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Abstract 15 

Tropical mountainous regions are often identified as landslide hotspots with growing population pressure. 

Anthropogenic factors are assumed to play a role in the occurrence of landslides in these populated regions, yet 

the relative importance of these human-induced factors remains poorly documented. In this work, we aim to 

explore the impact of forest cover dynamics, roads and mining activities on the occurrence of landslides in the Rift 

flank west of Lake Kivu in the DR Congo. To do so, we compile a comprehensive multi-temporal inventory of 20 
2730 landslides of different types and analyze it via frequency-area statistics, frequency ratio distribution and 

logistic regression susceptibility assessment. We find that natural factors contributing to the occurrence of recent 

(post 1950’s) and old deep-seated landslides were either different or changed over time. Under similar topographic 

conditions, shallow landslides are more frequent, but of smaller size, in areas where deforestation has occurred 

since the 1950’s. We attribute this size reduction to the decrease of regolith cohesion due to forest loss, which 25 
allows for a smaller minimum critical area for landsliding. In areas that were already deforested in 1950’s, shallow 

landslides are less frequent, larger, and occur on less steep slopes. This suggests a combined role between regolith 

availability and soil management practices that influence erosion and water infiltration. Mining activities increase 

the odds of landsliding. Mining and road landslides are larger than shallow landslides but smaller than the recent 

deep-seated instabilities, and they are controlled by environmental factors that are not present under natural 30 
conditions. Our analysis demonstrates the role of human activities on the occurrence of landslides in the Lake Kivu 

region. Overall, it highlights the need to consider this context when studying hillslope instability characteristics 

and distribution patterns in regions under anthropogenic pressure. Our work also highlights the importance of 

considering the timing of landslides over a multi-decadal period of observation. 

1 Introduction 35 

Tropical mountainous regions are often identified as landslide hotspots with particularly vulnerable populations 

(Broeckx et al., 2018; Froude and Petley, 2018; Emberson et al., 2020). Nevertheless, the current knowledge on 

landslide processes in these regions remains limited as it is mostly derived from susceptibility models made at 

continental or global levels (Stanley and Kirschbaum, 2017; Broeckx et al., 2018; Dewitte et al., 2022). Because 

they are not based on detailed local inventories, such models do not allow to properly consider region-specific 40 
characteristics of landslides (Depicker et al., 2020).  

The growing demographic pressure and widespread land use and land cover (LULC) changes are expected to 

increase the frequency and impacts of landslides in tropical mountainous regions, especially in rural environments 

(Sidle et al., 2006; DeFries et al., 2010; Mugagga et al., 2012; Guns and Vanacker, 2014; Froude and Petley, 2018; 

Depicker et al., 2021a;  Muñoz-Torrero Manchado et al., 2021). Deforestation and the associated loss of tree roots 45 
usually lower the slope stability by decreasing regolith cohesion and altering drainage patterns (Sidle and Bogaard, 

2016). Mining, quarrying and road construction alters the environment and commonly increases the landside 
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activity (e.g. Sidle et al., 2006; Brenning et al., 2015; Arca et al., 2018; McAdoo et al., 2018; Vuillez et al., 2018; 

Muñoz-Torrero Manchado et al., 2021;Tanyaş et al., 2022). However, the exact impact of these anthropogenic 

factors on landslide processes depends on their timing and their legacy effect. It also depends on other 50 
environmental conditions such as slope angle and lithology (Depicker et al., 2021b). Developing further our 

understanding of landslides and their natural- and human-induced drivers is therefore needed, especially in regions 

such as the tropics where the dearth of data is commonplace (Dewitte et al., 2022). 

To achieve this, a detailed multi-temporal regional landslide inventory spanning several decades is essential 

(Guzzetti et al., 2012). In this regard, a distinction between deep-seated landslides and shallow landslides is 55 
important; the latter type is much more sensitive to LULC and its changes (Sidle and Bogaard, 2016). However, 

sufficiently long and precise multi-decadal records of LULC and landslide activity are rare, especially in tropical 

regions (e.g. Glade, 2003; Guns and Vanacker, 2014; Monsieurs et al., 2018; Shu et al., 2019).  

Historical aerial photographs offer the best opportunity at the regional level to work across several decades, both 

to compile a landslide inventory but also to reconstruct LULC changes (Glade, 2003; Guns and Vanacker, 2014 ; 60 
Shu et al., 2019). It is complementary to very high spatial resolution satellite images such as those available on © 

Google Earth, which are widely used in the identification of landslides in many environments (e.g. Broeckx et al., 

2018; Depicker et al., 2020). Fieldwork is also essential in order to validate observations made from the different 

image sources, to discriminate between deep-seated and shallow processes, or to confirm depth estimates (Dewitte 

et al., 2021). Field surveys also help to understand the role of human activities on slope dynamics (Dewitte et al., 65 
2021). 

The aim of this work is to explore the role played by natural and human factors on the occurrence of landslides in 

a rural tropical mountainous region under high anthropogenic pressure. More specifically, we are interested in the 

Rift flank west of Lake Kivu, a region in the DR Congo where recent studies have shown that landslides are 

frequent and that recent deforestation has impacted the occurrence of shallow landslides (Maki Mateso and 70 
Dewitte, 2014; Depicker et al., 2020; Depicker et al., 2021b). We aim to: (1) further develop the existing landslide 

dataset and compile a comprehensive detailed multi-temporal regional landslide inventory spanning several 

decades; (2) describe the general characteristics of the landslides, and (3) analyze landslide distributions and 

regional susceptibility according to different controlling factors, with special attention to multi-decadal forest 

cover dynamics. Historical aerial photographs and careful field surveys are key elements in this study. 75 

1.1 Environmental settings and current knowledge of the landslide processes 

 

The study is conducted in the Rift flank west of Lake Kivu in the DR Congo (Fig. 1a). It is one of the most seismic 

regions of the African continent, crossed by active faults and composed of six main rock types of varying age (Fig. 

1b) (Delvaux et al., 2017; Laghmouch et al., 2018). A significant portion of the study area is made of lithologies 80 
from the Archaen, the Mesoproterozoic and the Neoproterozoic, with various degrees of chemical weathering and 

fracturing. Lastly formed rocks are the old Neogene basalts, highly weathered, that were deposited between 11-4 

Ma years. The presence of mineral resources (gold and 3T minerals - tin, tantalum and tungsten) favours the 

proliferation of, often illegal, artisanal and small-scale mining and quarrying (Van Acker, 2005; Bashwira et al., 

2014). Industrial mining is not present in the region and there is no new road construction associated with it 85 
(Bashwira et al., 2014).  

The region has a tropical savannah/monsoon climate tempered by its altitude (Peel et al., 2007). The natural 

vegetation is mainly montane forest, still preserved in the Kahuzi-Biega National Park (Imani et al., 2017). 
However, between the 17th and 18th century, the region began to suffer the first strong effects of human influence 

through deforestation (Nzabandora and Roche, 2015). There has been significant deforestation and forest loss in 90 
recent decades as well (Basnet and Vodacek, 2015; Depicker et al., 2021a). Selective cutting is done for energy 

needs, house construction, furniture production and dugout canoes. Clearcutting, mostly small-scale, is associated 

with agriculture, mining and quarrying activities and road construction (Musumba Teso et al., 2019; Drake et al., 

2019). After deforestation, the land is often permanently converted to agricultural land (cropland, grassland) or 

tree plantations (Depicker et al., 2021a). In some places, however, natural regeneration of the forest takes place 95 
(Masumbuko et al., 2012). 
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Figure 1: (a) Relief and (b) geology of the study area. The study area covers the districts of Kabare, Kalehe, 

Walikale, Masisi and Idjwi. Topography is derived from SRTM 1 arc second. Lithology and fault maps are from 100 
Laghmouch et al. (2018). 

