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Abstract 15 

Tropical mountainous regions are often identified as landslide hotspots with growing population pressure. 

Anthropogenic factors are assumed to play a role in the occurrence of landslides in these populated regions, yet 

the relative importance of these human-induced factors remains poorly documented. In this work, we aim to 

explore the impact of forest cover dynamics, roads and mining activities on the characteristics and causes 

occurrence of landslides in the Rift flank west of Lake Kivu in the DR Congo. To do so, we compile a 20 

comprehensive multi-temporal inventory of 2730 landslides of different types that we grouped into five categories 

and that we analyzed accordingly it via frequency-area statistics, frequency ratio distribution and logistic 

regression susceptibility assessment. We find that natural factors contributing to the cause occurrence of recent 

(post 1950’s) and old deep-seated landslides were either different or changed over time. Under similar topographic 

conditions, shallow landslides are more frequent, but of smaller size, in areas where deforestation has occurred 25 

since the 1950’s. We attribute this size reduction to the decrease of regolith cohesion due to forest loss, which 

allows for a smaller minimum critical area for landsliding. In areas that were already deforested in 1950’s, shallow 

landslides are less frequent, larger, and occur on less steep slopes. This suggests a combined role between regolith 

availability and soil management practices that influence erosion and water infiltration. Mining activities increase 

the odds of landsliding. Mining and road landslides are larger than shallow landslides but smaller than the recent 30 

deep-seated instabilities, and they are controlled by environmental factors that are not present under natural 

conditions. Our analysis demonstrates the role of human activities on the occurrence of landslides in the Lake Kivu 

region. Overall, it highlights the need to consider this context when studying hillslope instability characteristics 

and distribution patterns in regions under anthropogenic pressure. Our work also highlights the importance of 

considering the timing of landslides over a multi-decadal period of observation. 35 
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1 Introduction 

Tropical mountainous regions are often identified as landslide hotspots with particularly vulnerable populations 

(Vanacker et al., 2003;) Broeckx et al., 2018; Froude and Petley, 2018; Emberson et al., 2020). Nevertheless, the 

current knowledge on landslide processes in these regions remains limited as it is mostly derived from 40 

susceptibility models made at continental or global levels (Stanley and Kirschbaum, 2017; Broeckx et al., 2018; 

Dewitte et al., 2022). Because they are not based on detailed local inventories, such models do not allow to properly 

consider region-specific characteristics and causes of landslides (Depicker et al., 2020).  

The growing demographic pressure and widespread land use and land cover (LULC) changes are expected to 

increase the frequency and impacts of landslides in tropical mountainous regions, especially in rural environments 45 

((Vanacker et al., 2003;) Sidle et al., 2006; DeFries et al., 2010; Mugagga et al., 2012; Guns and Vanacker, 2014; 

Froude and Petley, 2018; Depicker et al., 2021a;  Muñoz-Torrero Manchado et al., 2021). Deforestation and the 

associated loss of tree roots usually lower the slope stability by decreasing regolith cohesion and altering drainage 

patterns; whose effects are particularly pronounced on the occurrence of shallow landslides (Sidle and Bogaard, 

2016). Mining, quarrying and road construction alters the environment and commonly increases the landside 50 

activity (e.g. Sidle et al., 2006; Brenning et al., 2015; Arca et al., 2018; McAdoo et al., 2018; Vuillez et al., 2018; 

Muñoz-Torrero Manchado et al., 2021;Tanyaş et al., 2022). However, the exact impact of these anthropogenic 

factors on landslide processes (e.g. types, size, dynamics) depends on their timing and their legacy effect. It also 

depends on other environmental conditions such as slope angle and lithology (Depicker et al., 2021b). Developing 

further our understanding of landslides and their natural- and human-induced causesdrivers is therefore needed, 55 

especially in regions such as the tropics where the dearth of data is commonplace (Dewitte et al., 2022). 

To achieve this, a detailed multi-temporal regional landslide inventory spanning several decades is essential 

(Guzzetti et al., 2012). New methodologyies have been proposed in the past years to automatically map landslides 

with the use of, for example, Earth Observation data and machine learning (e.g. Prakash et al. 2021). However, 

such automotic approaches only perform well with recent landslides with a clear spectral signature. Futhermore, 60 

they are not always well adapted to an accurate understanding of the processes (Jones et al., 2021), especially when 

the landscapes are complex and highly influenced by human activities (Jacobs et al., 2018). The need for a visual 

identification of landslides is even more important when the movements that are studied are older and have 

occurred at an unknown period of time, much before the availability of sattelite images (Pánek et al., 2021).  

Historical aerial photographs offer the best opportunity at the regional level to work across several decades, both 65 

to compile a landslide inventory but also to reconstruct LULC changes (Glade, 2003; Guns and Vanacker, 2014 ; 

Shu et al., 2019). It is complementary to very high spatial resolution satellite images such as those available on © 

Google Earth (Fisher et al., 2012), which are widely used in the identification of landslides in many environments 

(e.g. Broeckx et al., 2018; (Pánek et al., 2021) Depicker et al., 2020); . Fieldwork is also essential in order to 

validate observations made from the different image sources, to discriminate between deep-seated and shallow 70 

processes, or to confirm depth estimates (Dewitte et al., 2021). Field surveys also help to understand the role of 

human activities on slope dynamics (Dewitte et al., 2021). Overall, sufficiently long and precise multi-decadal 

records of landslide activity and LULC are rare (e.g. (Glade, 2003;) (Guns and Vanacker, 2014;) (Shu et al., 2019). 
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The aim of this work is to explore the role played by natural and human factors on the occurrence of landslides in 

a rural tropical mountainous region under high anthropogenic pressure. More specifically, we are interested in the 75 

Rift flank west of Lake Kivu, a region in the DR Congo where recent studies have shown that landslides are 

frequent and that recent deforestation has impacted the occurrence of shallow landslides (Maki Mateso and 

Dewitte, 2014; Depicker et al., 2020; Depicker et al., 2021b). We aim to: (1) further develop the existing landslide 

dataset and compile a comprehensive detailed multi-temporal regional landslide inventory spanning several 

decades; (2) describe the general characteristics of the landslides, and (3) analyze their causes landslide 80 

distributions and regional susceptibility for shallow and old deep-seated landslides according to different 

controlling factors, with special attention to multi-decadal forest cover dynamics. Historical aerial photographs 

and careful field surveys are key elements in this study. 

1.12.1. 2 Environmental settings and current knowledge of the landslide processes 

 85 

The study is conducted in the Rift flank west of Lake Kivu in the DR Congo (Fig. 1a). It is one of the most seismic 

regions of the African continent, crossed by active faults and composed of six main rock types of varying age (Fig. 

1b) (Delvaux et al., 2017; Laghmouch et al., 2018). A significant portion of the study area is made of lithologies 

from the Archaen, the Mesoproterozoic and the Neoproterozoic, with various degrees of chemical weathering and 

fracturing (Kampunzu et al., 1998). Lastly formed rocks are the old Neogene basalts, highly weathered, that were 90 

deposited between 11-4 Ma years. The presence of mineral resources (gold and 3T minerals - tin, tantalum and 

tungsten) favours the proliferation of, often illegal, artisanal and small-scale mining and quarrying (Van Acker, 

2005; (Geenen, 2012;) Bashwira et al., 2014). Industrial mining is not present in the region and there is no new 

road construction associated with it (Bashwira et al., 2014).  

The region has a tropical savannah/monsoon climate tempered by its altitude elevation (Peel et al., 2007). The 95 

natural vegetation is mainly montane forest, still preserved in the Kahuzi-Biega National Park (Imani et al., 2017). 

However, between the 17th and 18th centuryies, the region began to suffer the first strong effects of human 

influence through deforestation (Nzabandora and Roche, 2015). The roads built during the late 19th and first half 

of the 20th centuries 20th played a key role on further expanding this (Aleman et al., 2018). There has been 

significant deforestation and forest loss in recent decades as well (Basnet and Vodacek, 2015; Depicker et al., 100 

2021a,b). Selective cutting is done for energy needs, house construction, furniture production and dugout canoes. 

Clearcutting, mostly small-scale, is associated with agriculture, mining and quarrying activities and road 

construction (Musumba Teso et al., 2019; Drake et al., 2019). After deforestation, the land is often permanently 

converted to agricultural land (cropland, grassland) or tree plantations (Depicker et al., 2021a). In some places, 

however, natural regeneration of the forest takes place (Masumbuko et al., 2012). 105 
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Figure 1: (a) Relief and (b) geology of the study area. The study area covers the districts of Kabare, Kalehe, 

Walikale, Masisi and Idjwi. Topography is derived from SRTM 1 arc second. Lithology and fault maps are from 110 

Laghmouch et al. (2018). 

