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Abstract. Regional hurricane risk is often assessed assuming a static housing inventory, yet a region’s housing inventory 10 

changes continually. Failing to include changes in the built environment in hurricane risk modeling can substantially 

underestimate expected losses. This study uses publicly available data and a long short-term memory (LSTM) neural network 

model to forecast the annual number of housing units for each of 1,000 individual counties in the southeastern United States 

over the next 20 years. When evaluated using testing data, the estimated number of housing units was almost always (97.3 % 

of the time), no more than one percentage point different than the observed number, predictive errors that are acceptable for 15 

most practical purposes. Comparisons suggest the LSTM outperforms ARIMA and simpler linear trend models. The housing 

unit projections can help facilitate a quantification of changes in future expected losses and other impacts caused by hurricanes. 

For example, this study finds that if a hurricane with similar characteristics as Hurricane Harvey were to impact southeast 

Texas in 20 years, the residential property and flood losses would be nearly US$4 billion (38 %) greater due to the expected 

increase of 1.3 million new housing units (41 %) in the region.  20 

1 Introduction 

Probabilistic regional hurricane risk assessments typically have been static, where the hazard is modeled as stationary and the 

built environment is considered to be unchanging. Recently, researchers have begun relaxing the former assumption as the 

effects of climate change on hurricane frequency and intensity are captured (Emanuel, 2011; Liu, 2014; Pant and Cha, 2018). 

Nevertheless, changes in the building inventory over time have not received similar attention. The number, locations, and types 25 

of buildings exposed to hurricanes change continually over time in ways that can alter risk. In Harris County, Texas, home to 

Houston, for example, the population grew 36 % from 2000 to 2020 (US Census Bureau, 2020a). Such a transformation could 

have a large effect on hurricane risk. If a risk assessment had been conducted in Harris County in 2000 based on the building 

inventory at the time, when there were 3.4 million residents living in 1.2 million housing units, it would have underestimated 

the losses that occurred in Hurricane Harvey in 2017, by which time there were 4.5 million residents living in 1.7 million 30 



2 
 

housing units. Hurricane risk implications are especially notable for rapidly growing coastal counties such as Flagler County, 

Florida where the number of housing units has doubled since 2000, from 24,000 to 57,000 housing units.  

 

Focusing on the number of housing units and their regional distribution by county (not changes in exact location or type), this 

paper has two outcomes. First, using data for 1,000 counties in the southeastern United States (US) from Texas to Delaware 35 

(Fig. 1), a long short-term memory (LSTM) neural network model is developed to predict the number of housing units in each 

county over the next twenty years. LSTMs include feedback mechanisms for data in sequence and thus are well-suited for 

predictions on time series data. The LSTM model is evaluated through comparison to other model types commonly used for 

time series analyses, including a simple linear trend model and autoregressive integrated moving average (ARIMA) models. 

Second, using the recommended new LSTM model, named the 20-Year Regional Annual County-Level Housing (REACH20) 40 

model, changes in the predicted number and distribution of housing units in the next twenty years are described and 

implications of those changes for hurricane risk are discussed.  

 

 
Figure 1 Study area of 1,000 counties in the southeastern US 45 

 

Following a review of related literature on land use change and housing change modeling in Sect. 2, the data and model types 

are described in Sect. 3 and Sect. 4, respectively. The set of specific analyses conducted are listed in Sect. 5 together with the 

metrics for evaluating and comparing the models. Results are presented in Sect. 6, including a comparison of the model types, 

evaluation of the final recommended LSTM model, and discussion of the implications of projected change in the housing 50 

inventory. The paper concludes with a summary of the key findings and discussion of limitations and future work. 

2 Literature review 

Three bodies of literature support the proposed housing model, those focused on (1) regional land and population modeling, 

(2) housing economics, and (3) the intersection of natural hazards and the changing built environment.  
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2.1 Land use land cover change and population projections 

The expansive land use land cover (LULC) change literature estimates physical changes to a landscape across a study region 

over time (Daniel et al., 2016; Sleeter et al., 2017). These models are used for a wide range of applications, such as evaluating 

urbanization trends or comparing ecosystem conservation approaches, and often model changes in land dynamics over a long 

period of time usually at decadal intervals. The units of analysis are typically at a 1 km2 or less and can span a regional (multi-60 

county) area. There are three predominant methods for LULC modeling for a large spatial scale: machine learning (ML), 

cellular automata (CA), and a combination of ML and CA. While ML methods use historical land use data to predict land use 

change behavior, CA methods develop localized land use or land cover transition maps with neighborhood transition rules 

over a uniform grid to predict how the land use or land cover in a grid cell will change over time (National Research Council, 

2014). Aburas et al. (2019), Briassoulis (2019), Musa et al. (2017), and Verburg et al. (2004) provide reviews of different ML 65 

and CA methods for LULC modeling as well as commonly used model parameters. In the common combination methods, ML 

is often used to calibrate the weighting for land use transition maps and CA is used to define local rules for land use transition 

(Aburas et al., 2019). In recent years, deep learning neural network methods for LULC modeling have developed substantially, 

where convolutional neural networks (CNN) perform well for a study of spatial dynamics at a point in time, recurrent neural 

networks (RNN) work well for time-series data for a single location, and a combination of the two methods, ConvLSTM, 70 

incorporates both spatial and temporal data (Cao et al., 2019; Ienco et al., 2017; Ye et al., 2019).  

 

Population projection models estimate the number of people residing in an area over a series of time steps in the future. While 

most population projections are developed with a unit of analysis at a country or state level (University of Virginia, 2018; US 

Census Bureau, 2017), one population projection dataset developed by Hauer (2019) uses the Hamilton-Perry method 75 

(Swanson et al., 2010) to estimate population changes for all US counties at five-year intervals between 2020 and 2100 for 

eighteen age groups, two sex groups, and four race groups under five climate change scenarios. Assuming the amount of urban 

land cover and infrastructure is proportional to the number of people within an area, population estimates are commonly used 

as a metric for a society’s exposure to risk (Tellman et al., 2021; Wing et al., 2018). 

