
Characteristics of hail hazard in South Africa based on satellite
detection of convective storms
Heinz Jürgen Punge1, Kristopher M. Bedka2, Michael Kunz1, Sarah D. Bang3, and Kyle F. Itterly4

1Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany
2NASA Langley Research Center, Science Directorate, Climate Science Branch, Hampton, VA, USA
3NASA Marshall Space Flight Center (ST-11), Huntsville, AL, USA
4Science Systems and Applications Inc., Hampton, Virginia USA

Correspondence: Michael Kunz (michael.kunz@kit.edu)

Abstract. Accurate estimates of hail risk to exposed assets, such as crops, infrastructure and vehicles, are required for both

insurance pricing and preventive measures. Here we present an event catalog to describe the hail hazard in South Africa guided

by 14 years of geostationary satellite observations of convective storms. Overshooting cloud tops have been detected, grouped

and tracked to describe the spatio-temporal extent of potential hail events. It is found that hail events concentrate mainly in

the southeast of the country, along the Highveld, and around the eastern slopes. Events are most frequent from mid-November5

through February and peak in the afternoon, between 13 and 17 UTC. Multivariate stochastic modeling of event properties

yields an event catalog spanning 25 000 years, aiming to estimate, in combination with vulnerability and exposure data, hail

risk for return periods of 200 years.

1 Introduction

Damage from large hail is a significant contribution to natural hazards losses in many parts of the world (Punge and Kunz,10

2016; Púčik et al., 2019; Allen et al., 2020), including South Africa, and growing research activity has opened up opportunities

to estimate risk for the insurance sector (Punge et al., 2014; Rädler et al.). In South Africa, hail has long been known to generate

large amounts of damage to agriculture – around two percent of the value of products (Carte, 1977) – and forestry (Smith et al.,

2002; Wingfield and Swart, 1994). Events with severe hail damage to buildings, vehicles and infrastructure like the one on 28

November 2013 (total loss 1.4 bn South African Rand, around 140 mn US dollars, Powell and Burger, 2014; Visser, 2014)15

are numerous (e.g., Perry, 1995). Still, in comparison to other natural hazards, the sporadic occurrence and highly localized

effects of hail pose a particular challenge to hazard quantification, which forms the basis for any risk modeling. Such modeling

is required for the insurance sector to estimate the financial risks related to a hazard, as required, for example, by the Insurance

Act 18 of 2017, and can guide measures to improve resilience.

Across the world, reliable records of hailfall including size information are limited to reports by volunteer observer networks20

(e.g., Held, 1974) and other sources, sometimes collected in databases of hail reports (e.g., Dotzek et al., 2009; Allen et al.,

2015) or hailpad networks (e.g., Palencia et al., 2009). Leigh and Kuhnel (2001), for example, constructed a regional risk model

based on such reports and loss data alone.
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For South Africa, Admirat et al. (1985) evaluated hailpad and hail reporting postcard data to quantify hail properties in an

area of 2800 km2 in the “Transvaal Highveld," nowadays a part of the Gauteng region (cf. Fig. 2a). In this domain, Smith et al.25

(1998) found on average 68.5 hail days per year, much more than in other regions of similar size, for example, northern Italy,

which is the highest hail-exposed region in Europe (e.g., Giaiotti et al., 2003; Punge et al., 2017). Of these, 3.3 days had hail

greater than 3 cm. Grieser and Hill (2019) in their analysis of volunteer-collected hail observations in the United States (Reges

et al., 2016) focus on hailpad derived metrics for hazard analysis and risk modeling. Since both hailpad data and hail reports

either do not cover large enough areas or do not offer continuous observation in space and time, they are insufficient when30

considering the risk for portfolios spread over large regions or countries and affected by long-lived storm systems.

While distinction between hail and rain or sleet is often challenging, remote sensing data from either radar or satellite

instruments is required to determine the spatial extent of hail events and to depict the geographic distribution of the hazard

(Puskeiler et al., 2016; Bedka et al., 2017; Nisi et al., 2018; Allen et al., 2020). Alternatively, numerical models such as high-

resolution reanalysis can be used to identify atmospheric conditions favorable for hailstorm formation (e.g., Rädler et al.; Kunz35

et al., 2020; Taszarek et al., 2020). In that case, climatologies over long time series can be generated (Dyson et al., 2020;

Prein and Holland, 2018). These are, however, generally limited by model resolution and the inaccurate representation of

convective initiation, since hailstorms often form by local and meso-scale processes related to, for example, orographic lifting

and mountain winds, low-level convergence zones, or land use inhomogeneities (Allen et al., 2020). In addition, reanalyses or

regional climate models use simplified microphysical parameterization schemes and not two- or even three-moment schemes40

required for more realistic hail size modeling (Seifert and Beheng, 2006; Loftus et al., 2014; Wellmann et al., 2020). Several

studies have used hail signals or hail detection algorithms for hail frequency assessments (Cintineo et al., 2012; Junghänel

et al., 2016; Fluck et al., 2021) and risk modeling (Puskeiler et al., 2016; Nisi et al., 2018; Schmidberger, 2018). However,

radar data is usually only available on country scales due to availability and inter-radar calibration issues. In South Africa, the

use of radar data for nowcasting of hail has been studied for the Highveld (Ayob, 2019).45

Even though satellite data are a less accurate proxy for hail compared to radar, the big advantage is that this data cover com-

paratively larger domains almost homogeneously. The detection of hail via scattering of upwelling Earth-emitted microwave

radiation is currently limited to satellites in low-earth orbit (Mroz et al., 2017; Ni et al., 2017; Bang and Cecil, 2019). Such data

can be exploited for global analysis of hail occurrence as well as for identification of atmospheric conditions prevailing during

individual hailstorms. The drawback, however, is the lack of temporal coverage required to examine the evolution of hail-50

storms. In contrast, indirect indicators have been designed to extract severe weather and hail signals from much more frequent

and spatially detailed geostationary satellite imagery (Bedka et al., 2010; Melcón et al., 2016). An overshooting cloud top (OT)

indicates an intense updraft capable of generating hail. The OTs can be detected in both visible and infrared data (Bedka and

Khlopenkov, 2016; Khlopenkov et al., 2021). In particular, the most severe hailstorms show a clear OT signature (e.g., Kunz

et al., 2018; Wilhelm et al., 2021), which makes OT detection an appropriate proxy to assess individual hail-producing severe55

convective storms (SCS) and large-scale hail outbreaks. These latter events can cause by far the largest part of the damage

registered by insurers, and can induce solvency issues when the risk was not properly estimated.
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Punge et al. (2014, 2017) used the OT approach to estimate a hail event dataset for Europe which served as the physical basis

for the Willis European Hail Model, the first fully randomized stochastic hail model to cover all of Europe. Since 2014, the

model has been established as a standard tool in hail risk estimation and pricing among insurance and reinsurance companies60

in Europe. A similar approach was later applied to Australia (Bedka et al., 2018). However, assessments of this kind are absent

in many emerging insurance and markets around the world. Of these, South Africa is a prime example where hail is a common

hazard and major risk driver. Therefore, we focus on South Africa in this article, refining the methodology of Punge et al.