The study area (~ 5,700 km²) is one of the most densely populated regions of the DR Congo with more than 200 

inhabitants/km² living mainly from agriculture, mining and quarrying activities (Linard et al., 2012; Michellier et 

al., 2016; Trefon, 2016). This region plays a key role in the supply of food and charcoal to the smaller rural centers 

and to the cities of Goma and Bukavu. Over the last decades, the population in both cities increased from a few 105 
tens of thousands to more than one million inhabitants (Michellier et al., 2016). The population growth in the study 

area was partly caused by the influx of Rwandan refugees in 1994-1995, as well as the growing artisanal mining 

industry that offers job opportunities (Bashwira et al., 2014; Van Acker, 2005;  Butsic et al., 2015;). The road 

network is relatively limited. Most roads are dirt roads and are poorly maintained, and there are no built-up walls 

(concrete, gabions) to stabilize the cut slopes. 110 

Compiled from a limited number of very-high spatial resolution © Google Earth images partially covering the 

study area, a first preliminary inventory of a few hundred landslides showed that the landslide processes are diverse 

and that their impacts can be high (Maki Mateso and Dewitte, 2014). The inventory over the North Tanganyika-

Kivu Rift region (hereafter called NTK Rift) of which our study area is a subregion was further expanded by 

Depicker et al. (2020) through the use of © Google Earth imagery with a search time limited per image. This 115 
inventory consisted of shallow and deep-seated landslides but did not make a distinction between these two 

processes in a susceptibility analysis. Depicker et al. (2020) showed that, in addition to slope angle, land cover is 
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a key landslide predictor in the NTK Rift region. A more detailed investigation of the annual evolution of the forest 

cover over the last 20 years showed that deforestation increases landslide erosion 2-8 times during a period of 

approximately 15 years before it eventually falls back to a level similar to forest conditions (Depicker et al., 2021b). 120 
A catalogue of > 150 accurately dated landslide events over the last two decades was compiled for the NTK Rift, 

allowing to demonstrate the role of rainfall seasonality on the annual distribution of the occurrence of new 

landslides (Monsieurs et al., 2018; Dewitte et al., 2021). Among those landslide events, some consist of clusters 

of several hundreds of slope failures. The spatial extent of such clusters can be larger than 10 km². A few events 

like these occur during each wet season (Depicker et al., 2020; Dewitte et al., 2021). They are commonly associated 125 
with particularly intense convective rainfall (Monsieurs et al., 2018b). None of the dated landslide events were 

triggered by earthquakes (Dewitte et al., 2021). This do not discard the role of earthquakes in triggering landslides 

in the region, but instead this reminds us that the return period of earthquakes with a magnitude large enough to 

trigger slope instabilities can be much longer than a few decades (Delvaux et al., 2017). Their potential impact, 

rather localized compared to that of climatic drivers, can be inexistent during a narrow time window of observation 130 
(Delvaux et al., 2017; Dewitte et al., 2021; Depicker et al., 2021).  

Landslides can also occur due to rock weathering and regolith formation (Dille et al., 2019). In other words, the 

long-term evolution of these preconditioning drivers alone can explain that a slope can also fail without any 

apparent trigger. This implies that the many landslides that occur in isolation of other events must be interpreted 

with care in terms of origin. For these features, it is not clear from a visual analysis of the satellite images whether 135 
they can be directly linked to a direct trigger. In addition, many landslides occur in isolation along roads (Dewitte 

et al., 2021). Some of the larger, historical, landslides (i.e. landslides that do not appear active in our oldest source 

of information) clearly occurred more than 10,000 years ago (Dewitte et al., 2021).   

2 Material and methods 

2.1 Landslide inventory 140 

The landslide inventory is an update of the inventory compiled by Depicker et al. (2020). Moreover, we 

differentiated between the processes and timing of landsliding. We strongly relied on three image products: 

• A careful and detailed 3D (elevation exaggeration of 1) visual interpretation of © Google Earth 

images from 2005 to 2019, which provides a complete coverage of the region at a very high spatial 

resolution (~0.5 m), often multi-temporal (Depicker et al., 2021b); 145 
• The interpretation of two hillshade images derived from a TanDEM-X digital elevation model (DEM) 

provided at 5 m resolution and covering most of the region (see Albino et al., (2015) and Dewitte et 

al., (2021 for technical explanation on the production of the DEM). The hillshade images were 

produced with a sun elevation angle of 30° and sun azimuth angle of 315° and 45°; 

• The stereoscopic analysis of one single cover of historical panchromatic photographs acquired during 150 
the 1955-1958 period at the scale ~1/50,000 (i.e. about 1 m spatial resolution on the ground); the 

photographs are conserved at the Royal Museum for Central Africa (RMCA, Belgium).  
 

The historical aerial photographs allowed to differentiate between old deep-seated landslides (i.e. landslides with 

an unknown time of origin that can be identified on the photographs) and recent deep-seated landslides that have 155 
occurred during the last 60 years (i.e. after the acquisition of the photographs). The aerial photographs were not 

used for mapping shallow landslides since this inventory would be biased. Indeed, the spatial resolution of the 

photographs is twice lower than that of the images in © Google Earth. Furthermore, the photographs provide a 

single temporal cover, whereas the multi-temporal © Google Earth images cover information for an imagery range 

of up to 13 years, i.e. the age difference between the oldest and youngest image. (e.g. Minova, Kalehe, Matanda 160 
in Fig. 1: Depicker et al., 2021b).  

For the recent landslides, the distinction between deep-seated and shallow landslides was made by visually 

estimating the relative landslide depth from © Google Earth and TanDEM-X hillshade images (Depicker et al., 

2020; Dewitte et al., 2021). In the literature, a landslide is usually defined as shallow when the depth of its surface 

of rupture ranges between  2 to 5 m (Keefer, 1984; Bennett et al., 2016; Sidle and Bogaard, 2016). Here, landslides 165 
with a depth < 5 m were considered as shallow. The landslides occurring in mining and quarrying sites were all 

classified as mining landslides, regardless of their depth. A specific attention was also given to the landslides 

occurring along roads.  
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Six field surveys were conducted over the period 2016 to 2019 to validate the inventory and get extra information 

on the landslide timing and their causes and triggers. The work was carried out by selecting representative areas 170 
with various landslide and landscape characteristics, while taking into account accessibility and safety issues. We 

also used information from media and grey literature (student theses, field reports from local research, and 

academic institutions and the civil protection).  

The frequency of landslide surface area distributions were analyzed to check the completeness of the inventory 

and also enable comparison with other inventories in different environments. If the area frequency density can be 175 
properly fitted to an inverse Γ distribution, it is considered representative of the study area (Malamud et al., 2004). 

A bad fit could suggest that the inventory is biased and/or incomplete. Indeed, the use of several data sources in 

the inventory could bias the distribution of landslides, especially bearing in mind the limitations related to the 

interpretation of satellite images (Guzzetti et al., 2012). We performed this analysis separately for different subsets 

of the inventory: all landslides, old and recent deep-seated landslides, shallow landslides, mining landslides (that 180 
also includes landslides associated with quarrying) and road landslides. The analysis of the frequency area 

distributions for the different shallow landslide populations defined according to the LULC and its dynamics was 

also used to infer about differences in environmental characteristics and slope failure mechanisms (Malamud et 

al., 2004; Van Den Eeckhaut et al., 2007; Guns and Vanacker, 2014; Tanyaş et al., 2018). Box-plots complemented 

the shallow landslide area analysis.  185 

Since the extent of the study area is relatively small when considering regional climatic characteristics and given 

that the time window of the shallow landslide inventory is limited to a few years. The location and properties 

(extent, number of occurrences) of landslide events containing clusters of slope failures depends strongly on the 

stochastic nature (location, extent and magnitude) of the triggering rainfall and less on local terrain conditions. 

The consideration of all landslides of such a cluster could bias the analysis by giving an excessive weight to the 190 
local terrain conditions (Depicker et al., 2020). Thus, for the susceptibility analysis (see Section 3.2), we retained 

a maximum of 30 landslides per cluster, randomly sampled. For the inverse Γ analysis, those landslides selected 

per cluster and other isolate landslides are called distributions minus event. 

