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 1 

Abstract: The Generalized Likelihood Uncertainty Estimation (GLUE) method has 2 

been thrived for decades, huge number of applications in the field of hydrological 3 

model have proved its effectiveness in uncertainty and parameter estimation. However, 4 

for many years, the poor computational efficiency of GLUE hampers its further 5 

applications. A feasible way to solve this problem is the integration of modern 6 

CPU-GPU hybrid high performance computer cluster technology to accelerate the 7 

traditional GLUE method. In this study, we developed a CPU-GPU hybrid computer 8 

cluster-based highly parallel large-scale GLUE method to improve its computational 9 

efficiency. The Intel Xeon multi-core CPU and NVIDIA Tesla many-core GPU were 10 

adopted in this study. The source code was developed by using the MPICH2, C++ 11 

with OpenMP 2.0, and CUDA 6.5. The parallel GLUE method was tested by a 12 

widely-used hydrological model (the Xinanjiang model) to conduct performance and 13 

scalability investigation. Comparison results indicated that the parallel GLUE method 14 

outperformed the traditional serial method and have good application prospect on 15 

super computer clusters such as the ORNL Summit and Sierra of the TOP500 super 16 

computers around the world. 17 
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1. Introduction 1 

1.1 GLUE-based hydrological model uncertainty and parameter estimation 2 

 The uncertainty in hydrological processes affects the prediction accuracy of the 3 

hydrological models (Dong et al., 2015; Kan et al., 2015; Kan et al., 2016; Kan et al., 4 

2017; Kan et al., 2018; Lei et al., 2016; Li et al., 2016; Li et al., 2014; Zuo et al., 5 

2016). The uncertainties can be categorized into three types, including model 6 

parameter uncertainty, input data uncertainty, and model structure uncertainty 7 

(Lindensehmidt et al., 2007). Among them, the model parameter uncertainty analysis 8 

and parameter estimation play important roles to the model simulation and flood 9 

forecasting (Dong et al. 2019; Duan et al. 2018, 2019; Gao et al. 2018, 2019). 10 

Uncertainties in hydrological simulation brings difficulties in water resource 11 

management and hydrological risk reduction (Zhu et al., 2018; Yu et al., 2019; Shao et 12 

al., 2016,2018a,b; Wang et al. 2018). Therefore, uncertainty and parameter estimation 13 

have become a necessary procedure in the application of hydrological models (Li, 14 

2005). 15 

Until recently, hydrologists have carried on comprehensive studies on uncertainty 16 

analysis and parameter estimation on hydrological model and have obtained 17 

significant achievements. The Generalized Likelihood Uncertainty Estimation, GLUE, 18 

has become the most widely applied model uncertainty analysis and parameter 19 

estimation method. The GLUE method was proposed by Beven in 1992 (Beven and 20 

Binley, 1992) for studying the equifinality phenomenon of hydrological model, and 21 

then it has been widely applied in hydrology studies. Li (Li and Liang, 2006; Shu et 22 

al., 2008) used three different typical watersheds as examples and adopted the GLUE 23 

method to study the parameter uncertainty issue of the Xinanjiang model, which 24 

assessed and conformed the applicability of the GLUE method. Huang (Huang and 25 

Xie, 2007) applied the GLUE method in the Xingfeng watershed of the Dong River 26 

and studied the TOPMODEL uncertainty in hydrological forecasting. Muleta (Muleta 27 

M and Nicklow, 2005) studied the discharge and sediment simulation by using the 28 

SWAT model in the Creek catchment in Illinois state of the U.S.A. and considered that 29 

the sediment simulation results have higher uncertainty than the discharge simulation. 30 
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Xu (Xu and Li, 2009) applied the GLUE method for the SWAT model uncertainty 1 

assessment and parameter estimation in headwaters of the Hei River. 2 

 When utilizing the GLUE method, many hydrologists improved the algorithm for 3 

the purpose of studying features of the watersheds or satisfying various requirements. 4 

Blasone (Blasone and Vrugt, 2008) replaced the Monte Carlo random sampling of the 5 

GLUE by the SCEM-UA sampling. They selected the feasible parameter sets 6 

according to the coverage of the estimated confidential intervals and therefore 7 

significantly improved the reliability of the confidential intervals. Wei (Wei and 8 

Xiong, 2008) applied the above-mentioned method in upper stream of the Han River 9 

and obtained better estimation results. Liu (Liu, 2008. Liu et al., 2009) improved the 10 

likelihood criterion of the GLUE method and added multiple criteria likelihood 11 

functions based on China’s Specification for Hydrological Forecasting. The multiple 12 

criteria likelihood functions promoted the uncertainty analysis capability and accuracy 13 

of the GLUE method. Lin and Chen (Lin et al., 2009) described the model parameter 14 

relativity by using Copula function and proposed Copula-Glue based parameter 15 

uncertainty estimation method for hydrological models. They also compared the 16 

simulation result with the original GLUE. Deng (Deng et al., 2008) generated the 17 

synthetic time series data to eliminate the influences of the data and model structure 18 

and analyzed the effects of likelihood function of the pollutant attenuation model. 19 

They found that the likelihood function has great impact on the analysis results. 20 

1.2 Previous studies on the acceleration of the GLUE method 21 

 The computational cost of the GLUE method is expensive. It is due to the 22 

extensive feasible parameter searching space of the Monte Carlo experiments 23 

combined with the huge number of hydrological model objective function evaluations. 24 

