
Data-driven automated predictions of the avalanche danger level for
dry-snow conditions in Switzerland
Cristina Pérez-Guillén1, Frank Techel1, Martin Hendrick1, Michele Volpi2, Alec van Herwijnen1,
Tasko Olevski2, Guillaume Obozinski2, Fernando Pérez-Cruz2, and Jürg Schweizer1

1WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland*
2Swiss Data Science Center, Zurich, Switzerland

Correspondence: Cristina Pérez Guillén (cristina.perez@slf.ch)

Abstract.

Even today, the assessment of avalanche danger is by large a subjective, yet data-based decision-making process. Human

experts analyze heterogeneous data volumes, diverse in scale, and conclude on the avalanche scenario based on their experience.

Nowadays, modern machine learning methods and the rise in computing power in combination with physical snow cover

modelling open up new possibilities for developing decision support tools for operational avalanche forecasting. Therefore, we5

developed a fully data-driven approach to assess the regional avalanche danger level, the key component in public avalanche

forecasts, for dry-snow conditions in the Swiss Alps. Using a large data set of more than 20 years of meteorological data

measured by a network of automated weather stations, which are located at the elevation of potential avalanche starting zones,

and snow cover simulations driven with these input weather data, we trained two random forest (RF) classifiers. The first

classifier (RF #1) was trained relying on the forecast danger levels published in the avalanche bulletin. To reduce the uncertainty10

resulting from using the forecast danger level as target variable, we trained a second classifier (RF #2), relying on a quality-

controlled subset of danger level labels. We optimized the RF classifiers by selecting the best set of input features combining

meteorological variables and features extracted from the simulated profiles. The accuracy of the models, i.e. the percentage of

correct danger level predictions, ranged between 74 % and 76 % for RF #1, and between 72 % and 78 % for RF #2. We assessed

the accuracy of forecasts with nowcast assessments of avalanche danger by well-trained observers. The performance of both15

models was similar to the agreement rate between forecast and nowcast assessments of the current experience-based Swiss

avalanche forecasts (which is estimated to 76 %). The models performed consistently well throughout the Swiss Alps, thus in

different climatic regions, albeit with some regional differences. Our results suggest that the models may well have potential

to become a valuable, supplementary decision support tool for avalanche forecasters when assessing avalanche hazard.

1 Introduction20

Avalanche forecasting, i.e. anticipating the probability of avalanche occurrence and the expected avalanche size in a given

region (and time period) (Schweizer et al., 2020; Techel et al., 2020a), is crucial to ensure safety and mobility in avalanche-

prone areas. Therefore, in many countries with snow-covered mountain regions, avalanche warning services regularly issue
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forecasts to inform the public and local authorities about the avalanche hazard. Even today, these forecasts are prepared by

human experts. Avalanche forecasters analyze and interpret heterogeneous data volumes diverse in scale, such as meteorolog-25

ical observations and model output in combination with snow cover and snow instability data, covering a wide range of data

qualities. Eventually, forecasters decide, by expert judgment, on the likely avalanche scenario according to guidelines as, for

instance, the avalanche danger scale (EAWS, 2021a) or the description of the typical avalanche problems (Statham et al., 2018;

EAWS, 2021c). Hence, operational forecasting by and large still follows the approach described by LaChapelle (1980), despite

the increasing relevance of modelling approaches (Morin et al., 2020).30

A key component of public avalanche forecasts is the avalanche danger level, usually communicated according to a five-

level, ordinal danger scale (EAWS, 2021a). The danger level summarizes avalanche conditions in a given region with regard

to the snowpack stability, its frequency distribution and avalanche size (Techel et al., 2020a). Accurate danger level forecasts

support recreationists and professionals in their decision-making process when mitigating avalanche risk. However, avalanche

danger cannot be measured and hence also not easily be verified – and avalanche forecasting has even been described as an art35

based on experience and intuition (LaChapelle, 1980; Schweizer et al., 2003). To improve quality and consistency of avalanche

forecasts, various statistical models (see Dkengne Sielenou et al. (2021) for a recent review) and conceptual approaches were

developed. The latter, for instance, include a proposition for a structured work-flow (Statham et al., 2018) and look-up tables

(e.g. EAWS, 2017; Techel et al., 2020a), both aiding forecasters in the decision-making process of danger assessment.

A major challenge when developing or verifying statistical models, and avalanche forecasts in general, is the lack of a mea-40

surable target variable. Since avalanche occurrence seems a logical target variable, most of the previous approaches focused on

the estimation of avalanche activity using typical machine learning methods such as classification trees (Davis et al., 1999; Hen-

drikx et al., 2014; Baggi and Schweizer, 2009), nearest neighbors (Purves et al., 2003), support vector machines (Pozdnoukhov

et al., 2008, 2011) and random forests (Mitterer and Schweizer, 2013; Möhle et al., 2014; Dreier et al., 2016; Dkengne Siele-

nou et al., 2021). To build and validate these models, a substantial amount of avalanche data is required. However, avalanche45

catalogues are particularly uncertain and incomplete (Schweizer et al., 2020) since they rely on visual observations that are not

always possible or are delayed; a practical solution is to use avalanche detection systems, but such data are still scarce and/or

only locally available (e.g. Hendrikx et al., 2018; Van Herwijnen et al., 2016; Heck et al., 2019; Mayer et al., 2020).

Apart from estimating avalanche activity, few models focused on automatically forecasting danger levels. Schweizer et al.

(1992) prepared a data set for model development that included the verified danger level for the region of Davos. Based on50

these data, Schweizer et al. (1994) developed a hybrid expert system to assess the danger level, integrating symbolic learning

with neuronal networks, and using weather and snow cover data as input parameters for the model, which correctly classified

about 70 % of the cases. A similar performance was achieved by Schweizer and Föhn (1996) using an expert system approach.

Brabec and Meister (2001) trained and tested a nearest-neighbor algorithm to forecast danger levels for the entire Swiss Alps

using manually observed snow and weather data from 60 stations. They reported a low overall accuracy of 52 %, probably55

due to the lack of input variables related to the snow cover stability. Combining different feature sets of simulated snow cover

data and meteorological variables, Schirmer et al. (2009) compared the performance of several machine learning methods (e.g.

classification trees, artificial neural networks, nearest-neighbor methods, support vector machines and hidden Markov models)
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to predict the danger level in the region of Davos (Switzerland). Their best classifier was a nearest-neighbor model, including

the avalanche danger level of the previous day as an additional input variable, that achieved a cross-validated accuracy of 73 %.60

Despite many efforts, few of the previously developed models have been operationally applied due to lack of automated

and real-time data, transferability to other regions, or snowpack stability input - all deficiencies that limited their utility for

operational forecasting. Moreover, most models used daily snow and weather data, manually observed at low elevations, that

do not reflect avalanche conditions in the high Alpine. Today, ample data from automated weather stations and snow cover

model outputs are available (Lehning et al., 1999). The quality and breadth of these data make it suitable to apply modern65

machine learning methods.

Therefore, our aim is to develop an effective data-driven approach to assess the regional avalanche danger level. An inherent

characteristic of avalanche forecasts is that they are, at times, erroneous. In general, forecast accuracy is difficult to assess,

as avalanche danger cannot be measured and remains an expert assessment even in hindsight (Föhn and Schweizer, 1995;

Schweizer et al., 2003). Even though this target variable is hard to verify and susceptible to human biases and errors, the70

danger level is the key component of the avalanche bulletin for communicating avalanche hazard to the public. We will focus

on dry-snow conditions as dry-snow slab avalanches are the most prominent danger and develop a model that can be applied

to all snow climate regions in the Swiss Alps and should have an accuracy comparable to the operational experienced-based

forecast. We address avalanche prediction (in nowcast mode) as a supervised classification task that involves assigning a

class label corresponding to the avalanche danger level to each set of meteorological and simulated snow cover data from an75

automatic weather station network located in Switzerland.

2 Data

We rely on more than 20 years of data, collected in the context of operational avalanche forecasting in the Swiss Alps, covering

measured meteorological data and snow cover simulations (Sect. 2.1), as well as the regional danger level published in the

avalanche forecasts (Sect. 2.2) and local assessments of avalanche danger provided by experienced observers (Sect. 2.3). The80

data cover the winters from 1997-1998 to 2019-2020.

2.1 Meteorological measurements and snow cover simulations

In Switzerland, a dense network of automatic weather stations (AWS), located at the elevation of potential avalanche starting

zones, provides real-time weather and snow data for avalanche hazard assessment. These data are used by both the Swiss

national avalanche warning service for issuing the public avalanche forecast as well as by local authorities responsible for85

the safety of exposed settlements and infrastructure. This network, the Intercantonal Measurement and Information System

(IMIS), was set up in 1996 with an initial set of 50 operational stations in the winter of 1997-1998 (Lehning et al., 1999). It

currently consists of 182 stations (2020), of which 124 are snow stations located in level terrain at locations sheltered from the

wind (Fig. 1). About 15 % of the stations are situated at elevations between 1500 and 2000 m a.s.l., 61 % between 2000 and
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Figure 1. Snow stations of the IMIS network (points) located throughout the Swiss Alps (one station in northeastern Jura region), and the

warning regions (white contours) used to communicate avalanche danger in the public avalanche forecast. Stations are coloured according to

their elevation: below 2000 m a.s.l., between 2000 and 2500 m a.s.l. and, above 2500 m a.s.l.

2500 m a.s.l., and 24 % between 2500 and 3000 m a.s.l. The IMIS stations operate autonomously and the data are transmitted90

every hour to a data server located at WSL Institute for Snow and Avalanche Research SLF (SLF) in Davos.

Based on the measurements provided by the AWS, snow cover simulations with the 1D physically-based, multi-layer model

SNOWPACK (Lehning et al., 1999, 2002) are performed automatically throughout the winter, providing output for local and

regional avalanche forecasting. The meteorological data are pre-processed (MeteoIO library, Bavay and Egger, 2014), filtering

erroneous data and imputing missing data relying on temporal interpolation or on gap-filling by spatially interpolating from95

neighbouring stations. The SNOWPACK model provides two types of output: (1) the pre-processed meteorological data and

(2) the simulated snow stratigraphy data. For an overview of the SNOWPACK model refer to Wever et al. (2014) and Morin

et al. (2020). In this study, we extracted the flat-field snow cover simulations from the database used operationally for avalanche

forecasting.