2.2 Multi-decadal forest dynamics 

In the study area, the agricultural land use is complex (multiple cropping, multi-layer farming) and highly dynamic 195 
due to crop rotations and associations, shifting cultivation, and the bimodal annual rainfall pattern (Heri‐Kazi and 

Bielders, 2021). A detailed regional land use mapping serving as input variable in our susceptibility and 

distribution analysis(see Section 2.3) is therefore not feasible (e.g. Jacobs et al., 2018) which is an approach that 

differs from what can commonly be done in non-tropical environments (e.g. Chen et al., 2019; Shu et al., 2019). 

However, the dynamics of the forest can be better constrained. Here, to complement the analysis conducted by 200 
Depicker et al. (2021b; see Section 2.1) that focused on the impact of deforestation on shallow landslides over the 

last 20 years, we reconstructed the forest dynamics over the last ~60 years (Fig. 2). We used the 1 m resolution 

orthomosaic generated from the RMCA’s aerial photographs of the years 1955-1958(Depicker et al.,2021a; Smets 

et al., to be submitted). The forest areas were delineated visually. The 2016 forest cover was extracted from the 

continental ESA CCI land cover model which is available at a 20 m resolution (ESA, 2016) and  has an accuracy 205 
of roughly 86 % in the region (Depicker et al., 2021b).  

 

In 1955-58, 42 % of the territory was already deforested (Fig. 2a). From 1955-58 to 2016, the loss of forest 

continued, the forest cover decreasing from 58 % to 24 % of the study area. The area affected by the forest loss 

over the last 60 years is larger than the remaining permanent forest (Fig. 2b). The comparison of forest areas 210 
between 1955-58 and 2016 allows to consider four classes for the forest dynamics. Permanent forest corresponds 

to forest areas that are present at both dates. The forest loss class corresponds to forests present in 1955-58 that 

have disappeared in 2016. Since it is impossible to identify for each portion of the landscape the exact cause of 

forest loss, this class contains a mix of various forest management practices and other causes of forest cut/removal. 

The forest gain class represents the new forest that has appeared since 1955-58. Similarly, the causes associated 215 
with the occurrence of new forest are not exactly known; afforestation and natural forest regeneration being 

certainly drivers at play. Permanent anthropogenic environment (e.g. cropland, grassland, built-up land) means 

that the landscape was not forested in both dates and it is assumed that it remained so during that period. 
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Figure 2: Forest cover dynamics over the last 60 years. (a) Forest cover in 1955-58 and 2016; (b) Areas of forest 220 
cover change between 1955-58 and 2016. Details for the images used in this figure are in Table 1. 

2.3 Landslide susceptibility and distribution analysis  

Landslide susceptibility approaches are numerous and more or less complex in terms of modelling implementation 

and result interpretability (Reichenbach et al., 2018). In a regional analysis where our study area is included, 

Depicker et al.( 2020) used three susceptibility models, namely logistic regression, random forests, and support 225 
vector machines. These models gave relatively similar results in terms of quantitative performance and 

geomorphological plausibility. The same conclusion about marginal differences between susceptibility models can 

be drawn from many other studies. Since our study does not aim to develop a new methodology nor to show the 

ability to use complex methods; we relied on a logistic regression approach (Hosmer and Lemeshow, 2000) to 

determine the predictor variables related to the occurrence of the different types of landslides. Logistic regression 230 
isa straightforward method that has been widely used (Reichenbach et al., 2018) and that allows a rather easy 

interpretation of the results (e.g. Jacobs et al., 2018; Depicker et al., 2020). 

Frequency ratio (Lee and Pradhan, 2007) models were used as a complementary approach to better understand the 

role of each variable in the contribution of the landslide occurrence in terms of process characterization. For 

example, when slope angle is highlighted by a logistic regression model as a significant variable, we still remain 235 
unaware of the types of slopes that actually influence the occurrence of landslides.  
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The analysis was carried out with a distinction between shallow landslides and old deep-seated landslides. The 

analysis was done at the scale of one point (pixel) per landslide to avoid spatial autocorrelation (e.g. Jacobs et al., 

2018; Kubwimana et al., 2021). The point is manually positioned in the center of the landslide’s trigger area. In 

doing so we also avoid the selection of the highest point of the landslide that rarely corresponds to its initiation 240 
point (Dille et al., 2019). The digital elevation model used for the analysis (see Table 1) is posterior to the 

occurrence of the old deep-seated landslides. Therefore, for deep-seated landslides, a point outside the trigger area 

where topography does not appear to have been disturbed by the instability is considered for the calculation of the 

slope associated with the landslide origin. Calculating the slope values at the level of the landslide head for this 

type of landslide would give values that are the consequences of landslides rather than the causes of their origin. 245 

2.3.1 Predictor variables 

The purpose of this research is to examine the predictor variables that contribute to the susceptibility of the 

different landslide types; not to look directly for their triggering factors. Nevertheless, the different predictors, 

highlighted by the susceptibility analysis allow to discuss the triggering conditions. 

We used eight predictors that can be considered as natural factors that influence landslide occurrence (Table 1): 250 
elevation, slope angle, planar curvature, profile curvature, topographic wetness index (TWI), aspect, lithology, and 

distance to faults. Although these predictors are commonly used (Reichenbach et al., 2018), it is worth specifying 

that, here, elevation is used as proxy for climatic conditions, namely orographic rainfall and the probability of 

thunderstorms, as the resolution of regional-climate derived products is too low (at least 2.8 km) to accurately 

capture at the scale of our study area the effect of elevation on rainfall (Monsieurs et al., 2018a; Van de Walle et 255 
al., 2020; Monsieurs, 2020; Depicker et al., 2021b). Distance to fault is used to determine the possible contribution 

of seismic activity in the occurrence of deep-seated landslides not only as a triggering factor (e.g. Keefer, 1984), 

but also as a rock weathering factor (e.g. Vanmaercke et al., 2017). Using the fault pattern is the most appropriate 

option to tackle the seismic zonation context since the most detailed seismic hazard assessment for this part of the 

continent is at a spatial resolution of 2.2 km; i.e. at a resolution that is too coarse for our study (Delvaux et al., 260 
2017). 

Table 1. Landside predictor variables used for the susceptibility and frequency ratio analyses and the ancillary data 

from which they are derived. 

         Variable  Type Source 

- Elevation (m) Continuous  

 

 

Nasa Shuttle Radar Topography 

Mission (SRTM) Version 3.0 Global 1 

arc second Data (Temporal Extent 

2000-02-11 to 2000-02-21) 

 

https://lpdaac.usgs.gov/products/srtm

gl1v003/ 

 

 

  

- Slope angle (°) Continuous 

- Profile curvature (m
-1

) Continuous 

- Plan curvature (m
-1

) Continuous  

- Topographic wetness index Continuous 

- Slope aspect (°) Categorical 

• north Dummy 

• northeast Dummy 

• east Dummy 

• southeast  Dummy 

• south Dummy 

• southwest Dummy  

• west Reference* 

• northwest  
 

Dummy 

- Lithology Categorical  

 

 

Geological map of the Kivu at scale 

1/500,000 (Laghmouch et al., 2018) 

 

• Old basalts  Dummy 

• Black shales and tillite Dummy 

• Granites (mica and leuco-granites) Dummy 

• Granitic rocks (rhyolite) Reference* 

• Pelites and quartzopelites Dummy 

• Gneiss and micaschists Dummy 

- Distance to faults (m) Continuous 

Distance to roads (m) Continuous https://www.openstreetmap.org/histor

y#map=9/-2.0475/28.5535 

https://lpdaac.usgs.gov/products/srtmgl1v003/
https://lpdaac.usgs.gov/products/srtmgl1v003/
https://www.openstreetmap.org/history#map=9/-2.0475/28.5535
https://www.openstreetmap.org/history#map=9/-2.0475/28.5535
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- Forest dynamics between 1955-58 and 2016 
Categorical 

 

Forest cover in 2016: (ESA, 2016: 

http://2016africalandcover20m.esrin.e

sa.int/viewer.php) 

Forest cover in 1955-58: Historical 

aerial photographs and derived 

orthomosaics from RMCA (see 

Section 2.1) 

• Permanent forest Reference* 

• Forest loss Dummy 

• Forest gain Dummy 

• Permanent anthropogenic environment Dummy 

                           * Each dummy variable is compared with the reference group. 

