
Authors response to Anonymous Referee #1 

 

Referee comment on "A Performance-Based Approach to Quantify Atmospheric River Flood 

Risk" by Corinne Bowers et al., Nat. Hazards Earth Syst. Sci. Discuss., 

https://doi.org/10.5194/nhess-2021-337-RC1, 2021 

 

We would like to thank the reviewer for their valuable feedback and constructive comments. We 

have revised the manuscript accordingly and provided detailed responses to each of the 

comments below. 

 

General Comments 

 

1.1)  

The authors provide a process-based probabilistic framework for predicting damages associated 

with ARs based on AR intensity and duration and antecedent hydrologic conditions. This is a 

useful tool. There are a number of technical innovations throughout the study. The 2019 Russian 

River case study contains several creative data sourcing and manipulation steps to overcome 

inherent data availability issues. The overall method has broader applications than AR damage 

prediction. It could be applied to any damaging hydrometeorogic events, including hurricanes 

and tropical storms. The AAL and loss exceedance curve calculations are compelling. A number 

of valuable insights are presented in the discussion section. 

 

Response: We would like to thank the reviewer for these comments about our work and its 

potential applications.  

 

1.2)  

My only comment of substance is that the current ordering of sections makes the model difficult 

to follow as variables are introduced before being defined and the multivariate Monte Carlo 

integration framework is explained after presenting the series of integrals. I'd put section 2 

paragraph 1 first, then 3.2 paragraph 1, then 2.1 description of pinch point variables, then 2 

framework description with the equations, then 3.2 paragraph 2 explanation of Monte Carlo 

integration. Or something along those lines. The current ordering was difficult for me to follow 

although it did all make sense at the end. 

 

Response: We acknowledge that the original ordering created unnecessary confusion and have 

reorganized much of Section 2 to address the reviewer’s concerns. We appreciate the helpful 

suggestions on how to present the information in a more intuitive order. The new organization is 

as follows:  

 

Section 2: Framework Description 



- Law of total probability (same) 

- Introduction of Eq. 1 (modified to address comments 1.8 and 1.15) 

- Definition of pinch points (previously the first paragraph of Sect. 2.1) 

- Definition of component models (previously the first paragraph of Sect. 2.2) 

- Introduction of Eq. 2 (modified to address comment 1.15) 

- Explanation of Monte Carlo integration (previously the second paragraph of Sect. 2.2) 

 

Section 2.1: Pinch Point Variables  

- Distinction between pinch points and pinch point variables (new; added to address comment 

1.14) 

- Detailed description of pinch point variables (same) 

 

Section 2.2: Component Models 

- General description of component models, with special attention to f(Q | PRCP, HC) (new; 

added to address comments 1.13 and 1.36) 

- Distinction between component models and component model implementations (new; added to 

address comments from Reviewer 2) 

 

We believe that this response serves to additionally resolve the concerns and questions expressed 

by the reviewer in comments 1.12, 1.16-1.24, 1.31, and 1.32. 

 

1.3)  

The rest of the comments are minor technical corrections / suggestions or requests for 

clarification. Overall this is a great contribution to the literature. I recommend accepting the 

manuscript after minor revisions. 

 

Response: We would like to thank the reviewer for their recommendation, and for the time and 

effort put into reviewing this manuscript.  

 

- - - - - 

 

Specific Comments / Technical Corrections 

 

1 Introduction 

 

1.4)  

Line 26 California experiences ARs coming from a pathway called the Pineapple Express -> 

California often experiences ARs coming from a pathway called the Pineapple Express [not all 

ARs in CA are considered Pineapple Express storms] 

 



Response: We acknowledge the reviewer’s suggestion and we have removed this sentence from 

the manuscript. 

 

1.5)  

Line 31 $300 million -> $660 million 

Data appendix S1 Top Counties lists damages for CA counties over 40 years at 26.53 billion of 

which AR damages were 24.86 billion in 2019 dollars. This translates into annual AR damages 

of 24.86/40 = 621.5 million. In 2021 dollars this is approximately $660 in 2021 dollars (e.g., 

https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator) 

 

Response: We have revised according to the reviewer’s suggestion. 

 

1.1 Disciplinary Context 

 

1.6)  

In addition to FEMA's Hazus, USACE's HEC-FIA and HEC-FDA are potential methods that can 

be used to convert HEC-RAS outputs to economic impacts. 

 

Response: We acknowledge the reviewer’s suggestion and have added the following sentence to 

Line 72.  

 

“Other regional flood loss assessment tools include HEC-FIA (USACE, 2018) and HEC-FDA 

(USACE, 2014), both from the US Army Corps of Engineers; and FloodFactor (Bates et al., 

2020), a commercial product from First Street Foundation.” 

 

2 Framework Description 

 

1.7)  

Line 109 total probability theorem -> law of total probability 

 

Response: We have revised according to the reviewer’s suggestion. 

 

1.8)  

Line 116 decision variable DV appears here for the first time but is described later at 165. Either 

move the section on pinch point variables above the introduction of DV, etc., or note that the 

variables are defined in detail below. 

 

Response: We acknowledge the reviewer’s comment, and we have added the following text to 

Line 114 to indicate that an explanation of the pinch point variable DV will be provided later in 

the manuscript.  



 

“We first replace the generic variables with new variables representing pinch points, which we 

elaborate on later in this section. B becomes the atmospheric river event AR and A becomes the 

decision variable DV.” 

 

1.9)  

Eq 2 consider \cdot or \times in place of asterisks. 

 

Response: We agree with the reviewer and have switched to using \cdot throughout the 

manuscript. 

 

1.10)  

Eq 2 consider six integrals evenly spaced rather than two sets of three integrals. 

 

Response: We have revised according to the reviewer’s suggestion. 

 

1.11)  

Eq 2 it would perhaps make sense to include the supports over which the pinch point variables 

are being integrated. But perhaps it would be a distraction. 

 

Response: We tested out the reviewer’s suggestion, but felt that adding the integration supports 

created visual clutter and reduced the clarity of the equation. We have thus retained the integrals 

without explicit supports. 

 

1.12)  

Eq 2 ideally, the variables should be defined as they are introduced. Perhaps it is sufficient to 

note that the variables are defined below in Sect. 2.1. 

 

Response: We have reorganized Sect. 2 as outlined in our response to comment 1.2 to address 

this suggestion.  

 

1.13)  

Eq 2 An explanation of why f(Q | PRCP, HC) has two conditional variables while all other 

elements in the chain have only one may be useful for the reader, at some point in the text. 

 

Maybe something like: at each point in the causal chain one pinch point variable depends on the 

next. Flow, Q, depends on two variables precipitation, PRCP, and antecedent hydrologic 

conditions, HC. Could perhaps write out the whole chain in English in the paragraph below the 

equation. This would be easier to follow than waiting to read the text in the next section. Or else 

note that all variables are defined in the following section. 



 

Response: We acknowledge the reviewer’s comment, and we thank the reviewer for providing 

some suggested text to improve the manuscript. We have reorganized Sect. 2 as outlined in our 

response to comment 1.2 to provide the reader with the component model definitions before the 

equation. We have also added an explanation of why f(Q | PRCP, HC) has two conditional 

variables to the new version of Sect. 2.2. The text of this new paragraph is as follows. 

 

“The pinch points in the framework are linked by component models, or representations of 

discrete physical processes. Each component model generates an expected distribution of values 

for the next pinch point in the sequence conditioned on the value(s) preceding it. It is important 

to note that, excepting the hydrologic routing model f(Q|PRCP,HC), all models are conditioned 

on only one variable. The hydrologic routing model differs from the others because, like the 

event characteristics (AR), the antecedent hydrologic conditions (HC) are framework inputs 

provided by the user to represent an initial system state. All other pinch point variables represent 

calculated variables. Conditioning on a minimal number of variables is critical to achieving the 

objective of modularity because it reduces the data demands at each step of the modeling 

process.” 

 

1.14)  

Eq 2 Each pinch point variable is a scalar here? 

 

Response: We have reorganized Sect. 2 as outlined in our response to comment 1.2 to provide 

the reader with the pinch point definitions before the equation. We have also added additional 

text to distinguish between pinch points and pinch point variables, as outlined below. The revised 

Sect. 2.1 includes the following paragraph (approximately Line 140 in the manuscript). 

 

“The pinch points presented in Sect. 2 are conceptual descriptions of the intermediate system 

states between AR occurrence and flood loss where only a limited amount of information must be 

transferred to the next step. Pinch point variables are low-dimensional numerical vectors of the 

information at each pinch point (Garrick 1984). The following paragraphs expand upon the 

conceptual pinch points and introduce the specific dimensions and measurement units that are 

used in this paper for each pinch point variable.” 

 

1.15)  

Eq 2 I'm unclear on how \lambda(AR) works and on how \lambda(DV > x) and P(DV > x | DM) 

work... An additional line providing some context could be helpful. 

 

Response: We thank the reviewer for drawing attention to these elements of the PARRA 

framework, and we have modified the descriptions of both Eq. 1 and Eq. 2 as a result. For Eq. 1, 

we have removed the text from Lines 113-121 in the manuscript and replaced it with the 

following. 