The study area (~ 5,700 km²) is one of the most densely populated regions of the DR Congo with more than 200 

inhabitants/km² living mainly from agriculture, mining and quarrying activities (Linard et al., 2012; Michellier et 

al., 2016; Trefon, 2016). This region plays a key role in the supply of food and charcoal to the smaller rural centers 

and to the cities of Goma and Bukavu. Over the last decades, the population in both cities increased from a few 115 

tens of thousands to more than one million inhabitants (Michellier et al., 2016). The population growth in the study 

area was partly caused by the influx of Rwandan refugees in 1994-1995, as well as the growing artisanal mining 

industry that offers job opportunities (Bashwira et al., 2014; Van Acker, 2005;   Butsic et al., 2015;). The road 

network is relatively limited. Most roads are dirt roads and are poorly maintained, and there are no built-up walls 

(concrete, gabions) to stabilize the cut slopes. 120 

Compiled from a limited number of very-high spatial resolution © Google Earth images partially covering the 

study area, a first preliminary inventory of a few hundred landslides showed that the landslide processes are diverse 



  

6 
 
 

and that their impacts can be high (Maki Mateso and Dewitte, 2014). The inventory over the North Tanganyika-

Kivu Rift region (hereafter called NTK Rift) of which our study area is a subregion was further expanded by 

Depicker et al. (2020) through the use of © Google Earth imagery with a search time limited per image. This 125 

inventory consisted of shallow and deep-seated landslides without but paying attention to a further differentiation 

of the processes. Furthermore, it did not make a distinction between these two categories of processes in a 

susceptibility analysis. Depicker et al. (2020) showed that, in addition to slope angle, land cover is a key landslide 

predictor in the NTK Rift region. A more detailed investigation of the annual evolution of the forest cover over 

the last 20 years showed that deforestation increases landslide erosion 2-8 times during a period of approximately 130 

15 years before it eventually falls back to a level similar to forest conditions (Depicker et al., 2021b). A catalogue 

of > 150 accurately dated landslide events, i.e. landslides that can be clearly associated with a common well-

defined triggering rainfall event over the same area,   over the last two decades was compiled for the NTK Rift for 

over the last two decades. It , allowing toallowed demonstrate the role of rainfall seasonality on the annual 

distribution of the occurrence of new landslides (Monsieurs et al., 2018b;)   Dewitte et al., 2021). Among 135 

thoseSome landslide events, some consist of clusters of several hundreds of shallow slope failures. The spatial 

extent of such clustered events can be larger than 10 km². A few events like these occur during each wet season 

(Depicker et al., 2020; Dewitte et al., 2021). They are commonly associated with particularly intense convective 

rainfall (Monsieurs et al., 2018b). None of the dated landslide events were triggered by earthquakes (Dewitte et 

al., 2021). This do not discard the role of earthquakes in triggering landslides in the region, but instead this reminds 140 

us that the return period of earthquakes with a magnitude large enough to trigger slope instabilities can be much 

longer than a few decades (Delvaux et al., 2017). Their potential impact, rather localized compared to that of 

climatic drivers, can be inexistent during a narrow time window of observation (Delvaux et al., 2017; Dewitte et 

al., 2021; Depicker et al., 2021b).  

Landslides can also occur due to rock weathering and regolith formation (Dille et al., 2019). In other words, the 145 

long-term evolution of these preconditioning drivers alone can explain that a slope can also fail without any 

apparent trigger. This implies that the many landslides that occur in isolation of other events must be interpreted 

with care in terms of origin. For these features, it is not clear from a visual analysis of the satellite images whether 

they can be directly linked to a direct trigger. In addition, many landslides occur in isolation along roads (Dewitte 

et al., 2021). Some of the larger, historical, landslides (i.e. landslides that do not appear active in our oldest source 150 

of information) clearly occurred more than 10,000 years ago (Dewitte et al., 2021).   

23 Material and methods 

2.1 3.1 Landslide inventory 

The landslide inventory is a significant n update of the inventory compiled by Depicker et al. (2020) who used 

only © Google Earth imagery for mapping the features whatever their type, age, and rainfall, seismic or non-155 

triggered origin as explained in Section 2.. Since the focus of (Depicker et al., (2020) was to study landslides over 

a much larger region than the one of the present research, their inventory was not only built on a limited search-

time on our study area but, also, without any field survey. Moreover, in our research we differentiated between the 

processes types (according to the updated Varnes’ classification proposed by (Hungr et al., (2014) and timing of 

landsliding. We strongly relied on three image products: 160 
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• A careful and detailed 3D (elevation exaggeration of 1) visual interpretation of © Google Earth 

images from 2005 to 2019, which provides a complete coverage of the region at a very high spatial 

resolution (~0.5 m), often multi-temporal (Depicker et al., 2021b);; 

• The interpretation of two hillshade images derived from a TanDEM-X digital elevation model (DEM) 

provided at 5 m resolution and covering most of the region (see Albino et al., (2015) and Dewitte et 165 

al., (2021) for technical explanation on the production of the DEM). The hillshade images were 

produced with a sun elevation angle of 30° and sun azimuth angle of 315° and 45°; 

• The stereoscopic analysis of one single cover of historical panchromatic photographs acquired during 

the 1955-1958 period at the scale ~1/50,000 (i.e. about 1 m spatial resolution on the ground); the 

photographs are conserved at the Royal Museum for Central Africa (RMCA, Belgium).  170 
 

The historical aerial photographs allowed to differentiate between old deep-seated landslides (i.e. landslides with 

an unknown time of origin and already present that can be identified on the photographs) and recent deep-seated 

landslides that have occurred during the last 60 years (i.e. after the acquisition of the photographs). The aerial 

photographs were not used for mapping shallow landslides since this inventory would be biased. Indeed, the spatial 175 

resolution of the photographs is twice lower than that of the images in © Google Earth. Furthermore, the 

photographs provide a single temporal cover, whereas the multi-temporal © Google Earth images cover 

information for an imagery range of up to 13 years, i.e. the age difference between the oldest and youngest image. 

(e.g. Minova, Kalehe, Matanda in Fig. 1: Depicker et al., 2021b).  

The estimation of the depth of a landslide is important when the role of LULC is to be considered; shallow 180 

landslides being much more sensitive to the vegetation characteristics than deep-seated landslides (Sidle and 

Bogaard, 2016). In the literature, a landslide is usually defined as shallow when the depth of its surface of rupture 

ranges between 2 to 5 m (Keefer, 1984; Bennett et al., 2016; Sidle and Bogaard, 2016). Here, landslides with a 

depth < 5 m were considered as shallow. This criteria is based on the numerous field observations in the region 

that show that regolith can easily develop over a depth of several meters and that trees often show deep rooting 185 

systems. For the recent landslides, Following the approach of (Depicker et al. (, 2020) and Dewitte et al., (2021), 

the distinction between deep-seated and shallow landslides was made (Depicker et al., 2020; Dewitte et al., 

2021)by visually estimating the relative landslide depth from © Google Earth and the 5 m resolution TanDEM-X 

hillshade images. Extensive in situ-field observations of several hundreds of recent landslides where then carried 

out to valid the assessment. The landslides occurring in mining and quarrying sites were all classified as mining 190 

landslides, regardless of their depth. A specific attention was also given to the landslides occurring along roads. 

Mining and road landslides are assumed to be related to important anthropogenic changes in the topography. Once 

they have occurred, field observations show that these landslides are commonly reworked and often further 

excavated. Therefore, for these two types of landslides, their depth was not assessed.    

Six field surveys were conducted over the period 2016 to 2019 to validate the landslide inventory mapped from 195 

the images inventory and get extra information on the landslide timing and their causes  and triggers. Additional 

landslides identified only in the field were not considered in the analyses as they would bias the regional landslide 

distribution. The work was carried out by selecting representative areas with various types of landslides and areas 

with less or no landslides. These areas, that cover a total of ~20% of the region, were selected based on different 
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landscape characteristics (lithology, slope, LULC), while taking into account accessibility and safety issues that 200 

prevent to access many places (Jaillon, 2020). We also used information from media and grey literature (student 

theses, field reports from local research, and academic institutions and the civil protection).  

The frequency of landslide surface area distributions were analyzed to check the  completeness of the inventory 

and also enable comparison with other inventories in different environments. If the area frequency density can be 

properly fitted to an inverse Γ distribution, it is considered representative of the study area (Malamud et al., 2004). 205 

A bad fit could suggest that the inventory is biased and/or incomplete. Indeed, the use of several data sources in 

the inventory could bias the distribution of landslides, especially bearing in mind the limitations related to the 

interpretation of satellite images (Guzzetti et al., 2012). We performed this analysis separately for different five 

categories subsets of the inventory considered together or in isolation: all landslides, old and recent deep-seated 

landslides, shallow landslides, mining landslides (that also includes landslides associated with quarrying) and road 210 

landslides (see Section 3.1). The analysis of the frequency area distributions for the different shallow landslide 

populations defined according to the LULC and its dynamics was also used to infer about differences in 

environmental characteristics and slope failure mechanisms (Malamud et al., 2004; Van Den Eeckhaut et al., 2007; 

Guns and Vanacker, 2014; Tanyaş et al., 2018). Box-plots complemented the shallow landslide area analysis.  