Besides the natural factors, we identified two anthropogenic predictors (Table 1): forest dynamics and distance to 265 
roads. For the forest dynamics, we considered the four classes identified in Fig. 2. The main roads were retrieved 

from OpenStreetMap. Good knowledge of the study area and the analysis of the very high-resolution Google Earth 

images allowed us to verify the high accuracy of the road network proposed by OpenStreetMap. Using the 

historical photographs, we observe that the main roads date back to the colonial times and that no major changes 

in the network have occurred over the last 60 years. The few recent landslides that are observed in the field along 270 
these roads confirm the assumption that the direct impact of the main roads on the occurrence of recent landslides 

is limited. These landslides are clearly linked to the road cut topography, i.e. topographic conditions that cannot 

be constrained at the resolution of the SRTM elevation data (1” or roughly 30 m). They are often of very limited 

size, i.e. at a size that is too small to be features that can be identified in © Google Earth in a consistent manner. 

For our study, the distance to roads is taken as a proxy for human settlement, trail density, and intensity and 275 
diversity of agricultural practices. Since motorized transportation means are very limited in the region, the 

population growth, the expansion of villages and the agricultural activities are indeed highly associated with the 

main road networks.  

Prior to analysis, the predictor variables were resampled at the resolution of the SRTM elevation data, a resolution 

that provided the best results in similar regions (Jacobs et al., 2018). The association between the dependent 280 
variable and each predictor variable was tested using the Pearson 𝜒2 test at a 95 % level of confidence (Van Den 

Eeckhaut et al., 2006; Dewitte et al., 2010). The predictors were tested for multicollinearity, variables with variance 

inflation factor (VIF) > 2 being excluded from the analysis (Van Den Eeckhaut et al., 2006; Dewitte et al., 2010). 

The flat areas (slope angle < 1°) that are spread across the region were not excluded from the analysis since their 

total extent is limited and their impact on the inflation of susceptibility model performance would be minor 285 
(Brenning, 2012; Depicker et al., 2020).  

For the analysis of deep-seated landslides, the predictor variables associated with anthropogenic activities were 

excluded. For the shallow landslides, the ‘distance to faults’ variable was also excluded. As explained earlier, the 

shallow landslide inventory represents a narrow time window of observation. As such, the spatial distribution of 

the shallow landslides could be biased by the stochastic pattern of the recent heavy rainfall events and 290 
anthropogenic disturbances rather than being the reflect of the longer-term impact of weathering conditions 

associated with seismicity. 

2.3.2 Logistic regression 

Logistic regression is used to describe the relationship between a binary dependent variable (the presence or 

absence of landslides) and one or more independent predictor variables (Hosmer and Lemeshow, 2000). Hence, 295 
the logistic regression does not only require landslide data, but also non-landslide data. We sampled this non-

landslide data by generating a number of random points that is equal to the number of landslides in the inventory 

in order to avoid prevalence (Hosmer and Lemeshow, 2000). Non-landslide points were randomly generated 

outside a 40 m buffer zone around landslide areas. The basic equation for logistic regression is:  

log (
𝑃

1−𝑃
) = 𝛼 + ∑ 𝛽𝑖𝑋𝑖

𝑛
𝑖=1          (1) 300 

 

where P is the likelihood of landslide occurrence and takes values between 0 and 1, α is the intercept of the model, 

Xi represents i-th of n predictors, and 𝛽𝑖 the accompanying coefficient that has to be fitted to the data.  

 

Calculations were performed in an RStudio environment version 1.4.1717 with LAND-SE software (Rossi and 305 
Reichenbach, 2016). In order to be considered in the final logistic regression equation, continuous variable 

coefficients needed to be significant at the 95 % level of confidence (e.g. Jacobs et al., 2018). For categorical 

http://2016africalandcover20m.esrin.esa.int/viewer.php
http://2016africalandcover20m.esrin.esa.int/viewer.php
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variables, as soon as one dummy variable was significant, all other dummy variables were included in the model 

(e.g. Depicker et al., 2020). The quality of the models was judged by (i) the prediction rate (e.g. Depicker et al., 

2020), (ii) a visual plausibility inspection of the susceptibility maps after reclassifying each map into four classes 310 
of increasing susceptibility that cover 40 %, 30 %, 20 %, and 10 % of the study area, and (iii) considering the area 

under the curve (AUC) of the receiver-operating-characteristics curve (ROC). The AUC values vary between 0 

and 1 and can be interpreted as the model’s capacity of differentiating between landslide and non-landslide 

locations. An AUC = 0.5 shows that the model performance is equivalent to random classification, while an AUC 

= 1 indicates a perfect classification (Hosmer and Lemeshow, 2000). Training and validation datasets were taken 315 
in the proportions of 70 % and 30 %, respectively (Broeckx et al., 2018; Fang et al., 2020). 

 

We assessed the importance of each individual predictor for the logistic regression in two ways. First, we calculated 

the AUC for landslide susceptibility models that only relied on the considered predictor, to assess the extent to 

which this predictor can be used to differentiate between landslide and non-landslide locations. Although this is 320 
quite a straightforward approach that does not consider the possible interplay among predictor variables, this allow 

to have a first quantitative insight on  the importance of each variable to the susceptibility models (Depicker et al., 

2020).  A second way to determine the impact of the predictors was the analysis of the odds ratio (OR). The OR 

of a predictor expresses how a change of a predictor value translates into an increase/decrease in the odds of 

landsliding, whereby the odds of landsliding is calculated as 
𝑃

1−𝑃
 (see Eq. (1)). The ORi of predictor i is calculated 325 

as: 

𝑂𝑅𝑖 = 𝑒𝛽𝑖𝛿𝑖 ,           (2) 

whereby 𝛽𝑖 is the coefficient of predictor i, and 𝛿𝑖 is the increase in predictor 𝑖. For continuous variables an 

arbitrary but realistic value for 𝛿𝑖 is chosen. For the dummy variables, 𝛿𝑖 equals 1. For the categorical variables, 

the OR for each dummy reflects an increase or decrease relative to the reference variable (Kleinbaum and Klein, 330 
2010). 

2.3.3 Frequency ratio 

The frequency ratio model considers each landslide predictor variable individually and classifies its values into a 

set of bins to indicate for each bin of the predictor variable the probability of occurrence of a landslide (Lee and 

Pradhan, 2007; Lee et al., 2007; Kirschbaum et al., 2012). The frequency ratio is calculated as:  335 

Fr𝑐𝑏 =
a𝑐𝑏

aT
⁄

A𝑐𝑏
A𝑇

⁄
 ,          (3) 

where Frcb is the frequency ratio value for a bin 𝑏 = (1,2, … , 𝑛) of a predictor variable 𝑐 = (1, 2, … , m), 𝑎𝑐𝑏  is 

the cumulative landslide area within bin 𝑏 of predictor 𝑐, 𝑎𝑇 is the cumulative landslide area in the entire study 

area, 𝐴𝑐𝑏 is the area attributed to bin 𝑏 of predictor 𝑐, and A𝑇 is the total extent of the study area. 