2.2 Avalanche forecast100

The avalanche forecast is published by the national avalanche warning service at SLF. During the time period analyzed, the

forecast was published daily in winter - generally between early December and late April - at 17:00 (local time), valid until

17:00 the following day, for the whole area of the Swiss Alps (Fig. 2). In addition, since 2013, the forecast was updated daily at

08:00 (local time) - between about mid-December and early- to mid-April. Furthermore, an avalanche forecast is also published

for the Jura mountains since 2017 (Fig. 2).105

The forecast domain of the Swiss Alps (about 26’000 km2) is split into 130 warning regions (status in 2020), with an

average size of about 200 km2 (white polygon boundaries shown in Figs. 1 and 2). In the forecast, these warning regions are

grouped according to the expected avalanche conditions into danger regions (black polygon boundaries shown in Fig. 2). For
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Figure 2. a) Map of the avalanche danger issued on Friday, 6 March 2020 at 08:00 (local time). For each danger region (black contour lines),

a danger level from 1-Low to 5-Very High and the critical elevations and slope aspects are graphically displayed. The white polygons show

the 130 warning regions. b) Close-up map of the warning region Davos, with the location of the IMIS stations (points). To develop the model,

we filtered days and stations as a function of the forecast critical elevation (Sect. 3.3), with stations coloured black being above this elevation

on this day (here 2200 m a.s.l.), and hence considered, and the white station, located below this elevation, not being considered.

each of these danger regions, avalanche danger is summarized by a danger level, the aspects and elevations where the danger

level is valid, together with one or several avalanche problems (since 2013), and a textual description of the danger situation.110

The danger level is assigned according to the five-level European Avalanche Danger Scale (EAWS, 2021a, levels: 1–Low,

2–Moderate, 3–Considerable, 4–High and 5–Very High).

2.3 Local nowcast of avalanche danger level

Specifically-trained observers assess the avalanche danger in the field and transmit their estimate to the national avalanche

warning service. Observers rate the current conditions for the area of their observations, for instance after a day of backcountry115

touring in the mountains. To do so, they are advised to consider their own observations as well as any other relevant information

(Techel and Schweizer, 2017). For these local assessments of the avalanche danger level, the same definitions (EAWS, 2021a)

and guidelines (e.g. EAWS, 2017, 2021b) are applied as for the regional forecast. These assessments, called local nowcasts, are
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used operationally during the production of the forecast, for instance, to detect deviations between the forecast of the previous

day and the actually observed conditions.120

We used the local nowcasts (1) to filter potentially erroneous forecasts when compiling a subset of danger levels as described

in detail in Appendix A, and (2) to discuss the model performance in light of the noise inherent in regional forecasts. These

assessments are human judgements and thus rely on a similar approach as a forecaster when assigning a danger level. Techel

(2020) compared danger level assessments in the same area and estimated the reliability as 0.9, which is a factor related to the

agreement rate of pairs of local nowcast estimates between several observers within the same warning region.125

3 Data preparation

We first defined and prepared the target variable, the danger level (Sect. 3.1). In the next step, we extracted relevant features

describing meteorological and snow cover conditions (Sect. 3.2), before linking them to the regional danger levels (Sect. 3.3).

Finally, we split the merged data sets for evaluating the performance of a machine learning algorithm (Sect. 3.4).

3.1 Preparation of target variable130

We considered two approaches to define the target variable: first, by simply relying on the forecast danger level (Sect. 3.1.1),

and second, by compiling a much smaller subset of «tidy» danger levels (Sect. 3.1.2). The first approach makes use of the

entire database. However, this comes at the cost of potentially including a larger share of wrong labels. In contrast, the second

approach uses higher quality labelling, but the data size is greatly reduced.

3.1.1 Target variable: forecast danger level (Dforecast) relating to dry-snow conditions135

To train the machine learning algorithms, we rely on forecasts related to dry-snow conditions in the forecast domain of the

Swiss Alps (Fig. 2). Whenever a morning forecast update was available, we considered this update. In this update, on average

the forecast danger level is changed in less than 3 % of the cases (Techel and Schweizer, 2017). The focus on dry-snow

conditions is motivated by the fact that both the meteorological factors as well as the mechanisms that lead to an avalanche

release differ greatly between dry-snow and wet-snow avalanches. Furthermore, while danger level forecasts for dry-snow140

avalanche conditions are issued on a daily basis, forecasts for wet-snow avalanche conditions are only issued on days when the

wet-snow avalanche danger is expected to exceed the dry-snow avalanche danger (SLF, 2020).

In total, this procedure results in a data set that included forecasts issued on 3820 days during the 23 winters between 11

November 1997 and 5 May 2020, or a total of 500.545 cases (Fig. 3a). We refer to this data set as Dforecast, which is used as

ground truth data labeling. The distribution of danger levels is clearly imbalanced (top of Fig. 3c). The most frequent danger145

levels forecast in the Alps are danger levels 2-Moderate (41 %) and 3-Considerable (36 %), which jointly account for 77 % of

the cases. Since danger level 5-Very High is rarely forecast (<0.1 %), we merged it with danger level 4-High (2.0 %).
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Figure 3. Flowchart of the data set distributions and steps, including the raw data size, the merged and filtered data set size and the danger

level distributions of the training and test sets. Two machine learning classifiers are trained using as labels i) the forecast danger levels

(Dforecast) in the public bulletin and ii) a subset of «tidy» danger levels (Dtidy). An iterative process of hyperparameter tuning and feature

selection using 5-fold cross-validation was conducted to select the best model.

3.1.2 Compilation of subset of «tidy» danger level (Dtidy)

Incorrect labels in the Dforecast data set are unavoidable as avalanche forecasts are sometimes erroneous due to inaccurate

weather forecasts, variations in local weather and snowpack conditions and human biases (McClung and Schaerer, 2006).150

In general, as avalanche forecasts are expert assessments, there is inherently noise (Kahneman et al., 2021). In terms of the

target variable, these errors may manifest themselves in errors in the danger level, the elevation information indicated in the

forecast, or the spatial extent of regions with a specific danger level. Furthermore, all of these elements are gradual in nature,

and not step-like as the danger level, the elevation band and the delineation of the warning regions suggest. In the case of

forecast danger levels in Switzerland, recent studies have estimated the accuracy of the forecast danger level. The agreement155

rate between local nowcast estimates of the avalanche danger with the forecast danger level was between about 75 % and 90 %,
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with decreasing agreement rate with increasing danger level (Techel and Schweizer, 2017; Techel, 2020). A particularly low

accuracy (<70 %) was noted for forecasts issuing danger level 4-High (Techel, 2020). Furthermore, a strong tendency towards

over-forecasting (one level) has been noted, with forecasts rarely being lower compared to nowcast assessments of avalanche

danger (e.g. Techel et al., 2020b).160

To reduce some of the inherent noise, we compiled a subset of re-analysed danger levels, for which we were more certain

that the issued danger level was correct. This should not be considered as a verified danger level, but simply as a subset of

danger levels, which presumably have a greater correspondence with actual avalanche conditions compared to simply using the

forecast danger level. To compile this subset, we checked the forecast danger level Dforecast by considering additional pieces of

evidence. For this, we relied on165

– observational data - as for instance, danger level assessments (local assessments) provided by experienced observers

after a day in the field (Sect. 2.3; Techel and Schweizer, 2017) or avalanche observations, and

– the outcome from several verification studies (Schweizer et al., 2003; Schweizer, 2007; Bründl et al., 2019; Zweifel

et al., 2019).

Thus, this data set is essentially a subset of Dforecast, containing cases of Dforecast, which were either confirmed or validated170

following multiple pieces of evidence. Comparably few of these cases (5 %) were actually cases when the forecast danger level

was corrected for the purpose of this study. These changes affected primarily days and regions when the forecast was either

4-High or 5-Very High, or the verified danger level was one of these two levels. We refer to this subset as «tidy» danger levels

(Dtidy), which is also used as ground truth data labeling. A detailed description regarding the compilation of this data set is

found in Appendix A.175

Dtidy (N = 25.541 cases in Fig. 3b) comprises about 10 % of the Dforecast data set (N = 256.398 cases after filtering in Fig.

3b). In this subset, the distribution of the lower three danger levels is approximately balanced (about 30 % each, Fig. 3). Still,

this subset contains comparably few cases of higher danger levels (4-High: 4.1 %, 5-Very High: 0.3 %). These two danger

levels were again merged and labelled 4-High.

3.2 Feature engineering180

The SNOWPACK simulations provide two different output files for each station: i) time series of meteorological variables and

ii) simulated snow cover profiles. The first includes a combination of measurements (i.e. air temperature, relative humidity,

snow height, or snow temperature) and of derived parameters (i.e. height of new snow, outgoing and incoming long-wave

radiation, and snow drift by wind). The snow profiles contain the simulated snow stratigraphy describing layers and their

properties. Fig. 4 shows an example of these data. A list of the 67 available weather and profile features is shown in Tables C1185

and C2 (Appendix C).
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Figure 4. (a) Seven-day time series (March, 2020) of two meteorological features: air temperature (measured) and 3-day sum of new snow

height (hn72_24, simulated by SNOWPACK) at the IMIS snow station Baerentaelli, which is located near Davos at 2558 m a.s.l. The blue

area delimits an example of a 24 hours time-window (random forest, RF window) from 5 March 2020 at 18:00 to 6 March 2020 at 18:00,

which is used to extract the averaged values used as inputs for the random forests algorithm. The avalanche forecast updated on 6 March

2020 at 8:00 is used for labelling the danger rating over the entire RF window. (b) Simulated snow stratigraphy from SNOWPACK at the

same station on 6 March 2020 at 12:00 showing hand hardness, snow temperature and grain type (colors). Hand hardness F corresponds to

fist, 4F to four fingers, 1F to one finger, P to pencil, and K to knife. Labels of grain types and colors are coded following the international

snow classification (Fierz et al., 2009). The black arrows indicate the two critical weak layers located in the first 100 cm of the snow surface

(PWL_100) and in a deeper layer (PWL), which were detected with the TSA approach. The blue arrows indicate the skier penetration depth

(Pen_depth).

