
Authors response to Anonymous Referee #1 
 
Referee comment on "A Performance-Based Approach to Quantify Atmospheric River Flood 
Risk" by Corinne Bowers et al., Nat. Hazards Earth Syst. Sci. Discuss., 
https://doi.org/10.5194/nhess-2021-337-RC1, 2021 
 
We would like to thank the reviewer for their valuable feedback and constructive comments. We 
have revised the manuscript accordingly and provided detailed responses to each of the 
comments below. 
 
General Comments 
 
1.1)  
The authors provide a process-based probabilistic framework for predicting damages associated 
with ARs based on AR intensity and duration and antecedent hydrologic conditions. This is a 
useful tool. There are a number of technical innovations throughout the study. The 2019 Russian 
River case study contains several creative data sourcing and manipulation steps to overcome 
inherent data availability issues. The overall method has broader applications than AR damage 
prediction. It could be applied to any damaging hydrometeorogic events, including hurricanes 
and tropical storms. The AAL and loss exceedance curve calculations are compelling. A number 
of valuable insights are presented in the discussion section. 
 
Response: We would like to thank the reviewer for these comments about our work and its 
potential applications.  
 
1.2)  
My only comment of substance is that the current ordering of sections makes the model difficult 
to follow as variables are introduced before being defined and the multivariate Monte Carlo 
integration framework is explained after presenting the series of integrals. I'd put section 2 
paragraph 1 first, then 3.2 paragraph 1, then 2.1 description of pinch point variables, then 2 
framework description with the equations, then 3.2 paragraph 2 explanation of Monte Carlo 
integration. Or something along those lines. The current ordering was difficult for me to follow 
although it did all make sense at the end. 
 
Response: We acknowledge that the original ordering created unnecessary confusion and have 
reorganized much of Section 2 to address the reviewer’s concerns. We appreciate the helpful 
suggestions on how to present the information in a more intuitive order. The new organization is 
as follows:  
 
Section 2: Framework Description 



- Law of total probability (same) 
- Introduction of Eq. 1 (modified to address comments 1.8 and 1.15) 
- Definition of pinch points (previously the first paragraph of Sect. 2.1) 
- Definition of component models (previously the first paragraph of Sect. 2.2) 
- Introduction of Eq. 2 (modified to address comment 1.15) 
- Explanation of Monte Carlo integration (previously the second paragraph of Sect. 2.2) 
 
Section 2.1: Pinch Point Variables  
- Distinction between pinch points and pinch point variables (new; added to address comment 
1.14) 
- Detailed description of pinch point variables (same) 
 
Section 2.2: Component Models 
- General description of component models, with special attention to f(Q | PRCP, HC) (new; 
added to address comments 1.13 and 1.36) 
- Distinction between component models and component model implementations (new; added to 
address comments from Reviewer 2) 
 
We believe that this response serves to additionally resolve the concerns and questions expressed 
by the reviewer in comments 1.12, 1.16-1.24, 1.31, and 1.32. 
 
1.3)  
The rest of the comments are minor technical corrections / suggestions or requests for 
clarification. Overall this is a great contribution to the literature. I recommend accepting the 
manuscript after minor revisions. 
 
Response: We would like to thank the reviewer for their recommendation, and for the time and 
effort put into reviewing this manuscript.  
 
- - - - - 
 
Specific Comments / Technical Corrections 
 
1 Introduction 
 
1.4)  
Line 26 California experiences ARs coming from a pathway called the Pineapple Express -> 
California often experiences ARs coming from a pathway called the Pineapple Express [not all 
ARs in CA are considered Pineapple Express storms] 
 



Response: We acknowledge the reviewer’s suggestion and we have removed this sentence from 
the manuscript. 
 
1.5)  
Line 31 $300 million -> $660 million 
Data appendix S1 Top Counties lists damages for CA counties over 40 years at 26.53 billion of 
which AR damages were 24.86 billion in 2019 dollars. This translates into annual AR damages 
of 24.86/40 = 621.5 million. In 2021 dollars this is approximately $660 in 2021 dollars (e.g., 
https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator) 
 
Response: We have revised according to the reviewer’s suggestion. 
 
