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Abstract 15 

Tropical mountainous regions are often identified as landslide hotspots with particularly vulnerable populations. 

Anthropogenic factors are assumed to play a role in the occurrence of landslides in these populated regions, yet 

the relative importance of these human-induced factors remains poorly documented. In this work, we aim to 

explore the impact of forest cover dynamics, roads and mining activities on the occurrence of landslides in the Rift 

flank west of Lake Kivu in the DR Congo. To do so, we compile an inventory of 2730 landslides using © Google 20 
Earth imagery, high resolution topographic data, historical aerial photographs from the 1950’s and extensive field 

surveys. We identify old and recent (post 1950’s) landslides, making a distinction between deep-seated and 

shallow landslides, road landslides and mining landslides. We find that susceptibility patterns and area 

distributions are different between old and recent deep-seated landslides, which shows that natural factors 

contributing to their occurrence were either different or changed over time. Observed shallow landslides are recent 25 
processes that all occurred in the past two decades. The analysis of their susceptibility indicates that forest 

dynamics and the presence of roads play a key role in their regional distribution pattern. Under similar topographic 

conditions, shallow landslides are more frequent, but of smaller size, in areas where deforestation has occurred 

since the 1950’s as compared to shallow landslides in forest areas, i.e. in natural environments. We attribute this 

size reduction to the decrease of regolith cohesion due to forest loss, which allows for a smaller minimum critical 30 
area for landsliding. In areas that were already deforested in 1950’s, shallow landslides are less frequent, larger, 

and occur on less steep slopes. This suggests a combined role between regolith availability and soil management 

practices that influence erosion and water infiltration. Mining activities increase the odds of landsliding. Mining 

and road landslides are larger than shallow landslides but smaller than the recent deep-seated instabilities. The 

susceptibility models calibrated for shallow and deep-seated landslides do not predict them well, highlighting that 35 
they are controlled by environmental factors that are not present under natural conditions. Our analysis 

demonstrates the role of human activities on the occurrence of landslides in the Lake Kivu region. Overall, it 

highlights the need to consider this context when studying hillslope instability characteristics and distribution 

patterns in regions under anthropogenic pressure. Our work also highlights the importance of considering the 

timing of landslides over a multi-decadal period of observation. 40 

1 Introduction 

Tropical mountainous regions are often identified as landslide hotspots with particularly vulnerable populations 

(Broeckx et al., 2018; Froude and Petley, 2018; Emberson et al., 2020). Nevertheless, the current knowledge on 

landslide processes in these regions remains limited as it is mostly derived from susceptibility models made at 

continental or global levels (Stanley and Kirschbaum, 2017; Broeckx et al., 2018). Because they are not based on 45 
detailed local inventories, such models do not allow to properly consider region-specific characteristics of 

landslides (Depicker et al., 2020).  
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The growing demographic pressure and widespread land use and land cover (LULC) changes are expected to 

increase the frequency and impacts of landslides in tropical mountainous regions, especially in rural environments 

(Sidle et al., 2006; DeFries et al., 2010; Mugagga et al., 2012; Guns and Vanacker, 2014; Froude and Petley, 2018; 50 
Depicker et al., 2021a;  Muñoz-Torrero Manchado et al., 2021). Deforestation and the associated loss of tree roots 

lower the slope stability by decreasing regolith cohesion and altering drainage patterns (Sidle and Bogaard, 2016). 

Mining, quarrying and road construction alter the environment through undercutting of hillslopes, overloading, 

landfills and inadequate drainage systems. This increases the landside activity, particularly in the first years 

following the alteration of the landscape (e.g. Sidle et al., 2006; Brenning et al., 2015; Arca et al., 2018; McAdoo 55 
et al., 2018; Vuillez et al., 2018; Muñoz-Torrero Manchado et al., 2021). However, the exact impact of these 

anthropogenic factors on landslide processes depends on their timing and other environmental conditions such as 

slope angle and lithology (Depicker et al., 2021b). It is therefore important to further develop our understanding 

of landslides and their natural- and human-induced drivers. 

To achieve this, a detailed multi-temporal regional landslide inventory spanning several decades is essential 60 
(Guzzetti et al., 2012). In this regard, a distinction between deep-seated landslides and shallow landslides is 

important; the latter type is much more sensitive to LULC and its changes (Sidle and Bogaard, 2016). However, 

sufficiently long and precise multi-decadal records of LULC and landslide activity are rare, especially in tropical 

regions (e.g. Glade, 2003; Guns and Vanacker, 2014; Monsieurs et al., 2018; Shu et al., 2019). This important data 

gap is not easy to fill: global and regional LULC assessments derived from the first satellite data from the 70s and 65 
80s offer a spatial resolution that is often too coarse for this purpose and very high resolution satellite data became 

available only at the end of the 90s at best (Belward and Skøien, 2015; Joshi et al., 2016). 

Historical aerial photographs offer the best opportunity at the regional level to work across several decades, both 

to compile a landslide inventory but also to reconstruct LULC changes (Glade, 2003; Guns and Vanacker, 2014 ; 

Shu et al., 2019). It is complementary to very high spatial resolution satellite images such as those available on © 70 
Google Earth, which are widely used in the identification of landslides in many environments (e.g. Broeckx et al., 

2018; Depicker et al., 2020). Fieldwork is also essential in order to validate observations made from the different 

image sources, to discriminate between deep-seated and shallow processes, or to confirm depth estimates (Dewitte 

et al., 2021). Field surveys also help to understand the role of human activities on slope dynamics (Dewitte et al., 

2021). 75 

The aim of this work is to explore the role played by natural and anthropogenic factors on the occurrence of 

landslides in a rural tropical mountainous region under high anthropogenic pressure. More specifically, we are 

interested in the Rift flank west of Lake Kivu, a region in the DR Congo where recent studies based on the sole 

and partial analysis of © Google Earth images have shown that landslides are frequent and that recent deforestation 

has impacted the occurrence of shallow landslides (Maki Mateso and Dewitte, 2014; Depicker et al., 2020; 80 
Depicker et al., 2021b). We aim to: (1) further develop the existing landslide dataset and compile a comprehensive 

detailed multi-temporal regional landslide inventory spanning several decades; (2) describe the general 

characteristics of the landslides, and (3) analyze landslide distributions and regional susceptibility according to 

different controlling factors, with special attention to multi-decadal forest cover dynamics. Historical aerial 

photographs and careful field surveys are key elements in this study. 85 

1.1 Environmental settings and current knowledge of the landslide processes 

 

The study is conducted in the Rift flank west of Lake Kivu in the DR Congo (Fig. 1a). It is one of the most seismic 

regions of the African continent, crossed by active faults and composed of six main rock types of varying age (Fig. 

1b) (Delvaux et al., 2017; Laghmouch et al., 2018). The presence of mineral resources (gold and 3T minerals - tin, 90 
tantalum and tungsten) favours the proliferation of, often illegal, artisanal and small-scale mining and quarrying 

(Van Acker, 2005; Bashwira et al., 2014). Industrial mining is not present in the region and there is no new road 

construction associated with it (Bashwira et al., 2014).  

The region has a tropical savannah/monsoon climate tempered by its altitude (Peel et al., 2007). The natural 

vegetation is mainly montane forest, still preserved in the Kahuzi-Biega National Park (Imani et al., 2017). 95 
However, between the 17th and 18th century, the region began to suffer the first strong effects of human influence 

through deforestation (Nzabandora and Roche, 2015). There has been significant deforestation and forest loss in 

recent decades as well (Basnet and Vodacek, 2015; Depicker et al., 2021a). Selective cutting is done for energy 

needs, house construction, furniture production and dugout canoes. Clearcutting, mostly small-scale, is associated 
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with agriculture, mining and quarrying activities and road construction (Musumba Teso et al., 2019; Drake et al., 100 
2019). After deforestation, the land is often permanently converted to agricultural land (cropland, grassland) or 

tree plantations (Depicker et al., 2021a). In some places, however, natural regeneration of the forest takes place 

(Masumbuko et al., 2012). 