3 Results  340 

3.1 Landslide inventory 

Overall, we mapped 2730 landslides (Fig. 3a; Table 2), which is an extension of 326 % compared to the inventory 

of Depicker et al. (2020). The landslides are diverse in terms of size, age and type (Fig. 4). The inventoried 

landslides cover ~3 % of the study area. The largest landslide is old and deep-seated (426 ha), while the smallest 

detected landslide is shallow (16 m2). The landslides are grouped into five categories (Fig. 3a; Table 2):  345 

• Old deep-seated landslides represent 45,5 % of the inventoried landslides and cover 93 % of the total 

landslide affected area; 

• Shallow landslides represent 40.4 % of inventoried landslides, but represent only 2.7 % of the total 

affected area. These landslides are all recent; 

• Recent deep-seated landslides represent a small percentage of landslides (5.8 %) but cover an area (2.9 350 
%) similar to shallow landslides; 

• Mining landslides (that also include quarrying landslides) represent 5.6 % of the inventoried landslides 

and cover 1.2 % of the total landslide affected area;  
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• Road landslides: the inventory shows that 115 landslides are located within 50 meters of roads. 60 of 

these landslides are shallow, 13 recent and deep-seated, 35 old and deep-seated, and 7 are mining 355 
landslides. The shallow and recent deep-seated landslides located within 50 m of roads were classified as 

road landslides. We assume that the occurrence of these 73 landslides is associated with road construction. 

The old deep-seated landslides located close to roads were retained in the old deep-seated landslide group 

because their timing is likely to precede road construction.  

 360 

 

Figure 3: (a) Landslide inventory obtained from the image analysis and extent of the forest cover in 2016 (after 

ESA, 2016). Numbers represent clusters of shallow landslides that are associated with heavy rainfall events dated 

in ascending order from oldest to most recent. (b) Additional landslides identified only in the field. 

Several clusters of shallow landslides related to heavy convective rainfall events have occurred in recent years. 365 
One of the clusters is related to the Kalehe rainstorm of October 2014 (Fig. 3a: event 2; Fig. 4a) reported by Maki 
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Mateso and Dewitte (2014). This event triggered 634 shallow landslides, 346 of them being connected to talwegs 

and providing materials to 17 debris flows. Ten debris flows were particularly destructive and deadly when they 

reached villages on the shores of Lake Kivu (Maki Mateso and Dewitte, 2014). In this area, 14 shallow landslides 

present on © Google Earth images before this event were reactivated. Field observations and interviews with local 370 
populations indicated that the shallow landslides that are not associated with these clusters are also rainfall-

triggered.  

Table 2: Typology, size properties, and identification methods of the inventoried landslides (LS). The percentages 

of landslides linked to the TanDEM-X hillshade images (% of LS in TanDEM-X) represent landslides that could 

not be very well identified in © Google Earth alone.  375 

Landslide  
type 

Number 
of LS 

% of 
LS 

% of 
LS area 

Max area 
(ha) 

Min area 
(m²) 

Average 
area (ha) 

Standard 
deviation (ha) 

% of LS in 
©Google 

Earth 

% of LS in 
TanDEM-X 

Deep-

seated (old) 

1243 45.5 93.0 426.4 604 12.6 26.8 94.9 5.1 

Deep-
seated 

(recent)  

159 5.8 2.9 28.9 210 3.1 5.4 97.5 2.5 

Shallow 1103 40.4 2.7 53.8 16 0.4 2.4 100 0 

Mining  152 5.6 1.2 13.4 99 1.4 1.9 100 0 

Road  73 2.7 0.1 2.0 149 0.3 0.3 100 0 

All 

landslides 

2730 100 100 
  

6.2 
 

97.5 2.5 

 

Table 3: Field-based validation of the landslides (LS) inventoried from the image analysis. True Positive (TP) = 

landslides that were mapped in the images and validated in the field. False Positive (FP) = landslides that were 

mapped in the images but not validated in the field. False Negative (FN) = landslides that were identified solely 

in the field. Precision = TP / (TP+TN) 380 

Landslide type Number of LS mapped in the 
images and checked in the field 

TP FP FN Precision (%) Total number of LS viewed in 
the field 

Deep-seated (old) 248 239 9 60 96 308 

Deep-seated 
(recent) 

47 44 3 4 94 51 

Shallow 426 420 6 55 99 481 

Mining 15 9 6 2 60 17 

Road 50 45 5 5 90 55 

Total 786 757 29 126 96 912 

 

Landslide mapping was largely done using © Google Earth; the TanDEM-X hillshades being useful to confirm 

the identification of about one fifth of the old deep-seated landslides (Table 2). Fieldwork carried out to validate 

786 landsides (25% of the inventory) showed that they were identified with a precision of 96 % (Table 3). Old 

deep-seated landslides and shallow landslides were mapped with the highest precision. Mining landslides were 385 
mapped with a lower precision due to the difficulty of differentiating between landslide processes and 

anthropogenic soil disturbance in © Google Earth imagery. The field validation allowed to also map an extra 126 

landslides (Fig. 3b) that could only be identified in the field (Table 3). For the old deep-seated landslides, this 

represents an extra 25% of observations. Nevertheless, landslides identified only in the field were not considered 

in the analysis to avoid biases due to overrepresentation. 390 

Each debris flow is connected to up to hundreds of shallow landslides that act as source areas.  A clear distinction 

was made between these sources and the debris flow path and deposition areas (Fig. 4a). Out of a total of the 184 

debris flows identified from the images, 90 with a length-to-width ratio > 50 were excluded from the analysis since 

they show greater similarities to debris-rich floods than to the other landslides present in the region (Malamud et 

al., 2004). Nevertheless, the shallow landsides acting as source areas were kept in the analysis. Also, 22 very large, 395 
old, deep-seated landslides were excluded from the analysis because they have complex main scarps where it is 
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difficult to determine the pixels that best represent the natural conditions of occurrence. Overall, from the 2730 

landslides identified from the images, 2618 landslides were used for the subsequent analysis.  

 

Figure 4: Examples of landslide types (according to Varnes’ new classification – Hungr et al., 2014). (a) Cluster 400 
of recent debris avalanches, flowslides and debris flows triggered during an intense rainfall event (25/10/2014) in 

the vicinity of Kalehe (-2.041°S, 28.874°E). The landslide source areas are identified. (b) Old earthflow (-2.053°S, 

28.660°E). (c) Old rock slides/rock avalanches/ with path-dependent rock falls (-2.007°S, 28.708°E). (d) Recent 

deep-seated rotational slide that occurred in 2002 (-1.530°S, 28.708°E). (e) Recent deep planar slide that occurred 

in 1994 and created a dammed lake (-1.521°S, 28.977°E). (f) Recent slides, flows and avalanches associated with 405 
mining activities that occurred from 2013 onwards (-1.563°S, 28.885°E). 

The inverse Γ distribution fits well the distributions for all the subsets of the inventory, except recent deep-seated 

and mining landslides (Fig. 5a,c). There is also a good fit with this inventory, which supports its use for further 

susceptibility analysis. The Wilcoxon rank comparison test confirms significant statistical differences (p-value < 

0.05) among the area distributions (Fig. 5b).  410 
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Figure 5: Landslide (LS) area characteristics.  (a, c) Landslide frequency-area distributions for each landslide types. 

(b) Boxplots showing the distribution of landslide area for each landslide type. Boxplots show the lower and upper 

quartiles and median. The whiskers of each box represent 1.5 times the interquartile range. The average area of 

the landslides (red dots) is provided for each boxplot and the outliers beyond whiskers are shown as dots. The 415 
number of landslides in each class is shown in brackets.  

 

Figure 6: Shallow landslide characteristics and forest cover dynamics. (a, c) Boxplots showing the distribution of 

landslide area and landslide slope, respectively, for each land cover class. A detailed description of boxplots is 

provided in Figure 5. (b, d) Shallow landslide frequency-area distributions for each land cover class. 420 
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72 % of the shallow landslides are found in areas of forest loss (Fig. 6). The landslides in the permanent 

anthropogenic environment have the largest mean area, followed by the landslides in permanent forest, and the 

landslides in areas of forest loss. In forest gain zones, landslides are on average the smallest. The Wilcoxon rank 

comparison test confirms significant statistical differences (p-value < 0.05) among the landslide area distributions. 