Since tThe extent of the study area is relatively small when considering regional climatic characteristics and  given 215 

that the time window of the shallow landslide inventory built from Google Earth imagery  is limited to a few years. 

Therefore, tThe location and spatial properties (areal extent, number of occurrences) of a rainfall-triggered 

landslide events  forming a containing clusters of slope failures depends strongly on the stochastic nature (location, 

extent and magnitude) of the  triggering rainfall event and less on local terrain conditions. The consideration of all 

landslides of such a cluster could bias the analysis by giving an excessive weight to the local terrain conditions 220 

(Depicker et al., 2020). Thus, for the shallow landslides susceptibility analysis (see Section 3.2), we retained a 

maximum of 30 landslides per cluster, randomly sampled in order to strengthen the statistical analysis and avoid 

overfitting. The choice of this selection is also guided by the concern to have at least the minimum of data required 

for training and validating the susceptibility models (Depicker et al., 2020). For the inverse Γ analysis, those 

landslides selected per cluster and other isolate landslides are called distributions minus event. 225 

2 3.2 Multi-decadal forest dynamics 

In the study area, the agricultural land use is complex (multiple cropping, multi-layer farming) and highly dynamic 

due to crop rotations and associations, shifting cultivation, and the bimodal annual rainfall pattern  (Heri‐Kazi and 

Bielders, 2021b). A detailed regional land use mapping serving as input variable in our susceptibility for shallow 

landslides and their distribution analysis (see Section 2.3) is therefore not feasible (e.g. Jacobs et al., 2018) which 230 

is an approach that differs from what can commonly be done in non-tropical environments (e.g. Chen et al., 2019; 

Shu et al., 2019). However, the dynamics of the forest can be better constrained. Here, to complement the year to 

year analysis conducted by Depicker et al. (2021b; see Section 2.1) that focused on the impact of deforestation on 

shallow landslides over the last 20 years, we reconstructed the forest dynamics over the last ~60 years (Fig. 2). 

We used the 1 m resolution orthomosaic generated from the RMCA’s aerial photographs of the years 1955-1958 235 

(Depicker et al.,2021a; Smets et al., to be submitted); these photographs being the only existing pre-satellite era 

source of information. The forest areas were delineated visually. The 2016 forest cover was extracted from the 
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continental ESA CCI land cover model which is available at a 20 m resolution (ESA, 2016). This satellite-based 

product  and  has an accuracy of roughly 86 % in the region and has demonstrated its relevance in another study 

on landslides (Depicker et al., 2021b). Note also that between 2016 and 2019, i.e. the date that corresponds to the 240 

most recent images in Google Earth used for the inventory, very little forest cover changes were observed. .  

 

Knowing that the natural vegetation of the study area is forest (Section 2), iIn 1955-58, 42 % of the territory was 

already deforested (Fig. 2a). From 1955-58 to 2016, the loss of forest continued, the forest cover decreasing from 

58 % to 24 % of the study area. The area affected by the forest loss over the last 60 years is larger than the remaining 245 

permanent forest (Fig. 2b). The comparison of forest areas between 1955-58 and 2016 allows to consider four 

classes for the forest dynamics: 

• Permanent forest corresponds to forest areas that are present at both dates.  

• The forest loss class corresponds to forests present in 1955-58 that have disappeared in 2016. Since it is 

impossible to identify for each portion of the landscape the exact cause of forest loss, this class contains 250 

a mix of various forest management practices and other causes of forest cut/removal.  

• The forest gain class represents the new forest that has appeared since 1955-58. Similarly, the causes 

associated with the occurrence of new forest are not exactly known; afforestation and natural forest 

regeneration being certainly drivers at play.  

•  255 

• Permanent anthropogenic environment (e.g. cropland, grassland, built-up land) means that the landscape 

was not forested in both dates and it is assumed that it remained so during that period. 

•  
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Figure 2: Forest cover dynamics over the last 60 years. (a) Forest cover in 1955-58 and 2016; (b) Areas of forest 260 

cover change between 1955-58 and 2016. Details for the images used in this figure are in Table 1. 

 

 

2.3 43.3 Landslide susceptibility and distribution analysis  

Landslide susceptibility approaches are commonly used to determine the factors that control the occurrence of 265 

landslides. There are  numerous approaches which are and more or less complex in terms of modelling 

implementation, data needs, and result interpretability (Reichenbach et al., 2018). In a regional analysis where our 

study area is included, Depicker et al.( 2020) used three susceptibility models, namely logistic regression, random 

forests, and support vector machines. These models gave relatively similar results in terms of quantitative 

performance and geomorphological plausibility. The same conclusion about marginal differences between 270 

susceptibility models can be drawn from many other studies. Since our study does not aim to develop a new 

methodology nor to show the ability to use complex methods; we relied on a logistic regression approach (Hosmer 

and Lemeshow, 2000) to determine the predictor variables related to the occurrence of the different types of 

landslides. Logistic regression is a straightforward and relatively low-data demanding method that has been widely 

used (Reichenbach et al., 2018) and that allows a rather easy interpretation of the results (e.g. Jacobs et al., 2018; 275 

Depicker et al., 2020). 

Frequency ratio (Lee and Pradhan, 2007) models were used as a more simple but complementary approach to 

better understand the role of each variable in the contribution of the landslide occurrence in terms of process 
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characterization. For example, when slope angle is highlighted by a logistic regression model as a significant 

variable, we still remain unaware of the types of slopes that actually influence the occurrence of landslides.  280 

The analysis was carried out according to the five categories of landslides defined in Section 3.1. with a distinction 

between shallow landslides and old deep-seated landslides; rock falls being excluded from the analysis. The 

analysis was done at the scale of one point (pixel) per landslide to avoid spatial autocorrelation (e.g. Jacobs et al., 

2018; Kubwimana et al., 2021). The point is manually positioned in the central region er of the visually delineated 

landslide’s  sourcetrigger area to represent as close to reality as possible the conditions that caused its occurrence. 285 

In doing so we also avoid the selection of the highest point of the landslide that rarely corresponds to its initiation 

point (Dille et al., 2019). As stressed by (Tanyaş et al., (2018), landsides growth with time. Therefore, considering 

one pixel per landslide instead of its whole source area allows to avoid a temporal-induced bias.  The digital 

elevation model used for the analysis (see Table 1) is posterior to the occurrence of the old deep-seated landslides. 

Therefore, for deep-seated landslides, a point outside the sourcetrigger area where topography does not appear to 290 

have been disturbed by the instability is visually determined considered for the calculation of the slope associated 

with the landslide origin. Calculating the slope values at the level of the landslide head source for this type of 

landslide would give values that are the consequences of landslides rather than the causes of their origin. 

2.34.13.3.1 Predictor variables and landslide causes 

The purpose of this research is to examine the predictor variables (See supplementary Figure 1 for the predictor 295 

variables not displayed in the main manuscript) that contribute to the susceptibility of the different landslide 

categoriestypes. As such we mainly investigate the causes of the landslides. ; not to look directly for their triggering 

factors. Nevertheless, the different predictors, highlighted by the susceptibility analysis allow may also help to 

discuss the triggering conditions since the tectonic, landscape and climate of a region are commonly interlinked 

(Whipple, 2009;) (Whittaker, 2012).  300 

We used eight predictors that can be considered as natural factors that causeinfluence landslide occurrence (Table 

1): elevation, slope angle, planar curvature, profile curvature, topographic wetness index (TWI), slope aspect, 

lithology, and distance to faults. Although these predictors are commonly used (Reichenbach et al., 2018), it is 

worth specifying that, here, elevation is used as proxy for climatic conditions, namely orographic rainfall and the 

probability of convective rainfall/thunderstorms, as the resolution of regional-climate derived products is too low 305 

(at least 2.8 km) to accurately capture at the scale of our study area the effect of elevation on rainfall (Monsieurs 

et al., 2018a; Van de Walle et al., 2020; Monsieurs, 2020; Depicker et al., 2021b). Distance to fault is used to 

determine the possible contribution of seismic activity in the occurrence of deep-seated landslides not only as a 

triggering factor (e.g. Keefer, 1984), but also as a rock weathering factor (e.g. Vanmaercke et al., 2017). Using the 

fault pattern is the most appropriate option to tackle the seismic zonation context since the most detailed seismic 310 

hazard assessment for this part of the continent is at a spatial resolution of 2.2 km; i.e. at a resolution that is too 

coarse for our study (Delvaux et al., 2017). 

