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Abstract 32 

In steep wildfire-burned terrains, intense rainfall can produce large volumes of runoff that can 33 

trigger highly destructive debris flows. TheHowever, the ability to accurately characterize and 34 

forecast debris-flow hazardssusceptibility in burned terrains, however, using physics-based tools 35 

remains limited. Here, we augment the Weather Research and Forecasting Hydrological modeling 36 

system (WRF-Hydro) to simulate both overland and channelized flows and assess postfire debris- 37 

flow hazardssusceptibility over a regional domain. We perform hindcast simulations using high-38 

resolution weather radar-derived precipitation and reanalysis data to drive non-burned baseline 39 

and burn scar sensitivity experiments. Our simulations focus on January 2021 when an 40 

atmospheric river triggered numerous debris flows within a wildfire burn scar in Big Sur – one of 41 

which destroyed California’s famous Highway 1. Compared to the baseline, our burn scar 42 

simulation yields dramatic increases in total and peak discharge, and shorter lags between rainfall 43 

onset and peak discharge. At Rat Creek, where Highway 1 was destroyed, discharge volume 44 

increases eight-fold and peak discharge triples relative to the baseline. , consistent with streamflow 45 

observations at nearby U.S. Geological Survey (USGS) streamflow gage sites. For allthe 404 46 

catchments withinlocated in the simulated burn scar, we find that the area, median catchment-area 47 

normalized discharge volume increases nine-fold after incorporating burn scar characteristics, 48 

while the 95th percentile volume increases 13-fold. compared to the baseline. Catchments with 49 

anomalously high hazard levelscatchment-area normalized discharge volumes correspond well 50 

with post-event field-based and remotely-sensed debris flow observations. Our results demonstrate 51 

thatWe suggest that our regional post-fire debris flow susceptibility analysis demonstrates WRF-52 

Hydro providesas a compelling new physics-based tool whose utility could be further extended 53 

via coupling to investigatesediment erosion and potentially forecast postfiretransport models 54 

and/or ensemble-based operational weather forecasts. Given the high-fidelity performance of our 55 

augmented version of WRF-Hydro, as well as its potential usage in probabilistic hazard forecasts, 56 

we argue for its continued development and application in post-fire hydrologic hazards at regional 57 

scales.and natural hazard assessments.   58 

 59 

Short Summary 60 

In January 2021 a storm triggered numerous debris flows in a wildfire burn scar, California. We 61 

use a hydrologic model to assess debris flow susceptibility in pre-fire and postfire scenarios. 62 

Compared to pre-fire conditions, postfire simulation yields dramatic increases in total and peak 63 

discharge, substantially increasing debris flow susceptibility. Our work proves the 3-D hydrologic 64 

models' utility to investigate and potentially forecast postfire debris flow susceptibility at regional 65 

scales.In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in 66 

California. We use a hydrologic model to assess debris flow hazards in pre-fire and postfire 67 

scenarios. Compared to pre-fire conditions, the postfire simulation yields dramatic increases in 68 
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total and peak discharge, substantially increasing debris flow hazards. Our work demonstrates the 69 

utility of 3-D hydrologic models for investigating and potentially forecasting postfire debris flow 70 

hazards at regional scales.   71 

 72 

1 Introduction 73 

Following intense rainfall, areas with wildfire burn scars are more prone to flash flooding (Neary 74 

et al., 2003; Bart & Hope 2010; Bart 2016) and runoff-generated debris flow hazardsflows than 75 

unburned areas (Moody et al., 2013; Ice et al., 2004; Shakesby & Doerr, 2006; Moody et al., 2013). 76 

After wildfire, reduced tree canopy interception, decreased soil infiltration due to soil-sealing 77 

effects (Larsen et al., 2009), and increased soil water repellency – especially in hyper-arid 78 

environments (Dekker and& Ritsema, 1994; Doerr and& Thomas, 2000; MacDonald and& 79 

Huffman, 2004) – increases excess surface water, and on sloped terrains leads to overland flow 80 

(Shakesby & Doerr, 2006; Stoof et al., 2012). As water moves down hillslopes and erosion adds 81 

sediment to water-dominated flows, clear water floods can transition to turbulent and potentially 82 

destructive debris flows (Meyer & Wells, 1997; Cannon et al., 2001, 2003; Santi et al., 2008). In 83 

contrast to debris flows initiated by shallow landslides, this rainfall-runoff process has been 84 

identified as the major cause for postfire debris flows in the western U.S. (Cannon, 2001; Cannon 85 

et al., 2003, 2008; Kean et al., 2011; Nyman et al., 2015; Parise & Cannon, 2012; Nyman et al., 86 

2015), and in other regions with Mediterranean climates (Bisson et al., 2005; Mitsopoulos & 87 

Mironidis, 2006; BissonRosso et al., 20052007; Parise & Cannon, 2008, 2009; Rosso et al., 2007). 88 

In California, because climate change is projected to increase the intensity and frequency of wet-89 

season precipitation (Swain et al., 2018; Polade et al., 2017; Swain et al., 2018), increase wildfire 90 

potential (Swain, 2021; Brown et al., 2020; Swain, 2021), and extend the wildfire season (Goss et 91 

al., 2020), occurrence and intensity of postfire debris flows are likely to increase (Cannon et al.,& 92 

DeGraff, 2009; Kean & Staley, 2021; Oakley, 2021).  93 

ToDue to this increasing threat, the development of tools to assess postfire debris flow 94 

susceptibility and hazards is critical. However, due to long-standing terminology ambiguity in the 95 

natural hazard community (Reichenbach et al., 2018), we first begin with a definition of terms. In 96 

this study we demonstrate the use of a new physics-based tool to map postfire debris flow 97 

susceptibility at regional scales. We follow the guidance of [Reichenbach et al., (2018) & 98 

references therein] and define susceptibility as the likelihood of debris flow occurrence in an area, 99 

and hazard as the probability of debris flow occurrence of a given magnitude within a specified 100 

area and period of time. In other words, debris flow susceptibility does not estimate debris flow 101 

size or consider the timing or frequency of the debris flow occurrence. Rather, it focuses on 102 

locating areas prone to debris flows considering local environmental factors (Brabb 1985; Guzzetti 103 

et al., 2005).  104 

Heuristic, deterministic, statistical approaches including empirical, and coupled deterministic and 105 

statistical models and machine-learning techniques are have previously been employed to assess 106 
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landslide susceptibility (Dahal et al., 2008; Regmi et al., 2010; Park et al., 2016; Reichenbach et 107 

al., 2018). For postfire debris flow susceptibility or hazard assessment, however, the use of 108 

deterministic models is limited. In contrast, statistical approaches are commonly used in both 109 

research and operational settings (Cannon et al., 2010; Friedel 2011a, 2011b; Gardner et al., 2014; 110 

Cannon et al., 2010; Staley et al., 2016; Cui et al., 2019; Nikolopoulos et al., 2018; Friedel 2011a, 111 

2011b). Statistical approaches are useful for identifying and characterizing relationships amongst 112 

contributing environmental factors and are helpful in operational settings due to low computational 113 

costs and the potential for rapid assessment.2018; Cui et al., 2019). For example, rainfall intensity-114 

duration (ID) thresholds are one of the simplest-to-implement and most widely used statistical 115 

methods for mapping rainfall-induced landslide susceptibility including postfire debris flows 116 

(Cannon et al., 2011; Staley et al., 2017). In addition, the U.S. Geological Survey (USGS) currently 117 

employs a statistical approach in their Emergency Assessment of Postfire Debris-flow Hazards 118 

that consists of a logistic regression model to predict the likelihood of post-wildfire debris flows 119 

(e.g., Cannon et al., 2010; Staley et al., 2016; Cannon et al., 2010), and a multiple linear regression 120 

model to predict debris flow volumes (Gartner et al., 2014). Machine-learning techniques such as 121 

self-organizing maps, genetic programming, and a random forest algorithm have also been used to 122 

predict postfire debris flows in the western U.S. (Friedel 2011a, 2011b; Nikolopoulos et al., 2018; 123 

Friedel 2011a, 2011b). For example, self-organizing maps and genetic programming were). In 124 

general, statistical approaches are useful for identifying and characterizing relationships amongst 125 

contributing environmental factors and are widely used due to predict postfire debris flow 126 

occurrence (Friedel 2011b) and volumes (Friedel 2011a), respectively. Compared to their low 127 

computational costs and the current USGS predictive models, genetic programming was posited 128 

to be more useful in solving non-linear multivariate problems (Friedel 2011a), while a random 129 

forest algorithm demonstrated increased performance in predicting postfire debris flow occurrence 130 

(Nikolopoulos et al., 2018).potential for rapid assessment. Despite the utility and advantages of 131 

data-driven hazard prediction approaches over regional domains, these techniques (1) do not 132 

simulate the underlying physics, which limits(2) often require large amount of historical 133 

observation data that may not be readily available, and (3) result in models that are often only 134 

applicable to specific locales. These limitations inhibit their utility in developing a better process-135 

based understanding of debris flow mechanics, limitslimit their applicability in climatological and 136 

geographic settings different than their training sites, and limitslimit their use in non-stationary 137 

conditions (e.g., under changing climatic conditions).  138 

In contrast, physics-based models that simulate spatially-explicit hydrologic and mass wastage 139 

processes are well-suited for mechanistic sensitivity analyses in diverse settings, but applications 140 

of these. However, studies employing deterministic process-based models have tended to focus on 141 

modeling rainfall-induced shallow landslides (Crosta & Frattini, 2003; Claessens et al., 2007) or 142 

landslide-induced debris flows (e.g., Iverson & George, 2014; George & Iverson, 2014), rather 143 

than on runoff-generated debris flows which are more common in postfire areas (Cannon et al., 144 

2001, 2003; Santi et al., 2008). Studies that have investigated postfire hydrologic responses using 145 

processphysics-based models have largely focused on short-term responses in individual 146 
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catchments at high spatiotemporal resolutions (Rengers et al., 2016; McGuire et al., 2016, 2017; 147 

Rengers et al., 2016) or long-term runoff responses at coarse temporal resolutions (Rulli & Rosso, 148 