The same differences are also confirmed for the landslide slope distribution (Fig. 6b). In permanent forest areas, 425 
shallow landslides occur on steeper slopes compared to shallow landslides in anthropogenic environments (Fig. 

6b). The analysis of the completeness of the inventory (Fig. 6b,d) shows that an acceptable distribution emerges 

for each category of shallow landslides except for the landslide inventory in permanent forest minus event (Fig. 

6b). 

3.2 Landslide susceptibility and distribution analysis  430 
 

The Pearson 𝜒2 tests confirm the association between the dependent variable and each predictor variable at a 95 

% level of confidence. There was not multicollinearity between the predictors (VIF < 2) retained for this study.  

Depicker et al. (2020) assessed the impacts of the size of the landslide training dataset to calibrate a landslide 

susceptibility model. They showed that the quality of a susceptibility assessment is questionable if the number of 435 
landslides is too small. In view of the low number of recent deep-seated, mining, and road landslides in the present 

study (Table 3), we did not calibrate susceptibility models from these three types of landslides. Instead, we tested 

these inventories against the two susceptibility models computed from the shallow and/or old deep-seated landslide 

datasets (Fig. 7). 

 440 
Figure 7: Landslide susceptibility models and prediction rates. (a) shallow landslides (AUC: 0.78); (b) old deep-

seated landslides (AUC: 0.82); (c) prediction rate curves for shallow, mining, and road landslides; (d) prediction 
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rate curves for old deep-seated, recent deep-seated, mining and road landslides. The red highlight (c, d) represents 

the 10 % of the region with the highest landslide susceptibility values.  

 445 
The two susceptibility models of shallow and old deep-seated landslides show similar AUC and prediction rates 

(Fig. 7). At first sight, both models have spatial similarities of high susceptibility on the eastern part of the region; 

while the entire western part is weakly susceptible (Fig. 7a,b). However, when we go into detail, the  spatial 

patterns of the susceptibility values of the two models are quite different as it reflects the differences in the 

importance of the predictors included in the assessment (Table 4, Table 5). The univariate AUC values are all 450 
above 0.5 (Table, 4). All predictors considered for both types of landslides where thus considered in the 

multivariate logistic regression models (Depicker et al., 2020). 

Table 4: Relative importance of the predictors of the logistic regression models for shallow and old deep-seated 

landslides based on AUCi (ranked in descending order).  

Shallow landslides Old deep-seated landslides 

Predictor AUCί Predictor AUCί 

Forest loss 63 Profile curvature. 65.7 

Elevation 61.5 Elevation 65.3 

Slope angle 60.1 Distance to faults 64.2 

Distance to roads 59.7 Slope angle 64 

Pelites and quartzopelites 58.9 TWI 63.8 

Permanent anthropogenic environment 55.9 Plan curvature. 59.5 

TWI 55.3 Pelites and quartzopelites 54.5 

Plan curvature. 53.1 South 52.4 

East 52.2 North-east 52 

South-east 52.2 North 51.6 

Black shales and tillite 51.8 East 51.1 

Old basalts 51.8 South-east 50.7 

North 51.8 Granites (mica and leuco-granites) 50.7 

Granites (mica and leuco-granites) 50.8 Old basalts 50.5 

South-west 50.7 Gneiss and micaschists 50.5 

Gneiss and micaschists 50.6 South-west 50.3 

South 50.6 Black shales and tillite 50.3 

Profile curvature 50.4 North-west 50.2 

North-east 50.4   

North-west 50.1   

Forest gain *   

* Only four landslides are present in this category.  455 

 

Table 5. Results of the logistic regression models for shallow landslides and old deep-seated landslides. 

                                                                   Shallow landslides Old deep-seated landslides  

Step 

 

𝛿𝑖  
 AUC 0.78 

   0.82 
  

Predictor variable   LR coef.   Odds ratio LR coef.   Odds ratio 

(Intercept) -3.560 ***   -1.661 *** 
   

Elevation   0.001 *** 1.857 0.002 *** 2.535 500 

Slope aspect Northwest 0.842 * 2.321 -0.366 
 

0.694 1 

 
West Ref. -  Ref. -    

 
Southwest 0.674 * 1.962 -0.232 

 
0.793 1 

 
South 0.630 * 1.878 0.032 

 
1.033 1 

 
Southeast 0.599 

 
1.820 -0.345 

 
0.708 1 

 
East 0.513 

 
1.670 -0.578 ** 0.561 1 

 
Northeast 0.622 

 
1.863 -0.897 *** 0.408 1 

 
North 0.481 

 
1.618 -0.831 *** 0.436 1 
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Plan curvature -0.272 * 0.580 0.166 *** 1.394 2 

Profile curvature -0.190 
 

0.999 -0.463 *** 0.998 0.005 

Slope angle 0.050 *** 1.649 0.033 *** 1.391 10 

Topographic wetness index 0.093 
 

1.000 -0.281 *** 1.000 0.001 

Lithology Old basalts -0.753 - 0.471 0.201 
 

1.223 1 

 

Black shales and 

tillite 
-1.207 *** 0.299 -1.358 *** 0.257 1 

 
Granite coarse grain -17.026 - 0.000 -2.126 *** 0.119 1 

 

Granitic rocks 
(rhyolite) 

Ref. 
 

 Ref. 
 

 
  

 
Pelites and 

quartzopelites 
-1.274 *** 0.280 0.155 

 
1.168 1 

 

Gneiss and 

micaschists 
0.506 

 
1.659 -0.468 

 
0.626 1 

Distance to roads 0.000 *** 0.931 no -  500 

Distance to faults no -  0.000 *** 0.914 500 

Forest cover dynamics Permanent forest Ref. -  no -    

 Forest loss 0.922 *** 2.514     1 

 
Gain forest no   -  no -    

 

Permanent 
anthropogenic 

environment  

-0.159 

 

0.853 no -  1 

No = variable not included in the logistic regression model 

Ref. = reference category of the dummy variable 

Coefficient included in the logistic regression model = *p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 460 
 

Forest loss has a large influence on the occurrence of shallow landslides as deforestation increases the odds of 

landsliding by a factor 2.5 (Table 4, Table 5). However, anthropogenic environments appear to be less landslide-

prone than permanent forest. Slope is similarly important for the prediction of both types of landslides (Table 4) 

but has a slightly larger impact on the odds of deep-seated landsliding that on the odds of shallow landsliding 465 
(Table 5). Slope aspect has a greater impact on the occurrence of shallow landslides than for old deep-seated 

landslides. It appears that the plan curvature reduces the occurrence of shallow landslides while it affects the 

occurrence of old deep-seated landslides. The effect of lithology is also different for shallow and deep-seated 

landslides. For shallow landslides, the gneiss and micaschists are most landslide-prone and the lowest 

susceptibility is associated with black shales, tillite and old basalts. For deep-seated landslides, black shales, tillite 470 
and old basalts favour landslides while gneiss and micaschists do not. ‘Distance to roads’ and ‘distance to faults’ 

have a significant but rather limited impact on shallow and old deep-seated landslides, respectively.  

Mining and road landslides are poorly predicted using the shallow landslide model (Fig. 7c). Recent deep-seated 

landslides are reasonably well predicted using the old deep-seated landslide model, which validates to some extend 

the multi-temporal predicting performance of the assessment. The prediction of road and mining landslides using 475 
the same model is also poor, although less problematic for the mining landslides (Fig. 7d). 
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Figure 8: Frequency distribution for shallow and deep-seated landslides in function of different predictor variables. 

The corresponding frequency ratio is shown for each class. The green, orange and red curves indicate the 480 
proportion of forest cover, forest loss and slope > 25°, respectively, in the different classes of the predictor 

variables.  