Table 1. Landside predictor variables used for the susceptibility and frequency ratio analyses and the ancillary data 

from which they are derived. 

         Variable  Type Source 
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- Elevation (m) Continuous  

 

 

Nasa Shuttle Radar Topography 

Mission (SRTM) Version 3.0 Global 1 

arc second Data (Temporal Extent 

2000-02-11 to 2000-02-21) 

 

https://lpdaac.usgs.gov/products/srtm

gl1v003/ 

 

 

 
 

- Slope angle (°) Continuous 

- Profile curvature (m
-1

) Continuous 

- Plan curvature (m
-1

) Continuous  

- Topographic wetness index Continuous 

- Slope aspect (°) Categorical 

• north Dummy 

• northeast Dummy 

• east Dummy 

• southeast  Dummy 

• south Dummy 

• southwest Dummy  

• west Reference* 

• northwest  
 

Dummy 

- Lithology Categorical  

 

 

Geological map of the Kivu at scale 

1/500,000 (Laghmouch et al., 2018) 

 

• Old basalts  Dummy 

• Black shales and tillite Dummy 

• Granites (mica and leuco-granites) Dummy 

• Granitic rocks (rhyolite) Reference* 

• Pelites and quartzopelites Dummy 

• Gneiss and micaschists Dummy 

- Distance to faults (m) Continuous 

Distance to roads (m) Continuous https://www.openstreetmap.org/histor

y#map=9/-2.0475/28.5535 

- Forest dynamics between 1955-58 and 2016 
Categorical 

 

Forest cover in 2016: (ESA, 2016: 

http://2016africalandcover20m.esrin.e

sa.int/viewer.php) 

Forest cover in 1955-58: Historical 

aerial photographs and derived 

orthomosaics from RMCA (see 

Section 2.1) 

• Permanent forest Reference* 

• Forest loss Dummy 

• Forest gain Dummy 

• Permanent anthropogenic environment Dummy 

                           * Each dummy variable is compared with the reference group. 315 

Besides the natural factors, we identified two anthropogenic predictors (Table 1): forest dynamics and distance to 

roads. For the forest dynamics, we considered the four classes identified in Fig. 2. The main roads were retrieved 

from OpenStreetMap. Good knowledge of the study area and the analysis of the very high-resolution Google Earth 

images allowed us to verify the high accuracy of the road network proposed by OpenStreetMap. Using the 

historical photographs, we observe that the main roads date back to the colonial times and that no major changes 320 

in the network have occurred over the last 60 years. The few recent landslides that are observed in the field along 

these roads confirm the assumption that the direct impact of the main roads on the occurrence of recent landslides 

is currently limited. These landslides are clearly linked to the road cut topography, i.e. topographic conditions that 

cannot be constrained at the resolution of the SRTM elevation data (1” or roughly 30 m). They are often of very 

https://lpdaac.usgs.gov/products/srtmgl1v003/
https://lpdaac.usgs.gov/products/srtmgl1v003/
https://www.openstreetmap.org/history#map=9/-2.0475/28.5535
https://www.openstreetmap.org/history#map=9/-2.0475/28.5535
http://2016africalandcover20m.esrin.esa.int/viewer.php
http://2016africalandcover20m.esrin.esa.int/viewer.php


  

13 
 
 

limited size, i.e. at a size that is too small to be features that can be identified in © Google Earth in a consistent 325 

manner. For our study, the distance to roads is taken as a proxy for human settlement, trail density, and intensity 

and diversity of agricultural practices. Since motorized transportation means are very limited in the region, the 

population growth, the expansion of villages and the agricultural activities are indeed highly associated with the 

main road networks.  

Prior to analysis, the non topographically-derived predictor variables were resampled at the resolution of the 330 

SRTM DEM elevation data;, a resolution that is commonly used is many susceptibility analyses (Reichenbach et 

al., 2018) and that provided the best results in similar regions (e.g. Jacobs et al., 2018). The association between 

the dependent variable and each predictor variable was tested using the Pearson 𝜒2 test at a 95 % level of 

confidence (e.g. Van Den Eeckhaut et al., 2006); Dewitte et al., 2010). The predictors were tested for 

multicollinearity, variables with variance inflation factor (VIF) > 2 being excluded from the analysis (e.g. Van 335 

Den Eeckhaut et al., 2006; Dewitte et al., 2010). The flat areas (slope angle < 1°) that are spread across the region 

were not excluded from the analysis since their total extent is limited and their impact on the inflation of 

susceptibility model performance would be minor (Brenning, 2012; Depicker et al., 2020).  

For the analysis of deep-seated landslides, the predictor variables associated with anthropogenic activities were 

excluded. For the shallow landslides, the ‘distance to faults’ variable was also excluded. As explained earlier, the 340 

shallow landslide inventory represents a narrow time window of observation. As such, the spatial distribution of 

the shallow landslides could be biased by the stochastic pattern of the recent heavy rainfall events and 

anthropogenic disturbances rather than being the reflect of the longer-term impact of weathering conditions 

associated with seismicity. 

2.343.3..2 Logistic regression 345 

Logistic regression is used to describe the relationship between a binary dependent variable (the presence or 

absence of landslides) and one or more independent predictor variables (Hosmer and Lemeshow, 2000). Hence, 

the logistic regression does not only require landslide data, but also non-landslide data. We sampled this non-

landslide data by generating a number of random points that is equal to the number of landslides in the inventory 

in order to avoid prevalence (Hosmer and Lemeshow, 2000). Non-landslide points were randomly generated 350 

outside a 40 m buffer zone around landslide areas. The basic equation for logistic regression is:  

log (
𝑃

1−𝑃
) = 𝛼 + ∑ 𝛽𝑖𝑋𝑖

𝑛
𝑖=1          (1) 

 

where P is the likelihood of landslide occurrence and takes values between 0 and 1, α is the intercept of the model, 

Xi represents i-th of n predictors, and 𝛽𝑖 the accompanying coefficient that has to be fitted to the data.  355 

 

Calculations were performed in an RStudio environment version 1.4.1717 with LAND-SE software (Rossi and 

Reichenbach, 2016). In order to be considered in the final logistic regression equation, continuous variable 

coefficients needed to be significant at the 95 % level of confidence (e.g. Jacobs et al., 2018). For categorical 

variables, as soon as one dummy variable was significant, all other dummy variables were included in the model 360 

(e.g. Depicker et al., 2020). The quality of the models was judged by (i) the prediction rate (e.g. Depicker et al., 
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2020), (ii) a visual plausibility inspection of the susceptibility maps after reclassifying each map into four classes 

of increasing susceptibility that cover 40 %, 30 %, 20 %, and 10 % of the study area, and (iii) considering the area 

under the curve (AUC) of the receiver-operating-characteristics curve (ROC). The AUC values vary between 0 

and 1 and can be interpreted as the model’s capacity of differentiating between landslide and non-landslide 365 

locations. An AUC = 0.5 shows that the model performance is equivalent to random classification, while an AUC 

= 1 indicates a perfect classification (Hosmer and Lemeshow, 2000). Training and validation datasets were taken 

in the proportions of 70 % and 30 %, respectively (Broeckx et al., 2018; Fang et al., 2020). 

 

We assessed the importance of each individual predictor for the logistic regression in two ways. First, we calculated 370 

the AUC for landslide susceptibility models that only relied on the considered predictor, to assess the extent to 

which this predictor can be used to differentiate between landslide and non-landslide locations. Although this is 

quite a straightforward approach that does not consider the possible interplay among predictor variables, this allow 

to have a first quantitative insight on  the importance of each variable to the susceptibility models (Depicker et al., 

2020).  A second way to determine the impact of the predictors was the analysis of the odds ratio (OR). The OR 375 

of a predictor expresses how a change of a predictor value translates into an increase/decrease in the odds of 

landsliding, whereby the odds of landsliding is calculated as 
𝑃

1−𝑃
 (see Eq. (1)). The ORi of predictor i is calculated 

as: 

𝑂𝑅𝑖 = 𝑒𝛽𝑖𝛿𝑖 ,           (2) 

whereby 𝛽𝑖 is the coefficient of predictor i, and 𝛿𝑖 is the increase in predictor 𝑖. For continuous variables an 380 

arbitrary but realistic value for 𝛿𝑖 is chosen. For the dummy variables, 𝛿𝑖 equals 1. For the categorical variables, 

the OR for each dummy reflects an increase or decrease relative to the reference variable (Kleinbaum and Klein, 

2010). 