 

Figure 1: (a) Relief and (b) geology of the study area. The study area covers the districts of Kabare, Kalehe, 105 
Walikale, Masisi and Idjwi. Topography is derived from SRTM 1 arc second. Lithology and fault maps are from 

Laghmouch et al. (2018). 

The study area (~ 5,700 km²) is one of the most densely populated regions of the DR Congo with more than 200 

inhabitants/km² living mainly from agriculture, mining and quarrying activities (Linard et al., 2012; Michellier et 

al., 2016; Trefon, 2016). This region plays a key role in the supply of food and charcoal to the smaller rural centers 110 
and to the cities of Goma and Bukavu. Over the last decades, the population in both cities increased from a few 

tens of thousands to more than one million inhabitants (Michellier et al., 2016). The population growth in the study 

area was partly caused by the influx of Rwandan refugees in 1994-1995, as well as the growing artisanal mining 

industry that offers job opportunities (Bashwira et al., 2014; Van Acker, 2005;  Butsic et al., 2015;). 

Recent studies have highlighted the presence of many landslides in the region. Compiled from a limited number 115 
of very-high spatial resolution © Google Earth images partially covering the study area, a first preliminary 

inventory of a few hundred landslides showed that the landslide processes are diverse (deep-seated, shallow, 

recent, old, active, inactive) and that their impacts can be high and associated with fatalities and serious damages 

to infrastructures (Maki Mateso and Dewitte, 2014). The inventory over the North Tanganyika-Kivu Rift region 

(hereafter called NTK Rift) of which our study area is a subregion was further expanded by Depicker et al. (2020) 120 
through the use of © Google Earth imagery with a search time limited per image. This inventory consisted of 

shallow and deep-seated landslides but did not make a distinction between these two processes in the susceptibility 
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analysis. Depicker et al. (2020) showed that, in addition to slope angle, land cover is a key landslide predictor in 

the NTK Rift region. A more detailed investigation of the annual evolution of the forest cover over the last 20 

years showed that deforestation increases landslide erosion 2-8 times during a period of approximately 15 years 125 
before it eventually falls back to a level similar to forest conditions (Depicker et al., 2021b). A catalogue of > 150 

accurately dated landslide events over the last two decades was compiled for the NTK Rift, allowing to 

demonstrate the role of rainfall seasonality on the annual distribution of the occurrence of new landslides 

(Monsieurs et al., 2018; Dewitte et al., 2021). Among those landslide events, some are very large and consist of 

clusters of several hundreds to thousands of slope failures. The spatial extent of such a cluster can easily be larger 130 
than 10 km². A few events like these occur during each wet season (Depicker et al., 2020; Dewitte et al., 2021). 

They are commonly associated with particularly intense convective rainfall (Monsieurs et al., 2018b). Most of 

these landslides are shallow and small and, due to quick vegetation regeneration and/or land reclamation, their 

scars can disappear after a few years (Depicker et al., 2020; Dewitte et al., 2021). None of the dated landslide 

events were triggered by earthquakes (Dewitte et al., 2021). This do not discard the role of earthquakes in triggering 135 
landslides in the region, but instead this reminds us that the return period of earthquakes with a magnitude large 

enough to trigger slope instabilities can be much longer than a few decades (Delvaux et al., 2017). Their potential 

impact, rather localized compared to that of climatic drivers, can be inexistent during a narrow time window of 

observation (Delvaux et al., 2017; Dewitte et al., 2021; Depicker et al., 2021).  

Landslides can also occur due to rock weathering and regolith formation (Dille et al., 2019). In other words, the 140 
long-term evolution of these preconditioning drivers alone can explain that a slope can also fail without any 

apparent trigger. This implies that the many landslides that occur in isolation of other events must be interpreted 

with care in terms of origin. For these features, it is not clear from a visual analysis of the satellite images whether 

they can be directly linked to a direct trigger. In addition, many landslides occur in isolation along roads (Dewitte 

et al., 2021). Some of the larger, historical, landslides (i.e. landslides that do not appear active in our oldest source 145 
of information) clearly occurred more than 10,000 years ago (Dewitte et al., 2021), i.e. over a period of time that 

underwent changes in environmental conditions (Felton et al., 2007; Wassmer et al., 2013; Ross et al., 2014; Smets 

et al., 2016).   

2 Material and methods 

2.1 Landslide inventory 150 

The landslide inventory is an update of the inventory compiled by Depicker et al. (2020). Moreover, we 

differentiated between the processes and timing of landsliding. We strongly relied on three image products: 

• A careful and detailed 3D (elevation exaggeration of 1) visual interpretation of © Google Earth 

images, which provides a complete coverage of the region at a very high spatial resolution (~0.5 m), 

often multi-temporal (Depicker et al., 2021b); 155 
• The interpretation of two hillshade images derived from a TanDEM-X digital elevation model (DEM) 

provided at 5 m resolution and covering most of the region (Albino et al., 2015; Dewitte et al., 2021). 

The hillshade images were produced with a sun elevation angle of 30° and sun azimuth angle of 315° 

and 45°; 

• The stereoscopic analysis of one single cover of historical panchromatic photographs acquired during 160 
the 1955-1958 period at the scale ~1/50,000 (i.e. about 1 m spatial resolution on the ground); the 

photographs are conserved at the Royal Museum for Central Africa (RMCA, Belgium).  
 

The historical aerial photographs allowed to differentiate between old deep-seated landslides (i.e. landslides with 

an unknown time of origin that can be identified on the photographs) and recent deep-seated landslides that have 165 
occurred during the last 60 years (i.e. after the acquisition of the photographs). The aerial photographs were not 

used for mapping shallow landslides since this inventory would be biased. Indeed, the spatial resolution of the 

photographs is twice lower than that of the images in © Google Earth. Furthermore, the photographs provide a 

single temporal cover, whereas the multi-temporal © Google Earth images cover information for an imagery range 

of up to 13 years, i.e. the age difference between the oldest and youngest image. (e.g. Minova, Kalehe, Matanda 170 
in Fig. 1: Depicker et al., 2021b).  

For the recent landslides, the distinction between deep-seated and shallow landslides was made by visually 

estimating the relative landslide depth from © Google Earth and TanDEM-X hillshade images (Depicker et al., 
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2020; Dewitte et al., 2021). In the literature, a landslide is usually defined as shallow when the depth of its surface 

of rupture ranges between  2 to 5 m (Keefer, 1984; Bennett et al., 2016; Sidle and Bogaard, 2016). Here, landslides 175 
with a depth < 5 m were considered as shallow. The landslides occurring in mining and quarrying sites were all 

classified as mining landslides, regardless of their depth. A specific attention was also given to the landslides 

occurring along roads.  

Six field surveys were conducted over the period 2016 to 2019 to validate the inventory and get extra information 

on the landslide timing and their causes and triggers. The work was carried out by selecting representative areas 180 
with various landslide and landscape characteristics, while taking into account accessibility and safety issues. We 

also used information from media and grey literature (student theses, field reports from local research, and 

academic institutions and the civil protection).  

The frequency of landslide surface area distributions were analyzed to check the completeness of the inventory 

and also enable comparison with other inventories in different environments; if the area frequency density can be 185 
properly fitted to an inverse Γ distribution, it is considered representative of the study area (Malamud et al., 2004). 