 

Slope angle is an important driver for shallow and old deep-seated landslides (Fig. 8a,b). Both types of landslides 

are favoured by slopes angles > 20-25°. We observe a trend in the landscape of increasing slopes and forest loss 485 
and decreasing forest cover with increasing elevation (Fig. 8c). The decrease in forest cover at high altitudes is 

also associated with a natural change of the vegetation: bamboo vegetation is found at 2300-2600 m asl and 

subalpine vegetation such as ferns occur at 2400-3300 m asl (Mokoso et al., 2013; Cirimwami et al., 2019). At 

higher elevations (> 2000 m), shallow landslides occur more frequently, and this can probably be explained by a 

cumulative effect of forest loss, steeper slopes and increased orographic rainfall associated to these elevations (Fig. 490 
8c). The positive frequency ratio in the 1400-1700 m elevation class is related to the area of permanent 

anthropogenic environment. This zone is characterized by low forest cover and relatively low slopes (Fig. 8c). 

Deep-seated landslides are also favoured by steeper slopes and higher elevations. Regarding the dynamics of forest 

cover (Fig. 8e), the occurrence of shallow landslides is favoured in the deforested areas.  

 495 
4 Discussion 

4.1 Landslide types and completeness of the inventory 

Despite its high precision, we are aware that the inventory is still incomplete. This is particularly the case for the 

shallow landslides because their inventory covers a maximum period of 13 years. Furthermore, their scars can 

quickly be altered by natural vegetation regrowth, land reclamation and erosion (Malamud et al., 2004; Van Den 500 
Eeckhaut et al., 2007; Kubwimana et al., 2021). In addition, small landslides frequently happen unnoticed at the 
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resolution of the satellite images (Guzzetti et al., 2012). Finally, field validation showed that a significant 

proportion of old deep-seated landslides can be missed from image analysis. This is because identifying the exact 

limits of the failed mass may not be easy for old deep-seated landslides, particularly in forest areas (Malamud et 

al., 2004). While building the inventory, we remained conservative and mapped only the features for which we 505 
had high confidence. As the protocol for landslide identification over the whole region was uniform and the number 

of identified landslides relatively important, we trust that the inventory is reliable and representative enough for 

the analysis.   

The frequency area distributions of all landslides types (Fig. 5a,c), with the exception of recent deep-seated and 

mining landslides, are similar to what has been observed in other parts of the world (e.g., Malamud et al., 2004; 510 
Guns & Vanacker, 2014; Jacobs et al., 2017; Depicker et al., 2020). For the recent deep-seated landslides, an 

overrepresentation is noticed at the level of the smallest landslides and the rollover is absent. Since the spectral 

signature of these landslides is pronounced, we cannot invoke here a problem of subjectivity in the mapping. 

Additionally, we can give a high trust in the completeness of the inventory as evidenced by field validation that 

showed that almost no landslides were missed (Table 3). Therefore, we posit that this divergence in size is related 515 
to a lower influence of successive slope failure in the increase of landslide area through time; in other words, recent 

landsides did not have the time to growth (Tanyaş et al., 2018). This process of successive failures has been well 

documented for the Ikoma landslide, south of Bukavu (Figure 1b; Dille et al., 2019). The distribution of the mining 

landslides is irregular and different from what is typically observed, with a rollover that is flattened and a sudden 

increase in the frequency of the smallest slope failures. Similarly, to the inventory of the recent deep-seated 520 
landslides, the completeness and the reliability of the mapped features cannot be much questioned. We suggest 

that this unusual area distribution is the result of the human-induced alteration of the environmental conditions 

(see Section 4.4). To our knowledge, there are no similar studies that have been carried out on artificial mining 

slopes. Further investigations on other cases would be needed to verify our hypothesis.  

The presence of a rollover in the frequency-area distribution of the shallow landslides in the anthropogenic 525 
environment (Fig. 6b,d) is in opposition to what we could have expected considering the study by Van Den 

Eeckhaut et al. (2007). This study was also conducted in a populated rural environment and also relied on an 

inventory that is not associated with one single landslide triggering event. They did not find a positive power-law 

relation for the smaller landslides which is separated from the larger landslides by a rollover. This difference 

probably lies in the fact that our study area is much more landslide-prone. The research by Van Den Eeckhaut et 530 
al. (2007) was indeed carried out in a hilly region of Belgium where the temperate climate is much less favourable 

to the yearly occurrence of shallow landslides. Furthermore, the fact that our inventory covers a smaller time period 

than that of Van Den Eeckhaut et al. (2007), that our region is not altered by mechanized farming, and that human 

activities such as works associated with building and road construction and drainage systems are much less present, 

i.e. factors that are highlighted as causes of landslides in Belgium, are issues that can also be invoked to explain 535 
this divergence in the frequency area distribution of shallow landslides.  

Under permanent forest, we do not observe a rollover point in the shallow landside distribution, (Fig. 6b). We 

hypothesize that the smallest landslides may be hidden under the canopy and therefore less visible on satellite 

images. A second explanation is that the presence of trees and their roots increases slope stability and therefore 

the minimal critical area for landsliding (Milledge et al., 2014). 540 
 

4.2 Drivers of deep-seated landslides  

The old deep-seated landslide susceptibility model is the first model proposed for the region that focuses only on 

deep-seated processes. The model shows a good quantitative prediction performance, both in terms of AUC and 

prediction rate. The model shows that terrain morphology and seismic activity seem to play a dominant role in 545 
deep-seated landslide distribution in the study area. The frequency ratio analysis (Fig. 8b,d) further supports this 

as it highlights the association of landslides with steep slopes and higher elevations, i.e. in topographic contexts 

nearer to the ridge crests that are known to amplify seismic shaking (Meunier et al., 2008). The role of elevation 

as a driver of more humid conditions should, however, not be ignored as rainfall is also known to trigger deep-

seated landslides (LaHusen et al., 2020). Also, the role of the long-term weathering of the landscape and the 550 
occurrence of non-triggered landsides should not be underestimated (Dille et al., 2019). Lithology is of lesser 

importance in our study area; which is in agreement with the findings of Depicker et al. (2021b) that show that the 

various lithologies in the region have similar rock strength properties. As we also show that the topography and 
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the presence of faults play a role, it is another factor that can explain that the influence of lithology is somehow 

limited. 555 
 

The lower prediction rate of the recent deep-seated landslides using the old deep-seated landslide model could be 

related to the fact that the observations are made on a period that is too short to apprehend the full panel of 

environmental conditions that led to old deep-seated landslides. For example, no earthquake-induced recent deep-

seated landslides were observed (Dewitte et al., 2021), whereas seismicity is an important component of the old 560 
deep-seated landslide model. In addition, the climatic and seismic conditions have evolved over the past tens of 

thousands of years (Felton et al., 2007; Wassmer et al., 2013; Ross et al., 2014; Smets et al., 2016). For example, 

the region experienced an abrupt shift from drier conditions to more humid conditions around 13,000 BP (Felton 

et al., 2007; Wassmer et al., 2013). In addition, about 10,000 BP, Lake Kivu water highstands were ~100 m above 

the current level, which could have triggered few large landslides (Ross et al., 2014; Dewitte et al., 2021). This 565 
change in the lake level was not only due to a shift in the climatic conditions but also to the formation of the 

Virunga Volcano Province that created a dam on the upstream part of the Rift basin that used to drain northwards 

(Figure 1b; Haberyan and Hecky, 1987). During that period of volcano formation, the regional geodynamics and 

the seismicity pattern were different (Smets et al., 2016). Hence a large part of the old deep-seated landslides may 

have been triggered under different conditions (Dewitte et al., 2021). 570 
 

Old and recent deep-seated landslides differ also in terms of size (Fig. 4). There have not been any major events 

during the past 60 years that caused large landslides comparable to the largest old deep-seated landslides (of area 

106 m2). We identify five possible factors to explain this difference. First, our window of observation is too narrow 

to apprehend the impact of forcing events of high-magnitude such as large earthquakes (Marc et al., 2019). Second, 575 
the past environmental conditions may have been more favourable to large slope failures. A third factor explaining 

the size difference between old and recent deep-seated processes is that larger landslides are less frequent but have 

a longer-lived morphology legacy; therefore smaller old deep-seated landslides may no longer be visible. The 

fourth factor is that old landslides have a size that is the legacy of a history of phases of slope deformation, and 

not one single slope failure (Tanyaş et al., 2018) as evidenced in the analysis of the nearby Ikoma landslide (Fig. 580 
1b; Dille et al., 2019). Fifth, amalgamation must not be excluded (Marc and Hovius, 2015), especially for the 

eldest features. Overall, our current knowledge does not allow to give more credit to one factor in particular. The 

common sense is certainly to assume that the difference in landslide size is the reflection of a combination of 

factors. 