(2014, 2017) to describe hail hail events more accurately. In contrast to Bedka et al. (2010), the Khlopenkov et al. (2021)

OT detection technique, which was applied here, provided a gridded probabilistic representation of an OT rather than a list of65

OT centroid pixel locations, accounting for both size and reliability of the updraft detections. The event definition procedure

now tracks storm signatures over time, allowing to follow convective activity more closely. In the stochastic component of

the model, rather than simply re-sampling historic events to describe possible future hazard, distributions of relevant event

properties are modeled and sampled separately, conserving correlation among these properties. Improvements compared to the

European and Australian hail models concern event definition, event parameter distributions, and detail of the stochastically70

generated footprints.

Section 2 presents the methodology and data sets used as input for the model, whereas Sect. 3 describes the derived hazard

distribution and event sets. Event sampling and hail footprint generation are discussed in Sect. 4.

2 Methods and Data

The diagram in Fig. 1 illustrates how the different data sources, explained in the following, are combined in the model and75

processed to yield a set of event footprints representing 25 000 years of hail-generating convective storms based on the climate

and weather of the period 2005-2018. Important steps in the development of the final stochastic modeling are: (i) filtering of

OTs that are unreliable using both passive microwave hailstorm detections and insurance loss data combined with convective

environments (convective available potential energy CAPE, wind shear, melting level) from ERA-5 reanalysis; (ii) cluster of

OTs in space and time to attain single events; (iii) quantify histograms of most important event properties (length, width,80

duration, time of day, day of year) and their relations; consider a hailstone size spectrum from severe weather reports outside

of the study area; (iv) adjust appropriate statistical distribution functions to the different properties; (v) stochastically generate

(artificial) events that resemble the climatology of observed events and their characteristics; (vi) apply importance sampling

to reduce the number of events; and, finally, (vii) compute single hail footprints for the stochastic event set. All the steps and

procedures mentioned above will be explained in the following sections.85

2.1 Overshooting Top Detection

Intense thunderstorms are routinely observed by visible and infrared imagery from geostationary satellites for forecasting and

warning purposes (Zinner et al., 2013; de Coning et al., 2015). In particular in the infrared channel, deep convective cloud tops

atop updrafts appear as cold spots growing near to or above the tropopause level, surrounded by a warmer anvil (Adler et al.,
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Figure 1. Diagram illustrating the functioning of the hail hazard model for South Africa
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1985). Cloudy air masses are propelled upwards in the storm’s core before rebounding or dissolving again on time scales of a90

few minutes.

Detection of these OTs has been automated by Bedka et al. (2010), revealing the climatological distribution in North America

as well as in Europe (Bedka, 2011) and Australia (Bedka et al., 2018). An advanced version of the OT detection algorithm

described by Khlopenkov et al. (2021) delivers a 3-km gridded probabilistic estimate of OT likelihood based on a statistical

combination of tropopause-relative infrared (IR) brightness temperature, prominence of an OT relative to the surrounding anvil,95

and the area and spatial uniformity of the anvil cloud surrounding an OT candidate region. OTs detected with a probability

>50% and with a surrounding anvil cloud (green and yellow colors in Fig. 2b) are used in this work (Scarino et al., 2020;

Khlopenkov et al., 2021). The method was validated by Cooney et al. (2021) using OT identifications from gridded weather

radar observations and by Khlopenkov et al. (2021) using human OT identifications over the United States (US). A relation

between hail size estimated from radar and OT intensity has been suggested in several studies (e.g., Bedka, 2011).100

(a) (b)

Figure 2. (a) Map showing the relief of South Africa from the Shuttle Radar Topography Mission (Farr et al., 2007), provinces and major

cities. (b) Meteosat IR image showing convective storm activity on 28 Nov. 2013 at 1330 UTC. Colors represent 10.8 µm channel brightness

temperature and dots indicating detected overshooting tops (OTs, black) for this image. OT detections are parallax corrected here but the

underlying IR satellite image is not, leading to some slight displacement of a detection and a corresponding cold region.

The anvil cloud in yellow and green colors is automatically detected using the IR anvil detection index greater than 10 (Scarino et al., 2020;

Khlopenkov et al., 2021);

In the Khlopenkov et al. (2021) study, the human analysts identified OTs with two confidence levels, resulting in a con-

servative mask with only the most confident OTs and a liberal mask that also included less confident OT identifications that

did not appear as prominently in the imagery as those in the conservative mask. For Geostationary Operational Environmen-

tal Satellite GOES-16, probability of detection (POD) at an OT probability >0.5 ranged from 0.51 to 0.95 and false alarm

ratio (FAR) ranged from 0.04 to 0.24, with highest POD for the conservative mask and lowest FAR for the liberal mask. For105

GOES-13, POD decreased to 0.8 for the conservative mask but remained nearly the same as GOES-16 for the liberal mask.
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FAR increased by 0.10 for the liberal mask. In Cooney et al. (2021), an OT probability of 0.5 corresponded to a median 20 dBZ

precipitation echo top near the tropopause and a FAR ranging from 0.1 to 0.5 depending on the reflectivity level used to define

the precipitation echo top (e.g., 10 or 20 dBZ), the height of the echo, and the satellite data used as input (e.g. GOES-13 vs

GOES-16). POD based on these comparisons with echo tops ranged from 0.35 to 0.75. In summary, even the most prominent110

OTs are less evident and harder to detect in the GOES-13 data. Given the reduced prominence from coarser resolution, OT

detection algorithm sensitivity settings must allow detection of smaller temperature gradients within anvils, which results in

increased FAR.

False OT detections in very cold outflow near to actual OT regions is the most common source of error. Despite these

false alarms, which in our opinion are impossible to completely eliminate, the Khlopenkov et al. (2021) OT detection method115

improves upon the Bedka et al. (2010) version used in previous hailstorm climatology studies, and will represent the convection

climatology across South Africa quite well.

Imagery of the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument

(Schmetz et al., 2002) between January 2005 and December 2018 is scanned for hailstorms at a temporal resolution of 15

minutes. Since South Africa is not continuously covered by the high resolution visible imagery product of MSG, only the IR120

channel data (given as 10.8 µm brightness temperature) is provided to the detection algorithm. An example is shown in Fig. 2b,

where brightness temperature during a very strong hail event on 28 November 2013 and detected OTs are displayed.

The spatial distribution of OT pixel detections across the entire study domain and 14-year study duration is depicted in

Fig. 3. Clearly, convective storms are most common in the prevailing moist subtropical climate east of South Africa, along

the Great Escarpment, including the south-eastern flanks of the Drakensberg and stretching north through the Mpumalanga125

province. Here the complex terrain with a height of more than 2 300 m above sea level (asl) induces uplift to serve as a trigger

for convection initiation. By contrast, OT frequency decreases towards the west and towards the coast of the Indian Ocean,

where the climate is mainly semi-arid to desert.

Compared to Dyson et al. (2020), we note the absence of an OT frequency maximum over the country of Lesotho, even in the

unfiltered OT data, and higher values to the north and southeast. We attribute these differences to the coarse spatial resolution130

of the ERA-Interim reanalysis used in the above mentioned study, which is likely insufficient to resolve local orography. The

high altitudes in southern Lesotho (mostly 2500–3500 m asl, cf. Fig.2a) seem to suppress deep convection to some degree,

similar to the situation in the interior of the Alps in Europe (Punge and Kunz, 2016; Nisi et al., 2018).