A bad fit could suggest that the inventory is biased and/or incomplete. Indeed, the use of several data sources in 

the inventory could bias the distribution of landslides, especially bearing in mind the limitations related to the 

interpretation of satellite images (Guzzetti et al., 2012). We performed this analysis separately for different subsets 

of the inventory: all landslides, old and recent deep-seated landslides, shallow landslides, mining landslides (that 190 
also includes landslides associated with quarrying) and road landslides. The analysis of the frequency area 

distributions for the different shallow landslide populations defined according to the LULC and its dynamics was 

also used to infer about differences in environmental characteristics and slope failure mechanisms (Malamud et 

al., 2004; Van Den Eeckhaut et al., 2007; Guns and Vanacker, 2014; Tanyaş et al., 2018). Box-plots complemented 

the shallow landslide area analysis. The Wilcoxon rank sum comparison test was used for assessing the 195 
independence between the landslide populations.  

Since the extent of the study area is relatively small when considering regional climatic characteristics and given 

that the time window of the shallow landslide inventory is limited to a few years, the location and properties 

(extent, number of occurrences) of shallow landslide clusters depends strongly on the stochastic nature (location, 

extent and magnitude) of the triggering rainfall and less on local terrain conditions. The consideration of all 200 
landslides of such a cluster could bias the analysis by giving an excessive weight to the local terrain conditions 

(Depicker et al., 2020). Thus, for the susceptibility analysis (see Section 3.2), we retained a maximum of 30 

landslides per cluster, randomly sampled.  

2.2 Multi-decadal forest dynamics 

LULC and its dynamics can influence the prevalence and characteristics of shallow landslides (Sidle and Ochiai, 205 
2006; Sidle and Bogaard, 2016). In the study area, the agricultural land use is complex (multiple cropping, multi-

layer farming) and dynamic due to crop rotations and associations, shifting cultivation, and the bimodal annual 

rainfall pattern (Heri‐Kazi and Bielders, 2021). A detailed regional land use mapping serving as input in our 

analysis is therefore not feasible (e.g. Jacobs et al., 2018). However, the dynamics of the forest can be better 

constrained. Here, to complement the analysis conducted by Depicker et al. (2021b; see Section 2.1) that focused 210 
on the impact of deforestation on shallow landslides over the last 20 years, we reconstructed the forest dynamics 

over the last ~60 years. We used 1 m resolution orthomosaics generated from the RMCA’s aerial photographs of 

the years 1955-1958 and according to the photogrammetric processing described in Depicker et al.(2021a) and 

Smets et al. (to be submitted). The forest areas were delineated visually. The 2016 forest cover was extracted from 

the continental ESA CCI land cover model which is available at a 20 m resolution (ESA, 2016) and  has an accuracy 215 
of roughly 86 % in the region (Depicker et al., 2021b).  

 

2.3 Landslide susceptibility and distribution analysis  

We applied the logistic regression (Hosmer and Lemeshow, 2000) and the frequency ratio (Lee and Pradhan, 2007) 

models to analyze the susceptibility and distribution of the landslides, respectively, in order to better understand 220 
how they are distributed across different landscapes and how natural and human environmental factors contribute 

to their occurrence. The analysis was carried out with a distinction between shallow landslides and old deep-seated 

landslides. The analysis was done at the scale of one point (pixel) per landslide to avoid spatial autocorrelation 

(e.g. Jacobs et al., 2018; Kubwimana et al., 2021). The point is manually positioned in the center of the landslide’s 
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trigger area. For deep-seated landslides, a point outside the trigger area where topography does not appear to have 225 
been disturbed by the instability is considered for the calculation of the slope associated with the landslide origin. 

2.4 Predictor variables 

Table 1 presents the 10 predictor variables used for the susceptibility and frequency ratio analyses and the ancillary 

data from which they are derived. We used eight predictors that can be considered as natural factors that influence 

landslide occurrence: elevation, slope angle, planar curvature, profile curvature, topographic wetness index (TWI), 230 
aspect, lithology, and distance to faults. Although these predictors are commonly used (Reichenbach et al., 2018), 

it is worth specifying that, here, elevation is used as proxy for climatic conditions, namely orographic rainfall and 

the probability of thunderstorms, as the resolution of regional-climate derived products is too low (at least 2.8 km) 

to accurately capture the effect of elevation on rainfall (Monsieurs et al., 2018a; Van de Walle et al., 2020; 

Monsieurs, 2020; Depicker et al., 2021b). Distance to fault is used to determine the possible contribution of seismic 235 
activity in the occurrence of deep-seated landslides not only as a triggering factor (e.g. Keefer, 1984), but also as 

a rock weathering factor (Vanmaercke et al., 2017). Using the fault pattern is the most appropriate option to tackle 

the seismic zonation context since the most detailed seismic hazard assessment for this part of the continent is at 

a spatial resolution of 2.2 km; i.e. at a resolution that is too coarse for our study (Delvaux et al., 2017). 

Table 1. Landside predictor variables. 240 

         Variable  Type Source 

- Elevation (m) Continuous  

 

 

Nasa Shuttle Radar Topography 

Mission (SRTM) Version 3.0 

Global 1 arc second Data 

 

https://lpdaac.usgs.gov/products/srt

mgl1v003/ 

 

 

  

- Slope angle (°) Continuous 

- Profile curvature (m
-1

) Continuous 

- Plan curvature (m
-1

) Continuous  

- Topographic wetness index Continuous 

- Slope aspect (°) Categorical 

• north Dummy 

• northeast Dummy 

• east Dummy 

• southeast  Dummy 

• south Dummy 

• southwest Dummy  

• west Reference 

• northwest  
 

Dummy 

- Lithology Categorical  

 

 

Geological map of the Kivu at scale 

1/500,000 (Laghmouch et al., 2018) 

 

• Old basalts  Dummy 

• Black shales and tillite Dummy 

• Granites (mica and leuco-granites) Dummy 

• Granitic rocks (rhyolite) Reference 

• Pelites and quartzopelites Dummy 

• Gneiss and micaschists Dummy 

- Distance to faults (m) Continuous 

Distance to roads (m) Continuous https://www.openstreetmap.org/histor

y#map=9/-2.0475/28.5535 

- Forest dynamics between 1955-58 and 2016 
Categorical 

 

Forest cover in 2016: (ESA, 2016: 

http://2016africalandcover20m.esrin.e

sa.int/viewer.php) 

Forest cover in 1955-58: Historical 

aerial photographs and derived 

orthomosaics from RMCA (see 

Section 1.2) 

• Permanent forest Reference 

• Forest loss Dummy 

• Forest gain Dummy 

• Permanent anthropogenic environment Dummy 

 

Besides the natural factors, we identified two anthropogenic predictors: forest dynamics and distance to roads. The 

comparison of forest areas between 1955-58 and 2016 allows to consider four classes for the forest dynamics 

variable: permanent forest, forest loss, forest gain, and permanent anthropogenic environment. Permanent forest 

corresponds to forest areas that are present at both dates. The forest loss class corresponds to forests present in 245 
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1955-58 that have disappeared in 2016. Since it is impossible to identify for each portion of the landscape the exact 

cause of forest loss, this class contains a mix of various forest management practices and other causes of forest 

cut/removal. The forest gain class represents the new forest that has appeared since 1955-58. Similarly, the causes 

associated with the occurrence of new forest are not exactly known; afforestation and natural forest regeneration 

being certainly drivers at play. Permanent anthropogenic environment (e.g. cropland, grassland, built-up lands) 250 
means that the landscape was not forested in both dates and it is assumed that it remained so during that period. 

OpenStreetMap was used to retrieve the main roads in the study area. Using the historical photographs, we observe 

that the main roads date back to the colonial times and that no major changes in the network have occurred over 

the last 60 years. The few recent landslides that are observed in the field along these roads confirm the assumption 

that the direct impact of the main roads on the occurrence of recent landslides is limited. These landslides are 255 
clearly linked to the road cut topography, i.e. topographic conditions that cannot be constrained at the resolution 

of the SRTM elevation data (1” or roughly 30 m). They are often of very limited size, i.e. at a size that is too small 

to be features that can be identified in © Google Earth in a consistent manner. For our study, the distance to roads 

is taken as a proxy for human settlement, trail density, and intensity and diversity of agricultural practices. Since 

motorized transportation means are very limited in the region, the population growth, the expansion of villages 260 
and the agricultural activities are indeed highly associated with the main road networks.  