 

“Equation 1 modifies the statement of the law of total probability to better fit the context of 

natural hazard assessment.  

 

λ(DV > x) = ∫ P(DV > x | AR) · λ(AR) dAR  (1) 

 

where λ(DV > x) is the rate of the decision variable DV exceeding some specified threshold x, 

i.e., how frequently losses exceed $x dollars; P(DV > x | AR) is the probability of DV exceeding 

x conditioned on an inducing AR event; and λ(AR) is the occurrence rate of that inducing event. 

The right side of the expression is integrated over all possible inducing events in the sample 

space. We evaluate λ(DV > x) at a range of x values to obtain the loss exceedance curve, which 

is explored further in Sect. 4.2. 

 

“We first replace the generic variables with new variables representing pinch points, which we 

elaborate on later in this section. B becomes the atmospheric river event AR and A becomes the 

decision variable DV. P(DV > x) is the complement of the cumulative distribution function for 

DV, starting at 100% probability of exceedance for low values of x and moving to a probability 

of zero as x increases. P(DV > x | AR) represents the probability of the decision variable DV 

exceeding some threshold value x conditioned on the inducing event AR.  

 

“We then transform the summation into an integral and move to calculating the occurrence rate 

λ, which represents a continuous state variable rather than the probability P of a discrete event. 

Probabilities are defined with respect to predetermined time periods, and the probability of 

seeing an AR event in the next week, month, or year are all different quantities. Calculating the 

occurrence rate λ offers similar information about the underlying phenomenon of interest (AR 

event frequency) without imposing an arbitrary time limitation.” 

 

For Eq. 2, we have removed the text from Lines 126-131 in the manuscript and replaced it with 

the following.  

 

“…where variables AR, PRCP, HC, Q, INUN, DM, and DV represent pinch points and the 

conditional probability expressions represent component models. The component models of the 

form f(Y | X) are conditional probability density functions that describe the distribution of results 

from numerical analyses. The component model P(DV > x | DM) measures the probability of 

pinch point DV exceeding the loss threshold x conditioned on DM. The PARRA framework is 

executed by starting with the outermost integration in the equation and moving inward, as each 

component model is conditioned on the one(s) preceding it in the model chain. This equation is 

also represented visually in Fig. 1.” 

 

2.1 Pinch Point Variables 



 

1.16)  

(The following comments were written as I was reading through the manuscript. They could be 

avoided if you are clear upfront about how the integration is Monte Carlo integration and how 

the pinch point variables can be vectors.) 

 

Response: We agree with the reviewer’s overall comments on the organization of Sect. 2, and we 

have reorganized the section as outlined in our response to comment 1.2. We believe that 

comments 1.17 through 1.23 have been resolved by this reorganization and by the additional 

understanding the reviewer has noted from comment 1.24 onward.  

 

1.17)  

I'm a little unclear on how the causal chain works with scalar variables given that the process is 

spatially heterogeneous. Should I think of the PARRA process running in parallel over all 

locations? But what about spatial correlations? 

 

Response: Please see our response to comment 1.16.  

 

1.18)  

AR is a measure of intensity, so it could be something like peak IVT or cumulative vapor 

transport over some time period, the duration of the AR, say. But IVT is a vector field. So you'd 

need to aggregate or average over time and space to get a scalar metric of intensity. 

 

Response: Please see our response to comment 1.16.  

 

1.19)  

PRCP as a scalar field has the same issue. You'd need to integrate over time and space to get a 

scalar value. Should I think of this as some metric of precipitation over the whole watershed? Or 

is there a way to apply PARRA with a time series of precipitation grids as inputs? 

 

Response: Please see our response to comment 1.16.  

 

1.20)  

HC, same as AR and PRCP. 

 

Response: Please see our response to comment 1.16.  

 

1.21)  



Q makes more sense as a single input if you're considering a single channel, although the 

hydrograph is a curve which captures the duration as well as the intensity of the flow above flood 

stage, so I'm unclear on how this enters into the formulation. 

 

Response: Please see our response to comment 1.16.  

 

1.22)  

INUN at a given location or structure is just a scalar, but over a set of n structures is an n-

dimensional vector. Here, duration of inundation may also be important, in addition to depth, in 

terms of generating damages. 

 

Response: Please see our response to comment 1.16.  

 

1.23)  

I'm unclear on how DM and DV differ. DV is a metric of impact or consequence. DM is a 

damage measure. So, DV could be a more broad measure of impact that is perhaps related to DM 

through some probabilistic relationship that is modeled using the observational record? 

 

Response: Please see our response to comment 1.16.  

  

1.24)  

Ah, the variables are discussed in more detail. AR is a vector of max IVT and duration, got it. 

 

Response: We thank the reviewer for identifying where this portion of the manuscript achieves 

clarity of purpose.  

 

1.25)  

PRCP is storm-total accumulated rainfall over the watershed. Did you experiment at all with 

more complex formulations for precipitation? Don't tools like HEC-RAS and LisFlood take 

precipitation fields as inputs? 

 

Response: We decided to present a simpler scalar representation of precipitation to streamline 

the model chain and keep the focus of the manuscript on the overall framework rather than the 

individual component model implementations. While we agree with the reviewer that both HEC-

RAS and LISFLOOD have the computational capability to accept two-dimensional precipitation 

fields, the complexity of the precipitation pinch point variable was limited not by these 

dynamical models but by the statistical model chosen to represent the component model 

f(PRCP|AR) described in Sect. 3.2.1. We discussed some of these tradeoffs later in the 

manuscript, starting at Line 585, and we have added the following text to Line 150 to point 

readers to that discussion. 



 

“This simplification could be modified or eliminated in future implementations of the 

precipitation component model, as addressed further in Sect. 5.4.” 

 

1.26)  

HC watershed-average soil moisture equivalent height. There's probably some additional 

uncertainty introduced by averaging over the whole watershed. Upstream soil moisture may be 

more relevant than downstream soil moisture, for example, although these are probably highly 

correlated. 

 

Response: We have modified the sentence at Line 123 to reflect that soil moisture values were 

averaged across only the upstream watershed, not the entire watershed. The revised sentence is 

as follows: “Therefore the pinch point variable representing antecedent hydrologic conditions is 

a scalar value measuring the average soil moisture in the upstream watershed.” 

 

We also acknowledge the reviewer’s comment about the introduction of additional uncertainty 

through averaging. Because of the relatively low temporal and spatial resolution of the CPC soil 

moisture dataset (1 month and 0.5 degrees lat/long, respectively), we found that additional 

precision in averaging did not significantly affect the values calculated for the events in the 

historic catalog. 

 

1.27)  

Q is time series of flow at inlet. This is parameterized as a 3-vector with Q_p, t_p, and m. 

 

Response: We appreciate the reviewer’s comment. 

 

1.28)  

INUN is surface water depth at locations of interest. So this is N-dimensional. 

 

Response: We appreciate the reviewer’s comment. 

 

1.29)  

DM is a damage ratio, expected cost to repair over the total value. Assumed to be a function of 

water depth. 

 

Response: We appreciate the reviewer’s comment. 

 

1.30)  



DV actionable measure of impacts. So, it converts damage ratios into damages? So it requires 

observed building values then? What's the utility in splitting DM and DV? I think I can see it, but 

an explanation could be useful. 

 

Response: We thank the reviewer for identifying the need for more information about the 

distinction between these two pinch point variables. We have revised the last paragraph of Sect. 

2.1 and added the following additional text to Lines 166-168. 

 

“Finally, the decision variable (DV) is some actionable measure of AR impacts. In this work we 

define DV as household-level monetary losses; however, DV could alternatively represent any 

other metric that is calculated as a function of the damage measure DM, such as the number of 

displaced persons or the time to full recovery.” 

 

2.2 Component Models 

 

1.31)  

This could perhaps go above the equations. 

 

Response: We have reorganized Sect. 2 as outlined in our response to comment 1.2 to address 

this suggestion. 

 

1.32)  

I'd put section 2 paragraph 1 first, then 3.2 paragraph 1, then 2.1 description of pinch point 

variables, then 2 framework description with the equations, then 3.2 paragraph 2 explanation of 

Monte Carlo integration. Or something along those lines. The current ordering was difficult for 

me to follow. 

 

Response: We have reorganized Sect. 2 as outlined in our response to comment 1.2 to address 

this suggestion.  

 

3 Case Study: Sonoma County 

 

1.33)  

Line 185 The spatially repetitive, locally severe flooding seen in Sonoma County is a signature 

characteristic of ARs. <- I'm not sure if I agree with this statement; I suggest removing it. The 

statement suggests that ARs tend to reoccur at the same locations and always generate locally 

severe flooding. Some ARs generate multi-basin flooding, like the 1862 event. Some locations 

affected by ARs flood (relatively) infrequently. 

 



Response: We agree with the reviewer and have removed this sentence from the manuscript. 