 

2.34.3.3.3 Frequency ratio 385 

The frequency ratio model considers each landslide predictor variable individually and classifies its values into a 

set of bins to indicate for each bin of the predictor variable the probability of occurrence of a landslide (Lee and 

Pradhan, 2007; Lee et al., 2007; Kirschbaum et al., 2012). The frequency ratio is calculated as:  

Fr𝑐𝑏 =
a𝑐𝑏

aT
⁄

A𝑐𝑏
A𝑇

⁄
 ,          (3) 

where Frcb is the frequency ratio value for a bin 𝑏 = (1,2, … , 𝑛) of a predictor variable 𝑐 = (1, 2, … , m), 𝑎𝑐𝑏  is 390 

the cumulative landslide area within bin 𝑏 of predictor 𝑐, 𝑎𝑇 is the cumulative landslide area in the entire study 

area, 𝐴𝑐𝑏 is the area attributed to bin 𝑏 of predictor 𝑐, and A𝑇 is the total extent of the study area. 

 

34 Results  

34.1 Landslide inventory 395 
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Overall, we mapped 2730 landslides (Fig. 3a; Table 2), which is an extension of 326 % compared to the inventory 

of (Depicker et al. (2020)Depicker et al. (2020). The landslides are diverse in terms of size, age and type (Fig. 4). 

The inventoried landslides cover ~3 % of the study area. The largest landslide is an old and deep-seated complex 

movement (426 ha), while the smallest detected landslide is a shallow debris avalanche  (16 m2). The landslides 

are grouped into five categories (Fig. 3a; Table 2):  400 

• Old deep-seated landslides represent 45,5 % of the inventoried landslides and cover 93 % of the total 

landslide affected area. Most of these landslides are of the rock slide and rock avalanche types. Rock 

avalanches, although much less frequent, are also present. . Rock falls can be associated with the presence 

of the main scarps of these old landslides. However, tThey have not been considered in the inventory and 

the subsequent analysis; 405 

• Shallow landslides represent 40.4 % of inventoried landslides, but represent only 2.7 % of the total 

affected area. Most of these landslides are of the debris avalanche type. These landslides are all recent 

and clearly associated with rainfall. The landslides clustered events all fall in this category; 

• Recent deep-seated landslides represent a small percentage of landslides (5.8 %) but cover an area (2.9 

%) similar to shallow landslides. Most of the landslides are of the slide type. Their trigger, when 410 

identified, is associated with rainfall; 

• Mining landslides (that also include quarrying landslides) represent 5.6 % of the inventoried landslides 

and cover 1.2 % of the total landslide affected area;  

• Road landslides: the inventory shows that 115 landslides are located within 50 meters of roads. 60 of 

these landslides are shallow, 13 recent and deep-seated, 35 old and deep-seated, and 7 are mining 415 

landslides. Only the sThe shallow and recent deep-seated landslides located within 50 m of roadswere 

classified as road landslides; i.e. a total of. We assume that the occurrence of these 73 landslides is 

associated with road construction. The old deep-seated landslides located close to roads were retained in 

the old deep-seated landslide categorygroup because their timing is likely to precede road construction. 

The mining landslides were also retained in their respective category. 420 
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Figure 3: (a) Landslide inventory obtained from the image analysis and extent of the forest cover in 2016 (after 

ESA, 2016). Numbers represent clusters of shallow landslides that are associated with heavy rainfall events dated 

in ascending order from oldest to most recent. (b) Additional landslides identified only in the field. 425 

We identified sSeveral shallow landslides clustered events. clusters of shallow landslides related to heavy 

convective rainfall events have occurred in recent years. One of the events clusters is related to the Kalehe 

rainstorm of October 2014 (Fig. 3a: event 2; Fig. 4a) reported by Maki Mateso and Dewitte (2014). This rainfall 

event triggered 634 shallow landslides, 346 of them being connected to talwegs and providing materials to 17 

debris flows. Ten debris flows were particularly destructive and deadly when they reached villages on the shores 430 
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of Lake Kivu (Maki Mateso and Dewitte, 2014). In this area, 14 shallow landslides present on © Google Earth 

images before this event were reactivated. Field observations and interviews with local populations confirmed 

indicated that the shallow landslides that are not associated with these clustered eventss are also rainfall-triggered.  

Table 2: Typology, size properties, and identification methods of the inventoried landslides (LS). The percentages 

of landslides linked to the TanDEM-X hillshade images (% of LS in TanDEM-X) represent landslides that could 435 

not be very well identified in © Google Earth alone.  

Landslide  

type 

Number 

of LS 

% of 

LS 

% of 

LS area 

Max area 

(ha) 

Min area 

(m²) 

Average 

area (ha) 

Standard 

deviation (ha) 

% of LS in 

©Google 

Earth 

% of LS in 

TanDEM-X 

Deep-

seated (old) 

1243 45.5 93.0 426.4 604 12.6 26.8 94.9 5.1 

Deep-

seated 

(recent)  

159 5.8 2.9 28.9 210 3.1 5.4 97.5 2.5 

Shallow 1103 40.4 2.7 53.8 16 0.4 2.4 100 0 

Mining  152 5.6 1.2 13.4 99 1.4 1.9 100 0 

Road  73 2.7 0.1 2.0 149 0.3 0.3 100 0 

All 

landslides 

2730 100 100 
  

6.2 
 

97.5 2.5 

 

Table 3: Field-based validation of the landslides (LS) inventoried from the image analysis. True Positive (TP) = 

landslides that were mapped in the images and validated in the field. False Positive (FP) = landslides that were 

mapped in the images but not validated in the field. False Negative (FN) = landslides that were identified solely 440 

in the field. Precision = TP / (TP+TN) 

Landslide type Number of LS mapped in the 

images and checked in the field 

TP FP FN Precision (%) Total number of LS viewed in 

the field 

Deep-seated (old) 248 239 9 60 96 308 

Deep-seated 

(recent) 
47 44 3 4 94 51 

Shallow 426 420 6 55 99 481 

Mining 15 9 6 2 60 17 

Road 50 45 5 5 90 55 

Total 786 757 29 126 96 912 

 

Landslide mapping was largely done using © Google Earth; the TanDEM-X hillshades being useful to confirm 

the identification of about one fifth of the old deep-seated landslides (Table 2). Fieldwork carried out to validate 

786 landsides (25% of the inventory) showed that they were identified with a precision of 96 % (Table 3). Old 445 

deep-seated landslides and shallow landslides were mapped with the highest precision. Mining landslides were 

mapped with a lower precision due to the difficulty of differentiating between landslide processes and 

anthropogenic soil disturbance in © Google Earth imagery. The field validation allowed to also map an extra 126 
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landslides (Fig. 3b) that could only be identified in the field (Table 3). For the old deep-seated landslides, this 

represents an extra 2524% of fieldobservations (Table 3: see column FN). Nevertheless, landslides identified only 450 

in the field were not considered in the analysis to avoid biases due to overrepresentation. 

Each debris flow is connected to up to hundreds of shallow landslides that act as source areas.  A clear distinction 

was made between these sources and the debris flow path and deposition areas (Fig. 4a). Out of a total of the 184 

debris flows identified from the images, 90 with a length-to-width ratio > 50 were excluded from the analysis since 

they show greater similarities to debris-rich floods than to the other landslides present in the region (Malamud et 455 

al., 2004). Nevertheless, the shallow landsides acting as source areas were kept in the analysis. Also, 22 very large, 

old, deep-seated landslides were excluded from the analysis because they have complex main scarps where it is 

difficult to determine the pixels that best represent the natural conditions of occurrence. Overall, from the 2730 

landslides identified from the images, 2618 landslides were used for the subsequent analysis.  

 460 

Figure 4: Examples of landslide types (according to Varnes’ new classification – (Hungr et al., 2014)Hungr et al., 

2014). (a) Cluster of recent debris avalanches, flowslides and debris flows triggered during an intense rainfall 

event (25/10/2014) in the vicinity of Kalehe (-2.041°S, 28.874°E); the image illustrate a part of the landslides 

clustered event 2 shown on (Fig. 3a.). The landslide source areas of these shallow landslides are identified. (b) Old 

earthflow (-2.053°S, 28.660°E). (c) Old rock slides/rock avalanches/ with path-dependent rock falls (-2.007°S, 465 

28.708°E). (de) Recent deep-seated rotational slide that occurred in 2002 (-1.530°S, 28.708°E). (e)I Recent deep 
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planar slide that occurred in 1994 and created a dammed lake (-1.521°S, 28.977°E). (f) Recent slides, flows and 

avalanches associated with mining activities that occurred from 2013 onwards (-1.563°S, 28.885°E). 

Except for the recent deep-seated and mining landslides, tThe inverse Γ distribution fits well the distributions for 

all the other categories subsets of the inventory, except recent deep-seated and mining landslides (Fig. 5a,c); . 470 

There is also a good fit with this inventory, whicwhich h supports their its use for further susceptibility analysis. 