The traditional GLUE method consumes too much time which prevent the researchers 25 

and engineers from applying it to highly complex real-world applications. This is a 26 

huge impedance to the development of GLUE-based uncertainty analysis and 27 

parameter estimation methods. 28 

Binley (Binley and Beven, 1991) attempt to assess the uncertainty associated with 29 

predictions of distributed models using a distributed rainfall-runoff model. However, 30 
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he recognized that the computational constraints of the Monte Carlo simulations and 1 

examined the method of Rosenblueth (1975) which requires 2N+1 simulations with  2 

N as the number of model parameters, to make an approximate estimate of the 3 

prediction uncertainty. Binley constrained their Monte Carlo sampling to 500 4 

realizations even though they adopted a relatively simple distributed model, the 5 

Institute of Hydrology Distributed Model version 4 (IHDM4). However, at that time， 6 

performing this level of computation required significant code enhancement in order 7 

to exploit a 80 node transputer parallel computer (Beven and Binley, 2014). 8 

Later on, Beven (Beven and Binley, 1992) noticed that the GLUE procedure is 9 

computationally intensive and improved the computational efficiency by 10 

implementing it on a local parallel processing computer. The transputer utilized by 11 

Binley and Beven was a 1980s parallel computer which was designed by David May 12 

at the University of Bristol and produced by Inmos, with chips designed to support 13 

pipes to other processors. The first floating point transputer, the T800 was produced in 14 

1987. It was used by Binley as TRAM daughter boards for PCs and programmed in a 15 

language called Occam. Later on, the simulations run on a parallel computer of 16 

Lancaster University Meiko Computing Surface, which contains some 80 transputers, 17 

each of which provides about 1 Mflops average performance. The GLUE procedure is 18 

adapted to a distributed memory parallel processor, particularly where each realization 19 

may be loaded onto a single processor. In general, 500 realizations of the IHDM were 20 

run for each storm using a 50 transputer array. Each set of runs for each storm took 21 

between 30 and 60 hours of computing time on the 50 processors. In that era, these 22 

pioneer studies were trying to employ hardware and software that was new to 23 

hydrological sciences and relevant disciplines. 24 

With the development of computational performance, constraints of computer on 25 

the application of GLUE have been relaxed. However, it remains an issue, either 26 

because of a model that is particularly slow to run so that it is still not possible to 27 

sample sufficient realizations or because of high number of parameter dimensions 28 

(Beven and Binley, 2014). The largest number of runs used in a GLUE application 29 

that we know of are the two billion runs application (Iorgulescu, 2005; Iorgulescu, 30 
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2007), of which 216 were accepted as behavioral using a limits of acceptability 1 

approach. This was for a model written by just a few lines of code but including 17 2 

parameters for calibration. Two billion runs are still a small sample compared with a 3 

discrete sampling strategy with ten values for each parameter. They were constrained 4 

to 500 realizations for each (relatively short) event and that was only possible in a 5 

reasonable time because they utilized an 80 node transputer system. More recently, 6 

GLUE calculations have been speeded up for certain models using parallel graphics 7 

processor cards (Beven et al., 2012). Even though a number of researchers have 8 

studied on the acceleration of GLUE, little research fully utilized the huge 9 

computational horsepower of the new generation CPU (Central Processing Unit)-GPU 10 

(Graphics Processing Unit) hybrid high performance computer cluster and its software 11 

ecosystems. With the development of modern heterogeneous parallel computing 12 

technology, new generation hardware integrated with their versatile software 13 

development tools can provide tremendous computing horsepower and much better 14 

energy efficiency than ever before. The acceleration of GLUE method should catchup 15 

with the state-of-the-art of modern high-performance computing technology. The 16 

acceleration of GLUE by using new generation CPU-GPU hybrid high performance 17 

computer cluster is of great significance and is in great need. 18 

1.3 Proceedings of the modern parallel computing technology 19 

 With the development of modern microelectronic technology, multi-core and 20 

many-core hybrid heterogeneous parallel computing platform has become the upstart 21 

in recent high-performance computing field, owe to its stupendous floating-point 22 

compute capability compared with traditional and old generation computers. Until 23 

recently, several heterogeneous super computers, such as Summit and Sierra, have 24 

shown excellent performance on the TOP500 test. CPU-GPU heterogeneous platform 25 

successes owe to its better cost performance and energy consumption ratio. The 26 

modern CPU-GPU hybrid computing platform has become the best choice for 27 

researchers and engineers who need high-performance computing (Fang et al., 2016). 28 

 On the other hand, the GPU has been widely equipped in modern PCs, and the 29 

CPU-GPU hybrid heterogeneous computer systems is easily available for scientific 30 
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computing. Although the available GPU on PCs mainly focuses on the gaming and 1 

entertainment tasks other than floating point computation, these devices still perform 2 

very well in many applications that do not require double precision computations. 3 