2007; McMichael & Hope, 2007).; Rulli & Rosso, 2007) in individual catchments rather than 149 

assessing susceptibility over regional domains. For example, process-based models have employed 150 

shallow water equations to understand the triggering and transport mechanisms of postfire debris 151 

flows in single catchments (McGuire et al., 2016, 2017) and to investigate the timing of postfire 152 

debris flows in three separate catchments (Rengers et al., 2016), the latter of which also assessed 153 

the efficacy of a simplified kinematic wave approach. In addition to individual catchment 154 

applications, process-based models often adopt simplifications that can limit effective prediction 155 

and hypothesis testing to overcome computational limits. For example, the kinematic runoff and 156 

erosion model (KINEROS2) simplifies drainage basins into 1-dimensional channels and hillslope 157 

patches (Canfield & Goodrich,et al., 2005; Goodrich et al., 2012; Sidman et al., 20152016), and 158 

the Hydrologic Modeling System (HEC-HMS) uses an empirically-based curve number method 159 

to estimate saturation excess water (Cydzik et al., 2009), which cannot resolve infiltration excess 160 

overland flow, a critical process in burn scars (Chen et al., 2013).  161 

Given the current state of debris flow hazardsusceptibility assessment and prediction in previously 162 

burned terrains, in addition to the growing influence of anthropogenic climate change on wildfire 163 

and extreme precipitation, development of physics-based hazard assessmentsusceptibility 164 

mapping tools that can be used in both hindcast investigations and forecasting applications is 165 

needed. Furthermore, due to the diverse morphology and often large spatial scales of precipitation 166 

events and their interactioninteractions with geographically distributed wildfire burn scars, 167 

development of tools that can assess hazardssusceptibility over regional domains, particularly in 168 

operational forecasting applications, is critical. Here, to advance the field of burn scar debris flow 169 

hazardsusceptibility assessment, we explore the use of the physics-based and fully-distributed 170 

Weather Research and Forecasting Hydrological modeling system version 5.1.1 (WRF-Hydro). 171 

WRF-Hydro is an open-source community model developed by the National Center for 172 

Atmospheric Research (NCAR). It is the core of the National Oceanic and Atmospheric 173 

Administration’s (NOAA) National Water Model forecasting system, and has been used 174 

extensively to study channelized flows over regional domains (e.g., Wang et al., 2019; Lahmers et 175 

al., 2020; Wang et al., 2019). Here, we modify WRF-Hydro to output high temporal resolution 176 

fine-scale (100 m) debris flow-relevant overland flow; a process computed using a fully unsteady, 177 

explicit, finite difference diffusive wave formulation. Previous efforts, employing shallow water 178 

equations, diffusive, kinematic, and diffusive-kinematic wave models, have demonstrated that 179 

water-only models can provide critical insights on runoff-driven debris flow behavior (Arattano & 180 

Savage, 1994; McGuire & Youberg, 2020; Arratano & Franzi, 2010; Di Cristo et al., 2021), even 181 

in burned watersheds (Rengers et al., 2016; McGuire & Youberg, 2020).  182 

To test and demonstrate the utility of WRF-Hydro in debris flow studies, we investigate the 183 

January 2021 debris flow events within the Dolan burn scar on the Big Sur coast of central 184 

California (Fig. 1a–b). We first identify multiple debris flow sites using optical and radar remote 185 

sensing data and field investigations. We then calibrate WRF-Hydro against ground-based soil 186 
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moisture and streamflow observations and use it to study the effects of burn scars on debris flow 187 

hydrology and changes in hazard potential.susceptibility. The paper is organized as follows. 188 

Section 2 describes our debris flowthe identification approach and historical contextgeologic 189 

setting of debris flows. Section 3 presents a description of WRF-Hydro. Section 4 describes the 190 

simulation, calibration, and validation of WRF-Hydro. Section 5 presents the results. Section 6 191 

discusses the results and Sect. 7 provides a conclusion.192 

 193 
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 194 

Fig. 1| WRF-Hydro model domain and Dolan burn scar. (a) WRF-Hydro model domain depicting 195 

topography, 2020 wildfire season burn scars, and PSL soil moisture and USGS stream gage 196 

observing sites. The black rectangle outlines (b) the Dolan burn scar inset, in which debris flow 197 

locations and major streams are marked and labeled. The location of the study area is shown in the 198 

embedded U.S. map with the state of California shaded in grey. 199 

 200 

 201 

2 Study domain and debris flow identification methodology 202 

The Dolan wildfire burned from August 18th till December 31st, 2020. 55% of areas within the fire 203 

perimeter were burned at moderate-to-high severity (Burned Area Emergency Response, 2020). 204 

After the fire, USGS Emergency Assessment of Postfire Debris-flow Hazards produced a debris 205 

flow hazard assessment using a design storm based statistical model (USGS, 2020). On January 206 

27–29, 2021, an atmospheric river (AR) made landfall on the Big Sur coast, bringing more than 207 

300 mm of rainfall to California’s Coast Ranges (Fig. 2), with a peak rainfall rate of 24 mm h-1. 208 

During the AR event, a section of California State Highway 1 (CA1) at Rat Creek was destroyed 209 

by a debris flow. CA1 was subsequently closed for three months and rebuilt at a cost of ~$11.5M 210 

(Los Angeles Times, 2021).  211 

 212 
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213 

 214 

 215 

Fig. 2| The topography (shading; m) and MRMS accumulated precipitation (contour lines; mm) 216 

during the AR event from January 27th 00:00 to 29th 23:00 in the Dolan burn scar. Contour line 217 

interval for accumulated precipitation is 20 mm, and lines of 100, 140, 180, 220, 260, and 300 mm 218 

are labeled. The red polygon outlines the perimeter of the Dolan burn scar. 219 
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 220 

 221 

2.1 Debris flow identification from remote sensing and field work 222 

In addition to the Rat Creek debris flow, which made national news (Los Angeles Times, 2021), 223 

we identified three other debris flows using a combination of field investigation, and open access 224 

satellite optical and synthetic aperture radar (SAR) images (Fig. 3 and Fig. B1).  225 

We examined relative differences in normalized difference vegetation index (rdNDVI) defined by 226 

(Scheip & Wegmann, 2021): 227 

𝑟𝑑𝑁𝐷𝑉𝐼 =
𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡−𝑁𝐷𝑉𝐼𝑝𝑟𝑒

√𝑁𝐷𝑉𝐼𝑝𝑟𝑒+𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡
× 100                                             (1) 228 

where 𝑁𝐷𝑉𝐼𝑝𝑟𝑒 and 𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡 are the pre- and post-event normalized difference vegetation index 229 

(NDVI) images computed following: 230 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                                            (2) 231 

where NIR is the near-infrared response and Red is the visible red response. rdNDVI was calculated 232 

from Sentinel-2 satellite data using the HazMapper v1.0 Google Earth Engine application (Scheip 233 

& Wegmann, 2021). HazMapper requires selection of an event date, pre-event window (months), 234 

post-event window (months), max cloud cover (%) and slope threshold (°). These input 235 

requirements filter the number of images used to calculate the rdNDVI. We set the event date to 236 

27 January 27th, 2021 and used a 3 month pre- and post-event window with 0% max cloud cover 237 

and a 0° slope threshold to identify vegetation loss associated with the debris flows. We then 238 

created a binary map to highlight debris flows (and other vegetation loss) pixels above a rdNDVI 239 

vegetation loss threshold. We removed all pixels with rdNDVI > -10.  240 

Lastly, we searched for debris flows (and other ground surface deformation) by examining SAR 241 

backscatter change with data acquired by the Copernicus Sentinel-1 (S1) satellites ([see full 242 

description in Handwerger et al., in review).. (2022)]. We measured the change in SAR backscatter 243 

by using the log ratio approach, defined as  244 

𝐼𝑟𝑎𝑡𝑖𝑜 = 10 × 𝑙𝑜𝑔10(
𝜎𝑝𝑟𝑒

0

𝜎𝑝𝑜𝑠𝑡
0)                                                  (3) 245 

where 𝜎𝑝𝑟𝑒
0  is a pre-event image stack (defined as the temporal median) of SAR backscatter and 246 

𝜎𝑝𝑜𝑠𝑡
0  is a post-event image stack. Similar to the HazMapper method, our approach requires 247 

selection of an event date, pre-event window (months), post-event window (months) and slope 248 

threshold (°). No cloud-cover threshold is needed since SAR penetrates clouds.  We used a 3 month 249 

pre- and post-event window and 0° slope threshold to identify ground surface changes associated 250 

with the debris flows. We then created a binary map to highlight debris flows by removing all 251 

pixels with Iratio < 99th percentile value. [i.e., threshold suggested by Handwerger et al. (2022)].  252 Formatted: Superscript
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Identified debris flow source areas and deposition sites were confirmed by field investigation (N.J. 253 

Finnegan) and named after the locations where they deposited (i.e., Big Creek, Mill Creek, and 254 

Nacimiento). We note that there were likely more debris flows triggered during the AR event. 255 

However, given the primary goal of this study – to demonstrate the utility of WRF-Hydro – a 256 

comprehensive cataloging of debris flows is beyond this study’s scope. 257 

 258 

 259 

Fig. 3| Identified debris flow sites using rdNDVI vegetation change within the Dolan burn scar. 260 

We convert the rdNDVI data into a binary map by setting a threshold value, which yieldyields 261 

only the likely debris flow locations and drape these maps over a topographic hillshade. (a)–(d) 262 

Sentinel-2 rdNDVI vegetation change at (a) Rat Creek, (b) Mill Creek, (c) Big Creek, and (d) the 263 

Nacimiento River. 264 

 265 

2.2 Debris flow geologic setting 266 

According to the USGS National Elevation Dataset 30-m digital elevation model (DEM), the Rat 267 

Creek debris flow sits at the base of a 1st order catchment with a drainage area of 2.23 km2. Mill 268 

Creek, Big Creek, and Nacimiento debris flows were initiated within extremely steep, intensely 269 

burned, 1st order catchments, but were deposited in 2nd, 3rd, and 3rd Strahler stream order channels, 270 
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respectively. All four debris flows were channelized. Rat Creek, Mill Creek, and Big Creek debris 271 

flow deposition sites have elevations ranging from 20–60 m, while Nacimiento debris flow 272 

deposited at an elevation of ~440 m above sea level. We calculate catchment slopes using the DEM 273 

and the slope calculation function in ArcMap. The average slope of the catchments containing Rat 274 

Creek and Mill Creek debris flow deposition sites is ~25°. The average catchment slope of Big 275 

Creek deposition site is ~28° and Nacimiento is ~21°. For debris flow source areas, the average 276 

and maximum slopes of Mill Creek are 23° and 39°, 21° and 43° for Big Creek, and 24° and 41° 277 

for Nacimiento. According to the Soil Survey Geographic Database and California geologic map 278 

data, surface soils at the three coastal debris flow sites (i.e., Rat Creek, Mill Creek, and Big Creek) 279 

are texturally classified as loam with underlying Franciscan Complex sedimentary rocks of 280 

Jurassic to Cretaceous age. Soil at Nacimiento is classified as sandy loam with underlying Upper 281 

Cretaceous and Paleocene marine sedimentary rocks from the Dip Creek Formation, Asuncion 282 

Group, Shut-In Formation, Italian Flat Formation, Steve Creek Formation, and El Piojo Formation. 283 