The Wilcoxon rank comparison test confirms significant statistical differences (p-value < 0.05) among the area 

distributions (Fig. 5b).  

 

Figure 5: Landslide (LS) area characteristics.  (a, c) Landslide frequency-area distributions for each landslide 475 

categorytypes. (b) Boxplots showing the distribution of landslide area for each landslide categorytype. Boxplots 

show the lower and upper quartiles and median. The whiskers of each box represent 1.5 times the interquartile 

range. The average area of the landslides (red dots) is provided for each boxplot and the outliers beyond whiskers 

are shown as dots. The number of landslides in each categorylass is shown in brackets.  
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 480 

Figure 6: Shallow landslide characteristics and forest cover dynamics. (a, c) Boxplots showing the distribution of 

landslide area and landslide slope, respectively, for each land cover class. A detailed description of boxplots is 

provided in Figure 5. (b, d) Shallow landslide frequency-area distributions for each land cover class. 

A majority (72 %) of the shallow landslides are is found in areas of forest loss (Fig. 6). The landslides in the 

permanent anthropogenic environment have the largest mean area, followed by the landslides in permanent forest, 485 

and the landslides in areas of forest loss. In forest gain zones, landslides are on average the smallest. The Wilcoxon 

rank comparison test confirms significant statistical differences (p-value < 0.05) among the landslide area 

distributions. The same differences are also confirmed for the landslide slope distribution (Fig. 6b). In permanent 

forest areas, shallow landslides occur on steeper slopes compared to shallow landslides in anthropogenic 

environments (Fig. 6b). The analysis of the completeness of the inventory (Fig. 6b,d) shows that an acceptable 490 

distribution emerges for each category of shallow landslides except for the landslide inventory in permanent forest 

minus event (Fig. 6b). 

34.2 Landslide susceptibility and distribution analysis  

 

The Pearson 𝜒2 tests confirm the association between the dependent variable and each predictor variable at a 95 495 

% level of confidence. There was not multicollinearity between the predictors (VIF < 2) retained for this study.  

Depicker et al. (2020) assessed the impacts of the size of the landslide training dataset to calibrate a landslide 

susceptibility model. They showed that the quality of a susceptibility assessment is questionable if the number of 
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landslides is too small. In view of the low number of recent deep-seated, mining, and road landslides in the present 

study (Table 3), we did not calibrate susceptibility models from these three types of landslides. Instead, we tested 500 

these inventories against the two susceptibility models computed from the shallow and/or old deep-seated landslide 

datasets, from which we could derive prediction rates (Fig. 7). 
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Figure 7: Landslide susceptibility models and prediction rates. (a) shallow landslides (AUC: 0.78); (b) old deep-505 

seated landslides (AUC: 0.82); (c) prediction rate curves for shallow, mining, and road landslides; (d) prediction 

rate curves for old deep-seated, recent deep-seated, mining and road landslides. The red highlight (c, d) represents 

the 10 % of the region with the highest landslide susceptibility values.  

 

The univariate AUC values are all above 0.5 (Table, 4). All predictors considered for both categoriestypes of 510 

landslides where thus considered in the multivariate logistic regression models (Depicker et al., 2020). The two 

susceptibility models of shallow and old deep-seated landslides show similar AUC and prediction rates (Fig. 7). 

At first sight, both models have spatial similarities of high susceptibility on the eastern part of the region; while 

the entire western part is weakly susceptible (Fig. 7a,b). However, when we go into detail, the  spatial patterns of 

the susceptibility values of the two models are quite different as it reflects the differences in the importance of the 515 

predictors included in the assessment (Table 4, Table 5). The univariate AUC values are all above 0.5 (Table, 4). 

All predictors considered for both types of landslides where thus considered in the multivariate logistic regression 

models (Depicker et al., 2020). 

Table 4: Relative importance of the predictors of the logistic regression models for shallow and old deep-seated 

landslides based on AUCi (ranked in descending order).  520 
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Shallow landslides Old deep-seated landslides 

Predictor AUCί Predictor AUCί 

Forest loss 63 Profile curvature. 65.7 

Elevation 61.5 Elevation 65.3 

Slope angle 60.1 Distance to faults 64.2 

Distance to roads 59.7 Slope angle 64 

Pelites and quartzopelites 58.9 TWI 63.8 

Permanent anthropogenic environment 55.9 Plan curvature. 59.5 

TWI 55.3 Pelites and quartzopelites 54.5 

Plan curvature. 53.1 South 52.4 

East 52.2 North-east 52 

South-east 52.2 North 51.6 

Black shales and tillite 51.8 East 51.1 

Old basalts 51.8 South-east 50.7 

North 51.8 Granites (mica and leuco-granites) 50.7 

Granites (mica and leuco-granites) 50.8 Old basalts 50.5 

South-west 50.7 Gneiss and micaschists 50.5 

Gneiss and micaschists 50.6 South-west 50.3 

South 50.6 Black shales and tillite 50.3 

Profile curvature 50.4 North-west 50.2 

North-east 50.4   

North-west 50.1   

Forest gain *   

* Only four landslides are present in this category.  

 

Table 5. Results of the logistic regression models for shallow landslides and old deep-seated landslides. 

                                                                   Shallow landslides Old deep-seated landslides  

Step 

 

𝛿𝑖 
 

 
AUC 0.78 

 

  0.82 

  
Predictor variable   LR coef.   Odds ratio LR coef.   Odds ratio 

(Intercept) -3.560 ***   -1.661 *** 

 

  

Elevation   0.001 *** 1.857 0.002 *** 2.535 500 

Slope aspect Northwest 0.842 * 2.321 -0.366 
 

0.694 1 

 
West Ref. -  Ref. -    

 
Southwest 0.674 * 1.962 -0.232 

 
0.793 1 

 
South 0.630 * 1.878 0.032 

 
1.033 1 

 
Southeast 0.599 

 
1.820 -0.345 

 
0.708 1 

 
East 0.513 

 
1.670 -0.578 ** 0.561 1 

 
Northeast 0.622 

 
1.863 -0.897 *** 0.408 1 
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North 0.481 

 
1.618 -0.831 *** 0.436 1 

Plan curvature -0.272 * 0.580 0.166 *** 1.394 2 

Profile curvature -0.190 
 

0.999 -0.463 *** 0.998 0.005 

Slope angle 0.050 *** 1.649 0.033 *** 1.391 10 

Topographic wetness index 0.093 
 

1.000 -0.281 *** 1.000 0.001 

Lithology Old basalts -0.753 - 0.471 0.201 
 

1.223 1 

 

Black shales and 

tillite 
-1.207 *** 0.299 -1.358 *** 0.257 1 

 
Granite coarse grain -17.026 - 0.000 -2.126 *** 0.119 1 

 

Granitic rocks 

(rhyolite) 
Ref. 

 

 Ref. 

 

   

 

Pelites and 

quartzopelites 
-1.274 *** 0.280 0.155 

 

1.168 1 

 

Gneiss and 

micaschists 
0.506 

 

1.659 -0.468 

 

0.626 1 

Distance to roads 0.000 *** 0.931 no -  500 

Distance to faults no -  0.000 *** 0.914 500 

Forest cover dynamics Permanent forest Ref. -  no -    

 Forest loss 0.922 *** 2.514     1 

 
Gain forest no   -  no -    

 

Permanent 

anthropogenic 

environment  

-0.159 

 

0.853 no -  1 

No = variable not included in the logistic regression model 

Ref. = reference category of the dummy variable 525 

Coefficient included in the logistic regression model = *p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 

 

Forest loss has a large influence on the occurrence of shallow landslides as deforestation increases the odds of 

landsliding by a factor 2.5 (Table 4, Table 5). However, anthropogenic environments appear to be less landslide-

prone than permanent forest. Elevation and Sslope angle is are similarly important for the prediction of both types 530 

of landslides (Table 4) but has have a slightly larger impact on the odds of deep-seated landsliding that on the odds 

of shallow landsliding (Table 5). Slope aspect has a greater impact on the occurrence of shallow landslides than 

for old deep-seated landslides. It appears that the plan curvature reduces the occurrence of shallow landslides while 

it favours affects the occurrence of old deep-seated landslides. The effect of lithology is also different for shallow 

and deep-seated landslides. For shallow landslides, the gneiss and micaschists are most landslide-prone and the 535 

lowest susceptibility is associated with black shales, tillite and old basalts. For deep-seated landslides, black shales, 

tillite and old basalts favour landslides while gneiss and micaschists do not. ‘Distance to roads’ and ‘distance to 

faults’ have a significant but rather limited impact on shallow and old deep-seated landslides, respectively.  