1.1 Disciplinary Context 
 
1.6)  
In addition to FEMA's Hazus, USACE's HEC-FIA and HEC-FDA are potential methods that can 
be used to convert HEC-RAS outputs to economic impacts. 
 
Response: We acknowledge the reviewer’s suggestion and have added the following sentence to 
Line 72.  
 
“Other regional flood loss assessment tools include HEC-FIA (USACE, 2018) and HEC-FDA 
(USACE, 2014), both from the US Army Corps of Engineers; and FloodFactor (Bates et al., 
2020), a commercial product from First Street Foundation.” 
 
2 Framework Description 
 
1.7)  
Line 109 total probability theorem -> law of total probability 
 
Response: We have revised according to the reviewer’s suggestion. 
 
1.8)  
Line 116 decision variable DV appears here for the first time but is described later at 165. Either 
move the section on pinch point variables above the introduction of DV, etc., or note that the 
variables are defined in detail below. 
 
Response: We acknowledge the reviewer’s comment, and we have added the following text to 
Line 114 to indicate that an explanation of the pinch point variable DV will be provided later in 
the manuscript.  



 
“We first replace the generic variables with new variables representing pinch points, which we 
elaborate on later in this section. B becomes the atmospheric river event AR and A becomes the 
decision variable DV.” 
 
1.9)  
Eq 2 consider \cdot or \times in place of asterisks. 
 
Response: We agree with the reviewer and have switched to using \cdot throughout the 
manuscript. 
 
1.10)  
Eq 2 consider six integrals evenly spaced rather than two sets of three integrals. 
 
Response: We have revised according to the reviewer’s suggestion. 
 
1.11)  
Eq 2 it would perhaps make sense to include the supports over which the pinch point variables 
are being integrated. But perhaps it would be a distraction. 
 
Response: We tested out the reviewer’s suggestion, but felt that adding the integration supports 
created visual clutter and reduced the clarity of the equation. We have thus retained the integrals 
without explicit supports. 
 
1.12)  
Eq 2 ideally, the variables should be defined as they are introduced. Perhaps it is sufficient to 
note that the variables are defined below in Sect. 2.1. 
 
Response: We have reorganized Sect. 2 as outlined in our response to comment 1.2 to address 
this suggestion.  
 
1.13)  
Eq 2 An explanation of why f(Q | PRCP, HC) has two conditional variables while all other 
elements in the chain have only one may be useful for the reader, at some point in the text. 
 
Maybe something like: at each point in the causal chain one pinch point variable depends on the 
next. Flow, Q, depends on two variables precipitation, PRCP, and antecedent hydrologic 
conditions, HC. Could perhaps write out the whole chain in English in the paragraph below the 
equation. This would be easier to follow than waiting to read the text in the next section. Or else 
note that all variables are defined in the following section. 



 
Response: We acknowledge the reviewer’s comment, and we thank the reviewer for providing 
some suggested text to improve the manuscript. We have reorganized Sect. 2 as outlined in our 
response to comment 1.2 to provide the reader with the component model definitions before the 
equation. We have also added an explanation of why f(Q | PRCP, HC) has two conditional 
variables to the new version of Sect. 2.2. The text of this new paragraph is as follows. 
 
“The pinch points in the framework are linked by component models, or representations of 
discrete physical processes. Each component model generates an expected distribution of values 
for the next pinch point in the sequence conditioned on the value(s) preceding it. It is important 
to note that, excepting the hydrologic routing model f(Q|PRCP,HC), all models are conditioned 
on only one variable. The hydrologic routing model differs from the others because, like the 
event characteristics (AR), the antecedent hydrologic conditions (HC) are framework inputs 
provided by the user to represent an initial system state. All other pinch point variables represent 
calculated variables. Conditioning on a minimal number of variables is critical to achieving the 
objective of modularity because it reduces the data demands at each step of the modeling 
process.” 
 
1.14)  
Eq 2 Each pinch point variable is a scalar here? 
 
Response: We have reorganized Sect. 2 as outlined in our response to comment 1.2 to provide 
the reader with the pinch point definitions before the equation. We have also added additional 
text to distinguish between pinch points and pinch point variables, as outlined below. The revised 
Sect. 2.1 includes the following paragraph (approximately Line 140 in the manuscript). 
 