Mill Creek, Big Creek, and Nacimiento were relatively large debris flows with runout lengths 284 

between ~2–5 km, while Rat Creek occurred in a smaller catchment and had a runout length of 285 

~300 m. The difference in runout length and debris flow size is primarily controlled by upstream 286 

catchment size, however for the three coastal debris flow events at Rat Creek, Big Creek, and Mill 287 

Creek, also constrained by the downslope ocean. We note that there were likely more debris flows 288 

triggered during the AR event. The four debris flow events highlighted here were identified during 289 

brief post-event field excursions due to their intersection with major roadways. Given that our 290 

primary goal here is to demonstrate the utility of WRF-Hydro – a comprehensive catalogue of 291 

debris flows is beyond the scope of this study, although underway by other researchers (Cavagnaro 292 

et al., 2021).  293 

3 WRF-Hydro 294 

3.1 Model description 295 

WRF-Hydro is an open-source physics-based community model that simulates land surface 296 

hydrologic processes. It includes the Noah-Multiparameterization (Noah-MP) land surface model 297 

(LSM; Niu et al., 2011), terrain routing module, channel routing module, and a conceptual 298 

baseflow bucket model. The Noah-MP LSM is a 1-dimensional column model that calculates 299 

vertical energy fluxes (i.e., sensible and latent heat, net radiation), moisture (i.e., canopy 300 

interception, infiltration, infiltration excess, deep percolation), and soil thermal and moisture states 301 

on the LSM grid (1 km in our application). The infiltration excess, ponded water depth, and soil 302 

moisture are then disaggregated using a time-step weighted method (Gochis & Chen, 2003) and 303 

sent to the terrain routing module which simulates subsurface and overland flows on a finer terrain 304 

routing grid (100 m in our application). According to the mass balance, local infiltration excess, 305 

overland flow, and exfiltration from baseflow contribute to the surface head which flows into river 306 

channels if defined retention depth is exceeded. The channel routing module then calculates 307 

channelized flows assuming a trapezoidal channel shape (Fig. B2). Parameters related to the 308 
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trapezoidal channel, such as channel bottom width (Bw), Manning’s roughness coefficient (n), and 309 

channel side slope (z) are functions of channel stream order (Fig. B3 and Table B1). Computed 310 

streamflow is then output on the 100 m grid. Equations used to compute infiltration excess, 311 

overland flow, and channelized flow are provided in Sect. 3.3 and 3.4. 312 

By default, WRF-Hydro uses Moderate Resolution Imaging Spectroradiometer (MODIS) 313 

Modified International Geosphere-Biosphere Program (IGBP) 20-category land cover product as 314 

land cover (Fig. B4) and 1-km Natural Resources Conservation Service State Soil Geographic 315 

(STATSGO) database for soil type classification (Fig. B5; Miller & White, 1998). Land surface 316 

properties including canopy height (HVT), maximum carboxylation rate (VCMX25), and overland 317 

flow roughness (OV_ROUGH2D) are functions of land cover type (Table B2 & Fig. B4). Default 318 

soil hydraulic parameters in WRF-Hydro (i.e., soil porosity, grain size distribution index, and 319 

saturated hydraulic conductivity) are based on Cosby et al.’s (1984) soil analysis (Table B3) and 320 

are used to map onto the STATSGO 16 soil texture types (Fig. B5).  321 

 322 

3.2 Meteorological forcing files 323 

WRF-Hydro is used in a standalone mode (i.e., it is not interactively coupled with the atmospheric 324 

component of WRF), but rather is forced with a combination of Phase 2 North American Land 325 

Data Assimilation System (NLDAS-2) meteorological data and Multi-Radar/Multi-Sensor System 326 

(MRMS) radar-only quantitative precipitation (Zhang et al., 2011, 2014, 2016). A description of 327 

the MRMS dataset and uncertainties therein can be found in Appendix A. NLDAS-2 provides 328 

hourly forcing data including incoming shortwave and longwave radiation, 2-m specific humidity 329 

and air temperature, surface pressure, and 10-m wind speed at 1/8-degree spatial resolution. 330 

MRMS provides hourly precipitation raterates at 1-km resolution.  331 

 332 

3.3 Overland flow routing and output 333 

The Noah-MP LSM calculates rate of infiltration excess following Chen & Dudhia (2001): 334 

 335 

𝜕ℎ

𝜕𝑡
=

𝜕𝑃𝑑

𝜕𝑡
{1 −

[∑ ∆𝐷𝑖(𝜃𝑠−𝜃𝑖)4
𝑖=1 ] [1 – 𝑒𝑥𝑝 (−𝑘

𝐾𝑠
𝐾𝑟𝑒𝑓

 𝛿𝑡)]

𝑃𝑑 + [∑ ∆𝐷𝑖(𝜃𝑠−𝜃𝑖)4
𝑖=1 ] [1 – 𝑒𝑥𝑝 (−𝑘

𝐾𝑠
𝐾𝑟𝑒𝑓

 𝛿𝑡)]
}                            (4) 336 

 337 

where h (m) is the surface water depth and t is the time. 𝑃𝑑  (m) is the precipitation not intercepted 338 

by the canopy; ∆𝐷𝑖 (m) is the depth of soil layer i; 𝜃𝑖 is the soil moisture in soil layer i; 𝜃𝑠 is the 339 

soil porosity; 𝐾𝑠  (m s-1) is the saturated hydraulic conductivity; 𝐾𝑟𝑒𝑓  is 2 × 10−6 m s-1 which 340 

represents the saturated hydraulic conductivity of the silty–clay–loam soil texture chosen as a 341 
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reference; 𝛿𝑡  (s) is the model time step; and k which is equal to 3.0 is the runoff–infiltration 342 

partitioning parameter [the same as 𝑘𝑑𝑡𝑟𝑒𝑓 in Chen & Dudhia (2001)].  343 

 344 

Noah-MP passes excess water to the terrain routing module, which simulates overland flow using 345 

a 2-dimensional fully-unsteady, explicit, finite-difference diffusive wave equation adapted from 346 

Julien et al. (1995) and Ogden (1997). It is considered superiorimproved compared to the 347 

traditionally used kinematic wave formulation in that it accounts for backwater effects and flow 348 

over adverse slopes. The diffusive wave formulation is the simplified form of the Saint Venant 349 

equations, i.e., continuity and momentum equations for a shallow water wave. The 2-dimensional 350 

continuity equation for a flood wave is: 351 

𝜕ℎ

𝜕𝑡
+  

𝜕𝑞𝑥

𝜕𝑥
+  

𝜕𝑞𝑦

𝜕𝑦
=  𝑖𝑒                                                         (5) 352 

where h is the surface flow depth, 𝑞𝑥 and 𝑞𝑦 are the unit discharges in the x- and y-directions, 353 

respectively, and 𝑖𝑒 is the infiltration excess. Manning’s equation which considers momentum loss 354 

is used to calculate 𝑞. In the x-direction: 355 

𝑞𝑥 = 𝛼𝑥ℎ𝛽                                                                     (6) 356 

Where 𝛽 is a unit dependent coefficient equal to 
5

3
, and 357 

𝛼𝑥 =
𝑆𝑓𝑥

1/2

𝑛𝑜𝑣
                                                                       (7) 358 

where 𝑛𝑜𝑣 is the tunable overland flow roughness coefficient. The momentum equation in the x-359 

direction is given by: 360 

𝑆𝑓𝑥 =  𝑆𝑜𝑥 −  
𝜕ℎ

𝜕𝑥
                                                                (8) 361 

where 𝑆𝑓𝑥 is the friction slope, 𝑆𝑜𝑥is the terrain slope, and 
𝜕ℎ

𝜕𝑥
 is the change in surface flow depth 362 

in the x-direction.  363 

Off-the-shelf, WRF-Hydro does not output overland flow at terrain routing grids (100 m), however 364 

it is computed in the background to determine channelized streamflow. One key advance made in 365 

this work is that we modified WRF-Hydro source code to output overland flow. Overland flow 366 

depth (m) was converted to overland discharge (m3 s-1) by multiplying flow depth by grid cell area 367 

(10,000 m2) and dividing by the LSM time step (1 h).  368 

 369 

3.4 Channel routing 370 

If overland flow intersects grid cells identified as channel grids [(2nd Strahler stream order and 371 

above; pre-defined by the hydrologically conditioned USGS National Elevation Dataset 30-m 372 
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digital elevation model (30-m DEM)],), the channel routing module routes the water as 373 

channelized streamflow using a 1-dimensional, explicit, variable time-stepping diffusive wave 374 

formulation. Similarly, the continuity equation for channel routing is given as: 375 

𝜕𝐴

𝜕𝑡
+ 

𝜕𝑄

𝜕𝑠
=  𝑞𝑙                                                            (9) 376 

and the momentum equation is given as: 377 

𝜕𝑄

𝜕𝑡
+

𝜕(
𝛾𝑄2

𝐴
)

𝜕𝑠
+ 𝑔𝐴 

𝜕𝐻

𝜕𝑠
=  −𝑔𝐴𝑆𝑓                                                (10) 378 

where s is the streamwise coordinate, H is water surface elevation, A is the flow cross-sectional 379 

area calculated as (𝐵𝑤 + 𝐻 𝑧)𝐻 (Fig. B2), 𝑞𝑙 is the lateral inflow rate into the channel grid, Q is 380 

the flow rate, 𝛾 is a momentum correction factor, 𝑔 is acceleration due to gravity, and 𝑆𝑓 is the 381 

friction slope computed as: 382 

𝑆𝑓 =  (
𝑄

𝐾
)2                                                                 (11) 383 

where K is the conveyance computed from the Manning’s equation: 384 

𝐾 =
𝐶𝑚

𝑛
𝐴𝑅2/3                                                             (12) 385 

where n is the Manning’s roughness coefficient, A is the channel cross-sectional area, R is the 386 

hydraulic radiumradius (A/P), P is the wetted perimeter, and 𝐶𝑚is a dimensional constant (1.486 387 

for English units or 1.0 for SI units). 388 

 389 

4 Model simulation, calibration, and validation 390 

4.1 Model domain 391 

The WRF-Hydro model domain spans regions in California including the Coast Ranges, Monterey 392 

Bay, and the Central Valley, and covers several burn scars from the 2020 wildfire season (Fig. 1a). 393 

Here we focus our analysis on the Dolan burn scar where the hazardous debris flows occurred (Fig. 394 

1b). According to the USGS 30-m DEM, the Rat Creek debris flow site sits at the base of a 1st 395 

order catchment with a drainage area of 2.23 km2. Mill Creek, Big Creek, and Nacimiento debris 396 

flows were initiated within extremely steep, intensely burned, 1st order catchments, but were 397 

deposited in 2nd, 3rd, and 3rd Strahler stream order channels, respectively.  398 