Mining and road landslides are poorly predicted using the shallow landslide model (Fig. 7c). The prediction of 

road and mining landslides using the deep-seated same model is also poor, although less problematic for the mining 540 

landslides (Fig. 7d). Recent deep-seated landslides are reasonably well predicted using the old deep-seated 

landslide model, which validates to some extend the multi-temporal predicting performance of the assessment. 
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The prediction of road and mining landslides using the same model is also poor, although less problematic for the 

mining landslides (Fig. 7d). 

 545 

 

Figure 8: Frequency distribution for shallow and deep-seated landslides in function of different predictor variables. 

The corresponding frequency ratio is shown for each class above the vertical bars. The green, orange and red 

curves indicate the proportion of forest cover, forest loss and slope > 25°, respectively, in the different classes of 

the predictor variables.  550 

 

Slope angle is an important driver for shallow and old deep-seated landslides (Fig. 8a,b). Both types of landslides 

are favoured by slopes angles > 20-25°. We observe a trend in the landscape of increasing slopes and forest loss 

and decreasing forest cover with increasing elevation (Fig. 8c). The decrease in forest cover at high altitudes 

elevations is also associated with a natural change of the vegetation: bamboo vegetation is found at 2300-2600 m 555 

asl and subalpine vegetation such as ferns occur at 2400-3300 m asl (Mokoso et al., 2013; Cirimwami et al., 2019). 

At higher elevations (> 2000 m), shallow landslides occur more frequently, and this can probably be explained by 

a cumulative effect of forest loss, steeper slopes and increased orographic rainfall associated withto these 

elevations (Fig. 8c). The positive frequency ratio in the 1400-1700 m elevation class is related to the area of 

permanent anthropogenic environment. This zone is characterized by low forest cover and relatively low slopes 560 
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(Fig. 8c). Deep-seated landslides are also favoured by steeper slopes and higher elevations. Regarding the 

dynamics of forest cover (Fig. 8e), the occurrence of shallow landslides is favoured in the deforested areas.  

 

45 Discussion 

45.1 Landslide types and completeness of the inventory 565 

Despite its high precision, and the fact that with more than 2700 mapped landslides we have identified more than 

three times as many features as in the inventory of (Depicker et al., (2020), we are aware that the dataset inventory 

is still incomplete. This is particularly the case for the shallow landslides because their inventory covers a 

maximum period of 13 years. Furthermore, their scars can quickly be altered by natural vegetation regrowth, land 

reclamation and erosion (Malamud et al., 2004; Van Den Eeckhaut et al., 2007; Kubwimana et al., 2021; Dewitte 570 

et al., 2022); although, here, since we have used several image covers from Google Earth, this issue should be 

nuanced. In addition, small landslides frequently happen unnoticed at the resolution of the satellite images 

(Guzzetti et al., 2012). Finally, field validation showed that a significant proportion of old deep-seated landslides 

can be missed from image analysis (Table 3). This is because identifying the exact limits of the failed mass may 

not be easy for old deep-seated landslides, particularly in forest areas (Malamud et al., 2004). While building the 575 

inventory, we remained conservative and mapped only the features for which we had high confidence. As the 

protocol for landslide identification over the whole region was uniform and the number of identified landslides 

relatively important, we trust that the inventory is reliable and representative enough for the analysis.   

The frequency area distributions of all landslides categoriestypes (Fig. 5a,c), with the exception of recent deep-

seated and mining landslides, are similar to what has been observed in other parts of the world (e.g., Malamud et 580 

al., 2004; Guns & Vanacker, 2014; Jacobs et al., 2017; Depicker et al., 2020). For the recent deep-seated landslides, 

an overrepresentation is noticed at the level of the smallest landslides and the rollover is absent. Since the spectral 

signature of these landslides is pronounced, we cannot invoke here a problem of subjectivity in the mapping. 

Additionally, we can give a high trust in the completeness of the inventory as evidenced by field validation that 

showed that almost no landslides were missed (Table 3). Therefore, we posit that this divergence in size is related 585 

to a lower influence of successive slope failure in the increase of landslide area through time; in other words, recent 

landsides did not have the time to growth (Tanyaş et al., 2018). This process of successive failures has been well 

documented for the Ikoma landslide, south of Bukavu (Figure 1b; Dille et al., 2019). The distribution of the mining 

landslides is irregular and different from what is typically observed, with a rollover that is flattened and a sudden 

increase in the frequency of the smallest slope failures. SimilarlySimilarly,, to the inventory of the recent deep-590 

seated landslides, the completeness and the reliability of the mapped features cannot be much questioned. We 

suggest that this unusual area distribution is the result of the human-induced alteration of the environmental 

conditions (see Section 4.4). To our knowledge, there are no similar studies that have been carried out on artificial 

mining slopes. Further investigations on other cases would be needed to verify our hypothesis.  

The presence of a rollover in the frequency-area distribution of the shallow landslides in the anthropogenic 595 

environment (Fig. 6b,d) is in opposition to what we could have expected considering the study by Van Den 

Eeckhaut et al. (2007). This study was also conducted in a populated rural environment and also relied on an 

inventory that is not associated with one single landslide triggering event. They did not find a positive power-law 
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relation for the smaller landslides which is separated from the larger landslides by a rollover. This difference 

probably lies in the fact that our study area is much more landslide-prone. The research by Van Den Eeckhaut et 600 

al. (2007) was indeed carried out in a hilly region of Belgium where the temperate climate is much less favourable 

to the yearly occurrence of shallow landslides. Furthermore, the fact that our inventory covers a smaller time period 

than that of Van Den Eeckhaut et al. (2007), that our region is not altered by mechanized farming, and that human 

activities such as works associated with building and road construction and drainage systems are much less present, 

i.e. factors that are highlighted as causes of landslides in Belgium, are issues that can also be invoked to explain 605 

this divergence in the frequency area distribution of shallow landslides.  

Under permanent forest, we do not observe a rollover point in the shallow landside distribution, (Fig. 6b). We 

hypothesize that the smallest landslides may be hidden under the canopy and therefore less visible on satellite 

images. A second explanation is that the presence of trees and their roots increases slope stability and therefore 

the minimal critical area for landsliding (Milledge et al., 2014). 610 

 

45.2 Drivers of deep-seated landslides  

The old deep-seated landslide susceptibility model is the first model proposed for the region that focuses only on 

deep-seated processes. The model shows a good quantitative prediction performance, both in terms of AUC and 

prediction rate. The model shows that terrain morphology and seismic activity seem to play a dominant role in 615 

deep-seated landslide distribution in the study area. The frequency ratio analysis (Fig. 8b,d) further supports this 

as it highlights the association of landslides with steep slopes and higher elevations, i.e. in topographic contexts 

nearer to the ridge crests that are known to amplify seismic shaking (Meunier et al., 2008). The role of elevation 

as a driver of more humid conditions should, however, not be ignored as rainfall is also known to trigger deep-

seated landslides (LaHusen et al., 2020). Also, the role of the long-term weathering of the landscape and the 620 

occurrence of non-triggered landsides should not be underestimated (Dille et al., 2019). Lithology is of lesser 

importance in our study area; which is in agreement with the findings of Depicker et al. (2021b) that show that the 

various lithologies in the region have similar rock strength properties. As we also show that the topography and 

the presence of faults play a role, it is another factor that can explain that the influence of lithology is somehow 

limited. 625 

 

The lower prediction rate of the recent deep-seated landslides using the old deep-seated landslide model could be 

related to the fact that the observations are made on a period that is too short to apprehend the full panel of 

environmental conditions that led to old deep-seated landslides. For example, no earthquake-induced recent deep-

seated landslides were observed (Dewitte et al., 2021), whereas seismicity is an important component of the old 630 

deep-seated landslide model. In addition, the climatic and seismic conditions have evolved over the past tens of 

thousands of years (Felton et al., 2007; Wassmer et al., 2013; Ross et al., 2014; Smets et al., 2016). For example, 

the region experienced an abrupt shift from drier conditions to more humid conditions around 13,000 BP (Felton 

et al., 2007; Wassmer et al., 2013). In addition, about 10,000 BP, Lake Kivu water highstands were ~100 m above 

the current level, which could have triggered few large landslides (Ross et al., 2014; Dewitte et al., 2021). This 635 

change in the lake level was not only due to a shift in the climatic conditions but also to the formation of the 

Virunga Volcano Province that created a dam on the upstream part of the Rift basin that used to drain northwards 
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(Figure 1b; Haberyan and Hecky, 1987). During that period of volcano formation, the regional geodynamics and 

the seismicity pattern were different (Smets et al., 2016). Hence a large part of the old deep-seated landslides may 

have been triggered under different conditions (Dewitte et al., 2021).. 640 

 

Old and recent deep-seated landslides differ also in terms of size (Fig. 4). There have not been any major events 

during the past 60 years that caused large landslides comparable to the largest old deep-seated landslides (of area 

106 m2). We identify five possible factors to explain this difference. First, our window of observation is too narrow 

to apprehend the impact of forcing events of high-magnitude such as large earthquakes (Marc et al., 2019). Second, 645 

the past environmental conditions may have been more favourable to large slope failures. A third factor explaining 

the size difference between old and recent deep-seated processes is that larger landslides are less frequent but have 

a longer-lived morphology legacy; therefore smaller old deep-seated landslides may no longer be visible. The 

fourth factor is that old landslides have a size that is the legacy of a history of phases of slope deformation, and 

not one single slope failure (Tanyaş et al., 2018) as evidenced in the analysis of the nearby Ikoma landslide (Fig. 650 

1b; Dille et al., 2019). Fifth, amalgamation must not be excluded (Marc and Hovius, 2015), especially for the 

eldest features. Overall, our current knowledge does not allow to give more credit to one factor in particular. The 

common sense is certainly to assume that the difference in landslide size is the reflection of a combination of 

factors. 