2.2 Hail reports and insurance claims

Reports of hail observations including estimates of hail sizes are registered in several continental-scale, centralized databases135

for North America, Europe and Australia. These reports are very helpful for validating the severity of the storms with detected

OTs. In addition, derived hail size spectra are required as as a measure of intensity in hail risk models. For South Africa no

such database of comparable extent is available. However, as shown in several studies (e.g., Prein and Holland, 2018), hail size

spectra do not tend to vary greatly among continents. For this reason, we computed hail size spectra for the stochastic modeling

component of this work from 26 884 hail reports archived by the European Severe Weather Database (ESWD; Dotzek et al.,140
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Figure 3. Distribution of 11 143 479 OT pixels in the period 2005–2018 over continental

South Africa and neighboring nations and seas.

2009) for the period 2005–2019, and from 3 764 reports provided by the Severe Storms Archive of Australia’s Bureau of

Meteorology for the period 1950–2019. Reporting policies meant that events of hail diameter of 2 cm or more are covered,

but in some cases reports with smaller stones accumulating to thick layers are included. A uniformly distributed random value

between -0.5 and +0.5 cm was added to each reported hail diameter to compensate for rounding in the hailstone measurement

process and to obtain a smooth distribution.145

In addition, 1 423 hail damage claims between 1984 and 2017 including a reference to a location were obtained from several

insurance companies of South Africa (see Fig. 4). Data did not include information on the size of hail, hour of occurrence, or

type of asset affected. Claims data tends to be biased towards population centers and – in this case – towards major hail days,

but still has the advantage to provide direct evidence for hail occurrences.

2.3 ERA-5 reanalysis data150

ERA-5 (Hersbach et al., 2020) is the 5th generation reanalysis of the European Centre for Medium-Range Weather Forecasting

(ECMWF). It is a global observation-guided model representation of past weather. Data were obtained for the period 2005–

2018 at a spatial resolution of 0.25◦and hourly resolution. While CAPE and the height of the freezing level are provided as
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Figure 4. Claims locations of hail damage in South Africa (1984–2017) and passive microwave detections (1998–2018) in the model domain.

output variables, bulk wind difference between the near-surface (10 m) and 6 km above the ground (0–6 km wind difference)

was computed based on pressure level data using linear interpolation.155

2.4 Passive Microwave hail retrievals

Scattering of surface emitted microwave radiation by hailstones is an alternative method of hailstorm detection by satellites

(Cecil, 2009). The measurement principle has the advantage that in contrast to OTs the signal is directly caused by hailstones,

but at the cost of spatial and temporal coverage, commonly limited to two overpasses per day, and at the risk of nonuniform

beam filling of the field of view. Beam sizes of current generation sensors (e.g., Petty and Bennartz, 2017) are on the same order160

of magnitude as convective storm core diameters, meaning that sensor and storm need to be align for successful detection.

In this work, such detections from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measure-

ment Mission (GPM) satellites (Bang and Cecil, 2019, 2021) over the South African domain were evaluated for the period

1998–2019. Cases with a hail probability greater than 10% over South Africa and Lesotho were retained. Along with the

damage claims, they are used to compare hail-prone environments in South Africa to those in Europe and Australia (Punge165

and Kunz, 2016; Bedka et al., 2018), and to constrain OT detections to a certain range of convection-related parameters from

ERA-5 reanalysis (see next section).

2.5 OT filtering by conditions from reanalysis

The OT detection algorithm has been extensively calibrated and tested against severe weather reports and radar data (Bedka and

Khlopenkov, 2016; Sandmæl et al., 2019; Cooney et al., 2021). Still, in some cases OT features may have been falsely detected170

or not have produced hail on the ground, for example, due to melting of hailstones during fall through a deep column of warm
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air. In addition for hazard modeling purposes, the focus is on the identification of larger spatial SCS clusters likely to have

produced hail in the event lifetime rather than detecting each isolated storm with enhanced hail potential. Before clustering

the OT detections, a filter is applied based on surrounding atmospheric conditions in terms of wind shear and CAPE obtained

from ERA-5. Since insurance data is only available for South Africa (cf. Fig. 4), the filter criteria are also only determined for175

the territory of South Africa and Lesotho. Note that the purpose of this filter is distinct from other studies aiming to identify

hail-prone conditions from reananlysis (e..g., Taszarek et al., 2020; Dowdy et al., 2020; Prein and Holland, 2018), which tend

to suggest much stricter criteria.

For South Africa, the filter design used for Europe (Punge et al., 2017) and Australia (Bedka et al., 2018) was retained. For

this work, ambient conditions near OT detections are interpolated spatially from the much higher resolved ERA-5 reanalysis180

instead of ERA-Interim (25 km rather than 80 km). In contrast to the latter, ERA-5 has hourly rather than 6-hourly fields,

so values at the full hour are used for OT detections in the following 60 minutes. This reduces false filtering due to model

uncertainty to resolve, for example, the rapidly evolving CAPE field with a strong diurnal cycle.

Bulk wind difference (surface to 6 km) and freezing level for both microwave hail detections and insurance claims in

the vicinity of OT detections are shown in Fig. 5 for South Africa and Lesotho. OTs occur at somewhat lower 0–6 km wind185

difference and higher freezing level compared to microwave detections, confirming the filter choice in Punge et al. (2017). Note

that microwave hail and OT detections occur most frequently at a 0–6 km wind difference between 10 and 20 ms−1, which

represents the lower limit for organized convective storms such as multicells, supercells, or mesoscale convective storms (MCS)

to occur (e.g., Markowski and Richardson, 2010). Using a higher threshold would exclude a relevant fraction of situations

where hail is likely based on the microwave algorithm. Damage reports often occur at 0–6 km wind difference between 20 and190

30 ms−1, indicating a bias towards the more organized storms producing more damaging hail. But given the high concentration

of these claims in populated regions, we refrain from using a more restrictive thresholds based on this data alone. As 9.5% of

the OTs, but only 3.5% of the microwave hail detections and 2.5% of the claims occur at a melting level of less than 2 400 m,

this altitude was used for the lower threshold with this parameter.

OTs are thus retained if the surroundings of a given OT fulfill minimum conditions of convective instability (CAPE >100 Jkg−1),195

0–6 km wind difference (>1.5 ms−1) and the height of the melting level (>2 400 m, <4 845 m agl). The spatial distribution

of the filtered OTs is shown in Fig. 6. It is found that the filter removes OT detections in particular over the ocean, central

Moçambique and the Lesotho Highlands (cf. Fig. 3). The latter feature is due to the minimum freezing level condition and

remains to be confirmed by independent observations, for example, by hailpad or hail sensor data from the region.

A similar pattern of hail events shown in Fig. 6 is found in the global hail study by Prein and Holland (2018, Fig. 11) as200

well as in passive microwave data by Bang and Cecil (2019, Fig. 7; see also the discussion in the Appendix). A final judgment

on the actual occurrence of significant hail on the ground would require surface observation data, such as hailpads or sensors

covering multiple regions of South Africa. Such direct observation data, however, are not sufficiently available for the entire of

South Africa.
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Figure 5. Distribution of ERA-5 0–6 km wind difference and melting level height in hail claims (1984–2017), passive microwave detections

(1998–2019), and OTs (2005–2018) for South Africa and Lesotho. Top row: probability distribution; Bottom row: bi-variate histogram for

0–6 km wind difference and freezing level. Only situations with positive CAPE in ERA-5 were used for these computations.
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Figure 6. Map of 8 272 509 OT pixels retained by the filtering for atmospheric conditions.

