is a 

commonly-used measure for validating the performance of binary classifiers for flood hazard 

mapping. “  

Please discuss what probability distributions exist in the MATLAB allfitdist tool. 

Response: ‘allfitdist’ tool includes the following parametric probability distributions: 

Continuous: Beta, Birnbaum-Saunders, Exponential, Extreme value, Gamma, Generalized 

extreme value, Generalized Pareto, Inverse Gaussian, Logistic, Log-logistic, Lognormal, 

Nakagami, Normal, Rayleigh, Rician, t location-scale, and Weibull. 

Discrete: Binomial, Negative binomial, and Poisson. We believe this information is not 

relevant for the main goal of this study. 

The underlying assumption of a univariate flood frequency analysis is that a peak WL with a 
given return period leads to a flood event with the same return period. However, studies 
(e.g., Brunner et al. 2016) have shown that a combination of peak flow and other attributes 
like volume may lead to a different return period. This limitation should be at least 
acknowledged in the paper. 

Response: Thank you for the great suggestion. We discussed this limitation and added an 

appropriate reference. Please refer to lines 550-553 in the revised manuscript.  

Further details are needed on how TH and HDC are derived. As of now, it appears that they 
are subjectively derived. 

Response: TH is the threshold of the hydrogeomorphic classifier that should be calibrated 
by optimizing the error measure calculated from the comparison of reference and simulated 
maps. Therefore, this variable is derived from optimization results and is not derived from 
subjective decisions. HDC, however, is the hazard depth cutoff that converts the continuous 
flood depth map to a binary flood hazard map. This is a control variable that the decision 
maker (emergency responder) should pick from. We use 21 HDC resulting from 0.1 
increments in the range of 0-2 m and show the results (TH) for all these HDCs. This 
provides 21 points for generating a smooth curve (Figure 7) so that the decision-maker can 
simply use this curve and pick the required TH according to different values of HDCs. 
Please refer to lines 347-365 in the revised manuscript.  



MAB has been reported in the Results section but not in the Methods section. Please either 
remove it from the Results section or discuss it in the Methods section. 

Response: We have included a description of MAB in the revised manuscript (Section 3.1.2, 

Lines 249-257). 

There should be a plot on calibrating w1 and w2 coefficients (for the H and D variables). 

Response: Yes, we already included this plot in the manuscript. Please see Figure 6b 
where we show how calibrated w1 and w2 values change for different HDCs. The higher 
weight of w1 compared to w2 shows that feature H is more important than feature D.  

L429-432: Reasons for this poor performance need to be discussed in the Discussion 
Section. 

Response: We added more text that explains the potential reasons for the discrepancies 

between the hydrogeomorphic method and hydrodynamic model results. Please refer to lines 

431-436 in the revised manuscript as follows: 

“The main discrepancies are some noisy scattered low-hazard areas located in the east and 

southeast of the study area. These areas can reflect the flooded surface depressions (sinks) resulting 

from the pluvial impacts of extreme precipitation. Hydrodynamic models simulate the fluvial and 

coastal processes that occur adjacent to rivers and oceans while disregarding the pluvial impacts.   

The red circle in the left part of the figures shows a region that the hydrogeomorphic method 

cannot properly simulate, especially for higher HDCs. This can be due to the inability of the 

hydrogeomorphic method to properly simulate physical processes.” 

The comparison of computational time against the hydrodynamic model is unclear to me. 
Did you compare your static model against an unsteady Delft3D-FM or the steady-state? 
The runtime of an unsteady hydrodynamic model should not be very long; therefore, this 
advantage of your presented model is not as strong as it is presented. 

Response: The Delft3d-FM simulates the flood in an unsteady condition. Due to the high 

nonlinearity and complexity of extreme floods, flood modeling in a steady state is highly 

erroneous. The runtime of a hydrodynamic model depends on the scale of the study area, 

and the number of grid cells. For a fine scale simulation (<10 m) performed for medium-large 

scale problems (> 1000 km2), the computational time of hydrodynamic models can take a few 

days. The main goal of using LCFM methods is to reduce the computational time while 

providing acceptable accuracy (improve the efficiency of modeling). For emergency 

responders, timing is the most important factor, thus having access to more efficient models 

that estimate the hazardous areas in order of minutes is significantly beneficial. 

Broader impacts need to be discussed. The authors should discuss what implications these 
results have for coastal planners and floodplain managers etc. and what existing programs 
in the US (e.g., FEMA FIRMs) may benefit from this research.  



Response: The Discussion section already touches on this topic a bit. We have 
expanded this discussion on the implications for coastal planners, floodplain managers, 
and existing U.S. programs (e.g., the NWS) in the Discussion section. (Lines 570-599) 

“Operationally, the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model 

(Jelesnianski et al., 1984) is the storm surge model currently used by NWS to perform 

storm surge forecasting and create probabilistic flood inundation maps for real-time 

tropical storms (Sea, Lake, and Overland Surges from Hurricanes (SLOSH), 2022). The 

feature of SLOSH that makes it the preferred model of the NWS for storm surge 

forecasting and mapping is the model’s computational efficiency that allows the model to 

be run as an ensemble (Forbes et al., 2014). However, SLOSH is just one of several 

modeling options for storm surge modeling and mapping, each possessing strengths and 

weaknesses associated with their simulations. The inclusion of additional models that can 

create flood maps of storm surge for a given event should provide an enhanced 

understanding of the uncertainty of inundation at a given location (Teng et al., 2015). 