 

3.2.1 Precipitation Component Model 

 

1.34)  

Line 238 mixture model 90% with WLS standard errors, 10% with distribution fit to largest 10% 

of events. I'm familiar with WLS but not with this approach. More detail on this method, or a 

reference, would be helpful. 

 

Response: We have adopted a Gaussian mixture model to represent the non-normal residuals in 

both the precipitation and streamflow regressions. We used mixture models where the regression 

coefficients are held constant and only the errors are allowed to vary, and we further restricted 

the errors to be represented by a mixture of zero-mean Gaussian distributions such that only the 

differences were the error variances. We chose the Gaussian mixture model because it is semi-

parametric, meaning it is more flexible than other parametric distributions that could be used for 

non-normal errors, and because mixture models are often applied when we believe that there are 

latent variables or that observations may be coming from different populations (i.e., precipitation 

stemming from different climatological drivers). We have added citations to Line 240 

referencing related work by Bartolucci and Scaccia (2005) and Soffritti and Galimberti (2011) 

for more information on this method.  

 

3.2.2 Precipitation 2019 Case Study 

 

1.35)  

Line 271 We note that Sonoma County is not guaranteed to see any impacts -> We note that, 

according to the simulated distribution, Sonoma County... (or, according to the distribution 

simulated from the observational record, etc.) 

 

Response: We have revised Line 271 according to the reviewer’s suggestion. The new sentence 

reads: “Our simulation results indicate that Sonoma County is not guaranteed to see any 

impacts…” 

 

3.3.2 Hydrologic Conditions 2019 Case Study 

 

1.36)  

Line 289 it is interesting that soil moisture is an "input" here and not simulated, just as AR IVT 

and duration are "inputs." This is explicitly captured in the flow chart and in the Eq 2 multiple 

integral. It might be worth emphasizing this in the description of the flow chart, for example. 

 



Response: We appreciate the reviewer’s suggestion. We have highlighted the fact that soil 

moisture is an input rather than a calculated variable in the new version of Sect. 2.2, as outlined 

in our response to comment 1.2. The text of this new paragraph is included as part of our 

response to comment 1.13. We have also modified the caption of Fig. 1 as follows:  

 

“Figure 1: PARRA framework flowchart. Graphical depiction of the PARRA framework, as 

presented mathematically in Eq. 2. White boxes represent component models. Arrows represent 

pinch points: an arrow pointing towards a box indicates a required component model input, and 

an arrow coming out of a box indicates a component model output. The background colors 

broadly represent existing research domains.” 

 

We would additionally like to note that this comment from the reviewer brought a numerical 

error to our attention in the calculation of soil moisture, which has affected both the estimate of 

losses for the 2019 event and the overall AAL for the study area. We have included the updated 

results as part of our response to comment 1.49. 

 

1.37)  

Line 291 why is observed precipitation used as an input here? Shouldn't the full precipitation 

distribution, derived from the input AR intensity and duration, enter here? What am I missing? 

 

Response: We thank the reviewer for noting that this sentence created confusion. The observed 

precipitation and soil moisture are used as input for the streamflow component model in Sect. 3.4 

because this section focuses on model-by-model calibration and comparison. To resolve 

confusion for future readers, we removed the sentence referenced by the reviewer and added a 

new sentence to Line 326 to improve clarity. The introduction to Sect. 3.4.2 now reads as 

follows:  

 

“Given the 2019 observed precipitation and antecedent soil moisture, we generated 1,000 Monte 

Carlo realizations from the streamflow model and compared the predicted streamflow 

hydrograph from the calibrated component model implementation to the observed hydrograph 

from the February 2019 event. Using observed data as input rather than the simulated 

distributions from Sects. 3.2 and 3.3 allows us to examine the fit and uncertainty associated with 

this specific step of the model chain in isolation.” 

 

3.4.1 Flow Component Model 

 

1.38)  

Line 310 - what data were you using here? The observational precipitation record? Fed into the 

runoff calculation? So, you have how many observations to fit the mixture OLS model? 

 



Response: The OLS regression referenced by the reviewer predicts the peak streamflow value Qp 

as a function of precipitation and runoff. The coefficients of the regression were fit based on 

observed precipitation and runoff values from the historic catalog of 382 events. Based on the 

reviewer’s questions presented here we have chosen to shorten the discussion of the runoff 

calculation, because we felt it was drawing attention away from the main point of the section. 

The full calculation process is still available through the supplemental code release. We have 

replaced the text from Lines 302-309 with the following sentence:  

 

“Runoff, the portion of precipitation that flows over the ground surface rather than contributing 

to evapotranspiration or infiltration, was calculated for each event in the historic catalog using 

the empirical curve number method (NRCS, 2004, Chapter 10).”  

 

3.4.2 Flow 2019 Case Study 

 

1.39)  

Fig 5 b - any speculation on the early streamflow peak in the 2019 event? It doesn't seem to be 

captured within the 90% PI. A horizontal line indicating flood stage could also be informative in 

this figure. 

 

Response: We acknowledge that the early streamflow peak seen in Fig. 5(b) requires more 

contextualization. We have added a hyetograph of observed precipitation to the figure as shown 

below. We have also added additional commentary on both the early peak and the new 

hyetograph. The new text starts at Line 332 and reads as follows.  

 

“The complex shape of the observed streamflow timeseries in Fig. 5(b) is a function of the 

unique watershed response as well as the spatial and temporal heterogeneity of the input 

precipitation. By contrast, the simulated distribution is based on the unit hydrograph method, 

which assumes that the precipitation distribution is uniform and that all runoff enters the 

channel at a single location. This limits our ability to capture certain kinds of behavior, such as 

the early peak seen in the observed streamflow timeseries in Fig. 5(b). The early peak could be 

due to catchment processes that cause a lagged tributary response, input from direct surface 

runoff, spatial variation in precipitation intensity and duration, or any number of other 

mechanisms. We include the observed hyetograph to the top of the plot in Fig. 5(b) to show just 

one aspect of the natural variability that affects the observed timeseries.  

 

“Despite the simplification imposed by the unit hydrograph method, many metrics of interest are 

reasonably well characterized by the simulated timeseries. The observed peak streamflow (1,130 

m3s−1) is at the 43rd percentile and the observed floodwave duration (81 h) is at the 63rd 

percentile of the respective simulated distributions. Recall from Sect. 3.2 that the observed 

precipitation was notably high conditioned on the observed atmospheric conditions. We now 



note that while the observed streamflow may have been high for a Category 3 event, it was in the 

middle of the simulated distribution conditioned on the observed precipitation. Therefore we 

conclude that the hydrologic routing was likely not one of the physical processes contributing to 

the “extremeness” of the 2019 event.” 

 

Additionally, we appreciated the reviewer’s suggestion to add a line indicating the flood stage. 

We have added one to the revised version of Fig. 5 below. 

 

 
Revised streamflow figure. 

 

3.5.1 Inundation Component Model 

 

1.40)  

Line 344 100 year peak flow -> 100-year peak flow, etc. (make this change throughout the 

manuscript) 

 

Response: We have made the change from “100 year” to “100-year” throughout the manuscript 

according to the reviewer’s suggestion. 

 



1.41)  

Line 367 how many buildings were there in your domain? What year were the building 

footprints taken from? 

 

Response: We have added the following sentence to Line 385 to answer the reviewer’s question: 

“We used building footprints from 2019 SonomaVegMap LIDAR data and building parcel 

information from the 2021 Sonoma County Clerk Recorder Assessor to identify 41,000 homes 

within the study area.” 

 

Citations for both of these datasets can be found in the “Code and data availability statement” at 

the end of the manuscript, which starts at Line 641. 

 

3.5.2 Inundation 2019 Case Study 

 

1.42)  

Figure 7 in the Data Type legend it appears that Observed is dashed and Simulated in solid. 

Making this more clear would be helpful. 

 

Response: We have revised Figure 7 according to the reviewer’s suggestion. 

 

3.6.2 Damage Measure 2019 Case Study 

 

1.43)  

RESA tagging is a fascinating approach. 

 

Response: We would like to thank the reviewer for their comment. 

 

3.7.1 Decision Variable Component Model 

 

1.44)  

Interesting approach to estimating property values from tax assessments adjusted using ACS 

correction factors. 

 

Response: We would like to thank the reviewer for their comment. 

 

3.7.2 Decision Variable 2019 Case Study 

 

1.45)  

Line 451 missing comma after i.e. 

 



Response: We have revised according to the reviewer’s suggestion. 

 

1.46)  

Figure 9 b - it would be useful to have a high-resolution version of this figure in the appendix, or 

in a data appendix. 

 

Response: Figure 9b is available in high resolution as part of the supplemental code release 

mentioned on Line 622; specifically, it is part of the markdown file named lossexceedance.Rmd 

that reproduces Figures 9 and 10. Based on the reviewer’s comment, we will additionally add a 

spreadsheet with the values shown in Figure 9b to our next Github code release. 

 

4 Results 

 

1.47)  

Eq 6 - consider \cdot or \times in place of asterisk, or no multiplication symbol at all. Same 

comment throughout equations. 