2.6 Event definition: Grouping hail activity205

Figure 7 illustrates the definition of historic events based on observed OT data. These events are formed by computing the

spatial and temporal distance between individual OT detections. OTs are assigned to the same event if they are separated by

less than 1 hour and less than 30 km. This simple approach can detect both single cells and other more organized forms of

convection including MCS or squall lines. Event centroids are defined as the mean latitude and longitude of the event OTs. An

event is approximated by an ellipse and characterized by its length, width, orientation relative to the meridian, as well as the210

fraction filled with OTs. In addition, we also considered the highest OT-anvil mean temperature difference among event OTs

as a criterion for storm severity. Lifetime and propagation speed are estimated based on the initial and final OT occurrences

within an event. Events can overlap when several storms pass over the same region on a given day. This actually happened

in the example on 28 November 2013, shown in Fig. 7. The three events overlap, but we can assume that the activity of the

smaller ones is not related to the main event, since the convection occurred several hours later when the main storm had already215

moved away, and also was much weaker.

The event definition criteria are more restrictive compared to Punge et al. (2014), so the events are better constrained to zones

of possible hail activity. Events made up by OT detections only at a single time step, hence lasting for less than 30 minutes, are
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neglected. In total, 33 820 events were identified from the total of 8 272 509 filtered OT detections for the entire 14-year study

period. This means, one event on average contains 245 individual OT detections.220

Figure 7. Convective storm activity in the Gauteng region of South Africa on 28 Nov. 2013. Filtered OTs (gray dots), retained OTs (color-

coded by time), hail claims (pink), and event definition (ellipses). Hail claims (magenta) indicate the location of successive hailstorms, split

by the algorithm into three events, for which ellipses show the spatial extent. A line connects the locations of the initial and final OT locations,

determining the orientation of the ellipse. Two smaller events overlap the main event centered over the Gauteng region, as the associated

cells developed at a later time, separately from the main activity.

Histograms of duration and propagation speed of SCS events – both not considered in Punge et al. (2014) – are shown in

Fig. 8. The distribution of duration is exponential in shape, in line with radar-based studies (Schmidberger, 2018; Fluck et al.,

2021). While duration is roughly proportional to length, it becomes clear that propagation speed varies over a wide range.

Most frequently, the speed ranges around 30–35 kmh−1 (≈8–10 ms−1), slightly lower than the range of 10–30 kt (≈ 18–

55 kmh−1) found by Carte (1966). Very high values beyond 100 kmh−1 are explained by cases where convection is triggered225

simultaneously over a larger domain and OTs from several storms are unintendedly grouped to an event.

3 Stochastic modeling and event properties

In this section we describe the spatial distribution of SCS detection for the model as well as additional event properties. Because

we cannot be assured that all events identified by satellite data and filtered through the ERA-5 reanalysis are associated with hail

12



(a) (b)

Figure 8. Histogram of hail-filtered OT event (a) duration and (b) propagation speed, 2005–2018.

Figure 9. Event frequency distribution used for stochastic modeling. Boxes show regions discussed in Sect. 3.6. The Greater South Africa

domain (SAF, for simplicity defined as the area between -35 and -22◦ N, and 16 and 33◦ E), the Highveld (HVD) and KwaZulu-Natal

(KZN) as the most populated and most storm-affected regions, and the Gauteng (GAU) as the largest contiguous urban area with a significant

concentration of assets.

on the ground, these events are hereinafter referred to as potential hail events. Distribution functions are used to approximate230

the historic event set presented in the previous section. Stochastic events are generated using these distribution functions

for relevant event properties, and 14-year samples from the stochastic event set are compared to historic data such as those

13



(a) (b) (c)

Figure 10. Distribution of events in time of day and day of year: (a) historic events 2005–2018; (b) stochastic model events; and (c) difference

between the two. Days of the year are counted from January 1st. Each box represents 1 hour and 7 days.

available in the existing databases. The full stochastic event set covers 25 000 years with a total of 21 093 957 events spanning

3 442 346 days. The key challenge in generating the stochastic event set is to ensure conservation of event properties, their inter-

relationships, and the spatial distribution of the historic events. This point is addressed by drawing from historic distributions235

using correlated random numbers where required.

The spatial event distribution is obtained by normalizing the annual OT frequency, counted on a rectangular 0.3◦ × 0.5◦

(lat/lon) grid with the average number of OTs per event (Fig. 9). This grid was chosen to retain spatial details of OT occurrence

due to atmospheric processes and mechanisms, such as orographically induced lifting, but dampen local accumulations of

OTs on individual pixels caused by occasional passage of multiple storms at the same location. The implicit assumption with240

this method that events are distributed in the same way as OTs implies a certain amount of additional smoothing that can be

neglected at scales larger than the event length.
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Following Punge et al. (2014), both annual and diurnal cycles are modeled with Gaussian distributions. Approximate normal

distributions were found, for example, by Allen et al. (2015) for hail reports in the US, or by (Taszarek et al., 2018) using

ESWD reports across Europe. Even if in a few regions the annual and diurnal cycles deviate from a normal distribution due245

to climatological peculiarities, this distribution is plausible on average over a large area. For the day of year, domains of 3◦

× 5◦ are considered, grouping 10 × 10 of the smaller grid cells used above such that the number of observations in each cell

is sufficient to derive characteristics of the distribution. Depending on the location (mean number of events), either a mixture

of two Gaussians – to accomodate for two peaks in spring and autumn – or a simple Gaussian distribution (summer peak)

is fitted to the data. The relatively large grid was chosen to ensure a stable solution when fitting this complex distribution250

function, also in regions with few OTs. For each batch of stochastic events representing 250 years, the following procedure is

applied: Days are drawn from each 3◦ × 5◦ boxes’ distribution for N events in this box and also of the respective 8 surrounding

boxes, yielding nine times the required number of events. To mimic the grouping of events in severe days, the same day is then

attributed to blocks of N1/3. Finally, the day is retained for N of these events at random. The process effectively introduces

averaging on a scale of 9 ◦ × 15◦, which represents the scale of synoptic processes and flow patterns governing the spatial (and255

temporal) clustering of SCS, for example, by specific weather regimes such as Baltic blocking (e.g., Mohr et al., 2019, 2020).

This procedure requires only one tuning parameter and has been found empirically to approximate the observed space-time

distribution of days in a satisfactory manner.

In a similar way, the hour of day is determined from the distribution on the same 3◦ × 5◦ grid. Times are drawn from this

distribution for the N events from a region of 10◦ × 6◦ around the boxes center and retained with a chance of 1/4. Again, the260

box dimensions may appear arbitrary, but have been carefully chosen to capture observed spatio-temporal variability. In fact,

the time of day is spatially correlated at a smaller scale because in a series of events the later events are spatially shifted with

respect to the earlier ones.

Figure 10 shows the daily and seasonal variation of the observed (a) and modeled (b, same duration – first 14 years) events.

Seasonal hail activity estimates based on OT activity (2004–2018) and passive microwave hail retrievals (1998–2018) are also265

shown in Fig. B2 in the Appendix. In both satellite detections, there is a clear maximum in austral summer (December and

January) in the afternoon around 15 UTC. Also note the secondary local maximum in the historic event set at around day of

the year 140 and at 06 UTC (discerned as an area of orange shades in that region in Fig. 10 a), which is also represented

in the model. For the Highveld region, Smith et al. (1998) report a somewhat earlier maximum of hail events in November

and December. Indeed, we find the convective season peaks around this time in the Highveld and KwaZulu-Natal, and in the270

first half of November over the Gauteng (not shown). Over the Southern Ocean, the peak occurrence is shifted towards fall.