Besides, the software development toolkits of the CPU-GPU hybrid platform can be 4 

acquired for free. Therefore, the CPU-GPU heterogeneous parallel computing 5 

platform can be established easily at relatively low cost. The popularization of the 6 

graphics processing cards enables the CPU-GPU hybrid parallel program to execute 7 

on almost all PCs (Fang et al., 2016). 8 

 The utilization of computational power of hybrid CPU-GPU system is 9 

codification on heterogeneous systems. Nevertheless, heterogeneous parallel software 10 

development faces great challenges such as heterogeneous data communication, 11 

programming and optimization based on GPU architecture, joint compilation of 12 

multiple compilers, etc. Owing to the Intel, NVIDIA, and other hardware and 13 

software producers’ hard works, many powerful and easy-to-use compilers and 14 

libraries have emerged which include GCC, ICC, PGI, VC, NVCC, MPI, OpenMP, 15 

and OpenCL, etc. With these useful tools, source code development for heterogeneous 16 

parallel computing is easier to accomplish than before. 17 

1.4 Problems needed to be resolved and content of this paper 18 

 With the arrival of the big data era, hydrological model uncertainty and parameter 19 

estimation require unprecedented large amount of computing horsepower. This 20 

research focused on the GLUE method and the newly emerged modern CPU-GPU 21 

hybrid high performance computer cluster acceleration technology. In order to further 22 

improve the computational efficiency of the GLUE-based Xinanjiang hydrological 23 

model uncertainty and parameter estimation, the CPU-GPU hybrid computer 24 

cluster-based parallel GLUE-Xinanjiang uncertainty and parameter estimation method 25 

was proposed. The parallel method was implemented on CPU cluster and GPU cluster, 26 

respectively. We utilized totally 5 CPUs and 5 GPUs to achieve good acceleration 27 

results. At last, the scalability issue was also investigated to prove the satisfactory 28 

robustness and portability of the parallel GLUE method. 29 

 30 
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2. Methodology 1 

2.1 Traditional GLUE-based Xinanjiang model uncertainty and parameter estimation 2 

2.1.1 Traditional GLUE method 3 

 The requirements of the traditional GLUE procedure for model uncertainty and 4 

parameter estimation are listed below: 5 

 1) A formal definition of a likelihood measure or set of likelihood measures is 6 

required. For hydrological model applications, the Nash-Sutcliffe coefficient of 7 

efficiency (NSCE) is usually adopted as the likelihood measure or objective function. 8 

It can be calculated as follows: 9 
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where 
sim,iq  denotes simulated discharge at time step i; 

obs,iq  denotes observed 11 

discharge at time step i; 
obsq  denotes mean of the observed discharge values; n 12 

denotes the number of discharge data. 13 

 2) An appropriate definition of the initial range or distribution of parameter values 14 

is necessary for a particular model structure. Generally speaking, the ranges of 15 

parameters are predefined according to the parameter physical meanings of the 16 

specific hydrological model and the uniform distribution is adopted in most cases 17 

since the distribution of parameters are usually unknown. 18 

 3) Sampling the parameter sets in the feasible space can be achieved by utilizing 19 

the Monte Carlo approach, and their likelihood values should be evaluated with the 20 

objective function after obtaining the simulation results of the hydrological model. 21 

 4) Uncertainty band or optimality of different parameter sets can be evaluated 22 

based on their likelihood value. 23 

2.1.2 The Xinanjiang hydrological model 24 

 The Xinanjiang model was developed in 1973 and published in 1980 (Zhao et al., 25 

1980). Its main feature is the concept of runoff formation on repletion of storage, 26 

which means that runoff is not generated until the soil moisture content of the vadose 27 
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zone reaches field capacity, and thereafter runoff equals the excess rainfall without 1 

further loss. This hypothesis was first proposed in the 1960s, and much subsequent 2 

experience supports its validity for humid and semi-humid regions. According to the 3 

original formulation, runoff so generated was separated into two components using 4 

Horton’s concept of a final, constant, infiltration rate. Infiltrated water was assumed to 5 

go to the groundwater storage and the remainder to surface, or storm runoff. However, 6 

evidence of variability in the final infiltration rate, and in the unit hydrograph 7 

assumed to connect the storm runoff to the discharge from each sub-basin, suggested 8 

the necessity of a third component. Guided by the work of Kirkby, an additional 9 

component, interflow, was provided in the model in 1980. The modified model is now 10 

successfully and widely applied in China (Singh, 1995). The model structure is 11 

demonstrated in figure 1. Detailed descriptions of principles of the Xinanjiang model 12 

can be found in relevant literatures (Zhao, 1983; Zhao, 1992; Zhao, 1993; Zhao, 13 

1994). 14 

 15 

Fig. 1. The structure of the Xinanjiang model. 16 

2.1.3 Traditional uncertainty and parameter estimation 17 

The traditional GLUE-based Xinanjiang model uncertainty and parameter 18 

estimation involves two aspects: a) parameters upper and lower boundaries and their 19 

constraints; b) the objective function or likelihood measurement. Additionally, for 20 

hydrological simulation and optimization with the Xinanjiang model both the 21 

computation time step and hydro-meteorological data time interval were set to 1 day. 22 

For model parameters, the specification of lower and upper boundaries is listed in 23 
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Table 1. For the Xinanjiang model n = 15 (n is the number of parameters need to be 1 

optimized). Parameters KG and KI of the linear reservoir flow concentration module 2 

has a structural constraint that KG+KI=0.7. Therefore, we optimize KG in this 3 

research and KI is calculated by 0.7-KG. 4 

Table 1 Parameters and their boundaries of the Xinanjiang model 5 

Parameters Physical meaning Range and unit 

K Ratio of potential evapotranspiration v.s. pan evaporation 0.1-1.5 

B Distribution of tension water capacity coefficient 0.1-0.4 

C Deeper layer evapotranspiration coefficient 0.08-0.2 

WUM Upper soil layer water capacity 5-30 (mm) 

WLM Lower soil layer water capacity 50-100 (mm) 