 

Response: We agree with the reviewer and have switched to using \cdot throughout the 

manuscript. 

 

4.1 AAL 

 

1.48)  

Line 487 You could note that $156m is likely to be an overestimate given that the county-wide 

penetration rates are lower than the penetration rates for properties at risk. 

 

Response: We agree with the reviewer that the $156M reported in the manuscript at a county 

level is likely an overestimate. Upon revisiting the available data, we found we were able to 

revise the calculation of the NFIP AAL and estimate both the insurance penetration rate at the 

census tract level rather than the county level. The revised NFIP AAL is $121M. We have 

revised the description on Lines 483-487 and modified every instance of the word “county” to 

“census tract” within this paragraph to reflect the change in the calculation process. This is a far 

more targeted geographical area and is therefore likely to represent insurance penetration rates 

(and consequently flood risk) relatively well, and we thank the reviewer for highlighting this 

opportunity to improve our estimate. 

 

1.49)  

Line 487 What is the uncertainty around the $163m estimate? 

 



Response: Due to the numerical error mentioned in our response to comment 1.36, the soil 

moisture component model was incorrectly oversampling from the high (wet) end of the soil 

moisture distribution. In addition, although the manuscript stated that soil moisture was an input 

based on observed data rather than a simulated value, the PARRA simulation results reported in 

Figs. 9 and 10 were based on calculations that were using simulated soil moisture values. 

Correcting this error increased the expected losses for the 2019 event (because the “observed” 

soil moisture for this event was very high relative to others in the record) and lowered the overall 

AAL (because the simulated realizations were rebalanced to include more events with dry 

antecedent conditions). We have edited the manuscript accordingly, and we thank the reviewer 

for their comment that led to us finding this inconsistency. 

 

As a result of these changes the mean expected AAL in the study area has been revised to 

$111M, and through Monte Carlo simulation we have estimated a 90% confidence interval to 

span from $93M to $133M. Based on the reviewer’s question we have added the following text 

to Line 482.  

 

“The mean AAL estimated from the stochastic record for AR-induced flood losses to residential 

structures is $111 million, with 90% confidence that it lies between $93 and $133 million.” 

 

5 Discussion 

 

1.50)  

There are many valuable insights in the discussion section. 

 

Response: We would like to thank the reviewer for their comment. 

 

  



Authors response to Anonymous Referee #2 

 

Review for Bowers et al. 

 

2.1)  

This paper provides a framework (PARRA) to quantify Atmospheric River flood risk using 

performance-based submodules for Sonoma County, CA. The methodology is described in 

detail, and a case study from a 2019 AR event was investigated. The PARRA framework is very 

interesting and useful for providing a mean estimate of expected losses with uncertainty bounds.  

 

We would like to thank the reviewer for their valuable feedback and constructive comments. We 

have revised the manuscript accordingly and provided detailed responses to each of the 

comments below. 

 

2.2)  

However, I have some concerns about the methodology and the way it was described in the 

manuscript. I also have some concern about the 2019 case study that was investigated – why 

choose a case study that the PARRA framework barely captures in the tail of its distribution? 

Why not show a case study that the PARRA framework captures much better?  

 

Response: We acknowledge the reviewer’s concerns about both the results of the 2019 case 

study and the way it was described in the manuscript, and we thank the reviewer for helping us 

to significantly clarify our presentation of both. We will address these two concerns separately.  

 

First, we recognize that we did not provide enough support to demonstrate that the extremeness 

of the 2019 event was well represented by the various component model implementations. We 

agree with the reviewer that presenting additional case studies helps to strengthen this point for 

future readers. We have therefore added additional case study events to the discussion of 

precipitation in Sect. 3.2.2 and to the discussion of losses in Sect. 3.7.2. We have included the 

new versions of each of these sections below. For readers who want to dig deeper into our results 

and methodology, we will add results for many more AR events to our next Github code release, 

as referenced in our response to comment 2.18.  

 

NEW SECT. 3.2.2 

 

“We present a comparison of observed vs. simulated precipitation values for four AR events. 

Figs. 5(a-b) are the two most recent Category 3 (strong) ARs in the historic catalog, and Figs. 

5(c-d) are the two most recent Category 5 (exceptional) ARs. The dashed lines mark the 

recorded precipitation totals for each event and the tick marks along the top of the panel show 

the recorded totals from all ARs in the historic catalog in the same intensity category. For each 



event we generated 1,000 Monte Carlo realizations of precipitation given the observed maximum 

IVT and duration and plotted the resulting distribution as a histogram. The histograms represent 

realizations of potential precipitation if another AR occurred in Sonoma County with the same 

characteristics. We do not expect the observed dashed lines to fall in the center of the simulated 

distributions; rather, the observed values can be thought of as random samples from the 

simulated distributions, and comparing the two offers new insights into the character of specific 

ARs. 

 

“For example, Figs. 5(a) and 5(c) show two impactful storms for Sonoma County, from 

February 2019 and January 2017, respectively. The February 2019 event caused approximately 

$155 million in total damage (Chavez, 2019) and the January 2017 event caused approximately 

$15 million (County of Sonoma, 2017). While both events had precipitation totals in excess of 

200 mm, the precipitation relative to the event-specific maximum IVT and duration was far 

higher in February 2019 than January 2017. The January 2017 event was a Category 5 AR, 

meaning it had the greatest potential for hazardous impacts. Conditioned on the intense 

atmospheric conditions, though, the observed precipitation was near the mean of the simulated 

distribution in Fig. 5(c). 

 

“Figure 5(a) shows the predicted precipitation distribution for a Category 3 AR (mixture of 

beneficial and hazardous impacts) with the same maximum IVT and duration as was observed in 

February 2019. By all accounts, though, the February 2019 event was a very hazardous storm 

with severe impacts for communities in the study area. The observed precipitation is at the upper 

tail of what we would expect for a Category 3 event in both the observed distribution (shown in 

the tick marks at the top of the plot) and the simulated distribution (shown in the histogram). 

Therefore we infer that the precipitation is likely one of the drivers that led this particular AR to 

become a damaging event. In summary, the PARRA simulation results provide evidence that the 

January 2017 event was a moderate precipitation conditioned on extreme AR hazard while the 

February 2019 event was an extreme precipitation conditioned on more moderate AR hazard. 

These are two distinct pathways ARs can take to generate significant consequences. 

 

“We perform a similar comparison between Fig. 5(b) (January 2019) and Fig. 5(d) (October 

2016). Neither of these was an “impactful” storm: there were no state or federal disaster 

declarations, limited news coverage, and no reported loss totals. Both events had observed 

precipitation totals of about 90 mm, less than half the amounts seen in Figs. 5(a) and 5(c). The 

observed total was in the middle of the simulated distribution for the Category 3 event in 

January 2017 but was on the low end for the Category 5 event in October 2016. The simulated 

results indicate that the AR event in October 2016 could have produced far more precipitation, 

and potentially far greater consequences in the study area, than what was actually realized. An 

interesting line of future research would be to examine these “near misses” to understand what 

factors drive certain events to produce extreme impacts and not others.” 



 

 
New precipitation figure (previously part of Figure 4). 

 

Caption: “Precipitation realizations for case study events. Distribution of simulated 

precipitation realizations including uncertainty for AR events occurring in (a) February 2019, 

(b) January 2019, (c) January 2017, and (d) October 2016. Events are labelled by their Ralph et 

al. (2019) intensity category (left vs. right) and impact level (top vs. bottom). The observed 

precipitation for each event is marked by a dashed vertical line, and the tick marks along the top 

of each panel show how the observed values compare to precipitation totals from other AR 

events in the same intensity category.” 

 

NEW SECT. 3.7.2 

(Note: this section has been moved to Section 4.1, “Scenario Events” in the revised manuscript) 

 

“We consider loss distributions for the Category 3 AR from February 2019 and the Category 5 

AR from January 2017, both introduced in Sect. 3.2. Given the observed maximum IVT and 

duration values and the “observed” soil moisture values for our scenario events, we ran all the 

component models in sequence and generated 10,000 probabilistic loss realizations to estimate 

the distribution of potential loss outcomes. These are the flood losses that could have occurred 



for each event if realizations of the other pinch point variables had been different; i.e., if the 

precipitation total had been lower (see Fig. 5), if the streamflow peak had lasted longer (see Fig. 

6), etc. We compare the observed vs. simulated losses and examine how the losses were spatially 

distributed within the study area. 

 

“The histogram of simulated loss realizations for the February 2019 event is shown in Fig. 9(a). 