 80 

While the LULC models and population projection models aim to represent physical and demographic changes over many 

years across a region, little work has studied the changes in regional housing dynamics specifically. This study aims to address 

this gap in the literature. 
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2.2 Housing economics 85 

The urban economics, real estate, and housing literature examine the theorized drivers of housing development. Researchers 

largely agree that drivers of real estate cycles are rooted in economic fundamentals, such as local supply and demand and 

Urban Growth Theory (Edelstein and Tsang, 2007; Mayer and Somerville, 2000). Computable general equilibrium (CGE) as 

well as supply and demand land value models are especially common in the housing market literature and can be applied from 

a local to country spatial scale (Ali et al., 2020; Cho et al., 2005; Ustaoglu and Lavalle, 2017). Modeling methods also include 90 

system dynamics and agent-based modeling (ABM) approaches, which capture the interaction between individual decision-

making and economic effects at a local scale (Filatova, 2015; Magliocca et al., 2011; Wheaton, 1999). The spatial and temporal 

scales of economic and housing models ultimately depend on the degree of detail for change interaction (such as agent 

decisions), the amount of data available, and the study point of interest. However, none of the models reviewed incorporated 

the explicit spatial component of annual changes in housing units across a region at a county-level over time. 95 

 

2.3 Exposure to natural hazards over time 

There is a limited group of studies that evaluate a society’s changing exposure to natural hazard risk over time. Davidson and 

Rivera (2003) use population projections and headship rate data to predict the number, location, and types of housing units per 

census tract in a region at 5-year intervals between 2000 and 2020. The results were later used in a hurricane risk study for 100 

North Carolina (Jain and Davidson, 2007). Multiple studies have evaluated the “expanding bull’s-eye effect”, a phenomenon 

in which the expansion of a metropolitan area’s urban, suburban, and exurban regions leads to an increase in the area’s natural 

hazard risk, due to the expanding footprint of the built environment (Ashley et al., 2014). Ashley and Strader (2016) explored 

the expanding bull’s-eye effect on tornado impacts in the contiguous US as a whole, as well as five multi-state regions within 

the US between 1950 and 2010 at decadal intervals by utilizing the housing density data produced by the CA-based Spatially 105 

Explicit Regional Growth Model (SERGoM) (Theobald, 2005). Strader et al. (2015) used SERGoM and the US EPA’s 

Integrated Climate and Land Use Scenarios (ICLUS) to forecast exposure to volcanic hazard in the Northwest US at a decadal 

scale between 2010 and 2100 under five scenarios. Similarly, Freeman and Ashley (2017) used SERGoM to forecast hurricane 

risk in the US for the same time interval under two hurricane scenarios, and Strader et al. (2018) explored how ten different 

land development patterns would impact a region’s tornado risk. Chang et al. (2019) studied the effect of urban development 110 

patterns on future flood risk or earthquake risk in the Vancouver regions for the year 2041 under three prescribed development 

scenarios—status quo, compact, and sprawl. Song et al. (2018) compared three ML methods to predict the land use change in 

Bay County, Florida in 2030 and evaluated the risk due to sea level rise under two growth rates and two policy scenarios. 

Hauer et al. (2016) also used a modified version of the Hammer method (Hammer et al., 2004) to predict the number of people 

at risk of sea level rise per census block, based on decadal housing estimates for the coastal areas of the continental US, 115 

between 2010 and 2100 under five development scenarios. Sleeter et al. (2017) used a CA model to evaluate changes in land 
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cover and the effect on tsunami risk in the U.S. Pacific Northwest at annual increments between 2011 and 2061. Keenan and 

Hauer (2020) compared 30-year population projections in Puerto Rico with planned hurricane recovery and resiliency 

investments, finding an overestimation of future fiscal and infrastructure needs compared to the projected decline in population.  

 120 

This paper contributes to this literature by similarly modeling the effect of changing exposure on natural disaster risk over 

time. In general, the best method will depend on the specific intended use and required output, which together with data 

availability, determine the target metric and most appropriate spatial and temporal units of analysis and scope. With a focus 

on hurricane risk, in this paper we aim to develop annual forecasts of the number of housing units in each county in the 

hurricane-prone US for the next two to three decades. The aforementioned studies that similarly include county-level housing 125 

unit forecasts (although with varied overall aims) compute those forecasts by obtaining population projections and applying a 

constant housing unit per population ratio to produce county-level housing projections in five- or ten-year increments (Hauer 

et al., 2016; Ashley and Strader, 2016; Strader et al., 2015; Freeman and Ashley, 2017; Strader et al., 2018; Sleeter et al., 2017; 

Davidson and Rivera, 2003). In this study, we examine whether accurate annual county-level housing unit forecasts are 

possible using machine learning with a housing unit target variable and land and socio-economic features. 130 

2.4 Predictor variables 

An important piece of developing the proposed housing model in this paper is understanding the theorized predictors of land 

use change, population change, and housing development among the different bodies of work reviewed. Thirty-two predictors 

emerged from the literature as important predictors of housing inventory changes (Table 1). Section 3 describes the data 

selection methodology used for the proposed model.  135 
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Table 1 Predictors of housing inventory changes over time 

Category Predictors1 Category Predictors1 

Population 
Population2 

Demographics 

Race2 
Population density2 Age2,3 
Migration2,3 Marital status2,3 

Housing 

Housing units2,3 Education2,3 
Housing density2,3 

Land 

Land cover2 
Single family housing units2,3 Land use 
Single family housing unit density2,3 Available buildable land2 
Vacancy rate2,3 Proximity to coastline2 
Owner–occupancy rate2,3 

Economic 

Property value2,3 
Household size2,3 Land value 
Lot size Property tax rate2,3 
One–unit building permits2 Mortgage interest rate 
Year built2,3 Construction cost 
Householder tenure2,3 Cost of living 
Household income2,3 GDP2 

  GINI index 
Employment rates2 

1Data sources for all predictors are available in Table S1 (Sect. S1.4 of Supplemental Section). 
2Denotes it was considered in the proposed model. 
3Denotes data only available on a decadal basis prior to 2010 (Fig. S1, Sect. S1.3 of Supplemental Section).  

3 Data 

Modeling the annual changes in the number of housing units for 1,000 counties over a 10-, 20-, or 30-year time horizon requires 

a dataset of annual county-level data for more than 10 years for all counties in the study area. Counties were chosen as the unit 140 

of analysis, opposed to census tracts, block groups, or a grid analysis, because county boundaries rarely change over a multi-

decade period and data is available at the county-level over multiple decades for most of the predictors in Table 1.  Of the 32 

predictors identified as potential predictors of new housing construction, 25 (indicated by “2” in Table 1) had county-level data 

available for more than 10 years and were considered for this study. Data for these 25 predictors were compiled into a dataset 

for all available years from 1970 on (Sect. S1 of Supplemental Section). Data for 16 predictors are only available on a decadal 145 

basis prior to 2010 (indicated by “3” in Table 1), requiring linear interpolations to provide a consistent annual dataset. Of the 

25 predictors considered, 19 have data available starting in 1990 or earlier. Lastly, due to the significant impact of the Great 

Recession on the nation’s housing construction industry, data in 2008, 2009, and 2010 were removed. While the impact of 

shocks, such as the Great Recession or the COVID-19 Pandemic, have caused sizeable disruptions to the housing market and 

should be considered in resiliency planning, the goal of this work is to predict the number of net new housing units under 150 

normal conditions. Predicting economic shocks is outside the scope of this work. In total, the individual variables used for this 
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study are available in time intervals from 16 years (2001–2007, 2011–2019) to 46 years (1971–2007, 2011–2019) for 1,000 

counties. For details about the data preprocessing, see Sect. S1 of the Supplemental Section. 