“The pinch points presented in Sect. 2 are conceptual descriptions of the intermediate system 
states between AR occurrence and flood loss where only a limited amount of information must be 
transferred to the next step. Pinch point variables are low-dimensional numerical vectors of the 
information at each pinch point (Garrick 1984). The following paragraphs expand upon the 
conceptual pinch points and introduce the specific dimensions and measurement units that are 
used in this paper for each pinch point variable.” 
 
1.15)  
Eq 2 I'm unclear on how \lambda(AR) works and on how \lambda(DV > x) and P(DV > x | DM) 
work... An additional line providing some context could be helpful. 
 
Response: We thank the reviewer for drawing attention to these elements of the PARRA 
framework, and we have modified the descriptions of both Eq. 1 and Eq. 2 as a result. For Eq. 1, 
we have removed the text from Lines 113-121 in the manuscript and replaced it with the 
following. 



 
“Equation 1 modifies the statement of the law of total probability to better fit the context of 
natural hazard assessment.  
 
λ(DV > x) = ∫ P(DV > x | AR) · λ(AR) dAR  (1) 
 
where λ(DV > x) is the rate of the decision variable DV exceeding some specified threshold x, 
i.e., how frequently losses exceed $x dollars; P(DV > x | AR) is the probability of DV exceeding 
x conditioned on an inducing AR event; and λ(AR) is the occurrence rate of that inducing event. 
The right side of the expression is integrated over all possible inducing events in the sample 
space. We evaluate λ(DV > x) at a range of x values to obtain the loss exceedance curve, which 
is explored further in Sect. 4.2. 
 
“We first replace the generic variables with new variables representing pinch points, which we 
elaborate on later in this section. B becomes the atmospheric river event AR and A becomes the 
decision variable DV. P(DV > x) is the complement of the cumulative distribution function for 
DV, starting at 100% probability of exceedance for low values of x and moving to a probability 
of zero as x increases. P(DV > x | AR) represents the probability of the decision variable DV 
exceeding some threshold value x conditioned on the inducing event AR.  
 
“We then transform the summation into an integral and move to calculating the occurrence rate 
λ, which represents a continuous state variable rather than the probability P of a discrete event. 
Probabilities are defined with respect to predetermined time periods, and the probability of 
seeing an AR event in the next week, month, or year are all different quantities. Calculating the 
occurrence rate λ offers similar information about the underlying phenomenon of interest (AR 
event frequency) without imposing an arbitrary time limitation.” 
 
For Eq. 2, we have removed the text from Lines 126-131 in the manuscript and replaced it with 
the following.  
 
“…where variables AR, PRCP, HC, Q, INUN, DM, and DV represent pinch points and the 
conditional probability expressions represent component models. The component models of the 
form f(Y | X) are conditional probability density functions that describe the distribution of results 
from numerical analyses. The component model P(DV > x | DM) measures the probability of 
pinch point DV exceeding the loss threshold x conditioned on DM. The PARRA framework is 
executed by starting with the outermost integration in the equation and moving inward, as each 
component model is conditioned on the one(s) preceding it in the model chain. This equation is 
also represented visually in Fig. 1.” 
 
2.1 Pinch Point Variables 



 
1.16)  
(The following comments were written as I was reading through the manuscript. They could be 
avoided if you are clear upfront about how the integration is Monte Carlo integration and how 
the pinch point variables can be vectors.) 
 
Response: We agree with the reviewer’s overall comments on the organization of Sect. 2, and we 
have reorganized the section as outlined in our response to comment 1.2. We believe that 
comments 1.17 through 1.23 have been resolved by this reorganization and by the additional 
understanding the reviewer has noted from comment 1.24 onward.  
 
1.17)  
I'm a little unclear on how the causal chain works with scalar variables given that the process is 
spatially heterogeneous. Should I think of the PARRA process running in parallel over all 
locations? But what about spatial correlations? 
 
Response: Please see our response to comment 1.16.  
 
1.18)  
AR is a measure of intensity, so it could be something like peak IVT or cumulative vapor 
transport over some time period, the duration of the AR, say. But IVT is a vector field. So you'd 
need to aggregate or average over time and space to get a scalar metric of intensity. 
 
Response: Please see our response to comment 1.16.  
 