Prior to analysis, the predictor variables were resampled at the resolution of the SRTM elevation data, a resolution 

that provided the best results in similar regions (Jacobs et al., 2018). The association between the dependent 

variable and each predictor variable was tested using the Pearson 𝜒2 test at a 95 % level of confidence (Van Den 

Eeckhaut et al., 2006; Dewitte et al., 2010). The predictors were tested for multicollinearity, variables with variance 265 
inflation factor (VIF) > 2 being excluded from the analysis (Van Den Eeckhaut et al., 2006; Dewitte et al., 2010). 

The flat areas (slope angle < 1°) that are spread across the region were not excluded from the analysis since their 

total extent is limited and their impact on the inflation of susceptibility model performance would be minor 

(Brenning, 2012; Depicker et al., 2020).  

For the analysis of deep-seated landslides, the predictor variables associated with anthropogenic activities were 270 
excluded. For the shallow landslides, the ‘distance to faults’ variable was also excluded. As explained earlier, the 

shallow landslide inventory represents a narrow time window of observation. As such, the spatial distribution of 

the shallow landslides could be biased by the stochastic pattern of the recent heavy rainfall events and 

anthropogenic disturbances rather than being the reflect of the longer-term impact of weathering conditions 

associated with seismicity. 275 

2.5 Logistic regression 

Logistic regression is used to describe the relationship between a binary dependent variable (the presence or 

absence of landslides) and one or more independent predictor variables (Hosmer and Lemeshow, 2000). Hence, 

the logistic regression does not only require landslide data, but also non-landslide data. We sampled this non-

landslide data by generating a number of random points that is equal to the number of landslides in the inventory 280 
in order to avoid prevalence (Hosmer and Lemeshow, 2000). Non-landslide points were randomly generated 

outside a 40 m buffer zone around landslide areas. The basic equation for logistic regression is:  

log (
𝑃

1−𝑃
) = 𝛼 + ∑ 𝛽𝑖𝑋𝑖

𝑛
𝑖=1          (1) 

 

where P is the likelihood of landslide occurrence and takes values between 0 and 1, α is the intercept of the model, 285 
Xi represents i-th of n predictors, and 𝛽𝑖 the accompanying coefficient that has to be fitted to the data.  

 

Calculations were performed in an RStudio environment version 1.4.1717 with LAND-SE software (Rossi and 

Reichenbach, 2016). In order to be considered in the final logistic regression equation, continuous variable 

coefficients needed to be significant at the 95 % level of confidence (e.g. Jacobs et al., 2018). For categorical 290 
variables, as soon as one dummy variable was significant, all other dummy variables were included in the model 

(e.g. Depicker et al., 2020). The quality of the models was judged by (i) the prediction rate (e.g. Depicker et al., 

2020), (ii) a visual inspection of the susceptibility maps after reclassifying each map into four classes of increasing 

susceptibility that cover 40 %, 30 %, 20 %, and 10 % of the study area, and (iii) considering the area under the 

curve (AUC) of the receiver-operating-characteristics curve (ROC). The AUC values vary between 0 and 1 and 295 
can be interpreted as the model’s capacity of differentiating between landslide and non-landslide locations. An 
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AUC = 0.5 shows that the model performance is equivalent to random classification, while an AUC = 1 indicates 

a perfect classification (Hosmer and Lemeshow, 2000). Training and validation datasets were taken in the 

proportions of 70 % and 30 %, respectively (Broeckx et al., 2018; Fang et al., 2020). 

 300 
We assessed the importance of each individual predictor for the logistic regression in two ways. First, we calculated 

the AUC for landslide susceptibility models that only relied on the considered predictor, to assess the extent to 

which this predictor can be used to differentiate between landslide and non-landslide locations. This allowed to 

quantify for the contribution of each variable to the susceptibility model (Depicker et al., 2020). Note that only 

predictors with AUC values between 0.5 and 1.0 were retained for the logistic regression models. A second way 305 
to determine the impact of the predictors was the analysis of the odds ratio (OR). The OR of a predictor expresses 

how a change of a predictor value translates into an increase/decrease in the odds of landsliding, whereby the odds 

of landsliding is calculated as 
𝑃

1−𝑃
 (see Eq. (1)). The ORi of predictor i is calculated as: 

𝑂𝑅𝑖 = 𝑒𝛽𝑖𝛿𝑖 ,           (2) 

whereby 𝛽𝑖 is the coefficient of predictor i, and 𝛿𝑖 is the increase in predictor 𝑖. For continuous variables an 310 
arbitrary but realistic value for 𝛿𝑖 is chosen. For the dummy variables, 𝛿𝑖 equals 1. For the categorical variables, 

the OR for each dummy reflects an increase or decrease relative to the reference variable (Kleinbaum and Klein, 

2010). 

2.6 Frequency ratio 

The frequency ratio model considers each landslide predictor variable individually and classifies its values into a 315 
set of bins (Lee and Pradhan, 2007; Lee et al., 2007; Kirschbaum et al., 2012). The value of a frequency ratio 

indicates for each bin of the predictor variable the probability of occurrence of a landslide. The frequency ratio is 

calculated as:  

Fr𝑐𝑏 =
a𝑐𝑏

aT
⁄

A𝑐𝑏
A𝑇

⁄
 ,          (3) 

where Frcb is the frequency ratio value for a bin 𝑏 = (1,2, … , 𝑛) of a predictor variable 𝑐 = (1, 2, … , m), 𝑎𝑐𝑏  is 320 
the cumulative landslide area within bin 𝑏 of predictor 𝑐, 𝑎𝑇 is the cumulative landslide area in the entire study 

area, 𝐴𝑐𝑏 is the area attributed to bin 𝑏 of predictor 𝑐, and A𝑇 is the total extent of the study area. 

3 Results  

3.1 Landslide inventory 

Overall, 2730 landslides were mapped from the image analysis over the study area (Fig. 2a; Table 2), which is an 325 
extension of 326 % compared to the inventory of Depicker et al. (2020). The landslides are diverse in terms of 

size, age and type (Fig. 3). The inventoried landslides cover ~3 % of the study area. The largest landslide is old 

and deep-seated (426.4 ha), while the smallest detected landslide is shallow (16 m2). The landslides are grouped 

into five categories (Fig. 2a; Table 2):  

• Old deep-seated landslides represent 45,5 % of the inventoried landslides and cover 93 % of the total 330 
landslide affected area; 

• Shallow landslides represent 40.4 % of inventoried landslides, but represent only 2.7 % of the total 

affected area. These landslides are all recent; 

• Recent deep-seated landslides represent a small percentage of landslides (5.8 %) but cover an area (2.9 

%) similar to shallow landslides; 335 
• Mining landslides (that also include quarrying landslides) represent 5.6 % of the inventoried landslides 

and cover 1.2 % of the total landslide affected area. Mining landslides are considered as one type, 

regardless of their depth;  

• Road landslides: the inventory shows that 115 landslides are located within 50 meters of roads. 60 of 

these landslides are shallow, 13 recent and deep-seated, 35 old and deep-seated, and 7 are mining 340 
landslides. The shallow and recent deep-seated landslides located within 50 m of roads were classified as 

road landslides. We assume that the occurrence of those 73 roads landslides is associated with road 

https://doi.org/10.5194/nhess-2021-336
Preprint. Discussion started: 17 November 2021
c© Author(s) 2021. CC BY 4.0 License.



9 
 
 

construction and altered rainwater drainage. The old deep-seated landslides located close to roads were 

retained in the old deep-seated landslide group because their timing is likely to precede road construction.  

 345 

 

Figure 2: (a) Landslide inventory obtained from the image analysis and extent of the forest cover in 2016 (after 

ESA, 2016). Numbers represent clusters of shallow landslides that are associated with heavy rainfall events dated 

in ascending order from oldest to most recent. (b) Additional landslides identified only in the field. 