WDM Deep soil layer water capacity 15-70 (mm) 

IM Impervious area ratio 0.01-0.02 

SM Free water capacity 10-50 (mm) 

EX Distribution of free water capacity coefficient 1-2 

KG Free water storage to groundwater outflow coefficient 0.1-0.6 

CG Groundwater storage recession constant 0.98-0.998 

CI Interflow storage recession constant 0-0.9 

CS Lag and route method recession constant 0-1 

L Lag time 0-5 (d) 

XE Muskingum method parameter -0.5-0.5 

 In this study, we carried on the uncertainty and parameter estimation of the 6 

Xinanjiang daily model by using the GLUE method. The Xinanjiang daily model 7 

focuses on the water balancing and the hydrograph simulation. Therefore, the 8 

objective function (OBJ) adopted herein is calculated as follows: 9 

1OBJ RDRE NSCE                                                (2) 10 

where RDRE and NSCE represent the Runoff Depth Relative Error and the 11 

Nash-Sutcliffe Coefficient of Efficiency, respectively. The computation of the NSCE 12 

has been listed in Eq. (1) and the RDRE is calculated as follows: 13 
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where 
sim,iq  denotes simulated discharge at time step i; 

obs,iq  denotes observed 15 
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discharge at time step i; 
obsq  denotes mean of the observed discharges; n denotes the 1 

number of discharge data. 2 

 The parameters and state variables of the Xinanjiang model require two 3 

additional constraints to ensure the correctness of the model physical meaning. The 4 

constraints are applied on parameters CG, CI, and CS (CG must be larger than CI and 5 

CI must be larger than CS) and soil moisture W (W must be non-negative). In order to 6 

consider the first constraint in the procedure of the GLUE method, before calculating 7 

the OBJ, we test the CG, CI, and CS values to verify whether the constraint 8 

relationship is satisfied. If it is satisfied, we continue the calculation of the OBJ; 9 

otherwise, we set the OBJ equal to a penalty term which is computed by 10 

   min 0, min 0,OBJ lambda lambda CG CI CI CS                      (4) 11 

where lambda is a penalty coefficient which was set to 1000 in this research. If the 12 

first constraint is satisfied, then we can run the Xinanjiang daily model by using the 13 

hydro-meteorological data to generate the simulated discharge time series. After the 14 

model simulation is finished, a “flag” will be returned to indicate whether the 15 

simulation is success. If the simulation is early stopped and returned a “flag” 16 

indicating that the state variable W has negative values, we set the OBJ equal to 17 

another penalty term expressed as 18 

 UBOBJ lambda lambda WM WM                                     (5) 19 

where WMUB denotes the upper boundary of parameter WM; WM denotes the WM 20 

value generated by the Monte Carlo sampling of the GLUE method. This penalty term 21 

forces the algorithm to search towards larger WM to avoid the negative W values. 22 

 If the above mentioned two constraints are both satisfied, we calculate the OBJ 23 

according to 24 

1OBJ RDRE NSCE                                                (6) 25 

 After the OBJ of each parameter set is calculated, we can obtain the uncertainty 26 

plot and optimal parameter set based on the OBJ values. 27 

2.2 Parallel GLUE-based Xinanjiang model uncertainty and parameter estimation 28 
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2.2.1 Parallel GLUE method 1 

 The parallelization of the GLUE method involves two steps which include the 2 

parallelization of the Monte-Carlo sampling and the optimal parameter set reduction. 3 

We implemented the parallel GLUE method on multi-core CPU computer cluster and 4 

many-core GPU computer cluster, respectively. The detailed description of the 5 

implementation can be found in the following paragraphs. 6 

2.2.2 Parallel uncertainty and parameter estimation - CPU computer cluster 7 

implementation 8 

 The parallel GLUE method was implemented on a multi-core CPU computer 9 

cluster which contains 4 HP Z-series workstations host totally 5 Intel Xeon 10 

E5-2630v3 multi-core CPUs. The flow chart of the CPU computer cluster 11 

implementation of the parallel GLUE method is demonstrated in figure 2. 12 

 The parallel GLUE method starts from the initial settings on the master node. The 13 

hydro-meteorological data is loaded from CSV (comma-separated values) files which 14 

include daily rainfall, runoff discharge, evapotranspiration, and catchment 15 

geographical information. Besides, the program set the total sample number of the 16 

Monte Carlo (NS), likelihood threshold (TH), model parameter boundaries, and KG 17 

plus KI constraint. After initial data loading and settings, the algorithm queries the 18 

number of slave nodes (NN) and number of CPU cores in each slave node by using 19 

MPI and OpenMP, respectively. The work load quantity assigned to each slave node is 20 

calculated as follows: 21 

i iNSS NS NC NT   and 
1

NN

i

i

NT NC


                                      (7) 22 

where NSSi denotes number of samples generated in slave node i; NCi denotes number 23 

of CPU cores in slave node i; NT denotes total number of CPU cores; i = 1, 2, …, NN. 24 

 25 
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 1 

Fig. 2. The flow chart of the CPU computer cluster implementation of the parallel 2 

GLUE method. 3 

 After initial data loading and model settings have been finished, the above 4 

mentioned data and settings are broadcasted to all slave nodes by using MPI_Bcast 5 