Meteorological input features

The meteorological time series with 3-hour resolution are resampled to non-overlapping 24-hour averages, for a time window

from 18:00 (local time) of a given day to the following day at 18:00 (24-hour window in Fig. 4a), which is the nearest to the

publication time of the forecast (17:00).190

Besides the 24-hour mean, we also trained models considering as input values the standard deviation, maximum, minimum,

range and differences between subsequent 24-hour windows during the exploratory phase. However, we noted that using these

additional features did not improve the overall accuracy. In addition to the data describing the day of interest, we also extracted

values for the last three and seven days (Table C1). If there were missing values in the pre-processed time series, we removed

these samples.195
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Profile input features

The simulated snow profiles provide highly detailed information on snow stratigraphy, as each layer is described by many

parameters, and each profile may consist of dozens of layers. To reduce the complexity of the snow profile output and to

obtain potentially relevant features, we extracted parameters defined and used in previous studies from the profiles at 12:00

(local time), which we consider the time representative of the forecast window (Fig. 4b, Table C2). These parameters included200

the skier penetration depth (pen_depth, Jamieson and Johnston, 1998) and snow instability variables such as the critical cut

length (ccl, Gaume et al., 2017; Richter et al., 2019), the natural stability index (Sn38, Föhn, 1987; Jamieson and Johnston,

1998; Monti et al., 2016), the skier stability index (Sk38, Föhn, 1987; Jamieson and Johnston, 1998; Monti et al., 2016) and

the structural stability index (SSI, Schweizer et al., 2006). We extracted the minimum of the critical cut length considering all

layers below the penetration depth (min_ccl_pen). We retrieved the instability metrics for two depths where potentially relevant205

persistent weak layers existed following the threshold sum approach adapted for SNOWPACK (Schweizer and Jamieson, 2007;

Monti et al., 2014). We located the persistent weak layer closest to the snow surface, but within the uppermost 100 cm of the

snowpack (PWL_100 in Figure 4b), and then searched the next one below (PWL in Fig. 4b). For these two layers, we extracted

the parameters related to instability (ccl, Sn38, Sk38, SSI). If no persistent weak layers were found following this approach,

and to avoid missing values in the data, we assigned the respective maximum value of ccl, Sn38, Sk38, SSI observed within210

the entire data set, indicating the absence of a weak layer.

3.3 Assigning labels to extracted features

We assigned a class label (danger level) to the extracted features by linking the data of the respective station with the forecast

for this warning region and RF window (Fig.s 2b and 3b). Thus, each set of features extracted for an individual IMIS station

(Fig. 1) was labelled with the forecast danger level for the day of interest.215

Since avalanche danger depends on slope aspect and elevation, the public forecast describes the slope aspects and elevations

where the danger level applies (Fig. 2). Outside the indicated elevation band and aspects, the danger is lower, typically one

danger level (SLF, 2020). Therefore, we discarded the data from stations on days when the elevation indicated in the forecast

was above the elevation of the station. If no elevation was indicated, which is normally the case at 1-Low, we included all

stations. We did not filter the data for the forecast slope aspects since the modeled features were obtained with flat-field220

SNOWPACK simulations.

To further enhance the data quality, we removed data of unlikely avalanche situations. Those included data when the danger

level was for 4-High, but the 3-day sum of new snow (HN72_24, Table C1) was less than 30 cm, or when the snow depth was

less than 30 cm.

3.4 Splitting the data set225

We split our data set into training and test sets corresponding to different winter seasons to ensure that training and test data

were temporally uncorrelated. We defined the test set as the two most recent winter seasons of 2018-2019 and 2019-2020 (Fig.
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3d). The training set corresponded to the remaining data, including the seasons from 1997-1998 to 2017-2018 (21 winters).

The size of the test set is 10 % of the total amount of data and will be used for a final, unbiased evaluation of the model’s

generalization.230

We optimized the model’s hyperparameters and selected the best subset of features using 5-fold cross-validation on the

training set, which is an effective method to reduce overfitting. Each subset contains data of 3 to 5 consecutive winter seasons

with an approximate size of 20 % of the training data set (N = 230.550 in Fig. 3c): 1997-1998 to 2002-2003 (Fold 1: 19 %

of samples), 2003-2004 to 2006-2007 (Fold 2: 18 % of samples), 2007-2008 to 2009-2010 (Fold 3: 19 % of samples), 2010-

2011 to 2013-2014 (Fold 4: 22 % of samples) and 2014-2015 to 2017-2018 (Fold 5: 22 % of samples). This partitioning again235

ensures that feature selection was not affected by temporally correlated data. Models were trained and tested 5 times, using as

a validation test set each of the defined folds and as a training set the remaining data. The final score was averaged over the 5

trials.

4 Model optimization

We approach the nowcast assessment of the avalanche danger level as a supervised classification task that involves assigning a240

class label corresponding to the avalanche danger level to each set of meteorological and simulated snow cover data from an

automatic weather station network located in Switzerland.

We tested a variety of widely used supervised learning algorithms, and the best scores were obtained with random forests

(Breiman, 2001), which is among the state-of-the-art techniques for classification. Random forests are powerful, nonlinear

classifiers combining an ensemble of weaker classifiers, in the form of decision trees. Each tree is grown on a different bootstrap245

sample containing randomly drawn instances with replacement from the training data. Besides bagging, random forests also

employ random feature selection at each node of the decision tree. Each tree predicts a class membership, which can be

transformed into a probability-like score by computing the frequency at which a given test data point is classified across all the

trees. The final prediction is obtained by taking a majority vote of the predictions from all the trees in the forest, or equivalently,

by taking the class maximizing the probability.250

Our classification problem is extremely imbalanced; danger level 4-High (Fig. 3) accounts only for a small fraction of the

whole data set. Imbalanced classification poses a challenge for predictive modelling as most existing classification algorithms

such as random forests were designed assuming an uniform class distribution of the training set, giving rise to lower accu-

racy for minority classes (Chen et al., 2004). Since danger level 5-Very High is very rarely forecast (< 0.1 %), we merged

it with 4-High. This step reduced the multi-class classification problem to four classes. We also explored diverse data sam-255

pling techniques (results not shown), such as down-sampling the majority classes or over-sampling the minority classes, to

balance the training data when fitting random forest. However, since none of these methods showed an improvement in the

performance and given the imbalanced nature of the data, we discarded these strategies. Hence, we opted for learning from our

extremely imbalanced data set applying cost-sensitive learning. With this approach, we employed a weighted impurity score

to split the nodes of the trees, where the weight corresponds to the inverse of the class frequency. This ensures that prevalent260
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classes do not dominate each split and rare classes also count towards the impurity score. We used the standard random forests

implementation from the scikit-learn library (Pedregosa et al., 2011).

We trained two random forest models: RF #1 was trained using the labels from the complete data set of forecast danger

levels (Dforecast, Fig. 3b), while RF #2 was trained with the much smaller data set of «tidy» danger levels (Dtidy, Fig. 3b). We

compared their performance on a common test set. Both models were trained by pooling the data from all IMIS stations.265

4.1 Model selection

We selected the best random forest model by a three-step cross-validation strategy. For this, we used cross-validation maxi-

mizing the Macro-F1 score, which corresponds to the unweighted mean of F1 scores computed for each class (danger level),

independently. F1 score is a popular metric for classification, as it balances precision and recall into their harmonic mean,

ranging from 0 (worst) to 1 (best). Macro-F1 showed the best performance for both minority and majority classes. All the270

metrics used to evaluate the performance of the models are defined in Appendix B.

In the first step, we selected a set of hyperparameters from a randomized search, which maximizes the Macro-F1 score.

After choosing the first optimum set of hyperparameters, we selected the best 30 input features, by ranking them according to

the feature importance score given by the random forests algorithm, which is the average impurity decrease computed from

all decision trees in the forest. In the third step, we refined the hyperparameters by a dense grid search centered around the275

best parameters from the first step, but using the optimum feature set. This strategy shows optimal accuracy for all the classes,

while keeping the model as small as possible in terms of features. For the previous steps, 5-fold cross-validation approach

was applied. For each set of hyperparameters, in the random grid search and the grid search, each model was trained and

tested 5 times, such that each time, one of the defined folds (Sect. 3.4) was used as a test set and the other four folds were

part of the training set. The Macro-F1 estimate was averaged over these five trials for each hyperparameter vector. The final280

hyperparameters selected are shown in Table B1.

4.2 Feature selection

We used different approaches to remove unnecessary features and select a subset that provides high model accuracy while

reducing the complexity of the model. First, variables that are strongly correlated were dropped (‖r2‖ ≥ 0.9). For a given pair

of highly correlated weather features, we removed the one showing a lower random forest feature importance score (obtained285

from the first step described above), which is shown in Fig. 5a. Feature importance is the average impurity decrease computed

from all decision trees in the forest. In the case of correlation between profile features, we kept the variables extracted from

the uppermost weak layer that is usually more prone to triggering. A total of 20 highly correlated variables were removed from

the initial data set, leaving 47 features (Tables C1 and C2). The overall performance of the model remained the same after

removing these features. In addition, we manually discarded the snow temperatures (TS0, TS1 and TS2) measured at 25 cm,290

50 cm and 100 cm above ground (Fig. 5a and Table C1), as their incorporation in the model requires a larger minimum snow

depth (> 100 cm) for meaningful measurements.
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Figure 5. a) Feature importance ranking scored by random forest classifier (y-axis normalised). A description of each feature is shown in

Tables C1 and C2 of Appendix C. The red asterisk denotes the final set of features selected to train the model. b) Box plot of the distribution

of the Macro-F1 score (5-fold cross-validation) for random forest classifier with varying number of features from 2 to 47.

Fig. 5a shows that the features with highest importance were various sums of new snow and drifted snow, the snowfall rate,

the skier penetration depth, the minimum critical cut length in a layer below the penetration depth, the relative humidity, the

air temperature and two stability indices. Hence, the highest-ranked features selected by the random forest classifier were in295

line with key contributing factors used for avalanche danger assessment (Perla, 1970; Schweizer et al., 2003).

To select the best subset of features, we applied the approach of Recursive Feature Elimination (RFE) (Guyon et al., 2002),

which is an efficient method to select features by recursively considering smaller sets of them. An important hyperparameter

for the RFE algorithm is the number of features to select. To explore this number, we wrapped a random forest classifier, which

was trained with a variable number of features. Features were added in descending order from the most to the least important in300

the score ranking estimated by the random forest (Fig. 5a). Fig. 5b shows the variation of the mean of the Macro-F1 score with

the number of selected features. The performance improves as the number of features increases until the curve levels off for

20 or more features. We selected a subset of 30 features (highest Macro-F1 score). The final set of features selected applying

RFE are highlighted with a red asterisk in Fig. 5a, which are used to train the two final models RF #1 and RF #2 (complete

and «tidy» data sets). Note that the application of RFE, although it might seem redundant of the internal feature ranking made305
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Table 1. Test set model performance scores of the two final random forest models (RF #1 and RF #2): precision (Prec.), recall (Rec.) and F1

for each danger level, overall accuracy (Acc.) and Macro-F1 score. a) Predictions RF #1 vs. Dforecast (ground truth). b) Predictions RF #2 vs.