To calibrate and validate WRF-Hydro output, we use soil moisture observations from two Physical 399 

Sciences Laboratory (PSL) monitoring stations [i.e., Lockwood (lwd) and Gilroy (gry)] (Fig. 1a). 400 

Due to the Mediterranean climate of California, many USGS stream gages experience low or no 401 

flow during the dry season. In addition, many gages are under manual regulation to mitigate wet-402 

season flood risks and better distribute water resources. As such, it can be challenging to obtain 403 

natural streamflow observations for model calibration. Here, three USGS stream gages [i.e., 404 
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Arroyo Seco NR Greenfield, CA (ID 11151870), Arroyo Seco NR Soledad, CA (ID 11152000), 405 

and Arroyo Seco BL Reliz C NR Soledad, CA (ID 11152050)] (Fig. 1a) on streams that have 406 

measurable flows during our study period and are free of human regulation are used. These gages 407 

are located downstream of the Dolan burn scar and hence are useful in calibrating the parameters 408 

associated with burn scar effects. The PSL soil moisture observations were recorded at 2-minute 409 

intervals and USGS streamflow gage data were recorded at 15-minute intervals, but we perform 410 

all observation-model comparisons at hourly-mean resolution.  411 

 412 

 413 

4.2 Baseline simulation and soil moisture calibration 414 

WRF-Hydro was initialized with National Centers for Environmental Prediction (NCEP) FNL 415 

(Final) Operational Global Analysis data and was run from January 1–31 of, 2021. We performed 416 

the baseline simulation by modifying WRF-Hydro default parameters (Table B3) based on a 417 

calibration using soil moisture observations from stations lwd and gry. Neither PSL station is 418 

located in a burn scar. Since the baseline simulation includes no postfire characteristics, it can also 419 

be regarded as the “pre-fire” scenario. Soil moisture at 10 cm below ground in the baseline 420 

simulation was calibrated by performing a domain-wide adjustment of soil porosity and grain size 421 

distribution index at the simulation start (Table B3). We then allowed the model to spin up from 422 

January 1–10 before using January 11–31 for validation. Using a relatively short spin-up period is 423 

justified because prior to the AR event, little rain fell on the Dolan burn scar (i.e., ~400 mm of 424 

rainfall fell from June to December 2020). As such, in the months preceding the debris flow events, 425 

soil moisture observations indicate already dry conditionconditions prior to our 10 day spin up. 426 

 427 

After calibration, the simulated soil moisture closely mimics ground-based PSL observations (Fig. 428 

4). Both the observed magnitude and variability are well captured, with the simulated ±1 standard 429 

deviation envelope largely encompassing PSL observations during the AR. Model performance 430 

was evaluated using four quantitative metrics, i.e., correlation coefficient, (r), root mean square 431 

error, (RMSE), mean bias,absolute error (MAE), and Kling-Gupta efficiency (KGE; Gupta et al., 432 

2009; Kling et al., 2012). KGE has previously been used in soil moisture calibration applications 433 

(e.g., Lahmers et al., 2019; Vergopolan et al., 2020) and is computed as follows: 434 

 435 

𝐾𝐺𝐸 =  1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2                              (13) 436 

 437 

where r is the correlation coefficient between the observation and simulation, 𝛼 is the ratio of the 438 

standard deviation of simulation to the standard deviation of observation, and 𝛽 is the ratio of the 439 

mean of simulation to the mean of observation. KGEs close to 1 indicate a high-level consistency 440 

between the simulation and observation, while negative KGEs indicate poor model performance 441 

(Andersson et al., 2017; Schönfelder et al., 2017; Andersson et al., 2017). 442 
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 443 

The model’s ability to simulate soil moisture substantially improves after calibration (Fig. 4; Table 444 

1). KGE values approach 1 (0.72 at lwd and 0.88 at gry), indicating that WRF-Hydro adequately 445 

simulates the hydrologic environment and its response to meteorological changes.  446 

 447 

 448 

   449 

 450 

Fig. 4| Precipitation, observed and simulated soil moisture at two PSL soil moisture stations. 451 

January 11–31, 2021 MRMS precipitation (green bars) and observed (black line) and simulated 452 

volumetric soil moisture 10 cm below ground in the baseline simulation (purple dashed line) at 453 

PSL sites (a) Lockwood (lwd) and (b) Gilroy (gry). Envelope of purple shading depicts ±1 standard 454 

deviation of model simulated soil moisture. KGE scores are provided at top left for each station.  455 

 456 

 457 

 458 

Table 1  459 

Evaluation metrics of simulated soil moisture and streamflow 460 

 461 
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Soil moisture (Default / Baseline) 

Station r RMSE BiasMAE KGE 

lwd 0.97 / 0.98 7.06 / 4.32 5.21 / 4.16 0.10 / 0.72 

gry 0.94 / 0.94 5.19 / 2.53 
-4.79 / -1.6611.12 / 

2.31 
0.80 / 0.88 

Streamflow (Baseline / Burn scar) 

Station r RMSE BiasMAE NSE 

1870 0.28 / 0.93 39.29 / 14.69 
1.65 / 3.3616.05 / 

6.14 
-0.17 / 0.84 

2000 0.26 / 0.86 51.22 / 24.92 
2.47 / 4.8120.11 / 

10.00 
-0.15 / 0.73 

2050 0.25 / 0.81 49.96 / 27.43 
5.70 / 8.2419.64 / 

11.65 
-0.38 / 0.53 

 462 

Table 1| Quantitative evaluation metrics for the simulated soil moisture and streamflow when 463 

compared against observations. The metrics include the Pearson correlation coefficient (r), root 464 

mean square error (RMSE), and mean bias (Bias).absolute error (MAE). In addition, the 465 

comprehensive metrics Kling-Gupta efficiency (KGE) and Nash-Sutcliffe efficiency (NSE) are 466 

used to evaluate model-simulated soil moisture and streamflow, respectively. For soil moisture, 467 

the numbers in front of “/” are calculated between the default run (i.e., uncalibrated run) and the 468 

observations, whereas the numbers following “/” are the corresponding values in the baseline 469 

simulation (the purple dashed line in Fig. 4). For streamflow, the numbers in front of “/” are 470 

computed between the baseline run (purple dashed line in Fig. 6) and the observations, while the 471 

numbers behind “/” are for burn scar simulation (red line in Fig. 6). If the model performance 472 

regarding a certain metric is enhanced in the burn scar simulation, the number after “/” is 473 

underlined. 474 

 475 

4.3 Burn scar simulation and streamflow calibration 476 

To simulate effects of wildfire burn scars on hydrologic processes and debris flow 477 

hazardssusceptibility, we made two modifications to the baseline simulation soil moisture 478 

calibrated model configuration. First, we changed the land cover type within the burn scar 479 

perimeter to its nearest LSM analogue, i.e., “barren and sparsely vegetated”. The switch to barren 480 

land causes: (1) height of the canopy (HVT) to decrease to 0.5 m; (2) maximum rate of 481 

carboxylation at 25°C (VCMX25) to decrease to 0 𝜇𝑚𝑜𝑙 𝐶𝑂2/(𝑚2 ∙ 𝑠); and (3) overland flow 482 

roughness coefficient (OV_ROUGH2D) to decrease to 0.035 (Fig. 5a–c) from default values (Fig. 483 

B4 and Table B2). 484 

 485 
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The second adjustment was to decrease soil infiltration rates within the burn scar perimeter, 486 

achieved by reducing soil saturated hydraulic conductivity (DKSAT; Fig. 5d; Scott & van Wyk, 487 

1990; Cerdà, 1998; Robichaud, 2000; Martin & Moody, 2001) from default values (Table B3). 488 

Consistent with the hydrophobicity of burned soils, we calibrate the burn scar simulation by 489 

systematically exploring a range of burn scar area saturated hydraulic conductivities (0 to 3×10-7 490 

m s-1 with a 5×10-8 m s-1 increment), with the goal of reproducing streamflow behavior similar to 491 

USGS gage observations. We found that a value of 1.5×10-7 m s-1 gives the highest Nash-Sutcliffe 492 

efficiency (NSE; Nash & Sutcliffe, 1970) across all three USGS stream gages (Table 1). NSE and 493 

KGE are the two most widely used metrics for calibration and evaluation of hydrologic models. 494 

The NSE has previously been used in streamflow calibration applications (e.g., Xia et al., 2012; 495 

Bitew & Gebremichael, 2011), and it is calculated as follows: 496 

 497 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑠𝑖𝑚(𝑡)−𝑄𝑜𝑏𝑠(𝑡))2𝑡=𝑇

𝑡=1

∑ (𝑄𝑜𝑏𝑠(𝑡)− 𝑄𝑜𝑏𝑠)2𝑡=𝑇
𝑡=1

                                           (14) 498 

 499 

where 𝑇 is the length of the time series, 𝑄𝑠𝑖𝑚(𝑡) and 𝑄𝑜𝑏𝑠(𝑡) are the simulated and observed 500 

discharge at time 𝑡, respectively, and 𝑄𝑜𝑏𝑠 is the mean observed discharge. By definition, NSEs of 501 

1 indicate perfect correspondence between the simulated and observed streamflow. Positive NSEs 502 

meanindicate that the model streamflow has a greater explanatory power than the mean of the 503 

observations, whereas negative NSEs represent poor model performance (e.g., Moriasi et al., 2007; 504 

Schaefli & Gupta, 2007). When burn scar characteristics are included, evaluation metrics including 505 

r, RMSE, and MAE all improve, while NSEs increase from negative values in the baseline to 506 

greater than 0.584, 0.73, and the NSEs0.53 at gages 1870 and, 2000 reach 0.84, and 0.732050, 507 

respectively. Higher correlation and NSE scores and lower errors indicate the 508 

abovementionedabove mentioned burn scar parameter changes improve the model’s ability to 509 

simulate streamflow observations downstream of the burn scar (Table 1).  510 

 511 
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 512 

Fig. 5| Parameter setting in the WRF-Hydro burn scar simulation. (a) The height of the canopy 513 

(HVT; m; shading), (b) maximum rate of carboxylation at 25°C (VCMX25; 𝜇𝑚𝑜𝑙 𝐶𝑂2/(𝑚2 ∙ 𝑠); 514 

shading), (c) overland flow roughness coefficient (OV_ROUGH2D; shading), and (d) saturated 515 

hydraulic conductivity (DKSAT; m s-1; shading) in the burn scar simulation. 516 



 

20 

 

 517 

Fig. 6| Precipitation, observed and simulated streamflow at three USGS stream gages. January 26–518 

31, 2021 MRMS precipitation (green bars), observed (black dash dotted line) and simulated 519 

streamflow in baseline simulation (purple dashed line) and burn scar simulation (red line) at (a) 520 