4 Model types 

To estimate the number of new housing units per county over the next 10 to 30 years across a region, a set of time series 155 

models and range of model parameters were considered. The time series models tested include a simple linear trend model, 

ARIMA models, and LSTM neural network models. The ranking criteria for all models compared in this study was prediction 

performance of the number of housing units for 30 years in the future. Linear trend models were included in the model 

comparison as a baseline because they are commonly used in forecasting applications, are quick to implement, and are easy to 

interpret. ARIMA models were tested because they are easy to use, commonly applied across a range of disciplines, and 160 

interpretable. LSTM models were considered for their ability to handle large quantities of spatial and temporal data and produce 

small errors. These three models were ultimately chosen to compare the tradeoffs between model simplicity and model 

accuracy; if the linear or ARIMA models produce errors in the same range as the LSTM models, then these simpler models 

may be recommended for housing projections.  

 165 

4.1 Linear trend 

The simple linear trend method consisted of fitting one univariate linear model to each county using ordinary least squares 

(OLS) regression (i.e. y = mx + b). Each model was fit to the number of housing units and the resulting trend line was 

extrapolated to estimate the number of housing units for the following 10, 20, and 30 years. 

 170 

4.2 Autoregressive Integrated Moving Average (ARIMA) 

ARIMA models are univariate linear models that use lagged observations of the time series data and are the most common 

methods for time series modeling (Box et al., 2016). Equation (1) presents an ARIMA model to predict the value of variable 

y at time t as a function of values of y at previous time steps (yt–1, …, yt–p) and error terms at time t and at previous time steps 

(𝜖𝜖𝑡𝑡 , . . . , 𝜖𝜖𝑡𝑡−𝑞𝑞). The parameters 𝛼𝛼, 𝛽𝛽1, …, 𝛽𝛽𝑝𝑝, and 𝜙𝜙1, …, 𝜙𝜙𝑞𝑞 are estimated from the data. ARIMA models are typically referred 175 

to by the values (p, d, q), where p is the number of lags for the autoregressive term, d is the number times the data must be 

differenced to be stationary prior to model fitting, and q is the number of lagged forecast errors for the moving average term. 

This study also compares the method of using one ARIMA model for all counties in the study area (one set of p, d, and q 

values), versus an individual ARIMA model for each county, to understand whether a simple uniform ARIMA model could 

be used across the study region. The annual percent change in number of housing units was used as y in Eq. (1). 180 
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𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑦𝑦𝑡𝑡−1 + 𝛽𝛽2𝑦𝑦𝑡𝑡−2 + ⋯+ 𝛽𝛽𝑝𝑝𝑦𝑦𝑡𝑡−𝑝𝑝 + 𝜙𝜙1𝜖𝜖𝑡𝑡−1 + 𝜙𝜙2𝜖𝜖𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞 + 𝜖𝜖𝑡𝑡 (1) 

 

4.3 Long Short-Term Memory (LSTM) 

Neural network models have emerged as a common method for analyzing complex problems due to their ability to handle 

large, nonlinear datasets with high accuracies. Recurrent neural networks (RNN) are specifically utilized for sequential 185 

modeling applications, such as time series forecasting and natural language processing, and can be used to predict future 

housing inventories given a sequence of variables with nonlinear relationships across a large study area. LSTM models are the 

most common among the family of RNNs available and were chosen in this study for their ability to learn both long-term and 

short-term dependencies across a sequence of multivariate input data. The time dependencies are learned in an LSTM unit 

across a series of LSTM memory cells. Each cell consists of three “gates” that manage the information passed across the 190 

sequence of input data. The “input gate” regulates whether to add new information to the memory of the cell, the “forget gate” 

removes information to be considered in the given memory cell, and the “output gate” regulates the information leaving the 

cell. For more on LSTM models, see Hochreiter and Schmidhuber (1997), Ienco et al. (2017), and Wang et al. (2020b). 

 

All neural network models, including LSTMs, have a set of hyperparameters that are unique to a given model and are tuned to 195 

improve model performance. For LSTM models, tuning parameters include the number of input time steps and output time 

steps, number of feature and targets, number of layers and nodes, activation method, loss metrics, type of optimizer, learning 

rate, batch size, batch normalization, use of dropouts and dropout rates, and number of epochs. Data is also split into training 

and testing sets typically using a 70/30 or 80/20 ratio, allowing a model’s performance to be evaluated both on the data for 

which it is developed (the training set) and an independent data set (the testing set). Lastly, due to variability in each run of the 200 

neural network algorithm, a single model configuration is often tested multiple times to search for the model producing the 

lowest errors. 

5 Analyses and evaluation 

To identify the best time series model for predicting the number of housing units up to 30 years in the future, a range of model 

configurations was tested (Table 2). Four sets of feature variables (also known as independent or explanatory variables) and 205 

the target variable (also known as dependent or response variable) for each model were also compared in the analysis (Table 

3). The target variable for the linear trend model is ℎ𝑖𝑖𝑡𝑡𝑖𝑖, the number of housing units for county 𝑖𝑖 ∈ (1, . . . , 𝐼𝐼) in year 𝑡𝑡 ∈

(1, . . . ,𝑇𝑇𝑜𝑜) in sample 𝑘𝑘 ∈ (1, . . . ,𝐾𝐾), where a sample k is one sequence of input and output years for county i (Fig. 2). The 

target variable for remaining models is 𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖, the annual percent change of the number of housing units for county i in year t in 

sample k, defined in Eq. (2). 210 
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𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖  = ℎ𝑖𝑖𝑖𝑖𝑖𝑖−ℎ𝑖𝑖,𝑖𝑖−1,𝑖𝑖
ℎ𝑖𝑖,𝑖𝑖−1,𝑖𝑖

 ∗ 100  (2) 

 
Table 2 Model tests 

Test Model type2 
Feature and 
target Set1 

Input length 
(years), Ti 

Output length 
(years), To 

Number of 
samples, K 

Spatial 
weighting 

A1 Linear trend I 
6 to 36 10 31,000 to 1,000 No A2 ARIMA II 

A3 LSTM II 
B1 Linear trend I 

6 to 26 20 21,000 to 1,000 No B2 ARIMA II 
B3 LSTM II 
C1 Linear trend I 

6 to 16 30 11,000 to 1,000 No C2 ARIMA II 
C3 LSTM II 
D LSTM  III 6 to 36 10 31,000 to 1,000 No 
E LSTM  III 6 to 26 20 21,000 to 1,000 No 
F LSTM  III 6 to 16 30 11,000 to 1,000 No 
G LSTM IV 6 to 17 10 12,000 to 1,000 No 
H LSTM IV 6 to 7 20 2,000 to 1,000 No 
I LSTM III 6 to 26 20 21,000 to 1,000 Yes 

1Feature and target sets are defined in Table 3 
2For Tests A3, B3, and C3, for each  

 215 
Table 3 Feature and target sets 

Feature and 
target set 

Years 
available 

Total 
years Features Target 

I 1971–2007, 
2011–2019 

46 • Number of housing units (ℎ𝑖𝑖𝑡𝑡𝑖𝑖) • Number of housing 
units (ℎ𝑖𝑖𝑡𝑡𝑖𝑖) 