 585 
4.3 Drivers of shallow landslides  

 

Rainfall is the trigger of the shallow landslides that we have identified in this study, which is in agreement with 

the other studies in the region (Dewitte et al., 2021; Kubwimana et al., 2021). The spatial distribution of shallow 

landslides differs from the distribution of deep-seated landslides. This is mainly due to the anthropogenic factors 590 
such as deforestation that influence shallow processes (Table 4). The regional susceptibility model also indicates 

that deforestation is the most important factor in their occurrence (Table 5). Similarly, the analysis of frequency 

ratios shows that landslides disproportionately occur within areas that were deforested in the past 60 years, 

demonstrating the role of the forest in slope stabilization (Grima et al., 2020). 

 595 
Shallow landslides in forest loss areas (Fig. 6a,b) have, on average, a smaller size compared to landslides in forest. 

This observation is in line with the findings of Depicker et al. (2021b) and is attributed to the decrease of regolith 

cohesion by reduced root cohesion and evapotranspiration due to forest loss (Glade, 2003; Masi et al., 2021), 

which allows for a smaller minimum critical area for landsliding (Milledge et al., 2014). In short, human-induced 

land cover change is associated with an increase in the number of landslides and a shift of the frequency-area 600 
distribution towards smaller landslides (Guns and Vanacker, 2014).  

 

In permanent anthropogenic environments (Fig. 6a,c), shallow landslides are less frequent, larger, and occur on 

less steep slopes as compared to shallow landslides in forest. Firstly, the steepest slopes in the anthropogenic 

environments have been subject to increased landslide erosion the first few years after the original forest cover 605 
was removed (prior to 1955-1958) (Depicker et al., 2021b). As a result, we can assume that steep slopes in 

anthropogenic environments have less regolith available for landsliding compared to steep slopes in permanent 

forest areas. This process of regolith depletion is further exacerbated in cropland. Wilken et al.(2021) have 
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measured in the region that erosion in cropland sites can reach up to about 40 cm in 55 years. Similarly, Heri-Kazi 

and Bielders (2021a) measured mean erosion rates of the order of 11 mm/year on cropland. Regolith erosion has 610 
therefore the consequence of reducing the spatial extent of areas where landslides can occur. A second process 

that may explain the landslide pattern in the anthropogenic environments is that, in parallel to regolith erosion, one 

also has sedimentation and the formation of colluvium (Wilken et al., 2021); which results in local accumulation 

of material. The material forms a loose sedimentary deposit usually in places with lower slope angles. This could 

be extra material available for the formation of landslides. Hence, we have less areas available for landslides, but 615 
a concentration of the susceptible places. A third explanation is probably related to soil management practices that 

influence erosion and water infiltration. In the region, usually on the less steep terrain, drainage ditches that favour 

water infiltration and hence an increase in pore-water pressure are widely applied by farmers (Heri‐Kazi and 

Bielders, 2021b).  

 620 
4.4 Drivers of mining landslides and road landslides 

 

The poor prediction of mining and road landslides susceptibility models (Fig.7)shows that they respond to different 

environmental factors. Road construction and mining activities are commonly associated with the presence of 

slope cuts and an increase of slope angle. These altered local topographic conditions cannot be constrained in the 625 
covariates derived from the SRTM or similar available products. In addition, the disturbances induced by roads 

and mining activities are not limited to the sole change of slope angle conditions. For example, this also implies 

changes in water runoff and infiltration, debuttressing, presence of fills and eventual overloading, excess stress 

from engine/digging, i.e., conditions that can influence the size and frequency characteristics of landslides 

(Brenning et al., 2015; Arca et al., 2018; Froude and Petley, 2018;  McAdoo et al., 2018; Vuillez et al., 2018; 630 
Tanyaş et al., 2022).  

Road landslides are mostly shallow. While it is obvious that roads create favourable conditions for the initiation 

of landslides, as observed in other studies in the region (Dewitte et al., 2021; Kubwimana et al., 2021), an accurate 

spatio-temporal regional pattern of these human-induced slope failures cannot be assessed here. A substantial 

proportion of road landslides can only be observed in the field (Table 3). In addition, landslides along roads can 635 
easily disappear due to maintenance works. Furthermore, many of the main roads were already present in the 

1950’s, their current impact therefore being altered.  

Overall, mining conditions seem to lead to landslides whose smallest features are more frequent than what would 

occur under natural conditions as attested in the frequency area distribution (see Section 4.1). The area of mining 

landslides is significantly larger than that of road landslides and their regional distribution is slightly more in 640 
agreement with the characteristics of deep-seated landslides (Fig. 7d), which is logical as mining activities are 

related to the lithological characteristics of the landscape.  

Considering the recent development of the mining activities in the region (Butsic et al., 2015; Tyukavina et al., 

2018; Musumba Teso et al., 2019), we can assume with confidence that the associated landslides represent slope 

instabilities that have occurred over a period of about 20 years whereas the recent deep-seated landslides represent 645 
slope failures that have occurred over the last 60 years. The distribution of the mining landslides is also restricted 

spatially to some lithologies. With these specificities in mind and the fact that the number of inventoried mining 

and recent deep-seated landslides is relatively similar, respectively 152 and 159 (Table 2), this study confirms that 

mining activities increase the odds of landsliding. It has implication not only in terms of hazard assessment but 

also in assessing the population at risk, knowing that mined sites are populated. This is to be put in parallel with 650 
the findings of Depicker et al. (2021a) that show that the risk of shallow landslides has increased significantly in 

the region during the last decades in the places where mining activities are found due, notably, to an increase in 

population.  

5 Conclusions 

Our study improves the understanding of landslide processes and the human impact thereon in tropical rural 655 
mountainous environments. The use of several sources of data allowed to build a very detailed and comprehensive 

landslide inventory in time and space for the region; a source of information unprecedented in such environments. 

This inventory enabled the grouping of landslides into five types: old and recent deep-seated landslides, shallow 

landslides, mining landslides and road landslides. Among deep-seated landslides, historical aerial photographs 

from the 1950’s were an added value in the sense that they were used for differentiating between old and recent 660 
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slope processes. We deduce the differences in the driving factors and area distribution for old and recent deep-

seated landslides, suggesting that factors of landslide occurrence are either different or change over time depending 

on geodynamic and/or climatic conditions. The role of anthropogenic factors has been established in the occurrence 

of shallow landslides. Deforestation initially increases landsliding, but in the long term, when forest is permanently 

converted into agricultural land, landslide frequency appears to be lower compared to permanent forest lands. The 665 
impact of forest, forest cover changes and soil management practices depends on topographic conditions and 

regolith availability. The factors of occurrence of mining landslides significantly increase landsliding in areas that, 

under natural conditions, would be less prone to slope failures. Our analysis shows that the importance of human 

activities must be considered when investigating landslide occurrence in regions under anthropogenic pressure. 

This is particularly needed when one sees that the changing spatio-temporal patterns of landslides associated with 670 
these activities tend to further exacerbate the risks that the population face. On a more technical/methodological 

note, our study also demonstrates the importance of considering the timing of landslides in susceptibility and 

distribution assessments. 
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