Arroyo Seco NR Greenfield, CA (ID 11151870), (b) Arroyo Seco NR Soledad, CA (ID 11152000), 521 

and (c) Arroyo Seco BL Reliz C NR Soledad, CA (ID 11152050). NSE scores for baseline (purple) 522 

and burn scar simulations (red) are shown at top left.  523 

 524 
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5 Results 525 

5.1 Hydrologic response due to burn scar incorporation 526 

The pre-fire baseline simulation fails to capture the hydrologic behavior observed at the USGS 527 

gages located within the burn scar (Fig. 6). Incorporation of burn scar characteristics substantially 528 

alters the hydrologic response of the model and provides much higher fidelity streamflow 529 

simulations (Fig. 6). Observed hydrographs are characterized by two early streamflow peaks 530 

related to two precipitation bursts on January 27th and 28th. Our burn scar simulation captures this 531 

behavior, while the baseline simulation streamflow peaks just once, with a lower magnitude and 532 

an ~3-day lag after peak precipitation (Fig. 6). The steep rising limbs and high magnitude discharge 533 

peaks of the burn scar hydrograph are indicative of flash flooding. Compared with the pre-fire 534 

baseline scenario, the burn scar’s barren land and low infiltration rate substantially accelerate 535 

drainage rates and increase discharge volume into stream channels.  536 

 537 

5.2 Hydrologic response at four debris flow sites  538 

We identified locations and extent of four debris flows from remote sensing data and field work 539 

(Fig. 3& Fig. B1). rdNDVI shows vegetation loss caused by debris flows. Mill Creek, Big Creek, 540 

and Nacimiento were relatively large debris flows with runout lengths between ~2–5 km. Rat 541 

Creek occurreddeposits are located in a smaller catchment and had a runout length of ~300 m. The 542 

difference in runout length and debris flow size is primarily controlled by upstream catchment size. 543 

channels of 2nd Strahler stream order or above so they are simulated as channelized streamflow in 544 

our WRF-Hydro simulations. Due to its low stream order (1st Strahler stream order), Rat Creek is 545 

the only debris flow site modeled entirely as overland flow in our WRF-Hydro simulations.  546 

At the four debris flow sites, we use three metrics to characterize hydrologic anomalies: (1) 547 

accumulated runoff volume, (2) peak discharge, and (3) time to peak discharge. Fig. 7 depicts 548 

accumulated channelized discharge volume (blue shading) and accumulated overland discharge 549 

volume (yellow-red shading) from January 27th 00:00 to 28th 12:00 near the four debris flow sites 550 

in the burn scar simulation. Accumulation time period is chosen such that it covers the first two 551 

runoff surges in the simulated hydrographs which are likely associated with debris flows (Fig. 8) 552 

given that nearly concurrent peak rainfall intensity and peak discharge is a signature characteristic 553 

of debris flows (Kean et al., 2011). Runoff volume is on the order of 104 m3 at Rat Creek and 106 
554 

m3 at the other three sites.  555 
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 557 

Fig. 7| WRF-Hydro simulated overland flow and streamflow in the burn scar simulation. (a)–(d) 558 

Total volume of accumulated overland flow (yellow-red shading) and streamflow (blue shading) 559 

on log10 scale between January 27th 00:00 and 28th 12:00 at four debris flow sites draped over a 560 

hillshade of topography. Black rectangles correspond to domains in Fig. 3a–d. Black circles and 561 

triangles indicate debris flow source areas and deposits, respectively.  562 

 563 

 564 

Dramatic hydrographic changes after inclusion of burn scar characteristics are simulated at debris 565 

flow source areas (Fig. B6 and Table B4) and deposition sites (Fig. 8 and Table 2). WRF-Hydro 566 

facilitates investigation of the hydrologic response at triggering and depositiondeposit locations 567 

and along the runout path. Here, to emphasize the high susceptibility downstream hazards, our 568 

analysis is focused on debris flow deposits. At Rat Creek, where a section of CA1 collapsed, the 569 

magnitude of discharge substantially increases, and overland flow surges are concurrent with 570 
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rainfall bursts (Fig. 8a). Total discharge accumulated during the AR event increases approximately 571 

eight-fold (791%), and peak discharge more than triples compared to the baseline simulation (Fig. 572 

8a and Table 2). At Mill Creek, Big Creek, and Nacimiento, baseline hydrographs are characterized 573 

by less variability, muted responses to two early precipitation bursts, and a delayed third discharge 574 

peak that does not occur until ~3 days after AR passage (Fig. 8b–d). Maximum discharge peaks in 575 

the baseline hydrographs lag those in the burn scar simulation by ~2 days (Fig. 8b–d; Table 2). In 576 

the burn scar simulation, total volume substantially increases at the three channelized sites – total 577 

volume increases ~650% at Mill Creek, ~891% at Big Creek, and ~829% at Nacimiento (Fig. 8b–578 

d and Table 2), and the absolute increase in volume is on the order of 106 m3 (Table 2). Peak 579 

discharge more than triples at Mill Creek and Big Creek and more than quadruples at Nacimiento. 580 

Additionally, response times of the peak in discharge to the peak in precipitation decrease to less 581 

than an hour, highlighting the simulated flashiness of the burned catchments. 582 

 583 

 584 

 585 

 586 

 587 

Fig. 8| WRF-Hydro simulated discharge time-series at four debris flow deposition locations. (a)–588 

(d) MRMS precipitation (green bars) and simulated discharge time-series for January 26th 00:00 589 
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to 31st 23:00 at (a) Rat Creek, (b) Mill Creek, (c) Big Creek, and (d) Nacimiento deposition 590 

locations (black triangles in Fig. 7a–d) in baseline simulation (purple dashed line) and burn scar 591 

simulation (red line). 592 

 593 

 594 

Table 2 595 

The total runoff volume, peak discharge, and peak timing at debris-flow deposits 596 

Site name 

Baseline simulation Burn scar simulation 

Total 

volume 

(m3) 

Peak 

discharge 

(m3 s-1) 

Highest 

peak 

timing 

Total 

volume 

(m3) 

Peak 

discharge 

(m3 s-1) 

1st Peak 

timing 

2nd Peak 

timing 

Rat Creek 6,897 0.54 28th 05:00 
61,425 

(+791%) 

1.73 

(+220%) 
27th 09:00 28th 05:00 

Mill Creek 312,925 13.10 29th 08:00 
2,347,457 

(+650%) 

45.21 

(+245%) 
27th 13:00 27th 23:00 

Big Creek 842,808 46.10 29th 16:00 
8,354,095 

(+891%) 

154.10 

(+234%) 
27th 10:00 28th 05:00 

Nacimiento 743,531 33.15 29th 16:00 
6,904,706 

(+829%) 

135.41 

(+308%) 
27th 14:00 28th 00:00 

 597 

Table 2| The total runoff volume, peak discharge, and peak timing in the baseline and burn scar 598 

simulations from January 27th 00:00 to 31st 23:00 at deposition sites of Rat Creek, Mill Creek, Big 599 

Creek, and Nacimiento debris flows (black triangles in Fig. 7a–d). The peak timing shown in the 600 

baseline simulation is for the highest peak. The percent change of the total volume and peak 601 

discharge in the burn scar simulation relative to the baseline simulation are shown in parentheses. 602 

 603 

 604 

5.3 Debris flow hazardsusceptibility assessment for the Dolan burn scar 605 

Since high magnitude runoff is often the cause and precursor of runoff-generated debris flows in 606 

burned areas (Cannon et al., 2003, 2008; Rengers et al., 2016), we use simulated accumulated 607 

volume of overland flow and streamflow to assess runoff-generated debris flow hazard 608 

potentialsusceptibility under pre-fire (i.e., baseline; Fig. 9a&d) and postfire (i.e., burn scar 609 

simulation; Fig. 9b&e) conditions. We assess changes at both stream and catchment levels and use 610 

the difference between burn scar and baseline simulations to assess added debris flow hazard 611 

potentialsusceptibility (Fig. 9c&f). Consistent with the increasing erosive and entrainment power 612 

associated with increasing discharge, our debris flow hazardsusceptibility increases as the 613 

accumulated discharge volume increases. To reduce the effects of catchment size on the volume-614 

based hazardsusceptibility levels, we normalize a catchment’s discharge volume by the area of the 615 
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catchment (Santi et al., 2012& Morandi, 2013; Fig. 9d–f). Non-normalized catchment 616 

hazardsusceptibility maps are also provided (Fig. B7). 617 

 618 

In the pre-fire baseline simulation, the AR-induced precipitation produces lower debris flow 619 

hazardsusceptibility over most of the domain, but elevated hazardssusceptibility along stream 620 

channels (Fig. 9a). We note no substantial differences between areas in or out of the burn scar. In 621 

the burn scar simulation, debris flow hazardsusceptibility levels increase across the Dolan burn 622 

scar and along channels outside but downstream of the burn scar (Fig. 9b–c). The discharge volume 623 

increases by an order of magnitude near Rat Creek, Big Creek, Mill Creek, and Nacimiento. Within 624 

the burn scar, hazardssusceptibility along major stream channels, such as the Nacimiento River 625 

and San Antonio River increase. Outside the burn scar, hazardsusceptibility levels along river 626 

channels downstream of the burn scar, such as the Arroyo Seco River, also increase (Fig. 9c). 627 

 628 

At the catchment level, debris flow hazards aresusceptibility is assessed using accumulated 629 

discharge volumes normalized by catchment areas (Fig. 9d–f). Accumulated discharge volumes 630 

are assessedcalculated at the outlet of each catchment between January 27th 00:00 to 28th 12:00. 631 

The catchment-area normalized volume is then used as the susceptibility index and is classified 632 

into five categories based on equal intervals on log10 scale. The susceptibility categorization 633 

follows: “very low” (~103 m3 km-2), “low” (~104 m3 km-2), “medium” (~105 m3 km-2), “high” (~106 634 

m3 km-2), and “very high” (~107 m3 km-2). In the baseline simulation, the majority of catchments 635 

are subject to relativelylow or very low debris flow hazards compared to the burn scar 636 

simulationsusceptibility with total normalized discharge volume less than 103104 m3 km-2 (Fig. 9d). 637 

In the burn scar simulation, overabout half of the catchments within the Dolan burn scar have 638 

normalized discharge volume greater than 105 m3 km-2, while overmedium susceptibility or above, 639 

and about 1/4 of basins reach 106 m3 km-2are subject to high debris flow susceptibility (Fig. 9e). 640 