The observed maximum IVT was 620 kg m-1 s-1 and the observed duration was 57 h. The vertical 

dashed line marks $91.6 million, the estimate of true losses experienced by residential buildings 

in Sonoma County (Chavez, 2019). The PARRA framework estimates this historical event to have 

been an 89th percentile loss event based on the driving AR characteristics. We have previously 

stated that the February 2019 event was a moderate storm in atmospheric terms that generated 

severe hydrologic and economic effects. There is significant selection bias to consider when 

looking at this case study event, because by definition the noteworthy events in the historic 

catalog are those with the highest impacts. If we understand the true loss to be only one 

stochastic realization out of the set of all possible losses, and we consider that the event was 

selected because of the severity of its observed impacts, it is reasonable that the observed loss 

estimate comes from the upper tail of the simulated distribution. Note also that while the loss for 

the February 2019 event was higher than expected for its AR characteristics and antecedent 

conditions, approximately 10% of the simulations produced even more extreme losses. Our 

results indicate that the observed loss of $91.6 million is not necessarily the worst-case scenario 

of what we could have seen 

 

“Figure 9(b) shows the simulated and observed loss results for the Category 5 AR occurring in 

January 2017. This event had a maximum IVT of 1,173 kg m-1 s-1 and a duration of 78 h, much 

larger than February 2019. However, this AR was one of the first major precipitation events in 

the 2017 water year, which came after multiple years of drought conditions in northern 

California. The observed loss thus falls at the low end (9th percentile) of what was expected for 

an AR of this magnitude. The January 2017 event was also the first in a series of strong to 

exceptional ARs that lasted about six weeks and led to severe statewide consequences, notably a 

damaging overflow event at the Anderson Dam in San Jose and a spillway failure at the Oroville 

Dam that led to emergency evacuation of almost 200,000 people. The 2017 AR sequence 

underscores the importance of initial conditions in the modeling of extreme events in northern 

California. While the PARRA framework captures initial soil moisture conditions, it does not 

currently capture sequential and compounding events. This could be included in future 

implementations of the PARRA framework and is an interesting potential avenue for future 

exploration. 

 

“Because of the probabilistic nature of the PARRA framework, its strength lies not in the 

reproduction of specific past events, but in quantifying total risk and assessing the relative 

differences between alternative decision pathways. The results in Fig. 9(a) assume that no 



information is known about the storm other than the maximum IVT, duration, and soil moisture. 

However, AR forecasts now typically include an estimate of the expected regional precipitation 

total. If we had perfect information about total precipitation (i.e., we could predict in advance 

exactly what the observed value would be) we could start the PARRA framework at the 

precipitation pinch point variable PRCP and run all subsequent component models in the 

sequence probabilistically. Figure 9(c) is therefore an exploration of a “what-if” scenario where 

losses are conditional on the observed precipitation value from February 2019 rather than the 

AR characteristics. While the observed $91.6 million loss estimate is similarly extreme in this 

case (91st percentile event vs. 89th) and the tail behavior of the two distributions is about the 

same, the body of the distribution in Fig. 9(c) shifts to larger losses, and the probability of seeing 

zero-loss events nearly disappears. Calculating the differences between the loss distributions 

conditioned on different sets of input information can serve to quantify the value of more 

accurate AR forecasting tools for the study area.   

 

“Figure 10 shows the spatial distribution of building losses from the February 2019 event, 

averaged across all Monte Carlo realizations and aggregated to the census block group level.  

Losses are concentrated along the banks of the Russian River with hotspots near Healdsburg, 

Guerneville, and the mouth of the river near the Pacific Ocean.  These locations received 

warnings and evacuation orders before and during the storm event. While these particular 

communities are already known to have high vulnerability to flooding, the PARRA simulation 

results offer a new way to quantitatively prioritize investments in flood mitigation, from 

emergency communications to infrastructure projects to high-resolution modeling.” 

 



 
Revised Figure 9. 

 

 
New Figure 10 (previously part of Figure 9). 

 

We would also like to note that due to a calculation error identified by Reviewer 1, the 2019 

observed loss estimate now falls at the 89th percentile of the simulated distribution rather than the 



98th percentile that was reported in the original version of the manuscript. This numerical 

correction, in addition to the more nuanced discussion of selection bias in the new version of 

Section 3.7.2, may alleviate some of the reviewer’s concerns about the 2019 event being barely 

captured within the simulated distribution.  

 

Regarding the reviewer’s second concern about the description of the 2019 event case study, we 

recognize that we were not clear enough in describing its purpose. Our intent was not to 

reproduce the 2019 event exactly, but to use the mean and uncertainty of the simulated 

distributions to gain insight into the extremeness of this AR event, and that having an observed 

value fall in the upper tail of the simulated distribution is an interesting scientific result rather 

than an indication of poor model agreement. We have added discussion of the 2019 event in the 

new version of Sect. 3.2.2. We have also modified the manuscript in several places to remove all 

references to the 2019 event as a validation exercise and instead characterize it as a comparison, 

as summarized below.  

 

- Line 11: The sentence “Evaluation of a case study AR event…” was removed and replaced 

with the following. 

“Individual component models are fit and validated against a historic catalog of AR events 

occurring from 1987-2019. Comparing simulated results from these component model 

implementations against observed historic ARs highlights what we can learn about the drivers of 

extremeness in different flood events by taking a probabilistic perspective.” 

 

- Lines 198-206: We have removed these paragraphs and added the following new text.  

 

“Within Sonoma County we use the PARRA framework to examine the drivers and impacts of 

historical AR events. Each of the six subsections below corresponds with one of the pinch point 

variables defined in Sect. 2 and is divided into two parts. The first part of each subsection 

describes the user choices made to represent the study area within each component model. While 

we include many of the specific details related to fit and validation of these model 

implementations, the focus is on the overall workflow and how to functionally apply the PARRA 

framework. The second part of each subsection compares simulated Monte Carlo realizations of 

pinch point variables to observed data. These comparisons can be seen as a forensic 

reconstruction rather than an attempt to replicate the observed values. We focus on the new 

knowledge gained from the model implementations about how the observed values fall within the 

range of “what might have been.”  

 

“We present two types of case studies to showcase the breadth and depth of insights that are 

possible in a model-by-model analysis. For breadth, we compare and contrast observed vs. 

simulated precipitation values for four different AR events. We examine storms with varying AR 

intensity categories to determine which storms displayed “average” behavior for their category 



and which exceeded predicted impacts. For depth, we focus the discussion for all other pinch 

points on a single Category 3 AR from February 2019, referred to as the February 2019 event. 

This event’s recency combined with its severe impact mean that datasets unique to this event are 

available to compare many of the individual component model implementations against ground-

truth observations, allowing a more focused analysis. Comparisons and results for additional 

storms can be found in the supplemental code release referenced at the end of the paper.” 

 

- Line 373: The sentence “We examine three different strategies…” has been modified as 

follows. 

“Because the N-dimensional inundation pinch point variable $INUN$ contains significantly 

more data than we have generated thus far, we explore three strategies to compare the observed 

and simulated inundation maps.” 

 

- Line 387: The sentence “Our LISFLOOD model…” has been modified as follows. 

“Our LISFLOOD model was able to reproduce the Sonoma GIS map with a critical success 

index of 67.77%, which indicates that the observed inundation is within the range of what we 

would reasonably predict given the observed hydrograph.” 

 

- Line 408: The sentence “Because there was little…” has been modified as follows. 

“Because there was little available in the way of site-specific damage information, we used 

building safety as a proxy variable to facilitate investigation of observed vs. predicted damage.” 

 

- Line 604: The sentence “We performed a step-by-step comparison…” has been modified as 

follows.  

“We performed step-by-step comparisons between each of these component models and ground-

truth data from the case study AR events to show how the differences between the observed and 

simulated values produced new insights about what drove certain events towards extreme 

consequences and not others.” 

 

- Line 607: The sentence “The total losses to residential homes…” has been removed. 

  

2.3)  

I have some comments below that can help improve the paper. I think the paper can be accepted 

after some minor revisions and clarifications. 

 

Response: We would like to thank the reviewer for their recommendation, and for the time and 

effort spent reviewing this manuscript. 

 

General Comments 

 



2.4)  

What would the PARRA framework provide a stakeholder as the estimated losses for the 2019 

AR event?  

 

Response: We thank the reviewer for this insightful question. Communicating what communities 

can gain from implementing the PARRA framework locally is central to its adoption. We believe 

that the most powerful result from our modeling approach is the ability to generate a loss 

exceedance curve (Fig. 11). The loss exceedance curve provides insight into the overall character 

of the study area’s flood risk, as stated in Lines 610-615 of the manuscript. This is a novel result 

made possible by the PARRA framework’s ability to analyze potential losses over large 

stochastic event records.  

 

We believe the strengths of the PARRA framework are not necessarily in forecasting or 

reproducing losses for individual events, but rather in drawing relative comparisons between 

different scenarios and designing to performance-based targets. We have emphasized the utility 

of relative comparisons in the new version of Sect. 3.7.2 included in our response to comment 

2.2, especially in the paragraph describing Fig. 9(c). We have modified the description of the 

mitigation exercise presented in Sect. 4.3 to better highlight the utility of the performance-based 

approach. We have removed the paragraph starting at Line 508 and replaced it with the following 

text:  

 

“A benefit of taking a performance-based approach is the ability to set a specified performance 

objective, such as loss reduction, and determine what changes can be made to the hazard, 

exposure, and vulnerability to reach that target. Working backwards to design a system that 

meets a set performance target is a powerful and unique capability of performance-based 

frameworks. Here we demonstrate the performance-based aspect of the PARRA framework 

through a hypothetical mitigation analysis. We define a target loss reduction threshold of 

reducing the AAL by half, and we assess the effectiveness of home elevation as a pathway to meet 

that threshold. We then quantify the effects of the system changes on the shape of the loss 

exceedance curve to highlight the framework's capability to prospectively assess events without 

historical precedent.” 