API. For each slave node (let’s set slave node i as an example), generate NCi threads 6 

to sample NSSi parameter sets which fall in the parameter feasible space. For each 7 

thread, run the Xinanjiang hydrological model and compute the likelihood function 8 

value by using the generated parameter set. Save parameter set with likelihood value 9 
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higher than TH. Model simulations and likelihood function evaluations in the NCi 1 

threads are executed in parallel by using the OpenMP technology. After the NCi 2 

threads of calculations have been finished, OpenMP parallel reduction operation was 3 

started to find the optimal (largest) parameter set of each slave node. At last, send the 4 

feasible parameter sets and optimal parameter set to the master node by using 5 

MPI_Send API. 6 

 During the Monte Carlo sampling, likelihood calculations, and parallel reduction 7 

of all the slave nodes, the master node waits for all these computations’ completion. 8 

Once all the above computations are completed, the master node receives feasible and 9 

best parameter sets of each slave node by using MPI_Recv API. At last, the master 10 

node generates the uncertainty plots for the feasible parameter sets and chooses the 11 

parameter set with the largest likelihood function value as the optimal parameter set 12 

and finishes the execution by using MPI_Finalize API. 13 

2.2.3 Parallel uncertainty and parameter estimation - GPU computer cluster 14 

implementation 15 

 The parallel GLUE method was implemented on a many-core GPU computer 16 

cluster which is constructed by 4 HP Z-series workstations host totally 5 NVIDIA 17 

Tesla K40c many-core GPUs. The flow chart of the GPU computer cluster 18 

implementation of the parallel GLUE method is demonstrated in figure 3. 19 

The parallel GLUE method starts from the initial settings on the master node. The 20 

hydro-meteorological data is loaded from CSV (comma-separated values) files which 21 

include daily rainfall, runoff discharge, evapotranspiration, and catchment 22 

geographical information of the study catchment. The algorithm also sets the total 23 

sample number of Monte Carlo (NS), likelihood threshold (TH), model parameter 24 

boundaries, and KG plus KI constraint. After initial data loading and settings, the 25 

algorithm begins the MPI execution and queries the number of slave nodes (NN), 26 

number of GPUs in each slave node, and number of GPU cores in each slave node by 27 

using MPI and CUDA, respectively. The work load quantity assigned to each slave 28 

node is calculated as follows: 29 
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i i j

j

NSS NS NC NT


   and 
,

1 1

iNGNN

i j

i j

NT NC
 

                              (8) 1 

where NSSi denotes number of samples generated in slave node i; NCi,j denotes 2 

number of GPU cores of GPU j in slave node i; NGi denotes number of GPUs in slave 3 

node i; NT denotes total number of GPU cores; i = 1, 2, …, NN; j = 1, 2, …, NGi. 4 

 5 

Fig. 3. The flow chart of the GPU computer cluster implementation of the parallel 6 

GLUE method. 7 
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 After initial data loading and settings have been finished, the above-mentioned 1 

data and settings are broadcasted to all slave nodes by using MPI_Bcast API. For each 2 

slave node (let’s set slave node i as an example), create NGi CPU threads to control 3 

NGi GPUs by using OpenMP and offload the data and settings on the GPUs by using 4 

CUDA. Totally sample NSSi parameter sets fall in the parameter feasible space on the 5 

GPUs. Each GPU thread run the Xinanjiang hydrological model and compute the 6 

likelihood function value by using the generated parameter set, parameter sets with 7 

likelihood value higher than TH were saved. The model and likelihood function 8 

calculations are executed in parallel by using the OpenMP and CUDA technology on 9 

the GPUs. The GPU j is responsible for parameter set generation, model run, and 10 

likelihood function evaluations of 
, ,

1

iNG

i i j i j

j

NSS NC NC


   samples. After the 11 

calculations of likelihood, the CUDA parallel reduction was started to find the feasible 12 

parameter sets and the best (largest) parameter set of each slave node. At last, the 13 

uncertainty plot of the feasible parameter sets and the best parameter set was send to 14 

the master node by using MPI_Send API. 15 

 During the Monte Carlo sampling, likelihood calculations, and parallel reduction 16 

of all the slave nodes, the master node waits for all these computations’ completion. 17 

Once all the above computations are completed, the master node receives the feasible 18 

parameter sets and the best parameter set of each slave node by using MPI_Recv API. 19 

At last, the master node plots the uncertainty plot and chooses the parameter set with 20 

the largest likelihood function value as the best parameter set and finishes the 21 

execution by using MPI_Finalize API. 22 

2.3 Hardware and software adopted in this study 23 

 The hardware utilized in this research is a HP Z-series workstation computer 24 

cluster constituted by one HP Z820 and three HP Z840 workstations. The screen and 25 

four workstations are demonstrated in figure 4. The USB KVM switch which is used 26 

for the controlling and switching of four workstations by one set of screen, keyboard, 27 

and mouse is shown in figure 5. This computer cluster has 5 Intel Xeon E5-2630v3 28 

multi-core CPUs and 5 NVIDIA Tesla K40c many-core GPUs. 29 
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 1 

Fig. 4. The HP Z-series computer cluster. 2 

 3 

Fig. 5. The USB KVM switch. 4 

The Intel Xeon E5-2630v3 CPU is a high-end server level OEM/tray 5 

microprocessor. It’s a Haswell-EP architecture CPU with 0.022nm manufacturing 6 

process. It has 8 CPU cores and supports hyper-threading technology with up to 16 7 

parallel threads. The base frequency of the CPU core is 2.4GHz and the turbo 8 

frequency is 3.2GHz. The level 1 cache size is 8x32KB 8-way set associative 9 

instruction and data caches. The level 2 cache size is 8x256KB 8-way set associative 10 

caches. The level 3 cache size is 20MB shared cache. It supports many new features 11 

such as MMX instructions, SSE/streaming SIMD extensions, AVX/advanced vector 12 

extensions, and TBT2.0/turbo boost technology 2.0, etc. The V core is 0.65V-1.3V. 13 