 655 

45.3 Drivers of shallow landslides  

 

Rainfall is the trigger of the shallow landslides that we have identified in this study, which is in agreement with 

the other studies in the region (Dewitte et al., 2021; Kubwimana et al., 2021). The spatial distribution of shallow 

landslides differs from the distribution of deep-seated landslides. This is mainly due to the anthropogenic factors 660 

such as deforestation that influence shallow processes (Table 4). The regional susceptibility model also indicates 

that deforestation is the most important factor in their occurrence (Table 5). Similarly, the analysis of frequency 

ratios shows that landslides disproportionately occur within areas that were deforested in the past 60 years, 

demonstrating the role of the forest in slope stabilization (Grima et al., 2020). 

 665 

Shallow landslides in forest loss areas (Fig. 6a,b) have, on average, a smaller size compared to landslides in forest. 

This observation is in line with the findings of Depicker et al. (2021b) and is attributed to the decrease of regolith 

cohesion by reduced root cohesion and evapotranspiration due to forest loss (Glade, 2003; Masi et al., 2021), 

which allows for a smaller minimum critical area for landsliding (Milledge et al., 2014). In short, human-induced 

land cover change is associated with an increase in the number of landslides and a shift of the frequency-area 670 

distribution towards smaller landslides (Guns and Vanacker, 2014).  

 

In permanent anthropogenic environments (Fig. 6a,c), shallow landslides are less frequent, larger, and occur on 

less steep slopes as compared to shallow landslides in forest. Firstly, the steepest slopes in the anthropogenic 

environments have been subject to increased landslide erosion the first few years after the original forest cover 675 

was removed (prior to 1955-1958) (Depicker et al., 2021b). As a result, we can assume that steep slopes in 

anthropogenic environments have less regolith available for landsliding compared to steep slopes in permanent 
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forest areas. This process of regolith depletion is further exacerbated in cropland. Wilken et al. (2021) have 

measured in the region that erosion in cropland sites can reach up to about 40 cm in 55 years. Similarly,  Heri-

Kazi and Bielders (2021a)  measured mean erosion rates of the order of 11 mm/year on cropland. Regolith erosion 680 

has therefore the consequence of reducing the spatial extent of areas where landslides can occur. A second process 

that may explain the landslide pattern in the anthropogenic environments is that, in parallel to regolith erosion, one 

also has sedimentation and the formation of colluvium (Wilken et al., 2021); which results in local accumulation 

of material. The material forms a loose sedimentary deposit usually in places with lower slope angles. This could 

be extra material available for the formation of landslides; the colluvium supply and a minimum depth of material 685 

being recognized as playing a key role in the occurrence of shallow landslides (Parker et al., 2016). Hence, we 

have less areas available for landslides, but a concentration of the susceptible places. A third explanation is 

probably related to soil management practices that influence erosion and water infiltration. In the region, usually 

on the less steep terrain, drainage ditches that favour water infiltration and hence an increase in pore-water pressure 

are widely applied by farmers  (Heri‐Kazi and Bielders, 2021b).  690 

 

45.4 Drivers of mining landslides and road landslides 

 

The poor prediction rates of mining and road landslides when compared to the two shallow and deep-seated 

susceptibility models (Fig.7) shows that they respond to different environmental factors. Road construction and 695 

mining activities are commonly associated with the presence of slope cuts and an increase of slope angle. These 

altered local topographic conditions cannot be constrained in the covariates derived from the SRTM or similar 

available products. In addition, the disturbances induced by roads and mining activities are not limited to the sole 

change of slope angle conditions. For example, this also implies changes in water runoff and infiltration, 

debuttressing, presence of fills and eventual overloading, excess stress from engine/digging, i.e., conditions that 700 

can influence the size and frequency characteristics of landslides (Brenning et al., 2015; Arca et al., 2018; Froude 

and Petley, 2018;  McAdoo et al., 2018; Vuillez et al., 2018; Tanyaş et al., 2022).  

Road landslides are mostly shallow. While it is obvious that roads create favourable conditions for the initiation 

of landslides, as observed not only in other studies in the region (Dewitte et al., 2021e.g. ; Kubwimana et al., 2021), 

but also worldwide (Froude and Petley, 2018;) (Sidle et al., 2006;) (Brenning et al., 2015;) (Arca et al., 2018;) 705 

(McAdoo et al., 2018;) (Vuillez et al., 2018;) (Muñoz-Torrero Manchado et al., 2021;) (Tanyaş et al., 2022); an 

accurate spatio-temporal regional pattern of these human-induced slope failures cannot be assessed here. A 

substantial proportion of road landslides can only be observed in the field (Table 3). In addition, landslides along 

roads can easily disappear due to maintenance works. Furthermore, many of the main roads were already present 

in the 1950’s, their current impact therefore being altered.  710 

Overall, mining conditions seem to lead to landslides whose smallest features are more frequent than what would 

occur under natural conditions as attested in the frequency area distribution (see Section 4.12). The area of mining 

landslides is significantly larger than that of road landslides and their regional distribution is slightly more in 

agreement with the characteristics of deep-seated landslides (Fig. 7d), which is logical as mining activities are 

related to the lithological characteristics of the landscape; i.e. a cause that typically has more influence on deeper 715 

processes (Migoń, 2013;) (Dille et al., 2019).  
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Considering the recent development of the mining activities in the region (Butsic et al., 2015; Tyukavina et al., 

2018; Musumba Teso et al., 2019), we can assume with confidence that the associated landslides represent slope 

instabilities that have occurred over a period of about 20 years whereas the recent deep-seated landslides represent 

slope failures that have occurred over the last 60 years. The distribution of the mining landslides is also restricted 720 

spatially to some lithologies. With these specificities in mind and the fact that the number of inventoried mining 

and recent deep-seated landslides is relatively similar, respectively 152 and 159 (Table 2), this study confirms that 

mining activities increase the odds of landsliding. It has implication not only in terms of hazard assessment but 

also in assessing the population at risk, knowing that mined sites are populated. This is to be put in parallel with 

the findings of Depicker et al. (2021a) that show that the risk of shallow landslides has increased significantly in 725 

the region during the last decades in the places where mining activities are found due, notably, to an increase in 

population.  

56 Conclusions 

Our study improves the understanding of landslide processes and the human impact thereon in tropical rural 

mountainous environments. The use of several sources of data allowed to build a very detailed and comprehensive 730 

landslide inventory in time and space for the region; a source of information unprecedented in such environments. 

This inventory enabled the grouping of landslides into five categories types: old and recent deep-seated landslides, 

shallow landslides, mining landslides and road landslides. Among deep-seated landslides, historical aerial 

photographs from the 1950’s were an added value in the sense that they were used for differentiating between old 

and recent slope processes. We deduce the differences in the driving factors and area distribution for old and recent 735 

deep-seated landslides, suggesting that factors of landslide occurrence are either different or change over time 

depending on geodynamic and/or climatic conditions. The role of anthropogenic factors has been established in 

the occurrence of shallow landslides. Deforestation initially increases landsliding, but in the long term, when forest 

is permanently converted into agricultural land, landslide frequency appears to be lower compared to permanent 

forest lands. The impact of forest, forest cover changes and soil management practices depends on topographic 740 

conditions and regolith availability. The factors of occurrence of mining landslides significantly increase 

landsliding in areas that, under natural conditions, would be less prone to slope failures. Our analysis shows that 

the importance of human activities must be considered when investigating landslide occurrence in regions under 

anthropogenic pressure. This is particularly needed when one sees that the changing spatio-temporal patterns of 

landslides associated with these activities tend to further exacerbate the risks that the population face. On a more 745 

technical/methodological note, our study also demonstrates the importance of considering the timing of landslides 

in susceptibility and distribution assessments. 
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Supplementary figure 

 

Figure 1: Additional predisposing factors used for the susceptibility assessment not shown in the manuscript 
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