1.19)  
PRCP as a scalar field has the same issue. You'd need to integrate over time and space to get a 
scalar value. Should I think of this as some metric of precipitation over the whole watershed? Or 
is there a way to apply PARRA with a time series of precipitation grids as inputs? 
 
Response: Please see our response to comment 1.16.  
 
1.20)  
HC, same as AR and PRCP. 
 
Response: Please see our response to comment 1.16.  
 
1.21)  



Q makes more sense as a single input if you're considering a single channel, although the 
hydrograph is a curve which captures the duration as well as the intensity of the flow above flood 
stage, so I'm unclear on how this enters into the formulation. 
 
Response: Please see our response to comment 1.16.  
 
1.22)  
INUN at a given location or structure is just a scalar, but over a set of n structures is an n-
dimensional vector. Here, duration of inundation may also be important, in addition to depth, in 
terms of generating damages. 
 
Response: Please see our response to comment 1.16.  
 
1.23)  
I'm unclear on how DM and DV differ. DV is a metric of impact or consequence. DM is a 
damage measure. So, DV could be a more broad measure of impact that is perhaps related to DM 
through some probabilistic relationship that is modeled using the observational record? 
 
Response: Please see our response to comment 1.16.  
  
1.24)  
Ah, the variables are discussed in more detail. AR is a vector of max IVT and duration, got it. 
 
Response: We thank the reviewer for identifying where this portion of the manuscript achieves 
clarity of purpose.  
 
1.25)  
PRCP is storm-total accumulated rainfall over the watershed. Did you experiment at all with 
more complex formulations for precipitation? Don't tools like HEC-RAS and LisFlood take 
precipitation fields as inputs? 
 
Response: We decided to present a simpler scalar representation of precipitation to streamline 
the model chain and keep the focus of the manuscript on the overall framework rather than the 
individual component model implementations. While we agree with the reviewer that both HEC-
RAS and LISFLOOD have the computational capability to accept two-dimensional precipitation 
fields, the complexity of the precipitation pinch point variable was limited not by these 
dynamical models but by the statistical model chosen to represent the component model 
f(PRCP|AR) described in Sect. 3.2.1. We discussed some of these tradeoffs later in the 
manuscript, starting at Line 585, and we have added the following text to Line 150 to point 
readers to that discussion. 



 
“This simplification could be modified or eliminated in future implementations of the 
precipitation component model, as addressed further in Sect. 5.4.” 
 
1.26)  
HC watershed-average soil moisture equivalent height. There's probably some additional 
uncertainty introduced by averaging over the whole watershed. Upstream soil moisture may be 
more relevant than downstream soil moisture, for example, although these are probably highly 
correlated. 
 
Response: We have modified the sentence at Line 123 to reflect that soil moisture values were 
averaged across only the upstream watershed, not the entire watershed. The revised sentence is 
as follows: “Therefore the pinch point variable representing antecedent hydrologic conditions is 
a scalar value measuring the average soil moisture in the upstream watershed.” 
 
We also acknowledge the reviewer’s comment about the introduction of additional uncertainty 
through averaging. Because of the relatively low temporal and spatial resolution of the CPC soil 
moisture dataset (1 month and 0.5 degrees lat/long, respectively), we found that additional 
precision in averaging did not significantly affect the values calculated for the events in the 
historic catalog. 
 
1.27)  
Q is time series of flow at inlet. This is parameterized as a 3-vector with Q_p, t_p, and m. 
 
Response: We appreciate the reviewer’s comment. 
 
1.28)  
INUN is surface water depth at locations of interest. So this is N-dimensional. 
 
Response: We appreciate the reviewer’s comment. 
 
1.29)  
DM is a damage ratio, expected cost to repair over the total value. Assumed to be a function of 
water depth. 
 
Response: We appreciate the reviewer’s comment. 
 
1.30)  



DV actionable measure of impacts. So, it converts damage ratios into damages? So it requires 
observed building values then? What's the utility in splitting DM and DV? I think I can see it, but 
an explanation could be useful. 
 
Response: We thank the reviewer for identifying the need for more information about the 
distinction between these two pinch point variables. We have revised the last paragraph of Sect. 
2.1 and added the following additional text to Lines 166-168. 
 
“Finally, the decision variable (DV) is some actionable measure of AR impacts. In this work we 
define DV as household-level monetary losses; however, DV could alternatively represent any 
other metric that is calculated as a function of the damage measure DM, such as the number of 
displaced persons or the time to full recovery.” 
 