 

We believe that this response, coupled with our response to comment 2.2 above, serves to 

additionally resolve the concerns and questions expressed by the reviewer in comments 2.5, 2.20, 

2.33, and 2.34.  

 

2.5)  

The results show an average loss of about $25 million (Figure 9a), but the actual cost was $91.6 

million. This actual cost is covered in the tail of the distribution provided by PARRA but is far 

from the mean of this distribution. Do the authors consider this an accurate assessment? Some 



comments on how to interpret the results with their associated uncertainties, as well as how to 

interpret the acceptability of the results, would be helpful. 

 

Response: Please see our responses to comments 2.2 and 2.4, where we discuss the accuracy of 

the case study assessment and stakeholder interpretation of the case study results, respectively.  

 

Specific Comments / Technical Corrections 

 

Section 1 Introduction 

 

2.6)  

Line 27: Pineapple express is not the only mechanism that brings ARs to California. 

 

Response: We acknowledge the reviewer’s suggestion and we have removed this sentence from 

the manuscript. 

 

2.7)  

Line 56: “... understanding climatology of ARs”, see Espinoza et al. 2018 and Massoud et al. 

2019 who aimed to understand AR climatology in a global context. 

 

(a) Espinoza, Vicky, Duane E. Waliser, Bin Guan, David A. Lavers, and F. Martin Ralph. 

"Global analysis of climate change projection effects on atmospheric rivers." Geophysical 

Research Letters 45, no. 9 (2018): 4299-4308. 

 

(b) Massoud, E. C., V. Espinoza, B. Guan, and D. E. Waliser. "Global climate model ensemble 

approaches for future projections of atmospheric rivers." Earth's Future 7, no. 10 (2019): 1136-

1151. 

 

Response: We thank the reviewer for providing these references, and we appreciate the 

additional information on how the global climatology of ARs will change in the future.  

However, because our work is focused regionally on California and because we do not consider 

the effects of a future climate, we could not find a location in the manuscript to include these 

additional citations.  

 

Section 2 Framework Description 

 

2.8)  

Line 110: Is this theorem a version of Bayes theorem? How are they related? 

 



Response: The total probability theorem and Bayes’ theorem are both applications of the rules of 

conditional probability, albeit for different purposes. The total probability theorem, seen at Line 

110 in the manuscript, states that 𝑃(𝐴) = ∑ 𝑃(𝐴|𝐵𝑖) ∗ 𝑃(𝐵𝑖)
𝑛
𝑖=1  for any set of mutually 

exclusive, collectively exhaustive events 𝐵𝑖 within the partitioned event space 𝐵. This is used to 

calculate the overall probability of event 𝐴 using information about the conditional probabilities 

of 𝐴 within different partitions of the event space. Bayes’ theorem states that 𝑃(𝐴|𝐵) ∗ 𝑃(𝐵) =

𝑃(𝐵|𝐴) ∗ 𝑃(𝐴). This is a way to use information about one event to update our estimate of the 

probability of another. 

 

This work relies heavily on the total probability theorem, as it is the foundation of probabilistic 

risk analysis: we can only know the full spectrum of flood risk outcomes if we individually 

consider all possible events that could lead to flooding. Bayes’ theorem is not as applicable for 

our use case.  

 

2.9)  

Line 143: Initially it seems that the AR category score (1-5) is used as input in the PARRA 

framework. It isn’t until later in the manuscript that it becomes clear that AR max IVT and 

duration are used. The authors should clarify this earlier in the paper. 

 

Response: We appreciate the reviewer identifying this source of confusion. We have revised the 

paragraph about ARs in Sect. 2.1 to read as follows. 

 

“The pinch point representing an atmospheric river event (AR) is characterized as a vector with 

two elements: the maximum recorded integrated water vapor transport (IVT) (kg·m−1s−1), and 

the duration (h) of sustained IVT exceeding 250 kg·m−1s−1. These were chosen as metrics of 

interest because of their connection to impacts. Based on maximum IVT and duration, the 

bivariate AR intensity scale proposed by Ralph et al. (2019) ranks ARs from 1–5 to qualitatively 

summarize their expected severity (from weak to exceptional) and potential consequences (from 

beneficial to hazardous). Category 1 ARs are classified as primarily beneficial storms, 

replenishing the water supply without causing adverse effects. Category 5 ARs are classified as 

primarily hazardous with a high likelihood of flooding and damage.” 

 

2.10)  

Line 147: Some precipitation can be from non-AR sources. Is this considered for the calculation 

of the precipitation submodule in the PARRA framework? 

 

Response: Precipitation from non-AR sources is not included here, because we focus on 

precipitation that leads to floods and damaging impacts in Sonoma County, and the 

overwhelming majority of flood damage in Sonoma County is due to ARs (>99%, as referenced 

in Line 186 of the manuscript). We have added the following sentence to Line 148 to clarify our 



scope: “Only precipitation associated with ARs is included in this analysis.” 

 

2.11)  

Line 160: take out the word ‘are’ 

 

Response: We have revised according to the reviewer’s suggestion. 

 

Section 3 Case Study: Sonoma County 

 

2.12)  

Line 235: Is there a citation that shows why WLS can be used to express the relationship 

between IVT/DUR and PRCP? This seems rather simplistic and not thorough enough to capture 

the estimated PRCP. According to Figure 4 there seems to be significant spread in these 

relationships. Perhaps the authors can explain why this choice was made. 

 

Response: The use of a statistical regression to represent the precipitation component model was 

a subjective implementation choice specific to the Sonoma County case study, and we fit the 

regression coefficients with WLS instead of OLS because it more accurately captured the 

heteroskedasticity of the observed data. We believe that the WLS regression accurately captures 

the distribution of the observed precipitation record, as evidenced by the Q-Q plot in Fig. 4(c) 

and by the K-S test statistic reported at Line 249 of the manuscript that fails to reject the null 

hypothesis of different distributions at a 95% confidence level. We intentionally chose a simpler 

representation of precipitation for a few reasons. For example, we were able to explicitly 

parameterize the uncertainty, which would not have been possible with a dynamical precipitation 

model, and we were able to show a range of implementation complexity levels available to 

framework users. We have further discussed the benefits of stochastic vs. deterministic modeling 

and the subjective choices within the case study implementation in our responses to comments 

2.29 and 2.30, respectively. 

 

We also appreciate the reviewer calling attention to the scatterplots in Fig. 4. Because 

precipitation is a function of the bivariate statistical relationship between maximum IVT and 

duration, Figs. 4(a-b) are showing two “flattened” projections of the multidimensional space, and 

as a result the point clouds look fairly disperse. Based on the reviewer’s comments we have 

added color scales to Figs. 4(a-b) representing the “flattened” dimension in each. Combined with 

the regression fit lines at multiple values that were included previously, we believe that this new 

visualization better shows that the bivariate WLS regression does quite well in capturing the 

spread of precipitation outcomes.  

 



 
Revised Figure 4.  

 

2.13)  

Line 260: The mean of the distribution is way off here. Should this be a reason for concern? It 

seems that this methodology begins to break down for extreme AR events. 

 

Response: We believe that the reviewer’s concern about the observed vs. simulated comparison 

for the February 2019 event has been addressed by the additional contextualization we have 

presented in the new version of Section 3.2.2, as presented in our response to comment 2.2. We 

would also like to note that the Q-Q plot in Fig. 4(c) and the K-S test statistic reported at Line 

249 are metrics of how well the distribution captures all extremes, not just the February 2019 

event, and both metrics support the assertion that the observed precipitation distribution is well 

represented by the chosen component model implementation. 

 



2.14)  

Line 266: “... a suitable representation of reality”, this is a subjective acceptance criterion, and 

the authors should note it as so. 

 

Response: We acknowledge the reviewer’s suggestion and we have removed this sentence from 

the manuscript. 

 

2.15)  

Line 282: Figure 6 is mentioned before Figure 5. 

 

Response: We appreciate the reviewer noticing this inconsistency. We have renumbered the 

figures so that they are now introduced in numerical order. 

 

2.16)  

Line 332/Figure 5: The initial peak on Feb 26 is not captured. Can the authors provide some 

comments and reasoning behind this? 

 

Response: We acknowledge that the early streamflow peak seen in Fig. 5(b) requires more 

contextualization. We have added a hyetograph of observed precipitation to the figure as shown 

below. We have also added additional text to the manuscript to contextualize both the early peak 

and the new hyetograph. The new text starts at Line 332 and reads as follows.  