The additional debris flow hazardsusceptibility brought about by the inclusion of wildfire burn 641 

scar characteristics is substantial (Fig. 9f). 642 

To summarize changes in debris flow hazardssusceptibility as a result of including burn scar 643 

characteristics in WRF-Hydro simulations, we create distributions of pre-fire baseline and burn 644 

scar catchment-area normalized discharge from the 404 catchments located within the Dolan burn 645 

scar perimeter (Fig. 10). After incorporating burn scar characteristics, the full distribution shifts to 646 

the right, indicating increased hazardsusceptibility levels – a shift considered robust by a Student’s 647 

t-test (p value: 4.6E-45). A quantitative assessment of this shift indicates that the mean catchment 648 

area normalized discharge volume increases by ~1300% (from ~380k to 5.5M m3 km-2) while the 649 

standard deviation increases ~1400% (from ~1.6M to 23.0M m3 km-2).Table 3). We also assess 650 

shifts at a range of distribution percentiles: 5P: 148% (~0.6k to ~1.5k m3 km-2),%, 25P: 725% 651 

(~3.7k to ~30.7k m3 km-2),%, 50P: 924% (~13k to ~135k m3 km-2),%, 75P: 980% (~120k to ~1.3M 652 

m3 km-2),%, and 95P: 1300% (~2.1M to ~29.1M m3 km-2).(Table 3). In the burn scar simulation, 653 

more thannearly half of catchments have normalized volumes > 105 m3 km-2 and more than(i.e., 654 

medium susceptibility) and about 1/4 of catchments have volumes > 106 m3 km-2 (i.e., high 655 
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susceptibility) – values that correspond to the 75P and 90P of the baseline simulation, respectively. 656 

Disproportionate shifting of the right tail of the distribution suggests that extreme debris flow 657 

hazards increasesusceptibility increases non-linearly under simulated burn scar conditions. 658 

Table 3 659 

Statistics of catchment area-normalized discharge volume in baseline and burn scar simulations 660 

 mean std 5P 25P 50P 75P 95P 

Baseline simulation 

(m3 km-2) 
380k ±1.6M 0.6k 3.7k 13k 120k 2.1M 

Burn scar 

simulation 

(m3 km-2) 

5.5M ±23.0M 1.5k 30.7k 135k 1.3M 29.1M 

Relative percent 

change 
1300% 1400% 148% 725% 924% 980% 1300% 

Table 3| Statistics, including the mean, standard deviation (std), 5P, 25P, 50P, 75P, and 95P, of 661 

the catchment-area normalized discharge volume for all basins within the Dolan burn scar in the 662 

baseline and burn scar simulation and their relative percent changes. 663 

 664 

Our catchment-area normalized discharge volume-based hazardsusceptibility assessment also 665 

indicates that the catchments containing Mill Creek, Big Creek, and Nacimiento had elevated 666 

hazard potentialhave high or very high susceptibility (Fig. 9d–f), consistent with our (limited) 667 

debris flow observations. Other areas with elevated hazardssusceptibility include catchments 668 

containing the Arroyo Seco and San Antonio Rivers. Beyond the burn scar perimeter, effects of 669 

fire expand to adjacent and downstream catchments, and thesome drainage basins ofalong the 670 

Arroyo Seco and Nacimiento Rivers are simulated to have potentially hazardous conditionsvery 671 

high susceptibility, i.e., normalized discharge volumes in excess of 106107 m3 km-2 (Fig. 9e&f).  672 

 673 
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 675 

 676 

Fig. 9| Discharge volume-based runoff-generatedpostfire debris flow hazards.susceptibility. 677 

Debris flow hazardssusceptibility at individual stream level for the (a) baseline, (b) burn scar, and 678 

(c) difference between burn scar and baseline simulations. HazardSusceptibility is estimated as 679 

total discharge volume from January 27th 00:00 to 28th 12:00. (d)–(f) Normalized debris flow 680 

hazardssusceptibility by catchment area at catchment level. For each catchment, the 681 

hazardsusceptibility is determined by total discharge volume at the catchment outlet from January 682 

27th 00:00 to 28th 12:00 divided by catchment area. 683 
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  684 

Fig. 10| Distributions of accumulated discharge volumes at the outlet of the 404 catchments 685 

normalized by upstream catchment areas within Dolan burn scar in the baseline simulation (purple 686 

line) and in the burn scar simulation (red line). Dashed vertical lines indicate median values.   687 

5.4 Debris flow hazard assessment at regional scales 688 

While the results we present above primarily focus on hazards in the Dolan burn scar, our WRF-689 

Hydro domain includes a number of additional 2020 wildfire burn scar sites (Fig. 1a). Given the 690 

long filament-like structure of western U.S. landfalling ARs, the heterogeneous nature of 691 

landfalling trajectories, and the potential for systems to interact with diverse topographic terrains, 692 

the development of tools capable of regional hazard assessments under high-gradient precipitation 693 

events is crucial – particularly in a wildfire-prone region like California. To demonstrate the 694 

potential utility of WRF-Hydro in regional applications, we assess hazards over our full domain 695 

(Fig. 11). We find that hazard potential, from both channelized and overland flows, is greatest 696 

within the burn scar sites, with maximum hazards found in the Dolan burn scar, consistent with 697 

the location of elevated precipitation along the Coast Ranges – where more than 300 mm of rain 698 

fell over three days (Fig. 11). Other high hazard-elevated precipitation regions within our domain 699 

include the western edge of the Sierra Nevada and areas north of Monterey Bay, which collocate 700 

with the Mineral and Del Puerto burn scars, respectively. Similar to our Dolan burn scar focused 701 

analysis, areas within and downstream of these burn scar sites have elevated streamflow discharge 702 

volumes compared to the non-burned areas (Fig. 11b). Likewise, areas of heightened accumulated 703 
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overland flow are elevated in burn scar regions, but also demonstrate a strong correspondence to 704 

the spatial distribution of precipitation (Fig. 11a & c). 705 

 706 

Fig. 11| MRMS accumulated precipitation and regional debris flow hazard assessment. (a) MRMS 707 

accumulated precipitation during January 27th 00:00 to 29th 23:00 over the model domain (shading; 708 

mm). Names of burn scars are labeled in black. (b) Accumulated streamflow (yellow-to-red 709 

shading; m3) and (c) accumulated overland flow from 27th 00:00 to 28th 12:00 over the model 710 

domain (yellow-to-red shading; m3). Wildfire perimeters of 2020 wildfire season are outlined in 711 

black in (a), and in blue in (b) and (c). The coastline of California is in grey. 712 

 713 

6 Discussion 714 

Given the historic and growing frequency of wildfires in the western U.S. (Swain 2021; Williams 715 

et al., 2019; Goss et al., 2020; Swain 2021) and globally (Jolly et al., 2015; Flannigan et al., 2013; 716 

Jolly et al., 2015), developing tools to investigate, better understand, and potentially predict 717 

changes in burn scar hydrology and natural hazards at regional scales is critical. Here, we 718 

demonstrate the first use of WRF-Hydro to simulate the surface hydrologic response 719 

oversusceptibility of a burn scar to postfire debris flows during a landfalling AR. We augmented 720 

the default version of WRF-Hydro to output overland flow and to replicate burn scar behavior by 721 

adjusting vegetation type and infiltration rate parameters. WRF-Hydro simulations were validated 722 

against PSL soil moisture and USGS streamflow observations before we used simulated 723 

streamflow and overland flow volumes to characterize debris flow hazard potential.  724 

 725 

susceptibility. A comparison between baseline and burn scar simulations demonstrated that 726 

changes in hydraulic properties of burned areas causes drastic changes in surface flows, including 727 

faster discharge response times, greater discharge volumes, and overall flashier hydrologic 728 

behavior in surface flows. As a result of including bur scar characteristics in WRF-Hydro 729 
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simulations, median catchment-area normalized discharge volume increases nine-fold, while 95P 730 

volume increases 13-fold. The magnitude of our simulated changes isand greater peak discharge 731 

and total volumes, consistent with findings from previous postfire hydrology studies (Anderson et 732 

al., 1976; Scott, 1993; Meixner & Wohlgemuth, 2003; Kean et al., 2011; Kinoshita & Hogue, 2015; 733 

KeanBrunkal & Santi, 2016; Williams et al., 20112022). At Rat Creek, where a debris flow 734 

destroyed CA1, our model simulation predicted an eightthe catchment level, for the 404 735 

catchments located within the Dolan burn scar, median catchment area-normalized volume 736 

increases nine-fold increase in accumulated overland flow and a tripling in peak discharge when 737 

comparedrelative to the baseline simulation. At. In addition, Mill Creek, Big Creek, and 738 

Nacimiento, the increase of runoff volume from the baseline to the burn scar simulation is on the 739 

order of 106 m3. Our hazard assessments based on catchment-area normalized discharge volumes 740 

indicated that Mill Creek, Big Creek, and Nacimiento were under elevated debris flow hazards 741 

basins were simulated to have high-to-very high debris flow susceptibility, corresponding well 742 

with identified debris flow occurrences.  743 

 744 

Despite methodological differences, our debris flow hazard assessmentsusceptibility map for this 745 

AR event is generally consistent with the USGS’ postfire, pre-AR, design-storm-based preliminary 746 

hazard assessment (USGS, 2020). As described above, USGS preliminary hazard assessments use 747 

logistic regression models to estimate the likelihood of debris flow occurrence and multivariate 748 

linear regression models to estimate debris flow volumes. ThisThe USGS empirical approach is 749 

trained on historical western U.S. debris flow occurrence and magnitude data and incorporates 750 

estimated burn scar soil erodibility and burn severity data (Cannon et al., 2010; Gartner et al., 2014; 751 

Staley et al., 2016). For precipitation, the USGS assessment utilizes a design storm approach that 752 

assumes 1–5 year return interval magnitude precipitation falls uniformly over a region/burn scar 753 

(USGS, 2020). For the Dolan burn scar, both assessments find that large stream channels had 754 

relatively higher hazard levelssusceptibility than small streams or overland areas. However, a close 755 

comparison of hazardthe two maps reveals differences in spatial distribution of high-756 

hazardhazardous catchments. In the USGS assessment, higher hazard levels arelikelihood is 757 

predicted north and southeast of the burn scar, whereas in our assessment the highest hazards 758 

occursusceptibility occurs along major stream channels. We hypothesize that USGS-assessed 759 

areas of higher hazard potential are related to their use of spatially uniform design-storm 760 

precipitation (see Fig. 2 for MRMS precipitation footprint) and burn severity data (Burned Area 761 

Emergency Response, 2020).  762 

 763 

Comparison with the USGS hazard assessment framework suggests room for improvement in 764 

WRF-Hydro-based assessments (i.e., inclusion of burn severity and soil erodibility data), but also 765 

highlights the potential utility of working with spatially-distributed and time-varying precipitation. 766 