2.2 Component Models 
 
1.31)  
This could perhaps go above the equations. 
 
Response: We have reorganized Sect. 2 as outlined in our response to comment 1.2 to address 
this suggestion. 
 
1.32)  
I'd put section 2 paragraph 1 first, then 3.2 paragraph 1, then 2.1 description of pinch point 
variables, then 2 framework description with the equations, then 3.2 paragraph 2 explanation of 
Monte Carlo integration. Or something along those lines. The current ordering was difficult for 
me to follow. 
 
Response: We have reorganized Sect. 2 as outlined in our response to comment 1.2 to address 
this suggestion.  
 
3 Case Study: Sonoma County 
 
1.33)  
Line 185 The spatially repetitive, locally severe flooding seen in Sonoma County is a signature 
characteristic of ARs. <- I'm not sure if I agree with this statement; I suggest removing it. The 
statement suggests that ARs tend to reoccur at the same locations and always generate locally 
severe flooding. Some ARs generate multi-basin flooding, like the 1862 event. Some locations 
affected by ARs flood (relatively) infrequently. 
 



Response: We agree with the reviewer and have removed this sentence from the manuscript. 
 
3.2.1 Precipitation Component Model 
 
1.34)  
Line 238 mixture model 90% with WLS standard errors, 10% with distribution fit to largest 10% 
of events. I'm familiar with WLS but not with this approach. More detail on this method, or a 
reference, would be helpful. 
 
Response: We have adopted a Gaussian mixture model to represent the non-normal residuals in 
both the precipitation and streamflow regressions. We used mixture models where the regression 
coefficients are held constant and only the errors are allowed to vary, and we further restricted 
the errors to be represented by a mixture of zero-mean Gaussian distributions such that only the 
differences were the error variances. We chose the Gaussian mixture model because it is semi-
parametric, meaning it is more flexible than other parametric distributions that could be used for 
non-normal errors, and because mixture models are often applied when we believe that there are 
latent variables or that observations may be coming from different populations (i.e., precipitation 
stemming from different climatological drivers). We have added citations to Line 240 
referencing related work by Bartolucci and Scaccia (2005) and Soffritti and Galimberti (2011) 
for more information on this method.  
 
3.2.2 Precipitation 2019 Case Study 
 
1.35)  
Line 271 We note that Sonoma County is not guaranteed to see any impacts -> We note that, 
according to the simulated distribution, Sonoma County... (or, according to the distribution 
simulated from the observational record, etc.) 
 
Response: We have revised Line 271 according to the reviewer’s suggestion. The new sentence 
reads: “Our simulation results indicate that Sonoma County is not guaranteed to see any 
impacts…” 
 
3.3.2 Hydrologic Conditions 2019 Case Study 
 
1.36)  
Line 289 it is interesting that soil moisture is an "input" here and not simulated, just as AR IVT 
and duration are "inputs." This is explicitly captured in the flow chart and in the Eq 2 multiple 
integral. It might be worth emphasizing this in the description of the flow chart, for example. 
 



Response: We appreciate the reviewer’s suggestion. We have highlighted the fact that soil 
moisture is an input rather than a calculated variable in the new version of Sect. 2.2, as outlined 
in our response to comment 1.2. The text of this new paragraph is included as part of our 
response to comment 1.13. We have also modified the caption of Fig. 1 as follows:  
 
“Figure 1: PARRA framework flowchart. Graphical depiction of the PARRA framework, as 
presented mathematically in Eq. 2. White boxes represent component models. Arrows represent 
pinch points: an arrow pointing towards a box indicates a required component model input, and 
an arrow coming out of a box indicates a component model output. The background colors 
broadly represent existing research domains.” 
 
We would additionally like to note that this comment from the reviewer brought a numerical 
error to our attention in the calculation of soil moisture, which has affected both the estimate of 
losses for the 2019 event and the overall AAL for the study area. We have included the updated 
results as part of our response to comment 1.49. 
 
1.37)  
Line 291 why is observed precipitation used as an input here? Shouldn't the full precipitation 
distribution, derived from the input AR intensity and duration, enter here? What am I missing? 
 