Several clusters of shallow landslides related to heavy convective rainfall events have occurred in recent years. 350 
One of the clusters is related to the Kalehe rainstorm of October 2014 (Fig. 2a: event 2; Fig. 3a) reported by Maki 

Mateso and Dewitte (2014). This event triggered 634 shallow landslides, 346 of them being connected to talwegs 

and providing materials to 17 debris flows. Ten debris flows were particularly destructive and deadly when they 

reached villages on the shores of Lake Kivu (Maki Mateso and Dewitte, 2014). In this area, 14 shallow landslides 
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present on © Google Earth images before this event were reactivated. Field observations and interviews with local 355 
populations indicated that the shallow landslides that are not associated with these clusters are also rainfall-

triggered.  

Table 2: Typology, size properties, and identification methods of the inventoried landslides (LS). The percentages 

of landslides linked to the TanDEM-X hillshade images (% of LS in TanDEM-X) represent landslides that could 

not be very well identified in © Google Earth alone.  360 

Landslide  

type 

Number 

of LS 

% of 

LS 

% of 

LS area 

Max area 

(ha) 

Min area 

(m²) 

Average 

area (ha) 

Standard 

deviation (ha) 

% of LS in 

©Google 

Earth 

% of LS in 

TanDEM-X 

Deep-

seated (old) 

1243 45.5 93.0 426.4 604 12.6 26.8 94.9 5.1 

Deep-

seated 

(recent)  

159 5.8 2.9 28.9 210 3.1 5.4 97.5 2.5 

Shallow 1103 40.4 2.7 53.8 16 0.4 2.4 100 0 

Mining  152 5.6 1.2 13.4 99 1.4 1.9 100 0 

Road  73 2.7 0.1 2.0 149 0.3 0.3 100 0 

All 

landslides 

2730 100 100 
  

6.2 
 

97.5 2.5 

 

Table 3: Field-based validation of the landslides (LS) inventoried from the image analysis. True Positive (TP) = 

landslides that were mapped in the images and validated in the field. False Positive (FP) = landslides that were 

mapped in the images but not validated in the field. False Negative (FN) = landslides that were identified solely 

in the field.  365 

Landslide type Number of LS checked in the field 

TP FP FN   

Total number of LS viewed in the field 
      

Accuracy 

(%) 

Deep-seated (old) 248 239 9 60 97.1 308 

Deep-seated (recent) 47 44 3 4 94.1 51 

Shallow 426 420 6 55 98.8 481 

Mining 15 9 6 2 64.7 17 

Road 50 45 5 5 90.9 55 

Total 786 757 29 126 96.8 912 

 

Landslide mapping was largely done using © Google Earth; the TanDEM-X hillshades being useful to confirm 

the identification of about one fifth of the old deep-seated landslides (Table 2). Fieldwork carried out to validate 

786 landsides showed that they were identified with a precision of more than 96 % (Table 3). Old deep-seated 

landslides and shallow landslides were mapped with the highest accuracy. Mining landslides were mapped with a 370 
lower accuracy due to the difficulty of differentiating between landslide processes and anthropogenic soil 

disturbance in © Google Earth imagery. The field validation allowed to also map an extra 126 landslides (Fig. 2b) 

that could only be identified in the field (Table 3). For the old deep-seated landslides, this represents an extra 25% 

of observations. Nevertheless, landslides identified only in the field were not considered in the analysis to avoid 

biases due to overrepresentation. 375 

Each debris flow is connected to up to hundreds of shallow landslides that act as source areas.  A clear distinction 

was made between theses source areas and the debris flow path and deposition areas (Fig. 3a). Out of a total of the 

184 debris flows identified from the images, 90 with a length-to-width ratio > 50 were excluded from the analysis 

since they show greater similarities to debris-rich floods than to the other landslides present in the region (Malamud 

et al., 2004). Nevertheless, the shallow landsides acting as source areas were kept in the analysis. Also, 22 very 380 
large, old, deep-seated landslides were excluded from the analysis because they have complex main scarps where 

it is difficult to determine the pixels that best represent the natural conditions of occurrence. Overall, from the 

2730 landslides identified from the images, 2618 landslides were used for the subsequent analysis.  
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Figure 3: Examples of landslide types (according to Varnes’ new classification – Hungr et al., 2014). (a) Cluster 385 
of recent debris avalanches, flowslides and debris flows triggered during an intense rainfall event (25/10/2014) in 

the vicinity of Kalehe (-2.041°S, 28.874°E). The landslide source areas are identified. (b) Old earthflow (-2.053°S, 

28.660°E). (c) Old rock slides/rock avalanches/ with path-dependent rock falls (-2.007°S, 28.708°E). (d) Recent 

deep-seated rotational slide that occurred in 2002 (-1.530°S, 28.708°E). (e) Recent deep planar slide that occurred 

in 1994 and created a dammed lake (-1.521°S, 28.977°E). (f) Recent slides, flows and avalanches related to mining 390 
activities that occurred from 2013 onwards (-1.563°S, 28.885°E). 

The inverse Γ distribution fits well the distributions for all the subsets of the inventory, except recent deep-seated 

and mining landslides (Fig. 4a,c). There is also a good fit with this inventory, which supports its use for further 

susceptibility analysis. The Wilcoxon rank comparison test confirms significant statistical differences (p-value < 

0.05) among the area distributions (Fig. 4b).  395 
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Figure 4: Landslide (LS) area characteristics.  (a, c) Landslide frequency-area distributions for each landslide types. 

The distributions called minus event correspond to the inventory where 30 landslides are retained per landslide 

cluster associated with major rainfall events (see methods section) (b) Boxplots showing the distribution of 

landslide area for each landslide type. Boxplots show the lower and upper quartiles and median. The whiskers of 400 
each box represent 1.5 times the interquartile range. The average area of the landslides (red dots) is provided for 

each boxplot and the outliers beyond whiskers are shown as dots. The number of landslides in each class is shown 

in brackets.  

 

Figure 5: Forest cover dynamics over the last 60 years. (a) Forest cover in 1955-58 and 2016; (b) Areas of forest 405 
cover change between 1955-58 and 2016. Details for the images used in this figure are in Table 1.  
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In 1955-58, 42 % of the territory was already deforested (Fig. 5a). From 1955-58 to 2016, the loss of forest 

continued, the forest cover decreasing from 58 % to 24 % of the study area. The area affected by the forest loss 

over the last 60 years is larger than the remaining permanent forest (Fig. 5b). 

 410 

Figure 6: Shallow landslide characteristics and forest cover dynamics. (a, c) Boxplots showing the distribution of 

landslide area and landslide slope, respectively, for each land cover class. A detailed description of boxplots is 

provided in Figure 4. (b, d) Shallow landslide frequency-area distributions for each land cover class. The 

distributions called minus event correspond to the inventory where 30 landslides are retained per landslide cluster 

associated with major rainfall events (see methods section). 415 

72 % of the shallow landslides are found in areas of forest loss (Fig. 6). The landslides in the permanent 

anthropogenic environment have the largest mean area, followed by the landslides in permanent forest, and the 

landslides in areas of forest loss. In forest gain zones, landslides are on average the smallest. The Wilcoxon rank 

comparison test confirms significant statistical differences (p-value < 0.05) among the landslide area distributions. 

The same differences are also confirmed for the landslide slope distribution (Fig. 6b). In permanent forest areas, 420 
shallow landslides occur on steeper slopes compared to shallow landslides in anthropogenic environments (Fig. 

6b). The analysis of the completeness of the inventory (Fig. 6b,d) shows that an acceptable distribution emerges 

for each category of shallow landslides except for the landslide inventory in permanent forest minus event (Fig. 

6b). 