However, this also means the accuracy of WRF-Hydro predictions depends on the accuracy of 767 

precipitation forcing, and in our hindcast application, MRMS precipitation data (Appendix A). 768 

Accordingly, our WRF-Hydro-based hazard assessment could benefit from precipitation products 769 
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mosaiced from various sources to constrain precipitation-based uncertainties (e.g., gauge-770 

corrected and/or Mountain Mapper MRMS), although the long processing time of these datasets 771 

inhibits timely post-event assessments.  772 

In addition to the above results focused primarily on the Dolan burn scar, a key feature of WRF-773 

Hydro is its ability to simulate the land surface hydrology of expansive geographic domains, e.g., 774 

NOAA runs the National Water Model over the entire continental U.S. Development of tools 775 

capable of regional susceptibility assessments is crucial, particularly in a wildfire-prone region 776 

like California, due to the large spatial scale, diverse morphology, and often tight spatial gradients 777 

of precipitation events and their interactions with geographically widespread wildfire burn scars. 778 

For example, landfalling ARs are often long (1000s of km) filament-like systems with 779 

heterogeneous intensity gradients along their length. As a demonstration of wide geographic 780 

applicability, we assess susceptibility over our full model domain which includes more than 10,000 781 

catchments and a number of 2020 wildfire burn scars in addition to the Dolan burn scar (Fig 11). 782 

The domain-wide analysis reveals elevated discharge volume, i.e., elevated susceptibility, in areas 783 

of high precipitation and in burned terrains (Figs. 11a–c). We highlight channelized and 784 

catchment-area normalized debris flow susceptibility in non-Dolan burn scar sites in Figs. 11d–g. 785 

In an operational forecast context, the ability to simulate landslide and debris flow susceptibilities 786 

and hazards over numerous catchments at meteorologically appropriate scales represents a step-787 

change in the field. We argue that our demonstration of WRF-Hydro’s debris flow susceptibility 788 
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hindcast capabilities should motivate further exploration and development for potential use in 789 

operational hazard forecasting.  790 

 791 

Fig.  792 

As a water-only model, WRF-Hydro is currently restricted to simulating the hydrologic ingredients 793 

of debris flows.11| MRMS accumulated precipitation and discharge volume informed regional 794 

debris flow susceptibility. (a) MRMS accumulated precipitation during January 27th 00:00 to 29th 795 

23:00 over the model domain (shading; mm). Names of burn scars are labeled in black. (b) 796 

Accumulated streamflow (yellow-to-red shading; m3) and (c) accumulated overland flow from 27th 797 

00:00 to 28th 12:00 over the model domain (yellow-to-red shading; m3). (d)–(e) Stream-level 798 

postfire debris flow susceptibility as Fig. 9b but for River and Camel burn scars. (f)–(g) 799 

Catchment-area normalized debris flow susceptibility as Fig. 9e but for River and Camel burn 800 

scars. Wildfire perimeters of 2020 wildfire season are outlined in black in (a), in blue in (b), (c), 801 

(f), and (g), and in red in (d) and (e). The coastline of California is depicted in grey. 802 

 803 
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In addition to investigating the operationalization of WRF-Hydro’s natural hazard prediction 804 

capabilities, we note that our susceptibility-focused methodology could be advanced to hazard 805 

assessment, in line with current USGS products. The USGS Emergency Assessment of Postfire 806 

Debris-flow Hazard predicts debris flow volume and likelihood. To advance from susceptibility to 807 

hazard assessment, our methodology would need to incorporate both debris flow volume estimates 808 

and occurrence likelihoods. In the following, we highlight research directions that could help 809 

advance our susceptibility-focused methodological framework. WRF-Hydro is a water-only model. 810 

While water-only models have been widely used to investigate and better understand debris flow 811 

dynamics (Arattano & Savage, 1994; Tognacca et al., 2000; Arattano & Franzi, 2010; Rengers et 812 

al., 2016; McGuire & Youberg, 2020; Di Cristo et al., 2021), sediment supply, soil erodibility, and 813 

other sedimentological factors also play important roles in determining the potential for and 814 

severity of mass failure events (McGuire et al., 2017). Developing a runoff-generated debris flow 815 

model that couples hydrologic and sediment erosion and transport processes would represent a 816 

significant advance and be of great practical use (Banihabibcould help to characterize postfire 817 

debris flow volumes. Indeed, previous efforts have demonstrated the capacity to couple WRF-818 

Hydro with sediment flux models (Yin et al., 2020; Shen et al., 2021). At a minimum, soil grain 819 

size maps and domain-specific rainfall intensity-duration curvesIn addition to sediments, burn scar 820 

ash can provide guidance to define transitions from water floods to debris flows if 821 

historicalcomprise a substantial fraction of the total debris flow data is available in the study 822 

domain (McGuire & Youberg, 2020; volume (e.g., Reneau et al., 2007). As such, efforts to 823 

constrain ash availability and entrainment in hydrologic flows could prove fortuitous in hazard 824 

assessment and prediction efforts. If WRF-Hydro is not coupled with sediment models, a domain-825 

specific rainfall ID threshold trained with historic landslide inventory and triggering rainfall events 826 

(Tognacca et al., 2000; Gregoretti & Dalla Fontana, 2007, 2008; Cannon et al., 2007).) or a newly 827 

developed dimensionless discharge and Shields stress threshold (Tang et al., 2019; McGuire & 828 

Youberg, 2020) could provide guidance to help identify debris flow triggering time and location, 829 

which in turn may improve WRF-Hydro’s debris flow initiation identification. 830 

 831 

 832 

In addition to constraining potential postfire debris flow volumes, WRF-Hydro’s application in 833 

debris flow studies could be advanced via concerted engagement with uncertainties that are both 834 

external (meteorological forcing data) and internal (physical parameters) to the model. Previous 835 

studies have demonstrated that precipitation is often the largest source of uncertainty in hydrologic 836 

predictive models (Hapuarachchi et al., 2011; Alfieri et al., 2012). Engagement with precipitation 837 

forcing uncertainties in past, near-term, and future contexts could provide probabilistic nuance to 838 

natural hazard investigations. For example, (a) debris flow hindcast studies could use a diversity 839 

of precipitation datasets to isolate precipitation-derived debris flow uncertainties in historic events,  840 

(b) operational forecast efforts could utilize ensemble-based weather forecast data to inform 841 

likelihood statements in debris flow hazard assessments, and (c) probabilistic projections of debris 842 

flow likelihood in future climates could assess and partition uncertainties derived from emission 843 
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pathway, model structure, or internal variability effects on meteorological forcings (Nikolopoulos 844 

et al., 2019; Hawkins & Sutton, 2009; Deser et al., 2020). Uncertainties internal to WRF-Hydro 845 

are also ripe for investigation. Probabilistic predictions crafted from an ensemble of perturbed 846 

model physics simulations have been used to predict rainfall-triggered shallow landslides (Raia et 847 

al., 2014; Canli et al., 2018; Zhang et al., 2018). Similar efforts using WRF-Hydro could target 848 

post-wildfire debris flows.  849 

  850 

 851 

Lastly, the above discussion of potential WRF-Hydro applications and advancements speaks to the 852 

adaptability and customization of this open-source numerical model. An additional layer of WRF-853 

Hydro’s adaptability concerns its geographic focus. While we calibrate and use the model over a 854 

central California domain, the choice of geographic footprint is only limited by the availability of 855 

requisite initial and boundary conditions, environmental observations for calibration, and 856 

computational resources. For use in non-central California domains, we recommend calibration 857 

beginning with the default version of the model. Given the ecological and geological diversity of 858 

locations that experience wildfires and debris flows, it is likely that calibrations distinct from those 859 

reported here will be needed in different regions. For example, soil sealing effects, infiltration, and 860 

runoff in wetter and more vegetated locations, such as Oregon, USA, behave differently than those 861 

in central California (Palmer, 2022). As such, calibration of relevant model parameters (e.g., 862 

saturated hydraulic conductivities) should be based on a physics-informed approach that accounts 863 

for local environmental conditions and hydrologic behaviors. Indeed, given the ability to simulate 864 

large heterogeneous geographic domains, it is likely that different regions within a given domain 865 

may require different calibration schemes. As WRF-Hydro is fully distributed, spatially 866 

heterogeneous calibrations are non-problematic. This spatial adaptability may prove particularly 867 

helpful in post-wildfire debris flow hazard assessments when considering multiple generations of 868 

wildfires and variable degrees of burn scar severity and recovery.                           869 

7 Conclusion 870 

 871 

Use of Here we augment WRF-Hydro to simulate runoff-generatedassess regional postfire debris 872 

flow hazards insusceptibility. Our methodology involves output of simulated overland flow data 873 

and alteration of the model’s representation of burn scar settings represents a novel application. It 874 

is notable that inscars. In this application we have balanced the computational cost of a regional 875 

domain with our choice of resolved spatial resolution for terrain routing and overland flow 876 

calculations (100 m). However, WRF-Hydro has previously been applied to smaller domains at 877 

higher terrain routing resolutions (~30 m). Future work could assess the use of the model to study 878 

burn scar hydrology at finer spatial scales, should the application warrant and should underlying 879 

data at sufficient resolution exist. Other potential applications of our modifiedaugmented model 880 

framework include alpine areas and steep hillslopes with sparse vegetation where runoff-generated 881 

debris flows dominate over landslide-initiated ones (Davies et al., 1992; Coe et al., 2003, 2008).  882 
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 883 

FurtherFurthermore, our burn scar parameter changes are performed to Noah-MP, which is the 884 

core land surface component of the National Centers for Environmental PredictionNCEP Global 885 

Forecast System (GFS) and Climate Forecast System (CFS), thus the findings presented herein, 886 

are likely to prove useful in the broader worlds of forecast meteorology and climate science. In 887 

addition, here WRF-Hydro is driven by historical precipitation and meteorological data, i.e., in 888 

hindcast mode. We see no reason whyHowever, this modeling framework could not also be 889 

employed to project hazards under future climatic conditions (e.g., Huang et al., 2020), or given 890 

its relatively low computational expense, in operational forecast mode. Indeed, modern ensemble-891 

based meteorological forecasting could provide high spatiotemporal forcing data with which 892 

disaster preparedness managers could probabilistically assess debris flow hazard potential, and 893 

issue advanced life and property saving warnings.  894 

 895 

 896 

  897 
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Appendix A 898 

Text A1. Multi-Radar/Multi-Sensor System (MRMS) radar-only precipitation estimate and 899 

uncertainty 900 

MRMS is a precipitation product that covers the contiguous United States (CONUS) on 1-km grids. 901 

It combines precipitation estimates from sensors and observational networks (Zhang et al., 902 