Off-shore events need to be represented in the model as they can extend to the coastal region. An on-shore impact of these far

off-shore event is quite unlikely and will be marginal at this distance.

Peak time of day is between 14 to 15 UTC, or 4–5 pm South African Standard Time, slightly earlier than in Smith et al.

(1998, 5–6 pm), but consistent with Olivier (1990) (see also Fig. B1 in the Appendix). The diurnal cycle is most pronounced275

in summer. The temporal climatologies of historic (Fig. 10a) and modeled (Fig. 10b) events match rather well, with the model

slightly overestimating events in the tails of the Gaussian distributions. However, during such low activity periods, the OT
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algorithm may miss some lower-topped storms that can still produce hail on the ground.

3.1 Geometric event properties280

Table 1. Hail event property distributions and parameters (computed with the standard matlab mle function).

variable distribution shape scale location

parameter parameter parameter

length l [km] GEV 0.57 26.68 37.33

width l [km] GEV 0.90 7.92 13.00

event-to-storm area ratio 1/f GEV 0.20 1.26 2.36

hail size d [cm] Gamma 3.70 0.83

Both event length l and width w distributions (Figs. 11c and d), determined from the observed OT events as described in Sect.

2.6, decay rapidly with increasing values. In contrast to previous model versions, we choose to approximate both properties

with generalized extreme value (GEV) distributions rather than exponential distributions. This improves the fit in particular

in the lower range of values. The distributions are well approximated by the GEVs illustrating a use case for this function

family beyond extreme value theory. As an exception, low widths are somewhat over-represented, which can be attributed to285

the design of the event definition procedure for historic events. The GEV also tends to give unrealistic large values, which is

why length and width have been truncated at 1.5 times the largest observed values at which events effectively cover the entire

country (1 445 km × 677 km).

In addition, the fraction f of the event area (the area of the ellipse spanned by major and minor axis of lengths l and w,

π/4 l w) covered by OTs/hail streaks is modeled. In this case, a GEV is fitted to the inverse of that fraction, the event-to-storm290

area ratio. This function was found to match observations well, as the inverse has no upper bound but very OT-sparse events

are extremely rare. Figure 11e shows a histogram for the logarithm of the effective event area, i.e., the product π/4 l wf . For

the highest class (> 105 km2), the fraction in the stochastic set is significantly higher, while the match is otherwise satisfactory.

Table 1 lists the distributions and parameters for these event properties. The orientation, or the direction of the major axis of

an event, generally aligns with the direction of propagation. We find that most frequently events have an orientation of around295

100◦, i.e., propagate eastward to southeastward (Fig. 11f) most frequently. This, however, applies only for the whole country,

but not for all regions such as the high hail fall region Gauteng, where storms preferably propagate in north-easterly directions.

Because event properties vary across the South Africa domain, a box-window average over a 2.5◦ window is used to estimate

these variations and to scale event properties from the historic event set. Fig. 12a shows the spatial variation of event length,

estimated using maximum likelihood estimation, in which the objective function is the negative logarithm value of the product300

of the sample data probabilities, given the distribution parameters. Fig. 12b represents the most common orientation, obtained

by fitting a von-Mises-distribution (Mardia and Zemroch, 1975) to the regional events on a national scale. Events occurring

offshore, where MCS occur more frequently than over land (Feng et al., 2021), tend to run longer, whereas events are shorter
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11. Distributions for properties of historic and stochastic events. With modeled events, (error) bars indicate the median (spread)

among 7 independent samples of 14 years length. Each set of bars represents 14 days, 1 hour, 20 km in length, 10 km in width, 0.1 on the

log scale of part (e) and 10◦in orientation. Since hail severity information is essentially unknown for the historic events,

blue bars are missing in (g).17



(a) (b)

Figure 12. (a) Spatial variation of mean event length (%) and (b) spatial variation of event orientation, location parameter (arrows) and the

shape parameter κ of the von-Mises distribution derived from the observed OT events.

in the western part of the domain, hinting towards less organized forms of convection. Orientation varies from south-eastward

in the south-west to north-eastward in the north-east and is most aligned over the Eastern Cape region. Garstang et al. (1987)305

found winds from the north-westerly sector to prevail at 850 hPa on convective storm days in north-eastern South Africa, but

from a much smaller sample. The larger spread in orientation towards the north and west can be explained by (i) the prevalence

of storm systems affecting larger regions at the same time, hence grouping multiple parallel storms, as well as by (ii) small,

quasi-stationary events whose orientation does not reflect an influence of storm propagation.

3.2 Storm severity indicator310

At present, hail diameters cannot be estimated accurately from geostationary satellite measurements alone, even if Marion

et al. (2019) suggest that storm’s severity is linked to OT area. In a recent study, Khlopenkov et al. (2021) showed that the

updraft intensity inferred via difference between OT temperature and the tropopause temperature and the OT temperature and

surrounding anvil were greater for significant severe (≥ 5 cm) hailstorms than storms with smaller hail reports. But, because

of the large uncertainty involved in these relationships, hailsize estimates are not further considered in our modeling approach.315

However, to at least separate days with strong convection from less convective days, we determined a severity indicator based

on the temperature difference between the overshooting top and surrounding anvil. This extent can be related to the strength of

the updraft supporting hailstones growth (Marion et al., 2019; Khlopenkov et al., 2021; Lin and Kumjian, 2022). To quantify

the hail severity indicator, first the temperature difference between the OT and the surrounding anvil is computed. The severity

index is then assigned to the highest such temperature difference of all OTs comprised within an event.320
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3.3 Hail size distribution in stochastic modeling

For the estimation of the damage and the risk, the hail model needs as intensity metric the hail size. Because OT data do not

allow us to estimate reliable hail sizes (see previous Sect. 3.2), this quantity is only considered and implemented in the stochas-

tic part of the model based on the hail size distributions obtained from severe weather reports. Since hail size observations in

South Africa are very rare, we assume that the maximum hail diameters follow the same distribution as large hail diameters325

recorded in the databases of ESWD and Severe Storms Archive (see Sect. 2.2). Hail sizes for all hailswaths within an event

are derived from the attributed largest hail diameter. This means that hailswaths with small hail sizes are more frequent in the

stochastic model than the distribution derived from the database of maximum diameters would suggest. That is also the case

in reality, as hail with a small diameter is less likely to be recorded in a database than large hail. The hailstone size distribution

used in the stochastic model is assumed to be exponential as suggested by various authors using hailpad data (Sioutas et al.,330

2009; Berthet et al., 2011; Grieser and Hill, 2019).

3.4 Length-severity correlation

An important feature of the stochastic hail model is that it conserves the relation between different event properties. The most

relevant properties that are correlated are event length, event width, event maximum hailstone size, and fraction of event area

covered by hail streaks.335

(a) (b)

Figure 13. Scatter plot of correlated historic and stochastic event properties: (a) length and width, (b) length and fraction of event covered

by hail.

The scatter plot of length and width (Fig. 13a) confirms that correlations between these event properties are conserved in

the model. As in Punge et al. (2014), the correlations between length and width to the storm severity indicator (see Sect. 3.2) –

represented by minimum OT temperature difference for historic events – are likewise conserved here. By the same method, the

fraction of the event area affected by hail (‘effective track area’) was also taken into account. This is achieved by first drawing
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correlated sets of random numbers for each property from a uniform distribution and determine ranks. Then, for each property,340

we draw values from the actual distribution, sort them, and attribute to events using the pre-determined ranks (Punge et al.,

2014).