 425 
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3.2 Landslide susceptibility and distribution analysis  

 

The Pearson 𝜒2 tests confirm the association between the dependent variable and each predictor variable at a 95 430 
% level of confidence. There was not multicollinearity between the predictors (VIF < 2) retained for this study.  

Depicker et al. (2020) assessed the impacts of the size of the landslide training dataset to calibrate a landslide 

susceptibility model. They showed that the quality of a susceptibility assessment is questionable if the number of 

landslides is too small. In view of the low number of recent deep-seated, mining, and road landslides in the present 

study (Table 3), we did not calibrate susceptibility models from these three types of landslides. Instead, we tested 435 
these inventories against the two susceptibility models computed from the shallow and/or old deep-seated landslide 

datasets (Fig. 7). 

 
Figure 7: Landslide susceptibility models and prediction rates. (a) shallow landslides (AUC: 0.78); (b) old deep-

seated landslides (AUC: 0.82); (c) prediction rate curves for shallow, mining, and road landslides; (d) prediction 440 
rate curves for old deep-seated, recent deep-seated, mining and road landslides. The red highlight (c, d) represents 

the 10 % of the region with the highest landslide susceptibility values.  
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The two susceptibility models of shallow and old deep-seated landslides show similar AUC and prediction rates 

(Figure 7). The spatial patterns of the susceptibility values of the two models are quite different as it reflects the 445 
differences in the importance of the predictors included in the assessment (Table 4, Table 5). Table 4 shows that 

for shallow landslides, anthropogenic variables (forest loss, distance to roads and permanent anthropogenic 

environment) have a great influence on their occurrence. In contrast, continuous topographic variables and distance 

to faults are the most important for deep-seated landslides. For both landslide types, slope angle and elevation also 

have a great influence on their occurrence. Variables related to slope aspect and lithology have lower importance 450 
for both types of landslides. 

Table 4: Importance of the predictors of the logistic regression models for shallow and old deep-seated landslides. 

The comparison of the univariate AUCi is made to assess the relative importance of the variables (ranked in 

descending order).  

Shallow landslides Old deep-seated landslides 

Predictor AUCί Predictor AUCί 

Forest loss 63 Profile curvature. 65.7 

Elevation 61.5 Elevation 65.3 

Slope angle 60.1 Distance to faults 64.2 

Distance to roads 59.7 Slope angle 64 

Pelites and quartzopelites 58.9 TWI 63.8 

Permanent anthropogenic environment 55.9 Plan curvature. 59.5 

TWI 55.3 Pelites and quartzopelites 54.5 

Plan curvature. 53.1 South 52.4 

East 52.2 North-east 52 

South-east 52.2 North 51.6 

Black shales and tillite 51.8 East 51.1 

Old basalts 51.8 South-east 50.7 

North 51.8 Granites (mica and leuco-granites) 50.7 

Granites (mica and leuco-granites) 50.8 Old basalts 50.5 

South-west 50.7 Gneiss and micaschists 50.5 

Gneiss and micaschists 50.6 South-west 50.3 

South 50.6 Black shales and tillite 50.3 

Profile curvature 50.4 North-west 50.2 

North-east 50.4   

North-west 50.1   

Forest gain *   

* Only four landslides are present in this category.  455 

 

Table 5. Results of the logistic regression models for shallow landslides and old deep-seated landslides. 

                                                                   Shallow landslides Old deep-seated landslides  

Step 
 

𝛿𝑖  
 AUC 0.78 

   0.82 
  

Predictor variable   LR coef.   Odds ratio LR coef.   Odds ratio 

(Intercept) -3.560 ***   -1.661 *** 
   

Elevation   0.001 *** 1.857 0.002 *** 2.535 500 

Slope aspect Northwest 0.842 * 2.321 -0.366 
 

0.694 1 

 
West Ref. -  Ref. -    

 
Southwest 0.674 * 1.962 -0.232 

 
0.793 1 

 
South 0.630 * 1.878 0.032 

 
1.033 1 

 
Southeast 0.599 

 
1.820 -0.345 

 
0.708 1 

 
East 0.513 

 
1.670 -0.578 ** 0.561 1 

 
Northeast 0.622 

 
1.863 -0.897 *** 0.408 1 

 
North 0.481 

 
1.618 -0.831 *** 0.436 1 
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Plan curvature -0.272 * 0.580 0.166 *** 1.394 2 

Profile curvature -0.190 
 

0.999 -0.463 *** 0.998 0.005 

Slope angle 0.050 *** 1.649 0.033 *** 1.391 10 

Topographic wetness index 0.093 
 

1.000 -0.281 *** 1.000 0.001 

Lithology Old basalts -0.753 - 0.471 0.201 
 

1.223 1 

 

Black shales and 

tillite 
-1.207 *** 0.299 -1.358 *** 0.257 1 

 
Granite coarse grain -17.026 - 0.000 -2.126 *** 0.119 1 

 

Granitic rocks 
(rhyolite) 

Ref. 
 

 Ref. 
 

 
  

 
Pelites and 

quartzopelites 
-1.274 *** 0.280 0.155 

 
1.168 1 

 

Gneiss and 

micaschists 
0.506 

 
1.659 -0.468 

 
0.626 1 

Distance to roads 0.000 *** 0.931 no -  500 

Distance to faults no -  0.000 *** 0.914 500 

Forest cover dynamics Permanent forest Ref. -  no -    

 Forest loss 0.922 *** 2.514     1 

 
Gain forest no   -  no -    

 

Permanent 
anthropogenic 

environment  

-0.159 

 

0.853 no -  1 

No = variable not included in the logistic regression model 

Ref. = reference category of the dummy variable 

Coefficient included in the logistic regression model = *p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 460 
 

The odds ratios of the significant predictors for the two susceptibility models allow for an assessment of their 

relative importance (Table 5). Forest loss has a large influence on the occurrence of shallow landslides as 

deforestation increases the odds of landsliding by a factor 2.5 (Tables 4 & 5). However, anthropogenic 

environments (which were deforested before 1955-1958) appear to be less landslide-prone than permanent forest. 465 
Slope is similarly important for the prediction of both types of landslides (Table 4) but has a slightly larger impact 

on the odds of deep-seated landsliding that on the odds of shallow landsliding (Table 5). Slope aspect has a greater 

impact on the occurrence of shallow landslides than for old deep-seated landslides. It appears that the plan 

curvature reduces the occurrence of shallow landslides while it affects the occurrence of old deep-seated landslides. 

The effect of lithology is also different for shallow and deep-seated landslides. For shallow landslides, the gneiss 470 
and micaschists are most landslide-prone and the lowest susceptibility is associated with black shales, tillite and 

old basalts. For deep-seated landslides, black shales, tillite and old basalts favour landslides while gneiss and 

micaschists do not. The variables ‘distance to roads’ and ‘distance to faults’ have a significant but rather limited 

impact on shallow and old deep-seated landslides, respectively.  

The susceptibility model for shallow landslides was tested against the mining and road landslide datasets, while 475 
the old deep-seated landslide model was tested against the mining, road and recent deep-seated landslide datasets. 

Results indicate that mining and road landslides are poorly predicted using the shallow landslide model (Fig. 7c). 

Recent deep-seated landslides are reasonably well predicted using the old deep-seated landslide model, whereas 

prediction of road and mining landslides using the same model is also poor, although less problematic for the 

mining landslides (Fig. 7d).   480 
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Figure 8: Frequency distribution for shallow and deep-seated landslides in function of different predictor variables. 

The corresponding frequency ratio is shown for each class. The green, orange and red curves indicate the 

proportion of forest cover, forest loss and slope > 25°, respectively, in the different classes of the predictor 485 
variables.  