2011, 2014, 2016), and is produced at the National Centers for Environmental Prediction (NCEP) 903 

and distributed to National Weather Service forecast offices and other agencies. Input datasets 904 

used to produce MRMS include the U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) 905 

network and Canadian radar network, Parameter-elevation Regressions on Independent Slopes 906 

Model (PRISM; Daly et al. 1994, 2017), Hydrometeorological Automated Data System (HADS) 907 

gauge data with quality control (Qi et al., 2016), and outputs from numerical weather prediction 908 

models. There are four different MRMS quantitative precipitation estimates (QPE) products 909 

incorporating different input data or combinations: radar only, gauge only, gauge-adjusted radar, 910 

and Mountain Mapper. For our study period (i.e., January 1–31, 2021), only the radar-only QPE 911 

is currently available.  912 

 913 

We acknowledge that precipitation data has uncertainties. Use of different precipitation products 914 

may produce different results. A study comparing different gridded precipitation datasets including 915 

satellite-based precipitation data, gauge dataset, and multi-sensor products revealed large 916 

uncertainties in precipitation intensity (Bytheway et al., 2020). However, comparing different 917 

precipitation datasets to characterize uncertainties is beyond the scope of this study. MRMS 918 

provides gridded precipitation at high temporal (hourly) and spatial (1-km) resolutions, making it 919 

a useful tool to demonstrate the utility of WRF-Hydro in post-wildfire debris flow 920 

hazardsusceptibility assessments.  921 
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Appendix B 922 

 923 

 924 

Fig. B1 Optical- and SAR-based remote sensing data of four debris flows. Optical data from 925 

Sentinel-2 show pre- and post-debris flow imagery in real color. rdNDVI calculated from the 926 

Sentinel-2 data show a decrease in vegetation corresponding to debris flow locations. Sentinel-1 927 

backscatter change shows the change in ground surface properties determined by calculating the 928 

log ratio of pre- and post-event SAR images. The pre-event, post-event satellite images, Sentinel-929 

1 Backscatter, and Sentinel-2 rdNDVI change at (a) Rat Creek, (b) Mill Creek, (c) Big Creek, and 930 

(d) Nacimiento. 931 

 932 

 933 

  934 
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 935 

Fig. B2 Schematic trapezoidal shape and related parameters of channels in WRF-Hydro. Bw is 936 

the channel bottom width (m), z is the channel side slope (m), and H is water elevation (m). The 937 

cross-sectional area of flow is calculated as (𝐵𝑤 + 𝐻 𝑧)𝐻.  938 

  939 
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Table B1 Parameters of trapezoidal channels in WRF-Hydro.  940 

Stream order 

Channel bottom 

width 

Bw (m) 

Channel side slope 

z (m) 

Manning’s roughness 

coefficient n 

1 1.5 3 0.33 
2 3 1 0.21 
3 5 0.5 0.09 
4 10 0.18 0.06 
5 20 0.05 0.04 
6 40 0.05 0.03 
7 60 0.05 0.02 
8 70 0.05 0.02 
9 80 0.05 0.01 

10 100 0.05 0.01 
 941 

Table B1 Parameters of the trapezoidal channels in WRF-Hydro including channel bottom width 942 

Bw (m), channel side slope z (m), and Manning’s roughness coefficient n. 943 

 944 

  945 
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 946 

Fig. B3 (a) Stream order defined by the USGS 30-m DEM in our WRF-Hydro model domain 947 

and (b) the channel bottom width (m) which is a function of stream order (Table B1).  948 

  949 
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Table B2  950 

MODIS IGBP 20-category land cover type and properties in Noah-MP LSM 951 

Land 

cover 

code 

Land cover type 

Canopy 

height 

(m) 

Max carboxylation 

rate at 25°C 

(𝝁𝒎𝒐𝒍 𝑪𝑶𝟐/(𝒎𝟐 ∙ 𝒔) ) 

Overland 

flow 

roughness 

1 Evergreen Needleleaf Forest 20 50 0.2 

2 Evergreen Broadleaf Forest 20 60 0.2 

3 Deciduous Needleleaf Forest 18 60 0.2 

4 Deciduous Broadleaf Forest 16 60 0.2 

5 Mixed Forests 16 55 0.2 

6 Closed Shrublands 1.1 40 0.055 

7 Open Shrublands 1.1 40 0.055 

8 Woody Savannas 13 40 0.055 

9 Savannas 10 40 0.055 

10 Grasslands 1 40 0.055 

11 Permanent wetlands 5 50 0.07 

12 Croplands 2 80 0.035 

13 Urban and Built-Up 15 0 0.025 

14 
Cropland/natural vegetation 

mosaic 
1.5 60 0.035 

15 Snow and Ice 0 0 0.01 

16 Barren or Sparsely Vegetated 0 0 0.035 

17 Water 0 0 0.005 

18 Wooded Tundra 4 50 0.055 

19 Mixed Tundra 2 50 0.055 

20 Barren Tundra 0.5 50 0.055 

 952 

Table B2 MODIS IGBP 20-category land cover type and properties in Noah-MP LSM. 953 

 954 

  955 
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Fig. B4 MODIS IGBP 20-category land cover type in the model domain. Red polylines are 2020 956 

wildfire burn scar perimeters. 957 

 958 

  959 
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Fig. B5 1-km STATSGO data with 16 soil texture types. Red polylines are 2020 wildfire burn 960 

scar perimeters. 961 

 962 

 963 

 964 

 965 

  966 



 

46 

 

Table B3  967 

Default and calibrated soil parameters in WRF-Hydro 968 

 969 

Soil type 

Default After calibration 

Grain size 

distribution 

index 

Porosity 

Saturated 

hydraulic 

conductivity 

 (m s-1) 

Grain size 

distribution 

index 

Porosity 

Saturated 

hydraulic 

conductivity  

(m s-1) 

Sand 2.79 0.339 4.66E-5 2.51 0.315 

1.5 x 10-7 m s-1 

for all the burn 

scars, and 

original values 

elsewhere.  

Loamy sand 4.26 0.421 1.41E-5 3.83 0.392 

Sandy loam 4.74 0.434 5.23E-6 4.27 0.404 

Silt loam 5.33 0.476 2.81E-6 4.80 0.442 

Silt 3.86 0.484 2.18E-6 3.47 0.450 

Loam 5.25 0.439 3.38E-6 4.73 0.408 

Sandy clay loam 6.77 0.404 4.45E-6 6.09 0.376 

Silty clay loam 8.72 0.464 2.03E-6 7.85 0.432 

Clay loam 8.17 0.465 2.45E-6 7.35 0.432 

Sandy clay 10.73 0.406 7.22E-6 9.66 0.378 

Silty clay 10.39 0.468 1.34E-6 9.35 0.435 

Clay 11.55 0.468 9.74E-7 10.40 0.435 

Organic material 5.25 0.439 3.38E-6 4.73 0.408 

Water 0.00 1.00 0.00 0.00 1.00 

Bedrock 2.79 0.200 1.41E-4 2.51 0.186 

Other 4.26 0.421 1.41E-5 3.83 0.392 

Playa 11.55 0.468 9.74E-7 10.40 0.435 

Lava 2.79 0.200 1.41E-4 2.51 0.186 

White sand 2.79 0.339 4.66E-5 2.51 0.315 

 970 

Table B3 Soil parameters in default and calibrated WRF-Hydro. Default soil parameters in WRF-971 

Hydro are adapted from the soil analysis by Cosby et al. (1984). Grain size distribution index and 972 

soil porosity are altered from default values during the global soil moisture calibration. Saturated 973 

hydraulic conductivity is altered from default values during the streamflow calibration. 974 

 975 

  976 
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 977 

 978 

Fig. B6 WRF-Hydro simulated discharge time-series at four debris flow source areas. (a)–(c) 979 

MRMS precipitation (green bars) and simulated discharge time-series for January 26th 00:00 to 980 

31st 23:00 at Mill Creek, Big Creek, and Nacimiento debris flow source areas (black circles in Fig. 981 

7b–d) in baseline (purple dashed line) and burn scar simulation (red line). 982 

 983 

 984 

 985 

 986 

 987 

 988 
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Table B4 989 

The total runoff volume, peak discharge, and peak timing at debris-flow source areas 990 

Site name 

Baseline simulation Burn scar simulation 

Total 

volume 

(m3) 

Peak 

discharge 

(m3 s-1) 

Peak 

timing 

Total 

volume 

(m3) 

Peak 

discharge 

(m3 s-1) 

Peak 

timing 

Mill Creek 10,023 0.23 27th 23:00 
83,853 

(+737%) 

1.24 

(+439%) 
27th 13:00 

Big Creek 11,611 0.71 28th 05:00 
128,879 

(+1010%) 

2.81 

(+296%) 
28th 05:00 

Nacimiento 3,031 0.05 27th 13:00 
49,792 

(+1542%) 

0.76 

(+1420%) 
27th 13:00 

 991 

Table B4 The total runoff volume, peak discharge, and peak timing in the baseline and burn scar 992 

simulations from January 27th 00:00 to 31st 23:00 at source areas of Rat Creek, Mill Creek, Big 993 

Creek, and Nacimiento debris flows (black circles in Fig. 7b–d). The percent change of the total 994 

volume and peak discharge in the burn scar simulation relative to the baseline simulation are shown 995 

in parentheses. 996 
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 999 

 1000 

 1001 

Fig. B7 Discharge volume-based runoff-generated debris flow hazardsusceptibility at catchment 1002 

level in the (a) baseline simulation, (b) burn scar simulation, and (c) the difference between the 1003 

burn scar and baseline simulations. For each catchment, the hazardsusceptibility is assessed by 1004 

computing the total discharge volume at the catchment outlet from January 27th 00:00 to 28th 12:00. 1005 

 1006 

 1007 
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https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS. A detailed description can be found at 1010 

Formatted: Superscript

Formatted: Superscript

Formatted: Font color: Auto

https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS


 

50 

 

https://ldas.gsfc.nasa.gov/nldas/v2/forcing. The MRMS radar-only precipitation estimate is 1011 

publicly available at: https://mtarchive.geol.iastate.edu/. A description can be found at 1012 

https://www.nssl.noaa.gov/projects/mrms/. The PSL in-situ soil moisture data is publicly available 1013 

at: https://psl.noaa.gov/data/obs/datadisplay/. The USGS streamflow is publicly available at: 1014 

https://waterdata.usgs.gov/nwis/. The wildfire perimeter shapefiles are downloadable at: 1015 

https://data-nifc.opendata.arcgis.com/search?collection=Dataset. The remote sensing data used in 1016 

this manuscript were provided by the European Space Agency (ESA) Copernicus program and 1017 

accessed on Google Earth Engine (https://code.earthengine.google.com). All processed data 1018 

required to reproduce the results of this study are archived on Zenodo at 1019 

http://doi.org/10.5281/zenodo.5544083. 1020 
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