 

“The complex shape of the observed streamflow timeseries in Fig. 5(b) is a function of the 

unique watershed response as well as the spatial and temporal heterogeneity of the input 

precipitation. By contrast, the simulated distribution is based on the unit hydrograph method, 

which assumes that the precipitation distribution is uniform and that all runoff enters the 

channel at a single location. This limits our ability to capture certain kinds of behavior, such as 

the early peak seen in the observed streamflow timeseries in Fig. 5(b). The early peak could be 

due to catchment processes that cause a lagged tributary response, input from direct surface 

runoff, spatial variation in precipitation intensity and duration, or any number of other 

mechanisms. We include the observed hyetograph to the top of the plot in Fig. 5(b) to show just 

one aspect of the natural variability that affects the observed timeseries.  

 

“Despite the simplification imposed by the unit hydrograph method, though, many metrics of 

interest are reasonably characterized by the simulated timeseries. The observed peak streamflow 

(1,130 m3s−1) is at the 43rd percentile and the observed floodwave duration (81 h) is at the 63rd 

percentile of the respective simulated distributions. Recall from Sect. 3.2 that the observed 

precipitation was anomalously high conditioned on the observed atmospheric conditions. We 

now note that while the observed streamflow may have been high relative to atmospheric 

conditions, it was in the middle of the predicted distribution conditioned on the observed 



precipitation. Therefore we conclude that the hydrologic routing was likely not one of the 

physical processes contributing to the “extremeness” of the 2019 event.” 

 

 
Revised streamflow figure.  

 

Caption: “Streamflow component model. All values are calculated in reference to USGS gage 

11463500 (study area inlet). (a) Q–Q plot of observed vs. simulated peak streamflow (Qp) values 

for all events in the historic catalog. (b) Observed values from the historic catalog values vs. the 

fitted lognormal distribution for time to peak streamflow (tp). The dashed line indicates the 

observed time to peak value for the February 2019 event. (c) Distribution of simulated 

streamflow hydrograph realizations for the February 2019 event. The left axis represents 

observed hourly precipitation and the right axis represents streamflow. The observed 

hydrograph timeseries is shown as a black dashed line. The solid line represents the median of 

the simulated realizations, and the dark and light grey shaded areas represent the 50th and 90th 

percentile prediction intervals, respectively. The dark red horizontal line indicates the National 

Weather Service (NWS) flood flow for USGS gage 11463500. 

 

2.17)  



Line 339: This comment is applicable for this section and for other sections. There are several 

choices that need to be made by the user, such as the LISFLOOD parameters. This raises the 

question of the PARRA method's applicability to other locations. Does the whole framework 

need to be re-calibrated with local data for other local case studies? 

 

Response: We thank the reviewer for raising these concerns about both the implementation 

choices for the Sonoma County case study and the applicability of the PARRA framework to 

other locations. We have addressed the first concern by strengthening the distinction between the 

PARRA framework as a risk analysis tool and the proof-of-concept case study implementation of 

the framework within Sonoma County. In particular we have differentiated “pinch points” vs. 

“pinch point variables” and “component models” vs. “component model implementations,” 

where the former is related to the generalized framework and the latter is related to the specific 

case study, respectively. We believe that understanding these differences is key to understanding 

the purpose of the manuscript, and we have expanded upon them as follows. 

 

We have added the following paragraph at Line 139 to Sect. 2.1, “Pinch Point Variables.”  

“The pinch points presented in Sect. 2 are conceptual descriptions of the intermediate system 

states between AR occurrence and flood loss where only a limited amount of information must be 

transferred to the next step. Pinch point variables are low-dimensional numerical vectors 

representing the information recorded at each pinch point (Garrick, 1984). The following 

paragraphs expand upon the conceptual pinch points and introduce the specific dimensions and 

measurement units that are used in this paper for each pinch point variable.” 

 

We have added the following paragraph at Line 173 to Sect. 2.2, “Component Models.” 

“Throughout this paper we make the distinction between component models, which have been 

presented thus far in a theoretical sense, and component model implementations. The component 

model implementations are the choices made by users of the PARRA framework about how a 

particular physical process will be represented, including what type of model to use (i.e., 

statistical vs. dynamical), the temporal and spatial resolution of analysis, etc. The state of 

atmospheric and hydrologic modeling is ever changing, and the “best” implementation choice 

depends on the modeler, the study area, and the intended end use (Baker et al., 2021). We have 

intentionally presented the PARRA framework in this section without tying the component 

models to specific implementations.” 

 

We have added the following paragraph at Line 181. 

“The PARRA framework has scientific value as an internally consistent and logically sound 

structure to connect atmospheric phenomena to community-level impacts. It enables the 

communication of ideas and results across disparate research fields, isolates the uncertainty 

associated with different processes within the model chain, and introduces new avenues for 

interdisciplinary collaboration. By contrast, implementing the PARRA framework for any given 



location imposes constraints, but also opens the door for practical insights. Site-specific 

implementations of the PARRA framework and component models are what quantify the 

probabilistic range of potential risk outcomes and generate actionable insights for stakeholders 

within case study communities.” 

 

To address the second concern, we elaborated upon the existing discussion of the framework’s 

data needs in Sect. 5.3, “Validation Data.” While the framework itself is a performance-based 

risk analysis tool that does not need calibration, the component model implementations that 

enable community-level insights do require local data to be meaningful at the local level. Some 

of the component model implementations presented here would be harder to move to new 

locations than others; for example, the statistical representation of precipitation with a WLS 

regression could be easily refit, but the calibrating the hydrodynamic inundation model to a new 

location would require much more time and effort. The changes and additions we have made to 

the manuscript to address the reviewer’s concerns are outlined below. 

 

- Line 562: The following sentences have been added. 

“The PARRA framework is a risk analysis tool that is globally applicable and can be used to 

assess AR flood risk at any scale. However, the implementation of the framework in any location 

will inherently be case-specific, and local insights require models calibrated to local 

conditions.” 

 

- Line 571: The sentence “As a consequence…” has been modified as follows. 

“As a consequence, moving from inundation to damage and from damage to loss are the most 

uncertain aspects of flood risk assessment due to large uncertainties in the physical mechanisms 

and the documented difficulties in validating against observed data (Apel et al., 2009; Gerl et 

al., 2016). Therefore these would be the hardest component models to implement in a new 

location if the PARRA framework is applied elsewhere.” 

 

- Line 580: The following sentence has been added. 

“In return, implementing the PARRA framework with fine-resolution local data provides 

communities with much more relevant information than they would be able to gain from a large-

scale regional or global flood risk assessment.” 

 

2.18)  

Line 352: There is no information on which surrogate model was used, and what the accuracy or 

efficiency of that surrogate model is. In general, there is very little information on this emulation 

method or how it is used. How can other readers re-produce or build on this analysis if this 

critical information is missing? 

 



Response: We define and explain many aspects of the surrogate model in Lines 356-365 of the 

manuscript, which are restated here for convenience. We used the inverse distance weighting 

spatial interpolation method as our surrogate model to rapidly generate new inundation maps. 

The predictor variables are Qp (peak streamflow, m3s-1) and tp (time to peak streamflow, hrs) and 

the response surface is the full inundation map (depth estimates in meters at 925,000 grid cells). 

The hyperparameters of the model were fit by ten-fold cross-validation, the error metric was 

RMSE, and the fitted vertical accuracy was 3.5 cm.  

 

Regarding the reviewer’s question about reproducibility: in November 2021 we published 

extensive code, data, and documentation for the Sonoma County case study on Github, including 

step-by-step instructions to run every component model and reproduce all data figures, with a 

particular emphasis on the fit and calibration of LISFLOOD and the surrogate model. The code 

release is mentioned in the “Code and data availability” section at Line 621 and in the 

manuscript at Line 349. We have moved the sentence in the manuscript to Line 365 and more 

explicitly called out the significant effort we have invested into making this work reproducible. 

The new sentence is as follows:  

 

“Additional information, including data, documentation, and reproducible code, to replicate the 

fit and calibration of both LISFLOOD and the surrogate model can be found in the supplemental 

code release, which is referenced in the "Data and code availability" section at the end of this 

paper.” 

 

2.19)  

Line 440: On correction factors - Again, this seems like a subjective fix for applying the PARRA 

framework in this region. How can the framework be applied elsewhere using this methodology? 

Although the framework seems to be useful for Sonoma County, how can the authors show that 

the methodology can still be efficiently applied for other locations? Some ideas that address this 

question can be helpful in accepting the PARRA framework as a generally usable framework 

 

Response: Please see our response to comment 2.17, where we discuss the distinction between 

the PARRA framework and the Sonoma County case study implementation as well as the 

applicability of the PARRA framework to other locations. 

 

2.20)  

Figure 9: The distribution just barely captures the observed event in its tail. As mentioned above, 

how is this result with its uncertainty reported to a manager or a stakeholder? What is the 

provided answer here? 

 

Response: Please see our responses to comments 2.2 and 2.4, where we discuss the accuracy of 

the case study assessment and stakeholder interpretation of the case study results, respectively.  



 

Section 4 Results 

 

2.21)  

Line 477: Equation 6 - Is this equation reported anywhere in the literature? Seems like another 

subjective criteria that the authors implement. There needs to be more information describing 

this choice. 