 

The frequency ratio analysis shows that slope angle is an important driver for shallow landslides as well as for old 

deep-seated landslides (Fig. 8a,b). Figure 8c shows a trend in the landscape of increasing slopes and forest loss 

and decreasing forest cover with increasing elevation. The decrease in forest cover at high altitudes is also 490 
associated with a natural change of the vegetation: bamboo vegetation is found at 2300-2600 m asl and subalpine 

vegetation such as ferns occur at 2400-3300 m asl (Mokoso et al., 2013; Cirimwami et al., 2019). We observe that 

at higher elevations (> 2000 m), shallow landslides occur more frequently, and this can be explained by the drastic 

forest loss and steeper slopes associated to these elevations (Fig. 8c). Deep-seated landslides are also favoured by 

steeper slopes and higher elevations. Regarding the dynamics of forest cover (Fig. 8e), the occurrence of shallow 495 
landslides is favoured in the deforested areas.  

 

4 Discussion 

4.1 Landslide types and completeness of the inventory 

We used a combination of © Google Earth imagery, TanDEM-X hillshades, historical aerial photographs, and 500 
field work to compile an extensive and comprehensive inventory of recent and historical landslides. Field 

validation of more than 25% of the inventory showed that more than 96 % of the inventoried landslides were 

classified with precision into five types (old deep-seated, recent deep-seated, shallow, road-related, or mining-

related). Nevertheless, despite this high performance, we are aware that the inventory is still incomplete. This is 

particularly the case for the shallow landslides because their inventory covers a maximum period of 13 years that 505 
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correspond to the imagery range available in © Google Earth. Furthermore, their scars can quickly be altered by 

natural vegetation regrowth, land reclamation and erosion (Malamud et al., 2004; Van Den Eeckhaut et al., 2007; 

Kubwimana et al., 2021). In addition, small landslides frequently happen unnoticed at the resolution of the satellite 

images (Guzzetti et al., 2012). Finally, field validation showed that a significant proportion of old deep-seated 

landslides can be missed from image analysis. This is because identifying the exact limits of the failed mass may 510 
not be easy for old deep-seated landslides, particularly in forest areas (Malamud et al., 2004). While building the 

inventory, we remained conservative and mapped only the features for which we had high confidence. As the 

protocol for landslide identification over the whole region was uniform and the number of identified landslides 

relatively important, we trust that the inventory is reliable and representative enough for the analysis.   

The frequency area distributions of all landslides types (Fig. 4a,c), with the exception of recent deep-seated and 515 
mining landslides, are similar to what has been observed in other parts of the world (e.g., Malamud et al., 2004; 

Guns & Vanacker, 2014; Jacobs et al., 2017; Depicker et al., 2020). For the recent deep-seated landslides, an 

overrepresentation is noticed at the level of the smallest landslides and the rollover is absent. Since the spectral 

signature of these landslides is pronounced, we cannot invoke here a problem of subjectivity in the mapping. 

Additionally, we can give a high trust in the completeness of the inventory as evidenced by field validation that 520 
showed that almost no landslides were missed (Table 3). Therefore, we posit that this divergence in size is related 

to a lower influence of successive slope failure in the increase of landslide area through time; in other words, recent 

landsides did not have the time to growth (Tanyaş et al., 2018). This process of successive failures has been well 

documented for the Ikoma landslide, south of Bukavu (Figure 1b; Dille et al., 2019). The distribution of the mining 

landslides is irregular and different from what is typically observed, with a rollover that is flattened and a sudden 525 
increase in the frequency of the smallest slope failures. Similarly, to the inventory of the recent deep-seated 

landslides, the completeness and the reliability of the mapped features cannot be much questioned. We suggest 

that this unusual area distribution is the result of the human-induced alteration of the environmental conditions 

(see Section 4.4). To our knowledge, there are no similar studies that have been carried out on artificial mining 

slopes. Further investigations on other cases would be needed to verify our hypothesis.  530 

The presence of a rollover in the frequency-area distribution of the shallow landslides in the anthropogenic 

environment (Fig. 6b,d) is in opposition to what we could have expected considering the study by Van Den 

Eeckhaut et al. (2007). Although this study by Van Den Eeckhaut et al. (2007) was also conducted in a populated 

rural environment, they did not find a positive power-law relation for the smaller landslides which is separated 

from the larger landslides by a rollover. This difference probably lies in the fact that our study area is much more 535 
landslide-prone. The research by Van Den Eeckhaut et al. (2007) was indeed carried out in a hilly region of 

Belgium where the temperate climate is much less favourable to the yearly occurrence of shallow landslides, 

especially when they occur in clusters associated with intense convective rainfall. When the weight of the landslide 

clusters is removed from our inventory, i.e. when a maximum of 30 landsides per cluster is considered (see Section 

2.1), the rollover of this distribution is also present (Fig. 6d). Furthermore, the fact that our inventory covers a 540 
smaller time period than that of Van Den Eeckhaut et al. (2007), that our region is not altered by mechanized 

farming, and that human activities such as works associated with building and road construction and drainage 

systems are much less present, i.e. factors that are highlighted as causes of landslides in Belgium, are issues that 

can also be invoked to explain this divergence in the frequency area distribution of shallow landslides.  

Under permanent forest, we do not observe a rollover point in the shallow landside distribution, (Fig. 6b). We 545 
hypothesize that the smallest landslides may be hidden under the canopy and therefore less visible on satellite 

images. A second explanation is that the presence of trees and their roots increases slope stability and therefore 

the minimal critical area for landsliding (Milledge et al., 2014). 

 

4.2 Drivers of deep-seated landslides  550 

The old deep-seated landslide susceptibility model is the first model proposed for the region that focuses only on 

deep-seated processes. The model shows a good quantitative prediction performance, both in terms of AUC and 

prediction rate. The model shows that the hillslope curvature (planar or profile), elevation, distance to faults, slope 

angle, and TWI are the most important predictive factors. In other words, terrain morphology and seismic activity 

seem to play a dominant role in deep-seated landslide activity in the study area. The frequency ratio analysis (Fig. 555 
8b,d) further supports this as it highlights the association of landslides with steep slopes (> 25°) and higher 

elevations, i.e. in topographic contexts nearer to the ridge crests that are known to amplify seismic shaking 
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(Meunier et al., 2008). The role of elevation as a driver of more humid conditions should, however, not be ignored 

as rainfall is also known to trigger deep-seated landslides (LaHusen et al., 2020). Also, the role of the long-term 

weathering of the landscape and the occurrence of non-triggered landsides should not be underestimated (Dille et 560 
al., 2019). Lithology is of lesser importance in our study area; which is in agreement with the findings of Depicker 

et al. (2021b) that show that the various lithologies in the region have similar rock strength properties.   

 

The lower prediction rate of the recent deep-seated landslides using the old deep-seated landslide model could be 

related to the fact that the observations are made on a period that is too short to apprehend the full panel of 565 
environmental conditions that led to old deep-seated landslides. For example, no earthquake-induced recent deep-

seated landslides were observed (Dewitte et al., 2021), whereas seismicity is an important component of the old 

deep-seated landslide model. In addition, the climatic and seismic conditions have evolved over the past tens of 

thousands of years (Felton et al., 2007; Wassmer et al., 2013; Ross et al., 2014; Smets et al., 2016). For example, 

the region experienced an abrupt shift from drier conditions to more humid conditions around 13,000 BP (Felton 570 
et al., 2007; Wassmer et al., 2013). In addition, about 10,000 BP, Lake Kivu water highstands were ~100 m above 

the current level, which could have triggered few large landslides (Ross et al., 2014; Dewitte et al., 2021). This 

change in the lake level was not only due to a shift in the climatic conditions but also to the formation of the 

Virunga Volcano Province that created a dam on the upstream part of the Rift basin that used to drain northwards 

(Figure 1b; Haberyan and Hecky, 1987). During that period of volcano formation, the regional geodynamics and 575 
the seismicity pattern were different (Smets et al., 2016). Hence a large part of the old deep-seated landslides may 

have been triggered under different conditions (Dewitte et al., 2021). 