Dforecast (ground truth). c) Predictions RF #1 vs. Dtidy (ground truth). d) Predictions RF #2 vs. Dtidy (ground truth).

Model:Ground truth DL Prec. Rec. F1 Support Model:Ground truth DL Prec. Rec. F1 Support

a) RF #1: Dforecast

1-Low 0.84 0.79 0.81 7574

b) RF #2: Dforecast

1-Low 0.73 0.89 0.81 7574

2-Mod. 0.68 0.66 0.67 9657 2-Mod. 0.71 0.57 0.63 9657

3-Cons. 0.72 0.79 0.75 8020 3-Cons. 0.73 0.74 0.74 8020

4-High 0.63 0.51 0.57 597 4-High 0.51 0.54 0.53 597

Acc. 0.74 25.848 Acc. 0.72 25.848

Macro-F1 0.70 25.848 Macro-F1 0.68 25.848

c) RF #1: Dtidy

1-Low 0.93 0.78 0.85 1400

d) RF #2: Dtidy

1-Low 0.87 0.90 0.88 1400

2-Mod. 0.67 0.70 0.68 1316 2-Mod. 0.73 0.67 0.70 1316

3-Cons. 0.73 0.84 0.78 1223 3-Cons. 0.76 0.78 0.77 1223

4-High 0.64 0.65 0.64 133 4-High 0.56 0.71 0.63 133

Acc. 0.76 4072 Acc. 0.78 4072

Macro-F1 0.74 4072 Macro-F1 0.75 4072

by the random forest algorithm, ensures that the growing subset of features provides consistent improvements, and the feature

selection is not biased by the way the impurity score is computed (Strobl et al., 2007).

5 Model evaluation

In the following, we first present key characteristics describing the overall performance of the RF classifiers (Sect. 5.1). To

explore the temporal variation of their performance, we analyse the average prediction accuracy on a daily basis considering310

the uncertainty related to the forecast danger level (Sect. 5.2). In Sects. 5.3 and 5.4, we investigate the spatial performance

of the models in different climate regions and for different elevations. Finally, we assess the performance for cases when the

danger level changes or stays the same (Sect. 5.5), and for the case when the danger level of the previous day is added as an

additional input feature (Sect. 5.6).

5.1 Performance of random forest classifiers315

We trained two models, RF #1 and RF #2, and tested them against two different data sets, which contain the winter seasons

of 2018-2019 and 2019-2020 (Fig. 3d). When evaluating the performance of the models against the test set Dforecast, RF #1

achieved an overall accuracy (number of correctly classified samples over the total number of samples) of 0.74 and a Macro-F1

score of 0.7 (Table 1a). Even though RF #2 was trained with only 9 % of the data (Fig. 3c), it reached an almost similar overall
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Figure 6. Confusion matrices of the two random forest models, RF #1 (trained with Dforecast) and RF #2 (trained with Dtidy) on the test set

data of a) the forecasted danger levels and b) the «tidy» danger levels of the winter seasons of 2018-2019 and 2019-2020.

accuracy of 0.72 and a Macro-F1 of 0.68 (Table 1b). F1 scores for each class were also fairly equal for both models (Table320

1a and b). However, for the minority classes of danger levels 1-Low and 4-High, the precision of RF #1 was higher, whereas

a higher proportion of samples were correctly classified by RF #2 (higher recall). This result highlights the impact of using

better-balanced training data in RF #2 and less noisy labels.

The performance of the models tested on Dtidy showed that RF #2 achieved the highest Macro-F1 score of 0.75 and overall

accuracy of 0.78 (Table 1d), with very similar values for RF #1 (accuracy 0.76, Macro-F1 0.74). The class breakdown for the325

two models showed better scores when tested against Dtidy compared to Dforecast. The performance increased most notably for

danger level 4-High, with the F1 score reaching 0.64.
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Table 2. Model (M) used for training and ground truth labels (GT) of the test set, bias (∆DL) and the proportion of samples (P) for each bias

value. Both models are evaluated on the Dforecast test set (upper part) and Dtidy test set (lower part).

M : GT ∆DL P [%] M : GT ∆DL P [%]

a) RF #1:

Dforecast

+2 0.1

b) RF #2:

Dforecast

+2 0.1

+1 15.1 +1 11.4

0 73.7 0 72.0

-1 11.0 -1 15.7

-2 0.2 -2 0.8

c) RF #1:

Dtidy

+2 0.1

d) RF #2:

Dtidy

+2 0.1

+1 16.6 +1 11.7

0 76.5 0 78.4

-1 6.8 -1 9.7

-2 0.0 -2 0.2

The confusion matrices shown in Fig. 6 provide more insight into the performance of both models. The values in the diagonal

clearly dominate. This indicates that the majority of cases was correctly predicted by the classifiers, as is also shown in Table

1 (the percentages shown in the diagonal correspond to the recall in Table 1). Furthermore, if predictions deviated from the330

ground truth label, the difference was in most cases one danger level, and only rarely two danger levels (< 3 %).

To analyze the model bias in more detail, we defined a model bias difference ∆DL as:

∆DL = DLRF−DLTrue (1)

where DLRF is the danger level predicted by the random forest model and DLTrue is the ground truth danger level. Table 2

summarizes the percentages of test samples for each model bias difference.335

Compared to Dforecast, RF #1 exhibited a bias towards higher danger levels (∼ 15%) rather than lower ones (∼ 11%; Table

2a), while RF #2 showed an inverse trend of deviations (Table 2b). Compared with Dtidy, RF #1 showed an even larger bias

towards higher danger levels (Table 2b), compared to RF #2, which had an almost equal proportion of predictions which were

higher (12 %) or lower (10 %). Regardless which of the two model was evaluated, predictions tended to be higher at 2-Moderate

(∆DL = 1; between 20 % and 24 % in Fig. 6) and lower for 3-Considerable (∆DL =−1; between 12 % and 19 % in Fig. 6). As340

1-Low and 4-High are at the respective lower and upper end of the scale, wrong predictions can only be too high at 1-Low and

too low at 4-High.

In summary, and as can be expected, each model performed better when compared to its respective test set. RF #1 achieved

better performance compared to RF #2 when evaluating them on the Dforecast test set; while RF #2 achieved slightly higher

performance on Dtidy test set. The performance of RF #1 improved when tested against the best-possible test data (Dtidy),345

particularly for the danger level 4-High.
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5.2 Daily variations in model performance and the impact of the ground truth quality on performance values

In the next step, we compare the predictive performance of the two random forest models during the two test seasons by

analyzing the performance on a daily basis. To this end, we only consider the predictions using the forecast danger level

(Dforecast) as the number of predictions per day is much larger than in the «tidy» data set. Nevertheless, when discussing the350

performance of the models, we must also consider the uncertainty related to this target variable, as errors in the ground truth

can significantly impact the performance of the models. This is particularly important in our case, as we rely on the forecast

danger level (Dforecast) as the ground truth label. To conduct this evaluation, we compare the daily accuracy of the models

with the «accuracy» of the forecast, which we estimate by comparing the regional forecast to the local nowcast provided by

experienced observers. The comparison of the forecast with the local nowcasts provides the most meaningful reference point355

for the evaluation of the models.

To estimate the accuracy of the forecast, we rely on the local nowcast reported by observers (Sect. 2.3). Thus, we consider

the agreement rate between forecast danger level (DLF ) and nowcast danger level (DLN) as a proxy for the accuracy of

the forecast (e.g. Jamieson et al., 2008; Techel and Schweizer, 2017). The agreement rate (Pagree) for a given day is then the

normalised ratio between the number of cases where nowcast and forecast agree (N(DLF−DLN = 0)) to the number of all360

forecast-nowcast pairs (N ):

Pagree =
N(DLF−DLN = 0)

N
(2)

On average, regional forecasts and local nowcasts agreed 75 % of the time (N = 5’099). However, considerable variations in

the daily agreement rate can be noted in Fig. 7a, where the agreement rate is represented by the blue shaded area and where the

points show the number of observers that provided an assessment. Considering the 171 days with more than 15 assessments,365

the agreement rate ranged between 27 % and 100 % (median 77 %, interquartile range 65 - 85 %), suggesting that the accuracy

of the forecast is lower than the overall model accuracy on about half of the days.

The daily accuracy of the predictions of the two models, the overall match between the model outputs and Dforecast as ground

truth, is shown in Fig. 7a. Variations in the daily accuracy of the two models were highly correlated (Pearson correlation

coefficient: 0.88). The average difference in the daily accuracy between the two RF models is 0.07; on 75 % of the days it was370

less than 0.1. Overall, the performance of RF #1 was slightly better than RF #2 as is reflected in the overall scores (Table 1a and

b), and as it can be expected when comparing with Dforecast because RF #1 was trained with this data set. The match between

predictions and Dforecast is comparably high on about half of the days (RF #1 accuracy > 0.74, RF #2 accuracy > 0.70) and less

than 0.5 on 11 % (RF #1) and 15 % (RF #2) of the days, respectively.

Fig. 7b summarizes the correlation between the daily prediction accuracy of the two RF models, evaluated against Dforecast,375

and the agreement rate between forecast and nowcast assessments. Again, we consider only days when at least 15 observers

provided a nowcast assessment. Overall, the performance of both models decreased with decreasing agreement rate. When the

agreement was high (Pagree > 0.9 Fig. 7b), and hence the forecast in many places likely correct, the performance of RF #1 was

particularly good (median accuracy = 0.8), whereas the accuracy of RF #2 was slightly lower (median accuracy = 0.79). When

the agreement rate was low (Pagree < 0.6 Fig. 7b), and hence the forecast at least in some regions likely wrong, the predictive380

17



Figure 7. a) Comparison of the time-series of the daily accuracy of the two random forest models, RF #1 (trained with Dforecast) and RF #2

(trained with Dtidy), tested on the winter seasons of 2018-2019 (top) and 2019-2020 (bottom) for predicting the danger levels forecasts. The

blue shaded area represents the agreement rate and the points show the number of observers that provided an assessment. The dashed lines

show the six days (labelled from ’a’ to ’f’) selected as exemplary cases (see Appendix D). b) Box plots of the distribution of the accuracy of

the models, grouped together by the agreement rate. Dots are the individual data points.

performance of model RF #2, trained with the «tidy» danger level labels, is considerably lower, resulting in a median accuracy

of 0.66. In contrast, RF #1, which was trained with the over-forecast bias present in the Dforecast data was less impacted (median

∼ 0.7).