 

Response: Eq. 6 is used frequently in risk analysis and is the standard equation for estimating 

average annual loss (AAL) from empirical data, though we recognize that we should have 

provided this context for the diverse readers of this manuscript. We now reference the books 

Catastrophe Modeling: A New Approach to Managing Risk (Grossi and Kunreuther, 2005) and 

Probabilistic Seismic Hazard and Risk Analysis (Baker et al., 2021) on Line 478 to provide 

background on the concept and the calculation of AALs. 

 

2.22)  

Line 482: The AAL is an interesting concept to describe the average annual losses. However, it 

is known that this region experiences significant swings between wet and dry years. Is it feasible 

for the authors to calculate what the AAL is for wet vs dry years? 

 

Response: The AAL is most often used in catastrophe modeling and probabilistic risk analysis as 

a tool to make long-range decisions about the future: whether to insure, mitigate, develop, etc. at 

one location versus another, and whether that decision will be profitable over a time horizon of 

decades to centuries. Because it is only a single value it does not provide much insight into the 

character of the risk, i.e., whether a location is historically dominated by lots of small losses vs. 

infrequent large losses, or whether there is high seasonal or interannual variability in the loss 

record. The simplicity of the metric, though, is what makes it useful for cost-benefit decisions. 

We have therefore decided not to calculate a conditional AAL for wet vs. dry years because in 

order to use it for decisionmaking we would need information we do not yet have about the 

future. For assessing variations from year to year the presented loss exceedance curve is the most 

relevant result. 

 

2.23)  

Line 487: What are the uncertainties around these estimates? Do the authors provide this? 

 

Response: We have revised Line 482 to report both a mean estimate and uncertainty bounds. 

Please note that due to the numerical changes made in response to Reviewer 1 the mean estimate 

has been revised downward from the original version of the manuscript. 

 



“The mean AAL estimated from the stochastic record for AR-induced flood losses to residential 

structures is $111 million, with 90% confidence that it lies between $93 and $133 million.” 

 

2.24)  

Line 522: the word ‘the’ is duplicated 

 

Response: We have revised according to the reviewer’s suggestion. 

 

2.25)  

Line 524: ‘Expected benefits’ - See Massoud et al. 2018, who did a similar analysis for 

groundwater and investigated how changes to decisions in managing water resources can impact 

expected changes to groundwater storage. Studies like this are starting to populate the literature. 

 

(a) Massoud, Elias C., Adam J. Purdy, Michelle E. Miro, and James S. Famiglietti. "Projecting 

groundwater storage changes in California’s Central Valley." Scientific reports 8, no. 1 (2018): 

1-9. 

 

Response: We thank the reviewer for suggesting this reference. We agree with the reviewer that 

investigations of decision-making related to future water resource management and the benefits 

supplied by different water management strategies are certainly becoming more prevalent in the 

literature. However, we do not see a strong link with this publication to the discussion of our 

framework, and we did not find a location in the manuscript where a citation would be relevant. 

 

2.26)  

Line 529: Take out the words ‘is of the 2019’. 

 

Response: We have revised according to the reviewer’s suggestion. 

 

Section 5 Discussion 

 

2.27)  

Line 535: I would argue that these insights are helpful for planners, managers, and engineers, yet 

not so helpful for purely scientific investigation since many choices in the framework are purely 

subjective. I think it is important for the authors to make this clear throughout the paper. 

 

Response: We are glad the reviewer considers our insights to be helpful for planners, managers, 

and engineers. We believe that the PARRA framework is a novel contribution to the field and 

that it has intrinsic scientific value as a physically based, modular, probabilistic, and prospective 

structure to connect atmospheric phenomena to community-level impacts, as stated in Lines 43-



50 and Lines 82-83. We have added new text at Line 616 in the manuscript to highlight these 

scientific contributions as follows. 

 

“While the case study showed examples of the specific insights that can be gained from 

implementing the component models for a community risk assessment, the theory and scientific 

merit of the PARRA framework stand on their own, independent from the specific benefits and 

tradeoffs inherent in any local implementation. We have proposed a new method for the 

structured assessment of AR-driven flood risk that is physically based, modular, probabilistic, 

and prospective.” 

 

We have additionally discussed the distinction between the PARRA framework and the Sonoma 

County case study implementation in our response to comment 2.17, and we have discussed the 

subjective choices within the case study implementation in our response to comment 2.30.  

 

2.28)  

Line 543: Another process that can matter here is the role of sequential ARs (i.e., multiple ARs 

occurring sequentially), something to consider for 'future directions'. 

 

Response: We appreciate the reviewer’s suggestion of a direction for future research. We now 

mention the role of sequential and compounding events as a potential area for further exploration 

in the new version of Sect. 3.7.2, which is included in our response to comment 2.2.  

 

2.29)  

Line 557: Yes, but what did this do to the expected accuracy of capturing the relationships? The 

framework is trading potential accuracy and confidence for computational efficiency. This 

introduces even more uncertainty. The authors should state this. 

 

Response: We agree that there are many potential component model implementations, each with 

different strengths and tradeoffs, that could have been used to capture relationships between 

variables at each step. However, the purpose of the PARRA framework is not to model one event 

perfectly, but instead to consider a stochastic range of potential events. We are presenting a 

modeling approach geared towards a different analysis procedure (Monte Carlo simulation) and 

end goal (probabilistic risk assessment) than that of deterministic modeling. We have expanded 

the discussion of implementation considerations in Sect. 5.2, “Framework Implementation,” to 

better explain the value of the performance-based probabilistic approach. 

 

- Line 548: The following paragraph has been added. 

“The PARRA framework represents one end of the continuum between stochastic and 

deterministic modeling. It will not perform as well as a high-fidelity multi-scale physics model 

calibrated to a given set of input forcings for a specific scenario event, and it is not intended to 



replace existing models designed for that use case. However, it is impossible to scale the 

granular analysis performed by deterministic models to produce a probabilistic estimate of flood 

risk across a range of potential AR events (Apel et al., 2004; Savage et al., 2016). The PARRA 

framework thus serves a fundamentally different purpose within the literature of risk—if 

deterministic modeling gives us the best possible representation of a single tree, then the PARRA 

framework aims to characterize the shape and scale of the entire forest.” 

 

- Line 548: The sentence “Another strength of the PARRA framework…” has been modified as 

follows. 

“A key functionality of the PARRA framework is its ability to track and quantify uncertainty 

across multiple component models.” 

 

- Line 554: The sentence “We made several implementation decisions…” has been modified as 

follows.  

“We came up with several practical solutions to minimize the computational expense of the 

PARRA framework and bring it into the range of procedural feasibility without compromising 

accuracy.” 

 

2.30)  

Line 582: Component Model Alternatives - This is where some of the subjective choices of the 

framework can be replaced with more objective choices, and therefore can make the framework 

more sound for scientific analysis. 

 

Response: We agree with the reviewer that the choices made to implement the PARRA 

framework were subjective choices made to optimize a specific set of priorities. However, 

choosing priorities (speed vs. complexity, local insights vs. broader trends, etc.) and making 

implementation choices that optimize for those priorities will always be a subjective process, and 

we believe there is no objective or “correct” implementation choice for any component model in 

the PARRA framework. We believe that the PARRA framework is sound for scientific analysis 

as presented, and we have added the following paragraph to Sect. 5.4, “Component Model 

Alternatives” at Line 582 to highlight this.  

 

“All models are imperfect representations of the physical world, and there will always be some 

nuance lost when moving from theory (the framework) to practice (the implementation). There 

are multiple possible methods to characterize some of the pinch points that would improve 

fidelity to the underlying physical processes but would increase computational demand and 

therefore constrain the representation of the true uncertainty. These inherent tradeoffs between 

different types of error are unavoidable, but point to a major strength of the PARRA framework: 

that the user is able to explicitly define their own optimization criteria and choose the component 



model implementations that best suit their personal expertise, resource constraints, and end 

goals.” 

 

2.31)  

Line 589: the word ‘the’ is duplicated 

 

Response: We have revised according to the reviewer’s suggestion. 

 

2.32)  

Line 591: the word ‘underlying’ is duplicated 

 

Response: We have revised according to the reviewer’s suggestion. 

 

Section 6 Conclusions 

 

2.33)  

Line 594: Is it possible/feasible to test another case study event that the PARRA framework 

accurately estimates the damages for? This can help show case the value of the PARRA 

framework even more than just showing the one case study from 2019 that was barely captured 

in the tail of the distribution. 

 

Response: Please see our responses to comments 2.2 and 2.4, where we discuss the accuracy of 

the case study assessment and stakeholder interpretation of the case study results, respectively.  

 

2.34)  

Line 608: ‘... event fell within the expected probabilistic range ...’, In the tail of the distribution. 

It was barely captured. The authors should be careful with how they communicate the accuracy 

of the provided result. 

 

Response: Please see our responses to comments 2.2 and 2.4, where we discuss the accuracy of 

the case study assessment and stakeholder interpretation of the case study results, respectively.  

 

 