II 1971–2007, 
2011–2019 

46 • Annual percent change in number of housing units 
(𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖) 

• Annual percent change 
in number of housing 
units (𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖) 

III 1971–2007, 
2011–2019 

46 • Population 
• Population density (person per km2) 
• Number of housing units 
• Housing unit density (units per km2) 
• Percentage of vacant housing units 
• Percentage of owner-occupied housing units 
• Average household size 
• Percentage non-white population 
• Percentage of population with high school degree 
• Percentage of population with college degree 
• Percentage of non-buildable land area 
• Distance to coastline (m) 
• Annual percent change in number of housing units 

(𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖) 

• Annual percent change 
in number of housing 
units (𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖) 

IV 1990–2007, 
2011–2019 

27 All features in Feature Set II and: 
• Number of one-unit detached housing Units 

• Annual percent change 
in number of housing 
units (𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖) 



10 
 

• One-unit detached housing unit density (units per 
km2) 

• Percentage of one-unit detached housing units of 
total housing units 

• One-unit detached housing units per capita 
• Number of one-unit housing building permits 
• Number of one-unit housing building permits per 

number of one-unit detached housing units 
• Median household income (USD) 
• Median age 
• Percent of married population 
• Median property value (USD) 
• Number of jobs 
• Jobs per capita 

 

 
Figure 2 The change in sample size (K) for two different input year lengths (Ti ) for Test C1 

 220 

The two target variables, ℎ𝑖𝑖𝑡𝑡𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖, are directly related, but the range of ℎ𝑖𝑖𝑡𝑡𝑖𝑖 values for all counties across all available 

years spans multiple orders of magnitude, from 50 to 1.8 million housing units. The large spread in the data makes it difficult 

to fit a model across all counties and all years with ℎ𝑖𝑖𝑡𝑡𝑖𝑖 as a target variable. The use of 𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖 overcomes this problem, with 

values from –78 % to 132 % annual change in housing units.  

 225 

Each test predicts values for all 1,000 counties over a 10-, 20-, or 30-year time period so that a model with a 30-year projection 

period, for example, predicts 30,000 unique county-year values. A range of input sequence lengths were compared across all 

tests to determine the optimal input and output length structure for each model type. The combined input and output lengths 

determine the total number of samples, K, used to train and test the model, where a shorter time interval leads to more samples 
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for training and testing a model, while a longer time interval leads to fewer samples for the model. Specifically, when the sum 230 

of the input and output length (Ti+To) is less than the number of years in the data set, T, there are (T–(Ti+To)+1) samples of 

data for each county. As an example, say Test C3 was implemented for just one county. Test C3 uses Feature Set I, which has 

T=46 years of available data and a To=30-year output length. For one case evaluated in Test C3 that has an input length of Ti=6 

years, the resulting total input/output time interval is 36 years, leading to a total of 46–(6+30)+1=11 different time intervals 

across the 46 years of available data for the single county. For all 1,000 counties in the study area, this test configuration would 235 

result in K=11,000 samples available to train and test the model (Case I, Fig. 2). However, if the input length is instead Ti=16 

years and the output length is To=30 years, the total length of the time interval is 46 years, allowing only 46–(16+30)+1=1 

sample for a given county and K=1,000 samples over the entire study area (Case II, Fig. 2).  

 

In Tests A, B, and C, the univariate linear trend, ARIMA, and LSTM models were compared to identify the best input/output 240 

length combination for each model and the best univariate model performance. Since the linear trend and ARIMA models are 

restricted to one variable, for fair comparison, the LSTM was similarly restricted in Tests A, B, and C. These tests used data 

available since 1971, thus providing 46 years of data to fit the model (note that the Great Recession is excluded). For the simple 

linear trend modeling, each county was fit to an individual linear model and errors were aggregated across all counties. 

Similarly, the ARIMA models fit individual ARIMA models for each county for a given p, d, and q combination and errors 245 

were aggregated across all counties. The p, d, and q values tested ranged from 0 to 2. For LSTM models in Tests A, B, and C, 

the best of 5 LSTM runs for each input/output combination was taken as the solution.  

 

Tests D, E, and F compared the multivariate LSTM models to identify the best input/output length combination for each model 

and the best multivariate model performance. These tests only included the 13 feature variable in Feature Set III which were 250 

available since 1971 and provided 46 years of available data. LSTM models in Tests D, E, and F recorded the best of 10 LSTM 

runs. 

 

Tests G and H used LSTM models with 25 feature variables to understand whether more features improve model performance. 

A tradeoff exists between including more features, but having a shorter timespan of available data, and including fewer 255 

features, but having a longer timespan of available data. Feature Set IV used in Tests G and H is only available since 1990 and 

provides just 27 years of data. These two tests recorded the best of 10 LSTM runs.  

 

The literature suggests there are both time and space dependencies when modeling housing projections (Cho et al., 2005; 

Strader et al., 2015), thus Test I reviewed an LSTM model that included spatial weighting across all counties for all features 260 

in Feature Set III. With influence from graph neural network methods (Wu et al., 2021), spatial weighting was applied so that 

feature values in each county were averaged among all contiguous counties prior to model fitting. For example, the population 

feature variable for a given county would be reassigned as the non-weighted average population value of the county itself and 
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all counties directly adjacent. The values for the remaining feature variables for a given county would then be similarly 

reassigned. Once spatial weighting was applied to all counties for all feature variables, then the model was fit accordingly. No 265 

spatial weighting was applied to the target variable and this test recorded the best of 10 LSTM runs. 

 

For all LSTM models in Tests A through I, samples were randomly divided for a given input/output combination into a training 

and testing set using an 80/20 split. As a result, the set of samples for a given county were randomly distributed into the training 

and testing sets. Holdout validation was not implemented in this study because the developed model is not intended for use 270 

outside the defined study area of 1,000 counties. Both training and testing errors are tracked to identify possible overfitting. 

The same hyperparameters were used in all LSTM models (Table S2, Sect. S2.3.2 of Supplemental Section).  

 

All models were evaluated using the root mean squared error, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 , of the annual percent change of housing units (Eq. (3)), 

as well as the expected value, 𝑅𝑅[|𝐻𝐻|], and standard deviation, 𝑠𝑠|𝐻𝐻|, over all I, To, and K, of the absolute value of the percent 275 

relative error in number of housing units, 𝐻𝐻𝑖𝑖𝑡𝑡𝑖𝑖 (Eq. (4)), where �̂�𝑟𝑖𝑖𝑡𝑡𝑖𝑖 is the predicted annual percent change of housing units in 

county i, year t, and sample k; 𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖  is the observed annual percent change of housing units; ℎ�𝑖𝑖𝑡𝑡𝑖𝑖 is the predicted number of 

housing units, ℎ𝑖𝑖𝑖𝑖𝑡𝑡  is the number of observed housing units; and I, To, and K are the numbers of counties, number of years in 

the output series, and number of samples, respectively.  