The maximum operating temperature is 72.1℃. The minimum power dissipation is 32 14 

Watt for C1E state and 12 Watt for C6 state. 15 

The Tesla K40c is a high-end professional graphics card by NVIDIA, launched in 16 

October 2013. Built on the 28nm process, and based on the GK110B graphics 17 

processor, the card supports DirectX 12.0. The GK110B graphics processor is a large 18 
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chip with a die area of 561mm2 and 7080 million transistors. It features 2880 shading 1 

units, 240 texture mapping units and 48 ROPs. NVIDIA has placed 12288MB 2 

GDDR5 memory on the card, which are connected using a 384-bit memory interface. 3 

The GPU is operating at a frequency of 745MHz, memory is running at 1502MHz. 4 

Being a dual-slot card, the NVIDIA Tesla K40c draws power from 1x6-pin+1x8-pin 5 

power connectors, with power draw rated at 245W maximum. Tesla K40c is 6 

connected to the rest of the system using a PCIe 3.0x16 interface. The card measures 7 

267mm in length, and features a dual-slot cooling solution. Its price at launch was 8 

7699 US Dollars. 9 

 The software is developed based on the Microsoft Windows 7 64-bit operating 10 

system in this research. The software ecosystem applied in this study is constituted by 11 

the MPICH2, Microsoft VC++2010 with OpenMP, and NVIDIA CUDA 6.5. 12 

 MPICH is a high-performance and widely portable implementation of the 13 

Message Passing Interface (MPI) standard (MPI-1, MPI-2, and MPI-3). The goals of 14 

MPICH are: (1) to provide an MPI implementation that efficiently supports different 15 

computation and communication platforms including commodity clusters (desktop 16 

systems, shared-memory systems, multi-core architectures), high-speed networks (10 17 

Gigabit Ethernet, InfiniBand, Myrinet, Quadrics) and proprietary high-end computing 18 

systems (Blue Gene, Cray) and (2) to enable cutting-edge research in MPI through an 19 

easy-to-extend modular framework for other derived implementations. MPICH is 20 

distributed as source (with an open-source, freely available license). It has been tested 21 

on several platforms, including Linux (on IA32 and x86-64), Mac OS/X (PowerPC 22 

and Intel), Solaris (32- and 64-bit), and Windows. 23 

 The OpenMP API supports multi-platform shared-memory parallel programming 24 

in C/C++ and Fortran. The OpenMP API defines a portable, scalable model with a 25 

simple and flexible interface for developing parallel applications on platforms from 26 

the desktop to the supercomputer. In this research, we adopted the OpenMP in Visual 27 

C++2010 implementation to develop parallel codes. The OpenMP C and C++ 28 

application program interface lets us write applications that effectively use multiple 29 

processors. Visual C++2010 supports the OpenMP 2.0 standard which includes 30 
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OpenMP directives, clauses, library reference, and program interface. 1 

 CUDA is a parallel computing platform and programming model invented by 2 

NVIDIA. It enables dramatic increases in computing performance by harnessing the 3 

power of the graphics processing unit (GPU). With millions of CUDA-enabled GPUs 4 

sold to date, software developers, scientists, and researchers are using 5 

GPU-accelerated computing for broad-ranging applications. The NVIDIA CUDA 6 

Toolkit adopted in this study provides a comprehensive development environment for 7 

C and C++ developers building GPU-accelerated applications. The CUDA Toolkit 8 

includes a compiler for NVIDIA GPUs, math libraries, and tools for debugging and 9 

optimizing the performance of applications. We’ll also find programming guides, user 10 

manuals, API reference, and other documentation to help us get started quickly 11 

accelerating our application with GPUs. 12 

2.4 Hydro-meteorological data utilized in this study 13 

 The study area of this research is the Ba River basin. It originates from the north 14 

slope of the Qinling, China. The full length of the Ba River is 92.6km. The elevation 15 

difference from the headwater to the outlet of the river is 1142m. The total slope is 16 

12.8%. The area of the research basin is 2577km2. The Ba River basin is an 17 

asymmetric watershed. The left bank tributaries are sparse and long, while the right 18 

bank tributaries are condensed and short. The Ba River is a mountainous river. The 19 

river discharge hydrograph rises and falls steeply. The peak flow usually appears in 20 

summer season and the drying season is winter. The average annual precipitation of 21 

the studied area is 630.9mm. The average annual evaporation is 949.7mm. The 22 

average annual runoff is 493.1 million m3. There are ten rainfall gauges located in this 23 

area and the outlet station is the Maduwang station. Observed daily rainfall, 24 

evaporation, and daily average discharges range from 2000 to 2010 were utilized as 25 

the calibration data set. The Thiessen polygon map of the Maduwang catchment are 26 

demonstrated in figure 6. 27 
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 1 

Fig. 6. The map of the Maduwang catchment. 2 

3. Results and discussion 3 

3.1 Total execution time comparison 4 

 In order to test and examine the computational performance of the traditional 5 

serial and the improved parallel GLUE methods, we compared the total execution 6 

time of these methods. Total execution time of serial and parallel GLUE methods is 7 

demonstrated in figure 7. For the purpose of comparing total execution time 8 

corresponds to different parallelism degree, we adjusted the number of samples, 9 

which reflects the parallelism degree, from 10000 to 1000000 with a multiplier of 10. 10 