To further illustrate the daily performance of the models, we created two videos (supplement) with the maps showing the

predictions of each model at each IMIS station together with the local nowcast assessments and the forecast danger level. In385
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Figure 8. Maps showing the average accuracy of RF #1 and RF #2 model predictions for the 73 IMIS stations, for which predictions were

available on at least 50 % of the test set (Dforecast) days.

addition, we also describe the predictions on six selected days that differed in terms of forecast agreement rate and model

performance (see Appendix D).

5.3 Station-specific model performance

Our objective was to develop a generally applicable classifier for predicting the danger level at all IMIS stations in the Swiss

Alps. In other words, the classifier should show a similar performance independent of the location of the station. To explore390

this, we analyzed the station-specific averaged accuracy for the entire test set (Dforecast) of both models for the 73 stations, for

which predictions were available in at least 50 % of the days.

The maps displayed in Fig. 8 show that the station-specific accuracies of RF #1 ranged between 0.6 and 0.85 (mean accuracy

= 0.73) and between 0.5 and 0.87 (mean accuracy = 0.72) for RF #2. Some spatial patterns in the performance of both models

are visible (Fig. 8), indicating that differences between stations are not random: both models performed consistently well in395

the northern and western parts of the Swiss Alps with the accuracy being above the mean for many stations, compared to lower

accuracy in the eastern part of the Alps (accuracy < 0.7). RF #1 performed somewhat better in the southern and central parts of

Switzerland and RF #2 in the northern parts. At stations with lower performance (accuracy < 0.7), we observed that the danger

levels 1-Low or 3-Considerable were less frequently forecast in these regions (proportion of days ∼ 3% lower) than in the rest

of Switzerland. As the prediction performance was higher at these danger levels (Table 1a and b), this may partly explain the400

geographical differences in performance.
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Figure 9. a) Frequency of the elevation indicated in the public forecasts with the number of stations that are located above and below this

elevation. The class ’none’ contains the samples for the days when no information was indicated in the bulletin. b) Heat map of the proportions

of samples (row-wise normalized) for each of the eight elevation classes (∆elevation = elevation(station)-elevation(forecast)) versus the range

of prediction bias (∆DL) of the model RF #1. The total number of samples in each elevation class is denoted with ’n’.

5.4 Model performance with elevation

Here we address the impact of filtering for elevation, which we applied for data preparation when defining the training and

test data. We trained the classifiers exclusively with data from stations which were above the elevation indicated in the bulletin

(Sect. 3.3, see also Fig. 2). To explore whether this decision was appropriate, we now compare the prediction accuracy of405

RF #1 as a function of the difference in elevation between the stations and the elevation indicated in the bulletin: ∆elevation =

elevation(station)-elevation(forecast).

In the public bulletin, the elevation information is given in increment intervals of 200 m in the range between 1400 and

2800 m a.s.l. for dry-snow conditions. To get more insight into the performance of the model in relation to the elevation,

we separated the predictions into those for stations located above (N = 25.848) and those below (N = 4847) the elevation410

indicated in the bulletin (Fig. 9a). Generally, on any given day, the elevation indicated in the forecast is lower than the elevation

of most stations.

To analyze the model performance in more detail, we defined eight classes of ∆elevation. Fig. 9b shows the eight classes and

their definitions, each containing the proportion of samples (row-wise sum) as a function of the model bias difference defined

in Eq. 1. The class ’none’ contains the samples for the days, when no elevation information was provided in the bulletin. This415

class essentially corresponds to forecasts with danger level 1-Low (99 %). This is the most accurate class, reaching an accuracy

at ∆DL = 0 of 79 %, which is the same as the recall for 1-Low shown in Table 1a. Overall, the prediction accuracy was highest

for stations with an elevation far above the elevation indicated in the forecast (accuracy 0.73 for ∆elevation ≥ 400 m), and lowest

for stations located far below this elevation (accuracy 0.36 for ∆elevation ≤−600 m, Fig. 9b). At the same time, the bias in the
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Table 3. Accuracy of RF predictions (proportion of samples: row-wise sum for Overall and column-wise sum for the rest) of a RF classifier

tested against Dforecast as a function of changes in the forecast danger level compared to the day before, for cases when the danger level

increased (↗), stayed the same (→), or decreased (↘) for (a) RF #1, and (b) for RF #1*, a model which additionally considers the forecast

danger level of the previous day as an input feature.

a) RF #1 b) RF #1*

Danger Level ↗ → ↘ All ↗ → ↘ All

1-Low - 0.83 (32%) 0.54 (30%) 0.79 (29%) - 1 (32%) 0.17 (29%) 0.88 (29%)

2-Moderate 0.57 (21%) 0.70 (37%) 0.53 (55%) 0.66 (38%) 0.20 (22%) 0.96 (37%) 0.21 (55%) 0.76 (38%)

3-Considerable 0.74 (65%) 0.80 (30%) 0.93 (15%) 0.79 (31%) 0.50 (64%) 0.95 (30%) 0.86 (15%) 0.85 (31%)

4-High 0.48 (14%) 0.55 (1%) - 0.51 (2%) 0.42 (14%) 0.78 (1%) - 0.55 (2%)

Overall 0.67 (10%) 0.77 (76%) 0.59 (14%) 0.74 (100%) 0.43 (10%) 0.97 (76%) 0.29 (14%) 0.82 (100%)

predictions, compared to Dforecast, changed from being slightly positive (ratio of the proportion of predictions higher vs. lower420

than forecast: 1.6 for ∆elevation ≥ 400 m) to negative (∆elevation ≤ 200 m), and to primarily being negative for stations far below

this elevation (ratio predictions lower vs. higher than forecast: 18 for ∆elevation ≤−600 m, Fig. 9b).

5.5 Model performance with respect to increasing or decreasing hazard

When evaluating the agreement rate of the avalanche forecast with the local nowcasts, Techel and Schweizer (2017) distin-

guished between days when the avalanche danger increased and days when it decreased. When the danger increases, primarily425

changing weather drives the decrease in snow stability. In contrast, decreasing avalanche danger is often linked to comparably

minor and/or slow changes in snowpack stability (e.g. Techel et al., 2020b). While these changes are gradual in nature, these

can only be expressed in a step-like fashion using the five-level danger scale. For the purpose of this analysis, we followed the

approach by Techel and Schweizer (2017), and split the data set into days when the danger level increased, stayed the same, or

decreased, in relation to the previous day.430

As shown in Table 3a, the accuracy was highest on days when the forecast danger level stayed the same (0.77), compared

to days when the forecast danger increased (accuracy = 0.67; support = 10 %) or decreased (accuracy = 0.59; support = 14 %).

Considering that Techel and Schweizer (2017) reported the lowest agreement between forecast and nowcast for days when the

forecast increased, suggests that we evaluate these cases with danger level labels which were proportionally more often wrong.

5.6 Model performance considering the forecast danger level from previous day435

The avalanche warning service daily reviews the past forecast in the process of preparing the future forecast (Techel and

Schweizer, 2017). Hence, the past forecast can be seen as the starting point for the future forecast. Therefore, we also tested

whether the prediction performance changed when including the forecast danger level from the previous day’s forecast as an
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additional feature in the random forest model (RF #1*). As shown in Table 3b, the overall accuracy increased notably from 0.74

(RF #1) to 0.82 (RF #1*), but also for all the danger levels individually. However, when additionally considering the change to440

the previous day’s forecast, this comes at the cost of a large decrease in the performance in situations when the danger level

changed (DL increased on 10 % and decreased on 14 % of the total samples). For these situations, there is a drop in accuracy,

overall from 0.67 (RF #1) to 0.43 (RF #1*) when the danger level increased, and from 0.59 (RF #1) to 0.29 (RF #1*) when the

danger level decreased.

6 Discussion445

We first discuss key characteristics of the training data (Sect. 6.1), which may impact both the construction of the RF classifiers

and their performance evaluation:

– the size of the data set in relation to the complexity of the addressed classification problem,

– the class distribution, with particular attention to minority classes, and

– the quality of the labels, i.e. the accuracy of the regional forecasts by human experts.450

We also address scale issues - a danger level describing regional avalanche conditions for a whole day compared to measure-

ments and SNOWPACK simulation output describing a specific point in time and space (Sect. 6.2). In Sect. 6.3, we discuss

the performance of the RF classifiers considering one of our key objectives, namely to develop a model, applicable to the

entire forecast domain of the Swiss Alps, before we compare the developed RF classifiers with previously developed models

predicting a regional avalanche danger level (Sect. 6.4). Finally, we provide an outlook on the operational pre-testing of the455

models (Sect. 6.5) and their future application for avalanche forecasting (Sect. 6.6).