Figure 13b shows the relation of event fraction and length, indicating that in large events, a lower fraction of the area is

affected. Table 2 summarizes the Spearman rank correlations of the four variables considered. Accordingly, longer hail events

tend to be wider, have a higher storm intensity, and a lower fraction of the event area covered by hail streaks.345

Table 2. Spearman rank correlation matrix of OT event properties.

event-to-storm

property set length width severity area ratio

length historic 1.00 0.89 0.39 0.75

model 1.00 0.90 0.39 0.49

width historic 0.89 1.00 0.41 0.61

model 0.90 1.00 0.40 0.43

severity historic 0.39 0.41 1.00 0.17

model 0.39 0.40 1.00 0.16

event-to-storm area ratio historic 0.75 0.61 0.17 1.00

model 0.49 0.43 0.16 1.00

3.5 Inter-annual variability

Hailstorm frequency shows considerable year-to-year variation in both the annual number of hail events and hail days (Fig.

14). Even if there is strong correlation between all regions, smaller regions tend to experience relatively higher variability. This

information helps to better understand the year-to-year variability of hail hazard and resulting losses. Note, however, that the

year 2013/2014 had the second-lowest event count in the Gauteng region, despite the large damage from the 28 November350

2013 event.

The model has fewer events in the north compared to the observed event count as it is based on the scaled OT frequency

instead of events, and events in this region contain fewer OTs (not shown). The modeled distribution appears overly smoothed

at lower rates, but this is unlikely to be a concern.

3.6 Intra-annual variability355

Quite relevant in practice is the representation of multiple events occurring on a single day, not considered by Punge et al.

(2014). In fact, it turns out that only 15 % of the event days have just one event, whereas on a few occasions, more than 30

events were detected on a single day. Figure 15 shows the number of days with a given number of observed events per day

for the South Africa domain (KwaZulu-Natal (KZN), Highveld (HVD), and Gauteng (GAU) regions as displayed in Fig. 15).
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Figure 14. Time series of event count anomaly (deviation of the annual sum from the 14-year mean, left) and event days (right) per year

(July–June) for regions Gauteng (GAU, regional annual mean event count 35), Highveld (HVD, 152), KwaZulu-Natal (KZN, 181) and South

Africa (SAF, 1259). The July–June period is considered more appropriate as the Austral summer season is not split among years. For the

2004/2005 period, only events in 2005 are covered; likewise 2018/2019 covers only the last 6 months of 2018. When computing the event

count anomalies for these years, the overall repartition of events to half years was taken into account.

Naturally, the smaller the domain area, the lower the respective counts. Over the Highveld, the events are concentrated on a360

smaller number of days compared to the similar-sized KZN region.

Figure 15. Spectrum of number of events per day on historic event days for regions SAF (entire country), HVD (Highveld), KZN (KwaZu-

luNatal) and GAU (Gauteng).
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(a) (b)

(c)

Figure 16. As Fig. 15, but comparing subsets of the stochastic event set to the historic OT event set (as well as the set containing events

lasting only one time step) for each region. (a) South Africa, (b) Highveld, (c) KwaZulu-Natal. Numbers indicate the total count and total

number of days on which these occurred for each set.

The panels in Fig. 16 show the same regional frequency spectra, comparing the historic OT events to 6 equivalent subsets of

the stochastic set. For example, the Highveld region has 2 530 OT events over 813 days. This corresponds to around 180 hail

events on 58 days each year. In an equivalent sample of subsets from the stochastic event set, the event count ranges from 2281

to 2 942 (2 523 ± 232) events on 805 to 893 (838 ± 32) days. Table 3 summarizes the annual OT and model event statistics for365

the four regions.

The result is satisfactory for the South Africa and Highveld regions, whereas for the KwaZulu-Natal region, events concen-

trate on slightly fewer days. Given the absence of multiple-event treatment in previous model versions, this new event approach

represent an improvement for the estimation of damage on individual days.

In the Highveld region, there were 74 days per year with OT detections, 58 days with OT events, and 60 ± 2 events in the370

model event set, whereas in the Gauteng region, these numbers were 32 and 23, respectively (Table 3).
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Table 3. Annual severe convective storm characteristics for South Africa, estimated from 14-year periods for the Greater South Africa domain

(SAF), KwaZulu-Natal (KZN), the Highveld (HVD), and Gauteng (GAU).

region OT count OT event count Model event count OT days OT event days model hail days

SAF 2594 1439 1494 ± 47 196 181 172 ± 2

KZN 359 207 240 ± 13 96 80 66 ± 1

HVD 339 181 180 ± 17 74 58 60 ± 2

GAU 71 40 42 ± 3 32 23 26 ± 2

In contrast, Smith et al. (1998) found 69 hail days per year from hail reporting from a network of voluntary observers by mail,

for a portion of the Gauteng (2 800 km2). However, severe hail (>3 cm in diameter) was found on 3.3 days per year on average.

When considering only hail of this size and assuming the hail severity indicator of the stochastic event set would correspond to

an actual diameter, the stochastic event set has 14.5 hail days per year in the Gauteng region. Clearly, the frequency of severe375

events may have changed since the time of Smith’s observations, through natural variability or climatic change, but the effect

is likely small compared to the uncertainty of both past and present estimates.

4 Event footprints

4.1 Importance sampling

When applying the stochastic hail risk model to an insurer’s portfolio, going through millions of events for – potentially380

– millions of assets is a time consuming process. While the complete event set is optimal for describing hail hazard, an

intermediate step, called importance sampling, is introduced to make risk calculations more efficient, reducing the event count

by a factor of approximately ten. However, the most important events in terms of damage potential are over-represented to

allow for adequate statistics (notably, computing damage at higher return periods reliably).

The newly introduced explicit modeling of the date requires that all events occurring on the same day need to be considered385

together. Consequently, daily aggregated damage potential (here: ellipse area × hail severity indicator) is the relevant quantity

to rank event days by overall aggregated severity. The class thresholds correspond to the 50th, 80th, 95th, and 99th percentiles

of aggregated severity, splitting the event set into 5 classes, of which 2.5, 7.5, 5, 10, and 100 % were retained. To compensate,

the retained events are attributed a higher frequency (default is once per event set period, e.g., 25 000 years), so the total damage

potential is conserved.390

The large differences in event frequency across South Africa mean that local statistics on, for example, hail damage or

probable maximum loss for a 200-year return period, can rely on a much bigger sample in the hail hot spots of the country

compared to the less hail-prone regions in the west. It is hence important to retain a minimum number of events in those

low-hail regions, in practice at least one per 250-year batch (if one is present in the first place).
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Figure 17 illustrates this point: Fig. 17a shows the distribution of events retained in the importance sampling, some areas in395

the west and far north have less than 50 events in a 0.5◦ × 0.3◦ box (≈ 30 km in extent). As to be expected, when frequency

weights are applied (Fig. 17b and c), the distribution corresponds very well to that of the full event set (Fig. 9).

(a) (b)

(c)

Figure 17. (a) Number of events retained by the importance sampling; (b) As (a), but weighed by frequency; (c) event frequency before

importance sampling, showing very little difference.