Figure 7 (A) and (B) show the total execution time of serial, CPU cluster parallel, and 11 

GPU cluster parallel GLUE methods, respectively. The serial GLUE is executed by 1 12 

CPU with 1 core. The CPU cluster parallel GLUE is executed by 5 CPUs with 80 13 

cores. The GPU cluster parallel GLUE is executed by 5 GPUs with 14400 cores and 14 

the GPU boost and ECC are set to off. 15 
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 1 

Fig. 7. Total execution time of serial and parallel GLUE methods; (A) serial GLUE; 2 

(B) parallel GLUE. 3 

As we can see in figure 7, when the number of samples increases, the total 4 

execution time of the three versions of GLUE also increases. The execution time of 5 

serial, CPU cluster parallel, and GPU cluster parallel GLUE increases from 34.6s to 6 

3368.4s, from 0.8s to 85.2s, and from 1.4s to 13.4s, respectively. For the serial GLUE, 7 

the total execution time increases approximately according to a multiplier of 10, 8 

which is the same increment multiplier of the number of samples. The CPU cluster 9 

parallel GLUE performs similar to the serial GLUE. Its total execution time also 10 

increases approximately according to the multiplier of 10. However, the GPU cluster 11 

parallel GLUE do not perform as the above two versions. When the number of 12 

samples increases from 10000 to 100000, the total execution time increases more than 13 

10 times (from 1.4s to 2.3s). When the number of samples increases from 100000 to 14 

1000000, the total execution time increases less than 10 times (from 2.3s to 13.4s), 15 

which indicates that with higher computational burden (larger number of samples), 16 

the GPU cluster parallel version’s computational efficiency becomes better than the 17 

serial and CPU cluster parallel versions. It can be observed from figure 7 that parallel 18 

GLUE methods perform much better than their serial counterpart. The GPU cluster 19 

parallel GLUE runs very fast for large number of samples and significantly 20 

outperforms the other two GLUE versions. With larger number of samples, the 21 

parallel GLUE methods run much faster than the serial version. It can be concluded 22 

that parallel GLUE implementations can solve much larger scale parameter estimation 23 
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tasks with much faster speed than the traditional serial GLUE implementation. 1 

3.2 Speedup ratio comparison 2 

 The speedup ratio of different GLUE implementations are demonstrated in figure 3 

8. The figure 8 (A) and (B) show the speedup ratio of cluster-based parallel GLUE v.s. 4 

serial GLUE and GPU cluster parallel GLUE v.s. CPU cluster parallel GLUE, 5 

respectively. The hardware utilized here is same as above mentioned, i.e. 5 CPUs with 6 

80 cores and 5 GPUs with 14400 cores with GPU boost and ECC off. 7 

 8 

Fig. 8. Speedup ratio of different GLUE implementations; (A) parallel v.s. serial 9 

GLUE; (B) GPU cluster v.s. CPU cluster GLUE. 10 

 It can be seen in figure 8 (A) that with the increase of number of samples, the 11 

speedup ratio of the CPU cluster parallel GLUE implementation decreases a bit from 12 

43.25x to 39.54x. On the contrary, with the increase of number of samples, the 13 

speedup ratio of the GPU cluster parallel GLUE implementation increases 14 

significantly from 24.71x to 251.37x. Under the condition of relatively small number 15 

of samples such as 10000, the speedup ratio of GPU cluster (24.71x) is a bit smaller 16 

than the CPU cluster (43.25x). While when the number of samples increases, the GPU 17 

cluster implementation (152.17x and 251.37x) outperforms the CPU cluster 18 

implementation (40.23x and 39.54x) significantly. It can be inferred that the GPU 19 

cluster parallel implementation performs much better than the CPU cluster parallel 20 

version, especially for large scale hydrological model parameter estimation tasks. 21 

 The above paragraph assesses the speedup ratio between parallel GLUE 22 

implementations and serial GLUE implementation. This section compares the 23 

performances of the GPU clusters parallel GLUE and CPU cluster parallel GLUE 24 
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implementations. We can see in figure 8 (B) that with the increase of the number of 1 

samples, the GPU cluster version runs gradually faster than the CPU cluster version. 2 

For relatively small scale problems such as number of samples equals to 10000, the 3 

speedup ratio is less than 1x (0.57x), which means the GPU implementation is slower 4 

than the CPU implementation. Nevertheless, when faces with the large scale 5 

parameter estimation problems such as the number of samples equals to 100000 or 6 

1000000, the GPU cluster parallel implementation run 3.78x or 6.36x faster than the 7 

CPU cluster parallel implementation. These facts indicate that the GPU cluster 8 

parallel GLUE method is more suitable to large scale model parameter estimation 9 

problems and runs much faster than the CPU cluster parallel GLUE method for these 10 

kinds of tasks. 11 

3.3 Scalability analysis 12 

3.3.1 Analysis based on total execution time 13 

 In this section, the scalability of the parallel GLUE methods is analyzed based on 14 

the total execution time. Here we focused on the scalability analysis, therefore, we 15 

fixed the number of samples to 1000000. The GPU cluster turns off the GPU boost 16 

and ECC. We varied the number of CPUs or GPUs and tested the total execution time 17 

to compare the performances of parallel GLUE methods. The total execution time of 18 