 280 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 = �∑ (�̂�𝑟𝑖𝑖𝑖𝑖𝑖𝑖−𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖)2𝑖𝑖𝑖𝑖𝑖𝑖
𝐼𝐼𝑇𝑇𝑜𝑜𝐾𝐾

  (3) 

𝐻𝐻𝑖𝑖𝑡𝑡𝑖𝑖 = ℎ�𝑖𝑖𝑖𝑖𝑖𝑖−ℎ𝑖𝑖𝑖𝑖𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

∗ 100  (4) 

 

The 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟  is based on the target value optimized by the LSTM and the response variable for the ARIMA, 𝑟𝑟𝑖𝑖𝑡𝑡𝑖𝑖; the 𝑅𝑅[|𝐻𝐻|] 

and 𝑠𝑠|𝐻𝐻| are included because they are based on the more easily interpreted variable ℎ𝑖𝑖𝑡𝑡𝑖𝑖. The linear trend and ARIMA models 285 

do not separate the data into a training and testing set, therefore the errors were calculated across all output years in all samples. 

Of the multiple input/output lengths evaluated for each test, and the multiple runs for the LSTM models, the input/output 

combination with the lowest multiplied of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 , 𝑅𝑅[|𝐻𝐻|], and 𝑠𝑠|𝐻𝐻| values for each test is reported. For example, in Test A3, 

where 6 to 36 input years were evaluated and the output length was 10 years, there were 36–6+1=31 different models evaluated, 

each over five runs. Of those 31*5=155 models, the model with the lowest average 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 , 𝑅𝑅[|𝐻𝐻|], and 𝑠𝑠|𝐻𝐻|  value was 290 

reported as the best model for Test A3. 

 

Each time series model was fitted and evaluated using a publicly available Python (Van Rossum and Drake, 2009) library— 

Scikit-Learn package for the linear trend model (Buitinck et al., 2011), Statsmodel package for ARIMA (Seabold and Perktold, 

2010), and Tensorflow package for LSTM models (Martín Abadi et al., 2015). 295 
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6 Results 

6.1 Model comparison 

6.1.1 Model type comparison 

We first compare the model types. For the univariate models evaluated in Tests A, B, and C, the LSTM method outperforms 

the simple linear trend and ARIMA models for 10-, 20-, and 30-year prediction periods (Table 4). For the 30-year prediction 300 

period, for example, the linear trend, ARIMA, and LSTM models have 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟  values of 2.0, 1.8, and 1.2, respectively and 

𝑅𝑅[|𝐻𝐻|] values of 11.4, 12.7, and 0.64, respectively (Table 4, Tests C1, C2, C3).  

 
Table 4 Results 

Test1 Model type Set2 Parameters Ti Ti+To K 
Spatial 

weighting 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒓𝒓 (%) 𝑹𝑹[|𝑯𝑯|] (%) 𝒔𝒔|𝑯𝑯| (%) 
A1 Linear trend II N/A 9 10 1,000 No 1.883 4.199 5.329 
A2 ARIMA I p,d,q = 1,0,1 16 10 21,000 No 1.433 3.637 5.118 
A3 LSTM3 I LSTM hp4 21 10 16,000 No 0.961 / 1.161 0.484 / 0.558 1.608 / 1.31 
B1 Linear trend II N/A 6 20 1,000 No 1.759 6.220 7.727 
B2 ARIMA I p,d,q = 1,0,1 14 20 13,000 No 1.643 8.390 12.049 
B3 LSTM I LSTM hp 11 20 16,000 No 1.497 / 1.084 0.626 / 0.623 2.64 / 1.046 
C1 Linear trend II N/A 16 30 1,000 No 1.997 11.432 12.234 
C2 ARIMA I p,d,q = 1,0,1 6 30 11,000 No 1.767 12.704 18.648 
C3 LSTM I LSTM hp 11 30 6,000 No 1.388 / 1.164 0.556 / 0.644 2.482 / 1.014 
D LSTM III LSTM hp 21 10 16,000 No 0.484 / 0.636 0.209 / 0.287 0.947 / 0.869 
E5 LSTM III LSTM hp 11 20 16,000 No 0.195 / 0.426 0.116 / 0.196 0.406 / 0.557 
F LSTM III LSTM hp 11 30 6,000 No 0.534 / 0.781 0.107 / 0.254 0.917 / 0.804 
G LSTM IV LSTM hp 12 10 6,000 No 1.531 / 1.134 0.326 / 0.501 4.015 / 1.243 
H LSTM IV LSTM hp 7 20 1,000 No 0.098 / 1.384 0.122 / 0.708 0.515 / 1.413 
I LSTM III LSTM hp 11 20 16,000 Yes 0.303 / 0.495 0.138 / 0.279 0.519 / 0.643 

1Of the multiple input/output lengths evaluated for each Test, and the multiple runs for the LSTM models, the input/output combination 
with the lowest average of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟, 𝑅𝑅[|𝐻𝐻|], and 𝑠𝑠|𝐻𝐻| values for each test is reported. 
2Feature and target sets are defined in Table 3 
3All LSTM models report Training errors / Testing errors 
4See Table S2 for a list of the hyperparameters used for all LSTM models 
5Recommended REACH20 model 
 305 

Comparing the linear trend and ARIMA models, the best model type depends on the metric used and output length. In terms 

of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 , the ARIMA performs better than linear trend models for all output lengths. In terms of 𝑅𝑅[|𝐻𝐻|], however, the linear 

trend model is 2.17 and 1.27 percentage points better than the ARIMA for 20- and 30-year output lengths, respectively. The 

error distribution for the linear trend and ARIMA models are nearly the same (Fig. 3a, Fig. 3b, and Fig. 3c). Therefore, when 

quick long-term projections are needed, a simple linear trend model method may be adequate. The distribution of the testing 310 

errors for the LSTM model is much smaller than for linear trend and ARIMA models, and all output lengths have a similar 

distribution (Fig. 3d). 
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Figure 3 Absolute percent relative error (|𝑯𝑯|𝒊𝒊𝒊𝒊𝒊𝒊) distributions for univariate models. (a) Linear trend vs. ARIMA 10-year output; 315 
(b) Linear trend vs. ARIMA 20–year output; C) Linear trend vs. ARIMA 30-year output; (d) LSTM for all output lengths (Note x-
axis scale for (d) differs from the others.) 