4.2 Footprint generation

Finally, the areas affected by hail with corresponding hail sizes need to be determined for the stochastic events, forming a

hail “footprint." Given the arbitrary paths of thunderstorms observed for the historic events, we chose to achieve this by a400

randomized process of allocating ellipsoid hail streaks within the event area. These streaks are aggregated across all events of a

day to form the daily hail footprint, which is applied to portfolios in the further stages of the risk model. The footprint catalog

gives local information on hail occurrence and severity indicator for each day on a 2 × 2 km2 grid covering continental South

Africa.
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(a) (b)

(c) (d)

Figure 18. Number of events hitting a grid cell per year (a)–(b): for classes 1 and 5, respectively, (c): total, frequency-weighed, (d) as (c),

but for hail diameter >2 cm.

The footprint generation algorithm attempts to mimic observed patterns of hailfall in an empirical way. A first streak is405

located in the center of the event, and its length, orientation and severity indicator match those attributed to the event. Streak

widths were chosen to approximate hail streaks in ground- and radar-based studies (Stout et al., 1960; Changnon Jr, 1977;

Kleinschroth, 1999; Schmidberger, 2018; Fluck et al., 2021), without strictly following observed distributions. An exponential

distribution is assumed, with a mean width of 6 km, and a maximum of 20 km. Hail severity decreases towards the streak’s

edges in a parabolic way, as proposed by Schmidberger (2018). This is deemed acceptable since actual hail patterns on the410

ground are largely uncertain across the world. In an iterative process, further streaks are added until the combined streak area

covers the prescribed fraction of the event area. They are located randomly within the event area, and the possible event length

decreases with each new streak. Streak orientation is varied by +/- 10◦ around the event orientation to account for both the

uncertainty in the tracking of OTs and new cell formations preferably at the downshear flank.
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Figure 19. Model-estimated maximum hail size occurring once in 10 years for grid cells across South Africa, computed as the lowest hail

diameter class with a return period

Accumulating events over a time equivalent of 2 500 years, Fig. 18a and b show the number of events hitting each cell for415

a 10%-sample of the importance sampled event set, for the least and most severe class (1 and 5, respectively). Clearly, the

footprint frequency over the Highveld and KwaZulu-Natal increases from class 1 to 5, whereas it decreases in the western half

of the country. Consequently, hailstorms are relatively more often severe over the Highveld than other parts of the country, with

important consequences on the financial risks associated with the peril. Figure 18c shows the accumulated, frequency-weighed

annual sum of hail occurrences in the model, while Fig. 18d presents the same occurrence for maximum hail severity indicator420

greater than 2. We also note that the local hail count per year is about 2 in the KwaZulu-Natal maximum and around 1 in the

Highveld and Gauteng regions, roughly in line with 0.81 normalized hail days per year in Held (1974).

Based on the local hail count and event set length, return periods, i. e. inverse frequencies, can be estimated for given hail

severity thresholds. Hail severity for a fixed return period were calculated by linear interpolation between such thresholds

fixed at constant intervals. Summarizing the information contained in the event set, and assuming hail severity estimates were425

corresponding to actual hail sizes, Fig. 19 shows the hail severity that can be expected once per decade at a given location: In

the most affected parts in the East, near Newcastle and Ladysmith, hailstones of around 4 cm were to be expected, followed by

3.5 cm for Pietermaritzburg, Mthatha or Nelspruit, 3.1 cm in Durban, 2.8 cm in the major cities of the Gauteng, but less than

2 cm in the western third of the country. Despite the uncertainty regarding the exact hail size – OT relation, this information
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has clear implications on the need for mitigation measures to reduce hail risk, such as roof cover robustness or covered parking430

of vehicles.

5 Conclusions

In our paper, we have presented a method to estimate hail frequency for South Africa, a country frequently affected by large

hail, and to generate footprints over a long-term period of 25 000 years, which can be used by the insurance industry to quantify

hail risk. Despite of the high exposure to hail, no reliable estimates of hail frequency are available for South Africa to date. Since435

the occurrence of hail in this country is not comprehensively recorded by human observers or by hailpad observations, satellite-

based observations of SCS/hailstorms have been used to describe the spatial distribution and nature of intense convection in

the country. By stochastic modeling, hail hazard was derived from a large sample of events, which can be used to quantify hail

risk for a given portfolio of insured assets. As was shown in the manuscript, the stochastically generated event set matches very

well with the historic event set over a 14-year period.440

The combination of improved OT detection and advanced spatio-temporal clustering allows the determination of hail hazard

zones much more precisely compared to the method used for the Willis European Hail Model (Punge et al., 2014). Regarding

storm properties, exponential distributions have been replaced by GEV distributions in most instances, yielding a better fit to

observations.

More importantly, the model is now capable of producing realistic spatio-temporal distribution of events, handling multiple445

events per day as well as their spatial spread and multi-year variability. By explicitly including the date as an event property,

it has become possible to represent outbreaks with multiple events on a single day in a realistic way (see Fig. 16). Hence the

increased financial risk of clusters with repeating severe storms (e.g., 11 and 28 Nov. 2013 in Gauteng, Dyson et al. (2020); or

in Germany on 27/28 July 2013, Kunz et al. (2018); Munich RE (2015)) is accounted for.

In addition, the footprint generation algorithm has been revised to predict hail only in a fraction of the event area, mimicking450

observed storms. This will assist the calibration of the exposure and vulnerability functions of the risk model and yield more

accurate loss estimates. Finally, another addition compared to previous model versions is the time of day, which will allow to

reflect daily changes in exposure, for example of parked cars, in the risk model.

Of course, with the OT-based approach, some scattered, short lasting hail episodes forming smaller hailstones may be missed.

These events, however, are generally unimportant for the hail threat to insurance businesses, which are mostly concerned about455

major loss events. Another limitation of the OT approach is the difficulty to distinguish hail-producing from non-hail producing

storms or to identify the fraction of an individual storm’s track in which it produces hail. While storm environments from

reanalysis (e.g., Bedka et al., 2018; Punge et al., 2017) can help with the first task, they can hardly address the second.

Nonetheless, while the absolute number of hail days per year strongly depends on the minimum size of hail considered,

findings are comparable to local hail reporting-based studies, particularly for the Gauteng region, for which some studies of460

observed hail frequency are available (Carte, 1977; Admirat et al., 1985; Smith et al., 1998). However, there is disagreement

with previous studies over the presence of a hail frequency maximum in the Lesotho mountains, absent in our study. Also, there
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is uncertainty on the occurrence of hail off-shore, albeit not in the focus of this study. Future studies will have to address whether

the differences between our study and previous work in the spatial distribution of hail are artifacts of imperfect methodology

and assumption or actually represent reality.465

Generally, the lack of accurate data of hail observations and damage reports limits the accuracy of hail hazard descriptions

(compared to, e.g., Europe, Púčik et al., 2019). The uneven distribution of population and wealth in the country complicates

this matter further.

Appendix A: OT intensity

Figure A1. GOES-12 and GOES-13 IR-based parameters binned by MESH95 hail sizes. MESH95 exceeding 4 cm is considered a potentially

severe storm. Counts in each bin are shown below the x-axis, and the Pearson correlation coefficient is shown in the upper right of each panel.