6.1 Impact of training data and forecast errors on model performance

Training data size and class distribution

In general, a large training data set increases the performance of a machine learning model as it provides more coverage of the

data domain. However, Rodriguez-Galiano et al. (2012) showed that random forest classifiers have relatively low sensitivity to460

the reduction of the size of the training data set. In fact, the large reduction in the amount of training data of RF #2, containing

only 10 % of data of RF #1, did not have a substantial impact on model performance. RF #2 had similar overall scores when

evaluated on the Dforecast test set (Table 1a and b) and even slightly higher scores on the Dtidy test set (Table 1c and d) as it

was trained with Dtidy. The dominant classes of danger levels, 2-Moderate and 3-Considerable, were the most affected ones,

showing a decrease in accuracy between 5 % and 8 % (Fig. 6a and b).465

Furthermore, RF #2 is trained using a better-balanced training data set (Fig. 3c). The confusion matrices exhibit an improve-

ment of the per class accuracy (Fig. 6), i.e. the recall percentages of the diagonal matrix, of the minority classes of danger

1-Low and 4-High when using RF #2, reflecting the positive impact of balancing the training ratio for this danger level.
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Quality of avalanche forecasts

Even though previous applications of random forests have demonstrated that it is one of the most robust classification methods470

tolerating some degree of label noise (e.g. Pelletier et al., 2017; Frénay and Verleysen, 2013), its performance decreases with

a large amount of label errors (Maas et al., 2016). Labelling errors, however, may influence the model building, which can be

particularly relevant for minority classes as danger level 4-High. Furthermore, such errors in the ground-truth may also lead to

seemingly lower prediction performance (e.g. Bowler, 2006; Techel, 2020). Aiming to reduce the impact of wrong class labels,

we compiled the best possible, and presumably more accurate, ground truth data set, (Dtidy), which was used to train RF #2.475

To assess the accuracy of the forecast, and thus potential errors in the forecast danger levels (Dforecast), we relied on nowcast

assessments (DLN ) by well-trained observers. Although the local nowcasts are also subjective assessments, they are considered

the most reliable data source of danger levels (Schweizer et al., 2021; Techel and Schweizer, 2017). Previous studies estimated

the accuracy of the Swiss avalanche forecasts in the range between 75 % and 81 % (this study, see Sect. 5.2; Techel and

Schweizer, 2017; Techel et al., 2020b). Our classifiers reached these values: the overall prediction accuracies of RF #1 and480

RF #2 were 74 % and 72 % (compared to Dforecast) and, 76 % and 78 % (compared to Dtidy), respectively (Table 1). Particularly,

the accuracy of the minority class 4-High improved for RF #2 (Fig. 6), emphasizing the importance of training and testing

against the best possible data set Dtidy. To compile this data set, quality checking was particularly important for danger level

4-High (Sect. 3.1.2 and Appendix Sect. A), since the forecast is known to be comparably often erroneous when this danger

level is forecast (e.g. Techel and Schweizer, 2017; Techel, 2020). In the future, a new compilation of Dtidy resulting in a larger485

data size may improve the predictive performance.

Considering the predictions on particular days (Fig. D1), some stations predicted the danger level, which was forecast in

the adjacent warning region. This suggests that occasionally the boundary between areas of different forecast danger level

could be questionable. Such errors in the spatial delineation of the extent of regions with the same danger level have also

been noted by Techel and Schweizer (2017). They showed that the agreement rate between the local nowcast assessments and490

the regional forecast danger level was comparably low in warning regions which were neighbours to warning regions with a

different forecast danger level. Hence, incorrect boundaries may have further contributed to label noise.

Similarly, errors in the elevation indicated in the bulletin may have an impact, as we used this forecast elevation to filter data

(Sect. 3.3). The effect of the forecast elevation on the classifier performance was clearly visible with the accuracy decreasing

for stations below the elevation indicated in the bulletin, often showing a bias of -1 danger level (Fig. 9). This result agrees495

with the assumption that the danger is lower below the elevation indicated, typically by one danger level (Winkler et al., 2021).

However, the proportion of correct predictions at stations close, but below the elevation indicated was fairly high (0.64), which

may reflect a more gradual decrease in the danger level with elevation (Schweizer et al., 2003). This finding suggests that the

model is able to capture elevational gradients in avalanche danger.
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6.2 Spatio-temporal scale issues500

The temporal and spatial scale of the avalanche forecast and data used to train the model should be considered when verifying

a forecasting model (McClung, 2000). To match the temporal scale, we extracted the meteorological and snowpack features

for the time window closest to the avalanche forecast. Nevertheless, for avalanche forecasting, ’forecast’ data from weather

predictions strongly drives the decision-making process. The RF models, however, were trained using ’nowcast’ data (recorded

measurements and simulated data based on these measurements). This may introduce an additional bias between the danger505

level predictions of the model and the public forecast. The use of the morning forecast, whenever it was available as ground

truth, reduced this bias. Nevertheless, a model trained with ’forecast’ input data may improve the performance.

A scale mismatch exists between our target variable and the model predictions. Whereas the same danger level is usually

issued for a cluster of warning regions, characterized by a mean size of 7000 km2 (Techel and Schweizer, 2017), the predic-

tions of the model reflect the local conditions measured and modelled at an individual IMIS station. Hence, the spatial scale510

difference can be more than two orders of magnitude. Stations located in the same or nearby warning regions forecast with

the same danger level sometimes predict different danger levels (Fig. D1) as avalanche conditions may vary even at the scale

of a warning region (Schweizer et al., 2003). These local variations are inherent to the characteristics of the station such as

elevation, wind exposure and more. To overcome the spatial scale issues in future applications, predictions could be clustered

through ensemble forecasting methods.515

6.3 Spatio-temporal variations of the model performance

Snow stability, and hence avalanche danger, evolves in time - driven primarily by changing weather conditions, and varies in

space - depending on the terrain and how meteorological conditions affect the snowpack at specific locations.

Overall, the two models captured this evolution with an overall accuracy of more than 72 % (Tab. 1), or 67 % (RF #1) when

considering only times when the avalanche hazard increased (Tab. 3a). However, the accuracy of the models varied during the520

winter season (Fig. 7a), with about 10 - 15 % of the days exhibiting an accuracy < 0.5 (Sect. 5.1). Here, we distinguished

two cases (Sect. 5.2): firstly, some days with such seemingly poor performance could be linked to the forecast danger level,

the target variable used for validation, likely being wrong in many areas. These cases were characterized by a low agreement

rate, Pagree, between forecast and nowcast assessments, as for instance on 7 February 2019 (Fig. D1a). However, not all the

days with a poor model performance correlated with low values of Pagree (Fig. 7b). This suggests that variations in model525

performance may also be due to different avalanche situations and, hence, the ability of the classifiers to accurately predict

them. Even though we have only qualitatively explored this, we observed that the predictive performance of both models

sometimes decreased on days when the avalanche problem ’persistent weak layers’ (EAWS, 2021a) was the primary problem.

The performance of the models was lower at stations located in the eastern part of the Swiss Alps, as for instance, in the

regions surrounding Davos or St. Moritz (these are marked in Fig. 8). Since model accuracy varied in situations when the530

danger changed (Table 3), we verified whether the proportion of cases with a change in the danger level differed in these

regions compared to other areas. However, changing danger levels were about as often forecast in these regions as in the rest
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of Switzerland, with, for instance, an increase in avalanche danger being forecast on 9 to 10 % of the days in Davos and St.

Moritz, compared to an overall mean of 10 % for the remainder of the Swiss Alps (decreasing danger level: 11 % to 12 % in

St. Moritz and Davos, respectively, overall mean 14 %). The model performance was highest when danger level 1-Low was535

forecast (Tab. 1), which was somewhat less frequently the case in St. Moritz (24 %) and Davos (26 %) compared to the entire

Swiss Alps (29 % top of Fig. 3d). Furthermore, we also explored if the agreement rate between forecast and local assessments,

an indicator for the quality of the danger level labels, was lower there. While Pagree was about 71 % for Davos, which was

lower than the overall mean of 75 %, the agreement rate was 82 % for St. Moritz. Consequently, none of these effects may

conclusively explain the variations observed. However, again a possible explanation may be related to the snowpack structure540

in this part of the Swiss Alps, which is often dominated by the presence of persistent weak layers (e.g. Techel et al., 2015).

However, this aspect of model performance must be analyzed in more detail and goes beyond the scope of this work.

6.4 Comparison of data-driven approaches for danger level predictions

Some of the first attempts to automatically predict danger levels for dry-snow conditions were reported by Schweizer et al.

(1994), who designed a hybrid expert system based on a training set of about 700 cases using a verified danger level, correctly545

classifying 73 % of the cases. Schweizer and Föhn (1996) also predicted the avalanche danger level for the region of Davos

trained with the same data. The cross-validated accuracy was 63 %, showing an improvement to 73 % when adding further

snowpack stability data and knowledge in the form of expert rules to the system.

Schirmer et al. (2009) compared several classical machine learning methods to predict the avalanche danger. They used

as input measured meteorological and SNOWPACK variables from the AWS at Weissfluhjoch (WFJ2) station located above550

Davos. They reported an accuracy typically around 55 % to 60 %, which improved to 73 % when the avalanche danger level of

the previous day was an additional input. Although the test set used in this study is not directly comparable with the previous

ones, the overall accuraccies obtained with our classifiers are higher (Table 1). Still, the mean accuracy of the predictions at the

stations located in the region of Davos was lower (Fig. 8), showing values of 72 % (RF #1 model) and 69 % (RF #2 model) for

the station WFJ2. We also observed an important improvement of the overall performance of the model when adding the danger555

level of the previous day (Table 3b). However, the predictions were mainly driven by the danger level feature and RF #1* failed

to predict the situations of increasing or decreasing avalanche hazard. This model would have limited usefulness in operational

avalanche forecasting, since it too strongly favors persistency in avalanche danger.

6.5 Operational testing of the models

During the winter season 2020-2021, both RF models were tested in an operational setting providing a ‘nowcast’ and a ‘24-hour560

forecast’ prediction in real-time. The model chain consisted of the following steps, of which the first two steps are equivalent to

the operational SNOWPACK model setup in the Swiss avalanche warning service (Sect. 2.1; Lehning et al. (1999); Morin et al.

(2020)): (1) measurements are transferred from the AWS to a server at SLF once an hour, (2) based on these data, snow cover

simulations are performed with the SNOWPACK model for the location of the IMIS station and for four virtual slope aspects

(’north’, ’east’, ’south’ and ’west’) every 3 hours, (3) the input features required for the RF models are extracted from the snow565
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cover simulations, and (4) the danger level predictions calculated. In addition, both models were tested in a forecast setting,

covering the following 24 hours. The forecast snow cover simulations are driven with the numerical weather prediction model

COSMO-1 (developed by the Consortium for Small-scale Modeling; https://www.cosmo-model.org/) operated by the Swiss

Federal Office of Meteorology and Climatology (MeteoSwiss), down-scaled to the locations of the AWS. In addition, we also

tested individual predictions for each of the four virtual slope aspects. Preliminary results showed that the overall predictive570

performance in forecast and nowcast mode and per aspect was similar. A detailed analysis of these results in an operational

setup will be presented in a future publication.