Response: We thank the reviewer for noting that this sentence created confusion. The observed 
precipitation and soil moisture are used as input for the streamflow component model in Sect. 3.4 
because this section focuses on model-by-model calibration and comparison. To resolve 
confusion for future readers, we removed the sentence referenced by the reviewer and added a 
new sentence to Line 326 to improve clarity. The introduction to Sect. 3.4.2 now reads as 
follows:  
 
“Given the 2019 observed precipitation and antecedent soil moisture, we generated 1,000 Monte 
Carlo realizations from the streamflow model and compared the predicted streamflow 
hydrograph from the calibrated component model implementation to the observed hydrograph 
from the February 2019 event. Using observed data as input rather than the simulated 
distributions from Sects. 3.2 and 3.3 allows us to examine the fit and uncertainty associated with 
this specific step of the model chain in isolation.” 
 
3.4.1 Flow Component Model 
 
1.38)  
Line 310 - what data were you using here? The observational precipitation record? Fed into the 
runoff calculation? So, you have how many observations to fit the mixture OLS model? 
 



Response: The OLS regression referenced by the reviewer predicts the peak streamflow value Qp 
as a function of precipitation and runoff. The coefficients of the regression were fit based on 
observed precipitation and runoff values from the historic catalog of 382 events. Based on the 
reviewer’s questions presented here we have chosen to shorten the discussion of the runoff 
calculation, because we felt it was drawing attention away from the main point of the section. 
The full calculation process is still available through the supplemental code release. We have 
replaced the text from Lines 302-309 with the following sentence:  
 
“Runoff, the portion of precipitation that flows over the ground surface rather than contributing 
to evapotranspiration or infiltration, was calculated for each event in the historic catalog using 
the empirical curve number method (NRCS, 2004, Chapter 10).”  
 
3.4.2 Flow 2019 Case Study 
 
1.39)  
Fig 5 b - any speculation on the early streamflow peak in the 2019 event? It doesn't seem to be 
captured within the 90% PI. A horizontal line indicating flood stage could also be informative in 
this figure. 
 
Response: We acknowledge that the early streamflow peak seen in Fig. 5(b) requires more 
contextualization. We have added a hyetograph of observed precipitation to the figure as shown 
below. We have also added additional commentary on both the early peak and the new 
hyetograph. The new text starts at Line 332 and reads as follows.  
 
“The complex shape of the observed streamflow timeseries in Fig. 5(b) is a function of the 
unique watershed response as well as the spatial and temporal heterogeneity of the input 
precipitation. By contrast, the simulated distribution is based on the unit hydrograph method, 
which assumes that the precipitation distribution is uniform and that all runoff enters the 
channel at a single location. This limits our ability to capture certain kinds of behavior, such as 
the early peak seen in the observed streamflow timeseries in Fig. 5(b). The early peak could be 
due to catchment processes that cause a lagged tributary response, input from direct surface 
runoff, spatial variation in precipitation intensity and duration, or any number of other 
mechanisms. We include the observed hyetograph to the top of the plot in Fig. 5(b) to show just 
one aspect of the natural variability that affects the observed timeseries.  
 
“Despite the simplification imposed by the unit hydrograph method, many metrics of interest are 
reasonably well characterized by the simulated timeseries. The observed peak streamflow (1,130 
m3s−1) is at the 43rd percentile and the observed floodwave duration (81 h) is at the 63rd 
percentile of the respective simulated distributions. Recall from Sect. 3.2 that the observed 
precipitation was notably high conditioned on the observed atmospheric conditions. We now 



note that while the observed streamflow may have been high for a Category 3 event, it was in the 
middle of the simulated distribution conditioned on the observed precipitation. Therefore we 
conclude that the hydrologic routing was likely not one of the physical processes contributing to 
the “extremeness” of the 2019 event.” 
 
Additionally, we appreciated the reviewer’s suggestion to add a line indicating the flood stage. 
We have added one to the revised version of Fig. 5 below. 
 

 
Revised streamflow figure. 

 
3.5.1 Inundation Component Model 
 
1.40)  
Line 344 100 year peak flow -> 100-year peak flow, etc. (make this change throughout the 
manuscript) 
 
Response: We have made the change from “100 year” to “100-year” throughout the manuscript 
according to the reviewer’s suggestion. 
 