To demonstrate the relationship between IR-based storm intensity metrics and an estimate of hail size, we compared GOES-470

12 and GOES-13 data with 95. percentile Maximum Expected Size of Hail (MESH) from the U.S. NEXRAD GridRad dataset

at hourly intervals from 2008-2017 (Murillo and Homeyer, 2019). MESH cell objects exceeding 2 pixels in area (10 km2)

and spaced by at least 28 km are derived using watershed segmentation applied to the hourly 10 mm+ MESH95 climatology

(Murillo and Homeyer, 2019) using the open-source Tracking and Object Based Analysis of Clouds (tobac v1.2; Heikenfeld

et al., 2019) Python package. Further, following Murillo et al. (2021), we have applied Linear Discriminant Analysis (LDA)475

using their coefficients to combine precipitable water and 0-6-km shear to filter out likely false alarms.
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Relationships between GOES-12/13 OT probability, area of the embedded cold spot (ECS) matched with the MESH95 cell,

ECS-Anvil and ECS-tropopause temperature difference, and MESH95 are shown in Fig. A1. Though there is considerable

overlap in GOES parameters between the various MESH95 bins, it can be seen that all for parameters representing updraft

intensity and area are positively correlated with MESH95. The correlation between GOES-16 data and MESH95 during spring480

and summer 2017 (not shown) is even greater than GOES-13, due to higher spatial resolution of GOES-16. OT probability

is better correlated with MESH95 suggesting that the prominence of an ECS relative to the background anvil combined with

its intensity and area are all contributing to higher OT probability. Therefore, IR-anvil BT difference is a suitable parameter,

independent of any reliance on a numerical model, for purposes of modeling the expected hail severity at the ground. While

direct matching of SEVIRI with MESH cells over South Africa is not possible, the ≈3 km nadir pixel resolution (halfway485

between GOES-13 and GOES-16) and lower view zenith angles over the South African domain (MSG is positioned at 0◦E)

are expected to result in similarly robust correlations with hail size diameter.

Table A1. Detection counts and fractions of geostationary derived embedded cold spot and OT detections matched within 28 km2 and 15

minutes of hail observations.

GOES-13 count count with ECS fraction with ECS count with OT fraction with OT

MESH95 ≥ 4 cm 149 674 104 770 0.70 68 4937 0.46

MESH95 ≥ 2.5 cm 393 730 222 766 0.57 111 303 0.28

SPC hail ≥ 2.5 cm 121 505 82 443 0.68 46 211 0.38

MWR P_hail ≥ 50 4 175 2 232 0.53 1 388 0.33

GOES-16 count count with ECS fraction with ECS count with OT fraction with OT

MESH95 ≥ 4 cm 10 504 8 718 0.83 5 839 0.56

MESH95 ≥ 2.5 cm 29 331 19 603 0.67 10 703 0.36

MSG count count with ECS fraction with ECS count with OT fraction with OT

MWR P_hail ≥ 50 363 207 0.57 169 0.47

Table A1 further compares the frequency of GOES-13, GOES-16, and MSG embedded cold spot (ECS) detections, e.g.,

areas that appear distinctly colder than the surrounding anvil and are considered to be OT candidates, and OT detections (OT

probability ≥0.5) matching various hail detections from radar cells, ground spotter reported hail size (SPC), and MWR hail490

detections. Requiring OT probability ≥0.5 to refine severe hail detections to those we are most confident in, we lose 54%

(44%) of the severe hail-producing storms exceeding 4 cm MESH95 maxima for GOES-13 (GOES-16). In other words, many

severe hailstorms can look quite “boring” from a satellite infrared perspective, but the boring ones are hard to differentiate

from false OT detections in anvils (i.e., detections in cold outflow near to real OTs). Uncertainty between report time or the

time a radar scanned a storm vs the time of OT detections may also influence our results. For example, an OT may have495

been prominent several minutes before the time of a hail detection, but we only have a single GOES snapshot to match. By

relaxing the matching criterion to ECS detections, we lose only 30% (17%) of likely severe hail producing cells for GOES-13

(GOES-16).
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The frequency of geostationary updraft detections that are co-located with microwave hail detections is comparable to

MESH95 and ground spotter severe hail reports despite added uncertainty due to parallax shifts in the storm positions in500

microwave data, especially those close to the limb of the overpass. Enabled by the global coverage of microwave satellites,

Table A1 shows that 2005–2018 MSG SEVIRI ECS and OT detections over South Africa match with likely severe MW hail

detections with frequencies similar to GOES-13 over the US. Although the total number of matches is relatively low over South

Africa, this suggests that MSG IR-based updraft detections agree with independent hail detections; thus, supporting the use of

MSG SEVIRI to detect hail cores over South Africa.505

Angular dependence of GOES IR-anvil BTD difference data is addressed through normalization based on the effective

footprint area of GOES relative to the nadir footprint area (16 km2 for GOES-13) Without removing view angle dependence,

the prominence of an OT observed at low VZA (e.g., <40◦ in the Southeastern US) would be greater than had this same OT

occurred at high VZA (e.g., >50◦ in the Northern Plains) due to differences in the effective pixel resolution.

The formulae to derive the x and y component of pixel resolution for GOES-12 and GOES-13 are:510

λd = | − 75−λc|
π

180

ϕd = |ϕc|
π

180

∆r =
4

cosθz

π

180

∆x = 4+0.263
∆r sinλd

cosλd

∆y = 4+0.4849
∆r sinϕd

cosϕd
515

nf =
16

(∆x2 +∆y2)0.5
,

where λc and ϕc are longitude and latitude of pixel center, θz the viewing zenith angle, nf the norm factor.

This normalization results in improved correlations between ECS-Anvil BTD and MESH95 for GOES-12/13 and GOES-16

shown in the box and whisker plots (Fig. A1).

Appendix B: Climatology of satellite-derived hail estimates520

The microwave hail detection algorithm (Bang and Cecil, 2019) and the OT-based detection method (Khlopenkov et al., 2021)

have independently been designed to represent hail occurrence. A comparison of the spatial and temporal variability of the

detected occurrences can thus be used to identify times and locations where the two methods disagree, indicating potential

weaknesses or imbalances in one of the approaches.

The daily cycle of OT activity is more pronounced (Fig. B1, left) compared to that for the microwave detection (Fig. B1,525

right), and its maximum sets in almost an hour earlier. Overall the agreement between the two satellite climatologies, however,

is very good, but the OT algorithm may be slightly too sensitive for weaker convection.
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Figure B1. Variation of OT activity throughout the day, estimated with the OT method (left) and passive microwave detection (right).

To that end, Fig. B2 shows the seasonal sums of OT (a-d) and microwave (e-h) activity over the respective observational

period. It turns out that both methods indicate widespread hail activity in spring (SON; Fig. B2d, h) over the eastern half of the

continent and adjacent oceans, with a somewhat more pronounced concentration around Botswana and the Drakensberge with530

the OT method. This method could thus be somewhat too sensitive to the frequent but weak convective activity in springtime

also found in other regions of the world (e.g. Europe, Punge et al., 2017). Summertime (JJA; Fig. B2c, g) presents the highest

activity with both methods, and a clear focus along the Eastern slopes of the Grand Escarpment and some activity over the

south-eastern ocean. We note a difference in the North, where the OT algorithm appears to detect intense but, due to high

temperatures, non-hail producing convection (Fig. B2c). In autumn (MAM; Fig. B2b, f), and to a lesser degree in winter (JJA;535

Fig. B2c, g), both methods indicate persisting hail activity over the eastern oceans and along the coast.
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Figure B2. Seasonal hail activity estimates based on overshooting top activity (2004-2018, a-d) and passive microwave hail retrievals (1998-

2018, e-h) for austral summer (DJF; a, e), autumn (MAM; b, f), winter (JJA; c, g), and spring (SON; d, h).
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