 

6.1.2 Input and output lengths 

A key issue in fitting these models is determining the best number of years of input and output data to use. The number of 320 

years of output, To, will depend in general on the intended use of the model, although it may be important to understand the 

tradeoff between forecasting for a longer duration into the future and keeping errors lower in case there is flexibility on the 

required output length. The results suggest that, as expected, errors in terms of 𝑅𝑅[|𝐻𝐻|] are larger for longer output lengths 

(Tests A, B, C, Table 4). That is, it is easier to forecast the number of housing units accurately for 10 years than for 20 years, 

and easier to forecast 20 years than 30. For errors in terms of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟 , the pattern is similar, though not as consistent. 325 

 

For a specified desired output length, the optimal number of years of input is not obvious a priori, as it depends on data 

availability and the extent to which variable values from previous years help predict target variable values in future years. If 

the value of a variable x in each year t is related to that in the preceding year t–1, then xt–2 has an implicit indirect effect on xt 

as well, through xt–1. Thus, it may be that including data for x from many input years helps predict xt, but it may not be required, 330 

and could just add noise. The housing vacancy rate in 1970 may not be relevant to the change in the number of housing units 

from 2020 to 2021, for example, beyond the indirect influence it has on the changes in the intervening years. The input length 

also affects the total number of samples available to fit a model, where there is a tradeoff between a longer input length and 

fewer total samples versus a shorter input length with more training samples (Fig. 2).  

 335 

The best-performing linear trend models all had input sequence lengths shorter than the output sequence lengths. With 46 years 

of data total, when the output length is 10 years, for example, the maximum input length is 36 years, but the best linear trend 

model had an input length of 9 years Table 4, Test A1).  
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For the ARIMA models, shorter input lengths performed better, where 16, 14, and 6 years were identified as the best input 340 

lengths corresponding to 10, 20, and 30 years of output (corresponding to 21,000, 13,000, and 11,000 available samples, 

respectively). Additionally, for all output lengths, the best p, d, q values tested were 1, 0, 1 respectively, suggesting that just 

one lag of the autoregressive term, one lag of error terms, and no differencing for the annual percent change of housing units 

data can be used for quick and approximate housing forecasts. 

 345 

The univariate and multivariate LSTM models have the same best input length for a given output length, where the best input 

lengths include the years in either one decade (11 years inclusive) or 2 decades (21 years inclusive). This could result from the 

nature of the data availability, where most variables are only available at a decadal scale prior to 2010 (Fig. S1, Sect 1.3 of 

Supplemental Section). 

 350 

6.1.3 LSTM model comparisons 

Focusing on the LSTM models, which offer the smallest errors, we investigate feature selection, spatial weighting, and possible 

overfitting. To determine if additional feature variables help forecast the number of housing units in each county, we compare 

models that are the same except for the feature set. Test A3, B3, and C3 use feature set I (only the target variable); Test D, E, 

and F use feature set III (13 additional feature variables); and Test G and H use feature set IV (with another 12 additional 355 

feature variables) (Table 3). The multivariate LSTM models in Tests D, E, and F outperform the univariate LSTM models 

evaluated in Tests A, B, and, C on all metrics and for all output lengths, where the errors from the multivariate model are 

approximately half those from the univariate model (Table 4). This suggests that the feature variables in set III do substantially 

improve prediction of future numbers of housing units. Comparing Tests D and E to Tests G and H, however, indicates that 

incorporating the additional 12 feature variables of feature set IV does not improve prediction. Since data are only available 360 

since 1990 for variables in feature set IV, there is a tradeoff between adding the features and maximizing the duration of data 

availability, and the results suggest incorporating the additional features does not add value to the modeling.  

 

Of all the LSTM models evaluated in Tests A through H, the best performing model is Test E, a multivariate LSTM having 11 

input years and 20 output years with 13 features of data that are available since 1971. When, in Test I, spatial weighting was 365 

added to the features for the same 11-year input, 20-year output model, there was no substantial improvement in errors. The 

test data 𝑅𝑅[|𝐻𝐻|] for Test E (without spatial weighting) and I (with spatial weighting) are 0.196 and 0.279, respectively.  

 

Finally, comparing the testing and training errors for all LSTM models and both 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟  and 𝑅𝑅[|𝐻𝐻|], does not suggest a 

substantial overfitting or underfitting problem. Across the 9 LSTM models, the median value of the ratio 370 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟(testing)/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟(training) is 1.71, and the median of 𝑅𝑅[|𝐻𝐻|](testing)/𝑅𝑅[|𝐻𝐻|](training) is 1.54. 
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Based on all the results in Table 4, the best LSTM model in Test E is considered the recommended model to predict the number 

of housing units, ℎ𝑖𝑖𝑡𝑡𝑖𝑖, for the 1,000 counties in the study area over a 20-year period. This model is henceforth referred as the 

20-Year Regional Annual County-Level Housing (REACH20) model. If an application required a 30-year prediction period, 375 

the best LSTM model in Test F, with 11 input years and 30 output years, would be recommended. 

 

6.2 Evaluation of recommended LSTM model  

This section evaluates the recommended the 11-year input and 20-year output multivariate LSTM REACH20 model in more 

detail, examining the magnitude and distribution of errors. The REACH20 model has an expected absolute percent relative 380 

error (𝑅𝑅[|𝐻𝐻|]) for the testing set of less than 0.2 % when comparing the predicted number of housing units, ℎ𝑖𝑖𝑡𝑡𝑖𝑖, with the 

observed number of housing units, ℎ�𝑖𝑖𝑡𝑡𝑖𝑖. That means, on average, across all predicted years 𝑡𝑡 ∈ 𝑇𝑇𝑜𝑜, samples k, and counties i, 

the number of housing units predicted differs from the actual number of housing units by less than 0.2 %, likely negligible for 

many applications. Additionally, of the 64,000 predicted data points in the testing set (3,200 samples in the testing set 

(16,000*0.2) and 20 predicted years), almost all (97.3 %) had absolute percent relative errors of less than one percent 385 

(|𝐻𝐻𝑖𝑖𝑡𝑡𝑖𝑖|<1.0). The distribution of the relative errors among the predicted data points has essentially no bias and an even balance 

of over- and under-prediction (Fig. 4a). 

 

When reviewing the variability of the testing set errors over the duration of the 20-year prediction period, the expected value 

𝑅𝑅𝑡𝑡[|𝐻𝐻|] over all counties i and samples k of the absolute value of the percent relative error for each time step t for the testing 390 

set remains under 0.5 %. There is a noticeable, gradual increase in the errors as the predicted year horizon expands. The 
𝑅𝑅𝑡𝑡[|𝐻𝐻|], for example, is 0.12 % in the first time step and 0.47 % in the twentieth time step (Fig. 4b). This suggests that while 

the errors are quite low for all years in the 20-year prediction period, the model does not predict the number of housing units 

20 years in the future as well as it does the number of housing units one to five years in the future, as expected. Furthermore, 

the population projection method provided by Hauer (2019) for all US counties produce aggregated relative errors of 0.9% to 395 

3.6% over a 15-year projection period, while the recommended model in this study produces average absolute relative errors 

of less than 0.5% over a 20-year projection period. This suggests that if a static housing unit per population ratio was applied 

to the population estimates produced by Hauer (2019), as is done in other studies evaluating natural hazard risk in the context 

of a changing housing inventory (Hauer et al., 2016; Ashley and Strader, 2016; Strader et al., 2015; Freeman and Ashley, 2017; 