However, the higher computational burden of alternative models, such as Delft3D-FM, 

tend to preclude their use in real-time operations and certainly, their use in generating an 

ensemble necessary for probabilistic flood maps. The methodology we propose in this 

manuscript may offer the NWS and other agencies a means to utilize alternatives to 

SLOSH for flood inundation mapping and probabilistic flood inundation mapping on U.S. 

coastlines.  Models such as Delft3D-FM can generate reference maps to train the binary 

classifer and build the probabilistic operating curves.  The probabilistic operative curves 

would account for the major source of uncertainties and provide a computationally 

efficient and reliable decision-making tool for coastal planners and floodplain managers. 

The operative hydrogeomorphic threshold classifiers proposed for real-time coastal flood 

hazard mapping can be used as an alternative tool for the rapid estimation of hazardous 

areas during real-time flood events. In an operational mode, water level or meteorological 

forecasts can be used to estimate the return period of an upcoming coastal flood event 

and the methodology here can utilize this as an input to perform LCFM flood inundation 

mapping both deterministically and probabilistically.” 

Study limitations and potential areas for future research need to be expanded. 

Response: We have already included three areas of research for future studies. To expand 
this, we added more text explaining the study limitations and potential areas for future 
research. Please refer to lines 511-519 in the revised manuscript.  

“The proposed hydrogeomorphic index (𝐼𝐻𝐷) is the primary data for flood hazard mapping in 
this study. Thus, the quality of two main inputs of this index, namely the DEM and stream 
network used to calculate features H and D play a vital role in the overall accuracy of the 
proposed approach. To obtain maximum accuracy, here we used the best available DEM with 
the finest spatial resolution of 3 m that includes the bathymetry data. However, considering 
the limited access to such high-quality DEMs in many areas of the world, it is recommended 
to evaluate the sensitivity of the proposed approach to lower quality DEMs (e.g. 30 m and 90 



m DEMs without bathymetry information) in future studies. Another piece of research can 
investigate the sensitivity of the proposed approach to the density of the drainage network 
used for calculating the 𝐼𝐻𝐷 index.” 

In general here are the areas of research we recommended for future studies: 

1. Sensitivity of the hydrogeomorphic index to DEM quality and stream network density 
(Lines 511-519) 

2. Applying the proposed hydrogeomorphic operative curves to inland floods and to 
other deltas across the US.  (Lines 536-540) 

3. Improve the flood frequency analysis, considering its uncertainties, incorporating 
other sources of uncertainties in the modeling to generate probabilistic operative 
curves (Lines 550-558) 

4. A benchmark study that compares the performance of three LCFM methods (Lines 
607-610) 

Sources of uncertainty and how they may affect your findings need to be discussed. 

Response: This has been thoroughly addressed in the discussion section. Please refer to 
lines 549-569 in the revised manuscript.  

“The reference maps used for training the binary classifier are key components for generating 
reliable results. Since these reference maps are the outcomes of hydrodynamic modeling, 
they are prone to uncertainties stemming from unrealistic parametrization, imperfect model 
structure, and erroneous forcing. The design floods used as boundary conditions of the 
hydrodynamic model are estimated from flood frequency analysis that is prone to uncertainty 
as well. Here we used a bivariate approach that estimates the design flood based on the 
water level data. A more comprehensive flood frequency analysis that accounts for other flood 
attributes, such as volume can improve the reliability of flood frequency analysis in future 
studies (Brunner et al., 2016).  With access to less than 100 years of data for flood frequency 
analysis, the extreme return levels (i.e. 500- and 1000-year floods) pose high uncertainties 
due to the extrapolation of annual maxima data. This should warn decision-makers to be more 
cautious about using operative curves for extreme flood events. For future studies, the 
uncertainty bounds of flood frequency analysis (especially extrapolations for extreme cases) 
can be considered in the modeling. In a real-time scenario, the forecasted WL used for flood 
frequency analysis is also prone to uncertainties originating from imperfect forecasting 
methods and nonstationary climate data. In addition, the uncertainty of model parametrization 
can be accounted for by running the hydrodynamic model for different combinations of 
optimum parameters. Model structure uncertainty can be also considered by using different 
hydrodynamic models and combining the results. Finally, probabilistic reference maps 
together with uncertainties involved in WL forecasting and flood frequency analysis can be 
integrated to develop probabilistic hydrogeomorphic threshold operative curves in future 
studies.  This is in line with the report provided for the NOAA National Weather Service 
(NWS), showing the NWS stakeholder's preference for utilizing probabilistic storm surge 
inundation maps (Eastern Research Group, Inc, 2013).” 



Please discuss how your presented modeling framework can be used in other study areas. 
What considerations should be taken to do so? Guidelines should be provided in the 
Discussion section. 

Response: We added the following texts to address this concern of the reviewer. Please 
refer to lines 540-545 in the revised manuscript.  

“To implement this approach, first, a hydrodynamic model should be set up for the new 
study area and generate reference inundation maps for different return periods. Access to 
observed water level data (gauges or HWMs) and flood extent maps from past floods is 
required to properly calibrate the hydrodynamic model. Then the 𝐼𝐻𝐷 index calculated from a 
DEM is utilized together with the reference maps to provide the hydrogeomorphic threshold 
operative curves for future floods.” 

Please spell out all the abbreviations in the headings, figures and tables. These need to 
stand alone. 

Response: Done. 

Please italicize all variables/parameters in the text. 

Response: Done. 