CPU cluster parallel GLUE and GPU cluster parallel GLUE is demonstrated in figure 19 

9. It can be inferred from the figure that the total execution time of the parallel GLUE 20 

methods decreases when applying more CPUs or GPUs to accelerate the computation. 21 

With more CPUs or GPUs, the computational efficiency of the parallel GLUE 22 

methods improves significantly. These testing results indicate that the scalability of 23 

the parallel GLUE method is good and the parallel method can be applied to highly 24 

parallel and heavy computational burden tasks. 25 

https://doi.org/10.5194/nhess-2021-344
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



24 

 

 1 

Fig. 9. Total execution time of CPU cluster parallel GLUE and GPU cluster parallel 2 

GLUE. 3 

3.3.2 Analysis based on speedup ratio of CPU cluster GLUE and GPU cluster GLUE 4 

v.s. serial GLUE 5 

 In this section, the scalability of the parallel GLUE methods is analyzed based on 6 

the speedup ratio between parallel GLUE methods and serial GLUE method. Here we 7 

focused on the scalability analysis and therefore set the number of samples to 8 

1000000. The GPU cluster turns off the GPU boost and ECC. We varied the number 9 

of CPUs or GPUs and tested the speedup ratio between parallel GLUE methods and 10 

serial GLUE method to compare the performances of parallel GLUE methods. The 11 

speedup ratio of CPU cluster parallel GLUE and GPU cluster parallel GLUE v.s. 12 

serial GLUE is demonstrated in figure 10. We can see from figure 10 that the speedup 13 

ratios of the parallel GLUE methods increase with the increment of the number of 14 

CPUs or GPUs adopted to execute the parallel computation. The GPU cluster parallel 15 

GLUE outperforms the CPU cluster parallel GLUE significantly. With all the 5 GPUs 16 

run in parallel, the GPU cluster parallel GLUE achieved 251.37x speedup ratio 17 

compared with the CPU cluster parallel version’s 39.54x speedup ratio. These facts 18 

showed that even the CPU cluster parallel GLUE can run much faster than the serial 19 

CPU version, the GPU cluster parallel GLUE achieved even much better 20 

computational efficiency than the CPU cluster parallel GLUE. 21 
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 1 

Fig. 10. Speedup ratio of CPU cluster parallel GLUE and GPU cluster parallel GLUE 2 

v.s. serial GLUE. 3 

3.3.3 Analysis based on speedup ratio of GPU cluster GLUE v.s. CPU cluster GLUE 4 

 In this section, the scalability of the parallel GLUE methods is analyzed based on 5 

the speedup ratio between parallel GLUE methods. Here we focused on the scalability 6 

analysis by setting the number of samples as 1000000. The GPU cluster turns off the 7 

GPU boost and ECC. We varied the number of CPUs or GPUs and tested the speedup 8 

ratio between parallel GLUE methods to compare the performances of parallel GLUE 9 

methods. The speedup ratio of GPU cluster parallel GLUE v.s. CPU cluster parallel 10 

GLUE is demonstrated in figure 11. It can be observed in figure 11 that the GPU 11 

cluster parallel GLUE method run faster than the CPU cluster parallel GLUE when 12 

using 1 to 5 CPUs or GPUs. The GPU version runs 3.93x to 6.36x faster than the CPU 13 

version which indicates that the GPU cluster parallel GLUE has better scalability than 14 

the CPU version. Therefore, adopting more GPUs or CPUs can achieve better 15 

computational performance than only using small number of CPUs or GPUs. 16 
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 1 

Fig. 11. Speedup ratio of GPU cluster parallel GLUE v.s. CPU cluster parallel GLUE. 2 

4. Conclusions 3 

In this research, we developed an improved version of GLUE method to 4 

accelerate its computational efficiency. The multi-core CPU and many-core GPU 5 

hybrid high performance computing hardware system and MPI, OpenMP, and 6 

CUDA-based hybrid software development ecosystems were developed. We applied 7 

the improved parallel and traditional serial GLUE method to the parameter estimation 8 

of a famous hydrological Xinanjiang model real world application. The following 9 

conclusions can be drawn here. 10 

(1) The parallel GLUE-Xinanjiang methods run much faster than their serial 11 

implementation counterpart and achieved much smaller computational time and much 12 

higher speedup ratios. The computational efficiency comparison results indicated the 13 

satisfying performance of the parallel methods. Furthermore, the GPU cluster parallel 14 

GLUE method achieved the highest speedup ratio up to 251.37x which significantly 15 

improves the computational efficiency and makes the highly intensive computation 16 

Monte Carlo based GLUE method possible and meaningful to be applied in real word 17 

and real time applications. 18 

(2) The parallel GLUE methods have good and satisfactory scalability which 19 

allows scientists and engineers to apply more CPU or GPU devices to further improve 20 

the computational efficiency and makes them capable to tack the large-scale 21 
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computation tasks. It is possible to solve problems previously not solvable due to too 1 

much memory and computation power requirements. These kinds of parameter 2 

estimation problems often come up with the requirements of national or even global 3 

hydrological or meteorological modelling and simulation tasks. With the development 4 

of the cluster based super computers such as the Summit and Sierra of the TOP500 5 

super computers, the CPU-GPU hybrid high performance computer cluster-based 6 

parallel GLUE method can achieve even better performance and real-world 7 

application results in the near future. 8 
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