 

Old and recent deep-seated landslides differ also in terms of size (Fig. 4). There have not been any major events 

during the past 60 years that caused large landslides comparable to the largest old deep-seated landslides (of area 580 
106 m2). We identify five possible factors to explain this difference. First, our window of observation is too narrow 

to apprehend the impact of forcing events of high-magnitude such as large earthquakes (Marc et al., 2019). Second, 

the past environmental conditions may have been more favourable to large slope failures. A third factor explaining 

the size difference between old and recent deep-seated processes is that larger landslides are less frequent but have 

a longer-lived morphology legacy; therefore smaller old deep-seated landslides may no longer be visible. The 585 
fourth factor is that old landslides have a size that is the legacy of a history of phases of slope deformation, and 

not one single slope failure (Tanyaş et al., 2018) as evidenced in the analysis of the nearby Ikoma landslide (Fig. 

1b; Dille et al., 2019). Fifth, amalgamation must not be excluded (Marc and Hovius, 2015), especially for the 

eldest features. Overall, our current knowledge does not allow to give more credit to one factor in particular. The 

common sense is certainly to assume that the difference in landslide size is the reflection of a combination of 590 
factors. 

 

4.3 Drivers of shallow landslides  

 

Rainfall is the trigger of the shallow landslides that we have identified in this study, which is in agreement with 595 
the other studies in the region (Dewitte et al., 2021; Kubwimana et al., 2021). The spatial distribution of shallow 

landslides differs strongly from the distribution of deep-seated landslides. This is mainly due to the anthropogenic 

factors such as deforestation that influence shallow processes (Table 4). The regional susceptibility model also 

indicates that deforestation is the most important factor in their occurrence (Table 5). Similarly, the analysis of 

frequency ratios shows that landslides disproportionately occur within areas that were deforested in the past 60 600 
years, demonstrating the role of the forest in slope stabilization (Grima et al., 2020). 

Shallow landslides in forest loss areas (Fig. 6a,b) have, on average, a smaller size compared to landslides in forest. 

This observation is in line with the findings of Depicker et al. (2021b) and is attributed to the decrease of regolith 

cohesion due to forest loss, which allows for a smaller minimum critical area for landsliding (Milledge et al., 

2014). In short, human-induced land cover change is associated with an increase in the number of landslides and 605 
a shift of the frequency-area distribution towards smaller landslides (Guns and Vanacker, 2014).  

 

In permanent anthropogenic environments (Fig. 6a,c), shallow landslides are less frequent, larger, and occur on 

less steep slopes as compared to shallow landslides in forest. Firstly, the steepest slopes in the anthropogenic 

environments have been subject to increased landslide erosion the first few years after the original forest cover 610 
was removed (prior to 1955-1958) (Depicker et al., 2021b). As a result, we can assume that steep slopes in 

anthropogenic environments have less regolith available for landsliding compared to steep slopes in permanent 
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forest areas. This process of regolith depletion is further exacerbated in cropland. Wilken et al.(2021) have 

measured in the region that erosion in cropland sites can reach up to about 40 cm in 55 years. Similarly, Heri-Kazi 

and Bielders (2021a) measured mean erosion rates of the order of 11 mm/year on cropland. Regolith erosion has 615 
therefore the consequence of reducing the spatial extent of areas where landslides can occur. A second process 

that may explain the landslide pattern in the anthropogenic environments is that, in parallel to regolith erosion, one 

also has sedimentation and the formation of colluvium (Wilken et al., 2021); which results in local accumulation 

of material. The material forms a loose sedimentary deposit usually in places with lower slope angles. This could 

be extra material available for the formation of landslides. Hence, we have less areas available for landslides, but 620 
a concentration of the susceptible places. A third explanation is probably related to soil management practices that 

influence erosion and water infiltration. In the region, usually on the less steep terrain, drainage ditches that favour 

water infiltration and hence an increase in pore-water pressure are widely applied by farmers (Heri‐Kazi and 

Bielders, 2021b).  

 625 
4.4 Drivers of mining landslides and road landslides 

 

Mining and road landslides are poorly predicted by the shallow and old deep-seated landslide susceptibility models 

(Fig.7), showing that they respond to different environmental factors. Road construction and mining activities are 

commonly associated with the presence of slope cuts and an increase of slope angle. These altered local 630 
topographic conditions cannot be constrained in the covariates derived from the SRTM or similar available 

products. In addition, the disturbances induced by roads and mining activities are not limited to the sole change of 

slope angle conditions. For example, this also implies changes in water runoff and infiltration, debrutressing, 

presence of fills and eventual overloading, excess stress from engine/digging, i.e., conditions that can influence 

the size and frequency characteristics of landslides (Brenning et al., 2015; Arca et al., 2018; Froude and Petley, 635 
2018;  McAdoo et al., 2018; Vuillez et al., 2018).  

Road landslides are mostly shallow. While it is obvious that roads create favourable conditions for the initiation 

of landslides, as observed in other studies in the region (Dewitte et al., 2021; Kubwimana et al., 2021), an accurate 

spatio-temporal regional pattern of these human-induced slope failures cannot be assessed here. A substantial 

proportion of road landslides can only be observed in the field (Table 3). In addition, landslides along roads can 640 
easily disappear due to maintenance works. Furthermore, many of the main roads were already present in the 

1950’s, their current impact therefore being altered.  

Overall, mining conditions seem to lead to landslides whose smallest features are more frequent than what would 

occur under natural conditions as attested in the frequency area distribution (see Section 4.1). The area of mining 

landslides is significantly larger than that of road landslides and their regional distribution is slightly more in 645 
agreement with the characteristics of deep-seated landslides (Fig. 7d), which is logical as mining activities are 

related to the lithological characteristics of the landscape.  

Considering the recent development of the mining activities in the region (Butsic et al., 2015; Tyukavina et al., 

2018; Musumba Teso et al., 2019), we can assume with confidence that the associated landslides represent slope 

instabilities that have occurred over a period of about 20 years whereas the recent deep-seated landslides represent 650 
slope failures that have occurred over the last 60 years. The distribution of the mining landslides is also restricted 

spatially to some lithologies. With these specificities in mind and the fact that the number of inventoried mining 

and recent deep-seated landslides is relatively similar, respectively 152 and 159 (Table 2), this study confirms that 

mining activities increase the odds of landsliding. It has implication not only in terms of hazard assessment but 

also in assessing the population at risk, knowing that mined sites are populated. This is to be put in parallel with 655 
the findings of Depicker et al. (2021a) that show that the risk of shallow landslides has increased significantly in 

the region during the last decades in the places where mining activities are found due, notably, to an increase in 

population.  

5 Conclusions 

Our study improves the understanding of landslide processes and the human impact thereon in tropical rural 660 
mountainous environments. The use of several sources of data allowed to build a very detailed landslide inventory 

in time and space for the region. This inventory enabled the grouping of landslides into five types: old and recent 

deep-seated landslides, (recent) shallow landslides, mining landslides and road landslides. Among deep-seated 

landslides, historical aerial photographs from the 1950’s were an added value in the sense that they were used for 
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differentiating between old and recent slope processes. We deduce the differences in the driving factors and area 665 
distribution for old and recent deep-seated landslides, suggesting that factors of landslide occurrence are either 

different or change over time depending on geodynamic and/or climatic conditions. The role of anthropogenic 

factors has been established in the occurrence of shallow landslides. Deforestation initially increases landsliding, 

but in the long term, when forest is permanently converted into agricultural land, landslide frequency appears to 

be lower compared to permanent forest lands. However, the exact impact of forest and forest cover changes 670 
depends on topographic conditions. The factors of occurrence of mining landslides significantly increase 

landsliding in areas that, under natural conditions, would be less prone to slope failures. The importance of human 

activities needs to be considered when investigating landslide occurrence in regions under anthropogenic pressure. 

Our analysis also demonstrates the importance of considering the timing of landslides in susceptibility and 

distribution assessments. 675 
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