1.41)  
Line 367 how many buildings were there in your domain? What year were the building 
footprints taken from? 
 
Response: We have added the following sentence to Line 385 to answer the reviewer’s question: 
“We used building footprints from 2019 SonomaVegMap LIDAR data and building parcel 
information from the 2021 Sonoma County Clerk Recorder Assessor to identify 41,000 homes 
within the study area.” 
 
Citations for both of these datasets can be found in the “Code and data availability statement” at 
the end of the manuscript, which starts at Line 641. 
 
3.5.2 Inundation 2019 Case Study 
 
1.42)  
Figure 7 in the Data Type legend it appears that Observed is dashed and Simulated in solid. 
Making this more clear would be helpful. 
 
Response: We have revised Figure 7 according to the reviewer’s suggestion. 
 
3.6.2 Damage Measure 2019 Case Study 
 
1.43)  
RESA tagging is a fascinating approach. 
 
Response: We would like to thank the reviewer for their comment. 
 
3.7.1 Decision Variable Component Model 
 
1.44)  
Interesting approach to estimating property values from tax assessments adjusted using ACS 
correction factors. 
 
Response: We would like to thank the reviewer for their comment. 
 
3.7.2 Decision Variable 2019 Case Study 
 
1.45)  
Line 451 missing comma after i.e. 
 



Response: We have revised according to the reviewer’s suggestion. 
 
1.46)  
Figure 9 b - it would be useful to have a high-resolution version of this figure in the appendix, or 
in a data appendix. 
 
Response: Figure 9b is available in high resolution as part of the supplemental code release 
mentioned on Line 622; specifically, it is part of the markdown file named lossexceedance.Rmd 
that reproduces Figures 9 and 10. Based on the reviewer’s comment, we will additionally add a 
spreadsheet with the values shown in Figure 9b to our next Github code release. 
 
4 Results 
 
1.47)  
Eq 6 - consider \cdot or \times in place of asterisk, or no multiplication symbol at all. Same 
comment throughout equations. 
 
Response: We agree with the reviewer and have switched to using \cdot throughout the 
manuscript. 
 
4.1 AAL 
 
1.48)  
Line 487 You could note that $156m is likely to be an overestimate given that the county-wide 
penetration rates are lower than the penetration rates for properties at risk. 
 
Response: We agree with the reviewer that the $156M reported in the manuscript at a county 
level is likely an overestimate. Upon revisiting the available data, we found we were able to 
revise the calculation of the NFIP AAL and estimate both the insurance penetration rate at the 
census tract level rather than the county level. The revised NFIP AAL is $121M. We have 
revised the description on Lines 483-487 and modified every instance of the word “county” to 
“census tract” within this paragraph to reflect the change in the calculation process. This is a far 
more targeted geographical area and is therefore likely to represent insurance penetration rates 
(and consequently flood risk) relatively well, and we thank the reviewer for highlighting this 
opportunity to improve our estimate. 
 
1.49)  
Line 487 What is the uncertainty around the $163m estimate? 
 



Response: Due to the numerical error mentioned in our response to comment 1.36, the soil 
moisture component model was incorrectly oversampling from the high (wet) end of the soil 
moisture distribution. In addition, although the manuscript stated that soil moisture was an input 
based on observed data rather than a simulated value, the PARRA simulation results reported in 
Figs. 9 and 10 were based on calculations that were using simulated soil moisture values. 
Correcting this error increased the expected losses for the 2019 event (because the “observed” 
soil moisture for this event was very high relative to others in the record) and lowered the overall 
AAL (because the simulated realizations were rebalanced to include more events with dry 
antecedent conditions). We have edited the manuscript accordingly, and we thank the reviewer 
for their comment that led to us finding this inconsistency. 
 
As a result of these changes the mean expected AAL in the study area has been revised to 
$111M, and through Monte Carlo simulation we have estimated a 90% confidence interval to 
span from $93M to $133M. Based on the reviewer’s question we have added the following text 
to Line 482.  
 
“The mean AAL estimated from the stochastic record for AR-induced flood losses to residential 
structures is $111 million, with 90% confidence that it lies between $93 and $133 million.” 
 
5 Discussion 
 
1.50)  
There are many valuable insights in the discussion section. 
 
Response: We would like to thank the reviewer for their comment. 
 