Strader et al., 2018; Sleeter et al., 2017; Davidson and Rivera, 2003), these housing estimates would likely be less accurate 400 

than those produced by the recommended REACH20 model. 
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Figure 4 (a) Distribution of 𝑯𝑯𝒊𝒊𝒊𝒊𝒊𝒊 of the testing set using the REACH20 model (b) Average absolute percent relative error for each 
timestep over all counties and samples, 𝑹𝑹𝒊𝒊[|𝑯𝑯|], for the testing set using the REACH20 model 

 405 

Errors across space were also reviewed to understand whether the model performs better for certain geographic areas (e.g., 

urban vs. rural counties, or East coast vs. Gulf coast). There is no obvious spatial pattern of the expected value 𝑅𝑅𝑖𝑖[|𝐻𝐻|] across 

the study area, with a balance of over-prediction (purple) and under-prediction (green) across the region (Fig. 5). There were 

987 counties (98.7 %) with averaged 𝐻𝐻𝑖𝑖𝑡𝑡𝑖𝑖 across all time steps less than 0.2 %. Errors in West Texas are slightly larger than 

other regions of the study area perhaps due to the relatively small population of these counties and the associated sensitivities 410 

to small changes in the error.  
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Figure 5 Average percent relative error for each county over all predicted time steps and samples, 𝑹𝑹𝒊𝒊[|𝑯𝑯|], for the combined training 
and testing set using the REACH20 model (Eq. (8)). Given that the samples for a given county and time sequence were randomly 415 
split into the training and testing set, a spatially complete view of the errors required a combination of the training and testing errors 

 

6.3 Implications of projected change in housing inventory 

Over the entire study region, the REACH20 model predicts approximately 16.7 million more homes in the 20-year forecast 

period between 2019 and 2039 (38 % growth, Fig. 6). The aggregated county-level projections are based on the last 11 years 420 

of available data excluding the Great Recession (2006, 2007, 2011–2019) for the 13 included features to estimate 20 years of 

future housing unit projections across all 1,000 counties using the REACH20 model.  

    
Figure 6 Predicted number of housing units in the study area using the REACH20 model 

 425 
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The projected housing rates of change across all counties over 20 years (2019–2039) vary spatially, where the housing 

inventory in almost all counties (97.4 %) is expected to grow over the next 20 years (Fig. 7). Suburban and exurban counties 

are projected to have large housing growth rates over the next 20 years, which is reasonable as urbanization in metro areas 

continues. There are noticeable differences in projected housing rates within the state of Texas. In the eastern half of the state, 

there is large projected growth around the state’s major cities which aligns with recent trends. Six of the 15 fastest-growing 430 

large cities in the US between 2010 and 2019 are located in Texas (US Census Bureau, 2020b). However, housing inventory 

is projected to generally remain stagnant or decline in western Texas, which aligns with past trends of generally stagnant 

population and available jobs in the region (Texas Comptroller, 2020).  

 

  435 
Figure 7 Projected 20-year (2019–2039) percent change in housing units using the REACH20 model. The blue color represents 
growth, red represents decline 

 

A comparison of the housing rates of change in the past 20 years (1999–2019) versus the next 20 years (2019–2039) allows 

for an analysis of housing growth acceleration or deceleration (Fig. 8). The vast majority of counties (89.5 %) in the study area 440 

are expected to experience greater housing growth rates in the next 20 years (2019–2039), than in the past 20 years (1999–

2039). These higher growth rates indicate that most counties need to carefully manage the rapid new home construction. 

Additionally, three out of four (75.4 %) counties in the region are expected to experience at least a 10 % change in housing 

rates in the projected 20 years versus the past 20 years. Two of five counties (38.2 %) in the region are expected to experience 
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at least a 20 % change in housing rates between the two periods. This means that a simple linear extrapolation from the past 445 

20 years will likely not provide an accurate projection of housing units.   

 

 
Figure 8 Projected 20-year housing acceleration (Projected percent change in housing units between 2019 and 2039, minus the 
percent change of housing units between 1999 and 2019) using the REACH20 model. The green color represents an acceleration and 450 
pink represents a deceleration 

 

A change in housing units over time also implies a change in housing density over time, often resulting in increased 

urbanization within a county (Fig. 9). Most counties (71.4 %) are only expected to see a change of 10 housing units per km2 

or less in the next 20 years. However, one fifth of the counties (21.2 %) in the region are expected to experience an increase 455 

of 10 to 50 housing units per km2, many of which are located along the Atlantic Coast. Notably, the vast majority of the 

counties along Florida’s coastline (74.5 %) are expected to experience an increase of 10 to 100 housing units per km2. Of the 

coastal counties, Harris County is expected to experience the greatest increase in housing density, from 400 housing units per 

km2 in 2019 to 510 housing units per km2 in 2039. Areas of high density allow the possibility of more homes being affected 

by a single hurricane or other hazard event.  460 
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Figure 9 Projected 20-year change in housing unit density (2039 housing unit density minus 2019 housing unit density) using the 
REACH20 model (units per km2) 

 465 

To investigate the projected number of housing units in more detail, a sample of 15 counties is identified (Fig. 7, Fig. 8, Fig. 

9, and Fig. 10). The 15 counties selected, which include one or two from each state in the study area (excluding Washington 

D.C.) and ten on the coast in hurricane-prone areas, were selected to illustrate some of the variability across counties. In five 

of the sampled counties (Kent County, TX, Harris County, TX, Flagler County, TX, Brunswick County, NC, and Loudon 

County, VA), the future housing trend (growing or shrinking) is expected to decelerate over the next 20 years, compared to 470 

the last 20 years. The two Louisiana parishes sampled (Fig. 10c), Cameron Parish and Orleans Parish (Fig. 10d), however, are 

examples of exceptions that experienced significant shocks in the housing inventory due to hurricane impacts.  
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Figure 10 Past and projected number of housing units for 15 Counties using the REACH20 model (note different scales) 

 475 

6.4 Implications for hurricane impacts and losses 

The dynamics of the housing inventory also cause changes in a region’s level of risk for multiple hazards, including hurricanes. 

Hurricane Harvey was a devastating Category 4 hurricane that made landfall on the Texas coast on August 25, 2017, affecting 

many counties in southeast Texas. Coastal counties experienced 130-mph winds, heavy rains, and large storm surges, while 

inland counties, particularly in the Houston, TX area, experienced massive amounts of rain over multiple days. Across the 62 480 

counties affected by Hurricane Harvey, there was US$2.4 billion in residential property losses and US$7.5 billion in flood 

insurance losses (Texas Department of Insurance, 2019). Using the proposed REACH20 model, if a hurricane of similar 

magnitude to Harvey hit that same Texas region 20 years from now, assuming the same 2017 distributed hazard and 

vulnerability profiles of newly built homes, the residential property losses for the entire region would be $3.2 billion, which is 

US$792 million (or 33 %) greater than the damage caused by Hurricane Harvey in 2017, assuming constant dollars. The total 485 

flood losses for the region would be even larger, totaling to $10.4 billion, which is approximately US$3 billion (or 40 %) 

greater than Hurricane Harvey losses. 