6.6 Future operational application of the models

Both models have the potential to be used as decision support tools for avalanche forecasters. The models can provide a "second

opinion" when assessing the avalanche danger.575

Comparing the performance between both models, the RF #2 model predicted situations with danger level 4-High more often

accurately (Fig. 6), which is particularly relevant as many large natural avalanches are expected at this danger level (Schweizer

et al., 2021). Hence, accurate forecasts of danger level 4-High are crucial for local authorities to ensure safety in avalanche-

prone areas, for instance, by the preventive closure of roads. On the other hand, the RF #2 model less accurately predicted

the most common avalanche danger levels: 2-Moderate and 3-Considerable. Overall, RF #2 tended to rather under-forecast the580

danger compared with RF #1 (Fig. 6). This may have negative implications for backcountry recreationists, as their avalanche

risk increases with increasing danger level (Winkler et al., 2021). On the other hand, the comparison of regional forecasts with

local nowcasts (Techel and Schweizer, 2017) showed that experienced observers usually rated the danger lower than forecast

when they disagreed with the forecast. It is therefore quite possible that the regional forecast by human experts occasionally

tends to err on the safe side, an effect the models would not show.585

Furthermore, the avalanche danger levels are a strong simplification of avalanche danger, which is a continuous variable.

However, the random forest classifiers not only predict the most likely danger level, which we exclusively explored in this

study, but also the class probabilities for each of the danger levels. Even though an in-depth analysis of these probabilities is

beyond the scope of this study, we noted that for most of the misclassifications between two consecutive danger levels (Fig.

D1), the model predictions were usually uncertain, predicting relatively high probabilities for both danger levels. In the future,590

using these probability values may be beneficial for refining the avalanche forecasts (Techel et al., 2022). Future work will

also focus on predicting the danger levels for the different slope aspects and above all on using output of numerical weather

prediction models as input data.

7 Conclusions

We developed two random forests classifiers to predict the avalanche danger level based on data provided by a network of595

automated weather stations in the Swiss Alps (Fig. 1). The classifiers were trained using measured meteorological data and

the output of snow cover simulations driven with these input weather data, and danger ratings from public forecasts as ground
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truth. The first classifier RF #1 relied on the actual danger levels as forecast in the public bulletin, Dforecast, which is intrinsically

noisy, while the second classifier RF #2 was labelled with a subset of quality-controlled danger levels, Dtidy. Whereas, for the

classifier RF #1 the maximum average accuracy ranged between 74 % (evaluating on Dforecast test set) and 76 % (Dtidy test600

set); RF #2 showed an accuracy between 72 % (Dforecast test set) and 78 % (Dtidy test set). These accuracies were higher (up to

10 %) than those obtained in earlier attempts of predicting the danger level. Also, our classifiers had similar accuracy as the

Swiss avalanche forecasts, which were estimated by Techel and Schweizer (2017) in the range of 70-85 % with an average

value of 76 %. Hence, we developed a fully data-driven approach to automatically assess avalanche danger with a performance

comparable to the experience-based avalanche forecasts in Switzerland. Overall, the performance of the RF models decreased605

with increasing uncertainty related to these forecasts, i.e. decreasing agreement rate (Pagree). In addition, the predictions at

stations located at elevations higher than the elevation indicated in the bulletin were more accurate than the predictions at

lower stations, suggesting, as expected, lower danger at elevations below the critical elevations. Finally, a single model was

applicable to the different snow climate regions that characterize the Swiss Alps. Nevertheless, the predictive performance of

the models spatially varied and in some eastern parts of the Swiss Alps where the avalanche situation is often characterized610

by the presence of persistent weak layers, the overall accuracy was lower (∼ 70%). Therefore, future models should better

address this particular avalanche problem by incorporating improved snow instability information.

Both models have the potential to be used as a supplementary decision support tool for avalanche forecasters in Switzerland.

Operational pre-testing of the models during the winter season 2020-2021 showed promising results for the real application in

operational forecasting. Future work will focus on exploiting the output probabilities of the random forest classifiers, predicting615

the danger levels for the different slope aspects in addition to using output of numerical weather prediction models as input

data. These future developments would bring the models even closer to the procedures of operational avalanche forecasting.
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Video supplement. For illustration, the evolution of the RF danger level predictions (circles), the local nowcast assessments (circles) and the

forecast danger level (Dforecast, Fig. 3d) is shown for the two test winters in two supplementary videos. Each video shows animations of the625

daily maps. Only the predictions for stations above the elevation indicated in the bulletin are displayed. The warning regions are colored

with the forecast danger level. The color of the stations shows the danger level predictions of each random forest classifier. The number of

27



stations varies with time because predictions on some stations are lacking due to i) the station was located on a given day below the elevation

indicated in the bulletin, ii) a missing value for one of the input features or iii) the snow height was less than the minimum threshold of 30

cm. The danger level of some warning regions can also be missing for some days because only a forecast for wet-snow avalanche conditions630

was issued in this area.
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Appendix A: Compilation of subset of «tidy » danger levels (Dtidy)

In the following, the data and process to obtain the subset of «tidy » danger levels, introduced in Sect. 3.1.2, are described.635

Several data sources were used:

1. the forecast danger level (Dforecast) relating to dry-snow conditions, as described in Sect. 3.1.1;

2. nowcast estimates of the danger level (Dnowcast) relating to dry-snow conditions, and reported by experienced observers

after a day in the field (refer to Techel and Schweizer (2017) for details regarding nowcast assessments of avalanche

danger in Switzerland);640

3. avalanche occurrence data, consisting of recordings of individual avalanches and avalanche summaries, reported by the

observer network in Switzerland for the purpose of avalanche forecasting;

4. «verified» danger levels, as shown in studies exploring snowpack stability in the region of Davos (eastern Swiss Alps,

see also Fig. 2, Schweizer et al., 2003; Schweizer, 2007) or documenting avalanche activity following two major storm

in 2018 and 2019 using satellite-detected avalanches (Bühler et al., 2019; Bründl et al., 2019; Zweifel et al., 2019).645

We proceeded in two steps to derive Dtidy.

(1) We combined information provided in the forecast (Dforecast) with assessments of avalanche danger by observers (Dnowcast).

By combining several pieces of information indicating the same D, we expect that it is more likely that D represents the

avalanche conditions well. This resulted primarily in a subset of danger levels 1-Low, 2-Moderate and 3-Considerable. We

included the following cases in the tidy subset:650

– For cases, when a single nowcast estimate was available, and when Dforecast = Dnowcast → Dtidy = Dforecast;

– For cases, when several nowcast estimates were available, and when these indicated the same Dnowcast, regardless of

Dforecast → Dtidy = Dnowcast.

Furthermore, we included cases, when a «verified» danger level was available (Schweizer et al., 2003; Schweizer, 2007). When

neither a «verified» danger level nor a nowcast estimate was available, but when Dforecast was 1-Low on the day of interest, but655

also on the day before and after, we included these cases as sufficiently reliable to represent 1-Low. However, to reduce auto-

correlation in this subset of days with 1-Low, only every fifth day was selected. Furthermore, as our focus was on dry-snow

conditions, we removed all cases of 1-Low in April, when often a decrease in snow stability during the day due to melting

leads to a wet-snow avalanche problem.

Beside compiling Dtidy, we also derived a corresponding critical elevation and aspects, for which Dtidy was valid.660

We defined a «tidy» critical elevation as the mean of the indicated elevations in the forecast or nowcast estimates. As generally

no elevation is provided for 1-Low in the forecast nor in nowcast assessments, we used a fixed elevation of 1500 m for the

months December to February, and 2000 m in March. The latter adjustment was made to ascertain that the danger referred to
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dry-snow avalanche conditions rather than wet-snow or gliding avalanche conditions.

665

(2) We relied on avalanche occurrence data to obtain a subset of cases, which reflect the two higher danger levels 4-High

and 5-Very High.

To find days with avalanche activity typical for danger level 4-High, an avalanche activity index (AAI) was calculated for each

day and warning region by summing up the number of reported avalanches weighted according to their size (Schweizer et al.,

1998). The respective weights for avalanche size classes 1 to 4 were: 0.01, 0.1, 1, 10. Because a mix of individual avalanche670

recordings and avalanche summary information was used, the following filters and weights were applied to calculate the AAI:

– Individual avalanche recordings: only dry-snow natural avalanches were considered (weight = 1).

– Avalanche summaries: only avalanches classified as either dry (weight = 1) or a mix of dry and wet (weight = 0.5), which

had released either naturally (weight = 1) or were reported as a mix of natural and other release types (weight = 0.5)

were used.675

A day and warning region was considered as 4-High, when the following three criteria were fulfilled:

1. At least one avalanche was of size 3, or larger.

2. AAI ≥ 5. This threshold corresponds to, for example, five natural avalanches of size 3, or forty size 2 avalanches and

one size 3 avalanche.

3. At least five avalanches of size 2, or larger, were reported.680

Cases, which fulfilled these criteria, were included and Dtidy was set to 4-High if Dforecast was ≥ 3-Considerable. Cases, for

which the avalanche activity criteria were fulfilled but which had a comparably low danger level forecast (Dforecast = 1-Low or

2-Moderate), were removed from the subset.

5-Very High: Two situations were verified as 5-Very High for parts of the Swiss Alps - 22 Jan 2018 (Bründl et al., 2019) and

14 Jan 2019 (Zweifel et al., 2019). These cases were included in the data set. If one of the previous criteria already applied,685

Dtidy was changed to 5-Very High.

For cases with D ≥ 4-High, which did not contain information on elevation, we used a rounded mean based on the cases

where this information was available. This resulted in a critical elevation of 1900 m.
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Appendix B: Metrics and model’s hyperparameters690

In the following, the performance metrics used in this study are defined (e.g. Sokolova and Lapalme, 2009). The accuracy is

the fraction of predictions by the model that are correct:

Accuracy =
Correct predictions

Total predictions
(B1)

Precision (or positive predictive value) describes the fraction of positive results that are true positives:

Precision =
TruePositive

TruePositive+FalsePositive
(B2)695

Recall describes the true positive rate (or sensitivity), i.e. the percentage of actual positives which are correctly identified:

Recall =
TruePositive

TruePositive+FalseNegative
(B3)

The F1 score is the harmonic mean of precision and recall:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(B4)

Macro-F1 is the unweighted mean of F1 scores calculated for each class.700

The final hyperparameters selected in the optimization process are shown in Table B1.

Table B1. Final hyperparameters selected for the optimized models: RF #1 and RF #2. If ’log2’, then maximum features = log2 (n° features)

and if ’auto’, then maximum features = sqrt (n° features).

Hyperparameter/ Model: RF #1 RF #2

Number of trees 1000 1000

Maximum depth of the tree 40 50

Maximum number of features ’log2’ ’auto’

Minimum number of samples at a leaf node 6 5

Minimum number of samples for each split 12 10
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Appendix C: Definition of features for developing RF models

Table C1: Meteorological variables used for training the random forest algorithm. The three types of features are: measured

meteorological variable, modelled meteorological variable by SNOWPACK or extracted variable. Features can be discarded

by Recursive Feature Elimination (RFE), manually or because they are highly correlated with another one.

Feature description Feature name Type Selected/discarded

Mean sensible heat [W/m2] Qs Modelled Selected

Mean latent heat [W/m2] Ql Modelled Discarded: RFE

Mean ground temperature [º] TSG Measured Discarded: RFE

Mean ground heat at soil interface [W/m2] Qg0 Modelled Selected

Mean rain energy [W/m2] Qr_mean Modelled Discarded: correlation

Mean outgoing long wave radiation [W/m2] OLWR Modelled Discarded: correlation

Mean incoming long wave radiation [W/m2] ILWR Modelled Selected

Mean net long wave radiation [W/m2] LWR_net Modelled Selected

Mean reflected short wave radiation [W/m2] OSWR Measured Discarded: correlation

Mean incoming short wave radiation [W/m2] ISWR Modelled Selected

Mean net short wave radiation [W/m2] Qw Modelled Selected

Mean parametrized albedo [−] pAlbedo Modelled Selected

Mean incoming short wave on horizontal [W/m2] ISWR_h Modelled Discarded: correlation

Mean direct incoming short wave [W/m2] ISWR_dir Modelled Discarded: correlation

Mean diffuse incoming short wave [W/m2] ISWR_diff Modelled Selected

Mean air temperature [º] TA_mean Measured Selected

Mean surface temperature [º] TSS_mod Modelled Selected

Mean surface temperature [º] TSS_meas Measured Discarded: correlation

Mean bottom temperature [º] T_bottom_meas Modelled Discarded: correlation

Mean relative humidity [−] RH Measured Selected

Mean wind velocity [m/s] VW Measured Selected

Mean wind velocity drift [m/s] VW_drift Measured Selected

Mean wind direction [º] DW Measured Discarded: RFE

Mean solid precipitation rate [kg/s2/h] MS_Snow Modelled Selected

Mean snow height [cm] HS_mod Modelled Selected

Mean snow height [cm] HS_meas Measured Discarded: correlation

Mean hoar size [cm] hoar_size_meas Modelled Discarded: RFE

Mean 24h wind drift [cm] wind_trans24 Modelled Selected
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Feature description Feature name Type Selected/discarded

Mean 3d wind drift [cm] wind_trans24_3d Extracted Selected

Mean 7d wind drift [cm] wind_trans24_7d Extracted Selected

Mean 24h height of new snow [cm] HN24 Modelled Selected

Mean 3d sum of daily height of new snow [cm] HN72_24 Modelled Selected

Mean 7d sum of daily height of new snow [cm] HN24_7d Extracted Selected

Mean snow water equivalent [kg/m2] SWE Modelled Discarded: correlation

Mean total amount of water [kg/m2] MS_Water Modelled Discarded: RFE

Mean erosion mass loss [kg/m2] MS_Wind Modelled Discarded: RFE

Mean rain rate [kg/s2/h] MS_Rain Modelled Discarded: correlation

Mean virtual lysimeter [kg/s2/h] MS_SN_Runoff Modelled Discarded: RFE

Mean sublimation mass [kg/m2] MS_Sublimation Modelled Discarded: correlation

Mean evaporated mass [kg/m2] MS_Evap Modelled Discarded: RFE

Mean snow temperature at 0.25 m [º] TS0 Modelled Discarded: manually

Mean snow temperature at 0.5 m [º] TS1 Modelled Discarded: manually

Mean snow temperature at 1 m [º] TS2 Modelled Discarded: manually

Mean stability class [-] Sclass2 Modelled Discarded: RFE

Mean deformation rate stability index [−] Sd Modelled Discarded: RFE

Mean depth of deformation rate stability index [cm] zSd Modelled Discarded: correlation

Mean natural stability index [−] Sn Modelled Selected

Mean depth of natural stability index [cm] zSn Modelled Selected

Mean Sk38 skier stability index [−] Ss Modelled Selected

Mean depth of Sk38 skier stability index [cm] zSs Modelled Selected

Mean structural stability index [−] S4 Modelled Selected

Mean depth of structural stability index [cm] zS4 Modelled Discarded: correlation

Mean stability index 5 [−] S5 Modelled Discarded: RFE

Mean depth of stability index 5 [cm] zS5 Modelled Discarded: RFE
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Table C2. Variables extracted from the simulated profiles used for training the random forest algorithm. Features can be discarded by

Recursive Feature Elimination (RFE) or because they are highly correlated with another one.

Feature description Feature name Type Selected/discarded

Persistent weak layer(s) in the 100 cm from the surface [−] pwl_100 Profile Discarded: correlation

Persistent weak layer(s) at depths between 15 cm and 100 cm [−] pwl_100_15 Profile Discarded: correlation

Persistent weak layer at bottom [−] base_pwl Profile Discarded: RFE

Structural stability index at weak layer [−] ssi_pwl Profile Discarded: correlation

Structural stability index at surface weak layer [−] ssi_pwl_100 Profile Discarded: correlation

Sk38 skier stability index at weak layer [−] sk38_pwl Profile Discarded: RFE

Sk38 skier stability index at surface weak layer [−] sk38_pwl_100 Profile Discarded: correlation

Natural stability index at weak layer [−] sn38_pwl Profile Discarded: correlation

Natural stability index at surface weak layer [−] sn38_pwl_100 Profile Selected

Critical cut length at weak layer [m] ccl_pwl Profile Discarded: correlation

Critical cut length at surface weak layer [m] ccl_pwl_100 Profile Selected

Min. critical cut length at a deeper layer of the penentration depth [m] min_ccl_pen Profile Selected

Skier penetration depth [cm] pen_depth Profile Selected

Appendix D: Illustrative case studies

Here we provide a detailed description of the daily performance of the models on six selected days that differed in terms of705

forecast agreement rate and model performance (Fig. D1). For simplicity, we only display the predictions of the model RF #1

(circles), for which we additionally provide a video in the supplement. The maps of the predictions of the model RF #2 for

these days are also available in the supplement. Also shown in Fig. D1 are the local nowcast assessments for each of these six

days (triangles).

On 7 February 2019 (Fig. D1a; denoted by ’a’ in Fig. 7a), danger level 3-Considerable was forecast for most regions. For710

this large area, the model predicted for the majority of the stations 2-Moderate, reaching a poor average daily accuracy of 0.3

(0.26 for RF #2). On this day, 27 observers provided a local assessment of the avalanche danger (Fig. D1a). Eight assessments

confirmed the forecast danger level 3-Considerable, 15 assessed the situation as 2-Moderate, suggesting that the forecast was

likely too high in many regions (Pagree = 0.41), and that the model actually performed well. In the remaining regions where the

forecast danger level was 2-Moderate, the observers mostly confirmed the forecast (one out of 4 reported 3-Considerable; Fig.715

D1a). The following day, the forecast danger level was lowered to 2-Moderate in almost all regions of the Swiss Alps.

On 15 March 2019 (Fig. D1b; denoted by ’b’ in Fig. 7a), danger levels 3-Considerable and 4-High were mainly forecast. The

predictive accuracy on this day was 0.64 (0.62 for RF #2). Considering the local nowcast assessments showed that the danger

level forecast was perceived correct by 17 out of 23 observers (Pagree = 0.74). Five observers confirmed 4-High, five rated the
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danger with 3-Considerable in the area where the forecast danger level was 4-High. In the regions with forecast danger level720

3-Considerable, 12 observers confirmed the forecast danger level, one reported 2-Moderate (Fig. D1b).

On 19 March of 2019 (Fig. D1c; denoted by ’c’ in Fig. 7a), danger levels 2-Moderate and 3-Considerable were forecast. For

rather large proportion of the stations in the area with 2-Moderate the model predicted one danger level higher, resulting in an

average model accuracy of 0.53. For RF #2, overall accuracy was considerable higher, namely 0.65. Fig. D1c shows that 79%

of the 24 local assessments on this day confirmed the forecast danger level; for 2-Moderate in 17 cases, for 3-Considerable for725

2 out of 7 cases. This day seems to represent a typical example when RF #1, trained exclusively with forecast data, tended to

predict higher danger levels than RF #2.

On 20 January 2020 (Fig. D1d; denoted by ’d’ in Fig. 7a), there were three areas with danger levels 1-Low, 2-Moderate and 3-

Considerable, respectively. The average accuracy of the RF #1 model was 0.49, with many stations predicting a danger level 2-

Moderate in the area where 1-Low was forecast. Two local assessments on this day confirmed 1-Low, eight 2-Moderate and two730

3-Considerable, while four observers in the area where 3-Considerable was forecast rated the danger as 2-Moderate, and one

as 1-Low in the area with 2-Moderate (Fig. D1d). In summary, this suggests that the forecast danger level was approximately

correct (Pagree = 0.7) but the model predictions tended to be too high, particularly in the area where 1-Low was forecast. The

following day, the model predicted for most of the stations a decrease from 3-Considerable to 2-Moderate the following day,

now again in accordance with the forecast. The performance of RF #2 was better (overall accuracy of 0.61) showing more735

accurate predictions in the large area where danger level 1-Low was forecast (see video in the supplementary material).

On 6 March 2020 (Fig. D1e; denoted by ’e’ in Fig. 7a), when primarily danger level 3-Considerable was forecast, an

accuracy of 0.81 was achieved by RF #1 (0.77 for RF #2). However, the feedback from the observers (Fig. D1e), with 15 out of

the 27 local assessments being lower than the forecast danger level, suggests that the forecast danger level was at least in some

regions too high (Pagree = 0.46). Similarly, the avalanche observations indicated only for one warning region that level 4-High740

was appropriate.

Finally, on 8 April 2020 (Fig. D1f; denoted by ’f’ in Fig. 7a), the lowest danger level 1-Low was forecast for the entire

area of the Swiss Alps. Both models also predicted 1-Low for all stations, an accuracy of 1. On this day, only four observers

provided a local nowcast estimate, all of which were in accordance with the forecast danger level (Fig. D1f).
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Figure D1. Maps of Switzerland showing the danger level of the public forecast for each region, the danger level predictions by RF #1 model

at each IMIS station (coloured circles) and the local nowcast assessments (coloured triangles) reported by observers on six selected days: (a)

7 February 2019, (b) 15 March 2019, (c) 19 March 2019, (d) 20 January 2020, (e) 6 March 2020 and (f) 8 April 2020. The colours represent

the danger levels. 36
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