 

A closer examination of the projected housing growth rates across the subregions affected by Hurricane Harvey reveals that 

each subregion would experience a different magnitude of losses. The subregions analyzed align with the four areas identified 490 
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by the Texas Department of Insurance 2019 Report which documents insurance claims and losses from Hurricane Harvey in 

the state of Texas. Using the recommended REACH20 model, it is expected that the projected 20-year housing growth rates 

for each county in these areas will vary over the region (Fig. 11a) and the number of housing units will increase in each 

subregion (Fig. 11b).  

 495 

 
Figure 11 (a) Projected 20-year (2019–2039) percent change in housing units in the Hurricane Harvey affected region using the 
REACH20 model (b) Projected housing units and housing growth rates for the Hurricane Harvey affected region using the 
REACH20 model 

  500 
Figure 12 (a) Estimated residential property loss due to hurricane impact across the Hurricane Harvey affected region over a 20-
year period, assuming constant dollars (b) Estimated flood loss due to hurricane impact across the Hurricane Harvey affected region 
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over a 20-year period, assuming constant dollars. These values are calculated by multiplying the loss values from Hurricane Harvey 
in each subregion by the expected 20-year housing growth rate for each subregion 

 505 

The area identified as the Coastal Bend and Seacoast Counties experienced the brunt of the wind force from Hurricane Harvey 

and accounted for the largest residential property losses (US$1.4 billion). Residential property losses account for the majority 

of damages due to high winds and include claims from homeowner’s insurance, mobile homeowners’ insurance, and residential 

dwelling insurance. The Coastal Bend area is expected to have the lowest housing growth rate of the region (31.0 %, or 

approximately 100,000 more housing units), yet a similar-sized storm event hitting the same area in 20 years would result in 510 

an estimated US$431 million more losses than experienced in 2017, assuming constant dollars (Fig. 12a).  

 

The area identified as the Houston Area and Southeast Texas experienced a massive amount of rainfall from Hurricane Harvey 

and accounted for the largest flood losses compared to other subregions (US$7.2 billion). The flood insurance losses reported 

are caused by rising water or flood damages in residential or commercial structures and includes both federal and private flood 515 

insurance properties. The majority of flood insurance claims were for residential structures under the National Flood Insurance 

Program (NFIP). The Houston area is expected to have a sizeable housing growth rate of 40.0 %, equating to 1.1 million more 

housing units, over the next 20 years, which would cause a significant increase in expected flood losses for a similar-sized 

hurricane (US$2.9 billion, Fig. 12b). 

7 Future work and conclusions  520 

7.1 Limitations and future work 

The recommended REACH20 model provides a first-of-its kind dataset of annual projected housing inventories for a multi-

state region over a 20-year period that can be used to enhance hurricane risk models. Given the nature of the available data 

and complexity of the modeling method, there are limitations to note. For periods when data were only available at a decadal 

scale for certain variables, linear interpolations were made to produce an annualized dataset which could have introduced 525 

errors to the projection of housing units. Additionally, the data during the Great Recession (2008–2010) were removed because 

the model can neither predict nor account for large, unexpected exogenous shocks to the residential housing market. 

Additionally, the projected changes in housing units ultimately assume that past housing development behavior will carry into 

the future. However, housing demands have changed since the start of the COVID-19 pandemic and it is unclear how these 

changes are likely to affect future housing development trends. Climate change may also drive new behaviors in housing 530 

development patterns as risks due to sea level rise, intense storm events, wildfires, and excessive heat continues to increase. 

This study also had counties included in both the training and testing set because the model is only intended to be used for the 

designated study area. If the model were to be applied outside the study area, a review of holdout validation errors would be 

required. Lastly, neural network methods require a certain level of expertise and a significant effort to gather and standardize 



25 
 

large quantities of data. Therefore, for applications only requiring quick estimates for changes in housing units, a simpler linear 535 

trend or ARIMA model may be adequate. 

 

There is an opportunity to extend the housing unit projection work and estimate the likely distribution of housing unit types 

(e.g., single-family, multi-family, manufactured homes) in each county in the future. Researchers can also extend this work by 

estimating the likely location of the projected housing units within a given county, which would allow for a more granular 540 

estimate of hurricane impacts in a region. Additionally, researchers can evaluate potential policy mechanisms that can 

minimize the hurricane risk for a region while also incorporating the everchanging housing growth over time. Lastly, the 

provided housing unit projections can be applied to a variety of applications, including hurricane evacuation planning, 

hurricane risk mitigation, or general regional planning activities. 

 545 

7.2 Conclusions 

The recommended REACH20 model advances the field of hurricane risk modeling by producing the first known dataset of 

county-level annual housing inventory projections over a multi-decade period and multi-state region. It allows a dynamic 

building inventory to be included in hurricane risk models rather than using the conventional assumption of a static building 

inventory, thereby producing more realistic regional loss estimates. Additionally, the REACH20 model uses publicly-available 550 

housing and demographic data and can therefore be easily applied to other regions of interest (see Sect. S2.3 of Supplemental 

Section for source code).  

 

LSTM models outperformed linear trend and ARIMA models on all metrics; and the multivariate LSTM models outperformed 

the univariate LSTM models, although when inclusion of additional feature variables meant fewer years of available data they 555 

did not lead to improved model performance. Applying spatial weighting by averaging a county’s feature values with adjacent 

counties did not improve model results either. The REACH20 model includes 11 years of input data, 20 years of output data, 

13 feature variables and a single target variable for 1,000 counties in the southeastern US over 46 years of available data, 

resulting in 16,000 samples available to train and test the LSTM model. Using an 80/20 training/testing split, the 64,000 

predicted data points in the testing set (3,200 samples in the testing set (16,000*0.2) and 20 predicted years), almost all (97.3 560 

%) had absolute percent relative errors of less than one percent (|𝐻𝐻𝑖𝑖𝑡𝑡𝑖𝑖|<1.0), meaning the estimated number of housing units 

was no more than 1 % different than the actual number, errors that are acceptable for most practical purposes. The 𝐻𝐻� remained 

less than 0.5 % for all 20 predicted time steps and errors were distributed evenly across the study region.  

 

The REACH20 model suggests there will be significant increases in the housing inventories of the southeastern US, thus 565 

increased expected hurricane losses. Of the 1,000 counties in the study area, 974 are expected to experience a growth in their 

housing inventory and 895 counties are expected to have greater housing growth in the next 20 years compared to the past 20 
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years. Translating to potential hurricane losses, if a Hurricane Harvey-type event hit southeastern Texas in 20 years, losses 

could increase by approximately 40 %, compared to the losses caused by Hurricane Harvey in 2017. Recognizing the great 

expected hurricane losses, planners should prioritize mitigation and adaptation measures in the areas with high expected 570 

housing growth, thereby decreasing future societal impacts and financial losses.   
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