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Abstract. Landslide inventories are used for multiple purposes including landscape characterisation and monitoring, and 

landslide susceptibility, hazard and risk evaluation. Their quality/completeness can depend on the data and the methods with 

which they were produced. In this work we evaluate the effects of a variable visibility of the territory to map on the spatial 10 

distribution of the information collected in different landslide inventories prepared using different approaches in a study area. 

The method first classifies the territory in areas with different visibility levels from the paths (roads) used to map landslides, 

and then estimates the landslide density reported in the inventories into the different visibility classes. 

Our results show that 1) the density of the information is strongly related to the visibility in inventories obtained through 

fieldwork, technical reports and/or newspapers, where landslides are under-sampled in low visibility areas; and 2) the 15 

inventories obtained by photo-interpretation of images suffer from a marked under representation of small landslides close to 

roads or infrastructures. We maintain that the proposed procedure can be useful to evaluate the quality/completeness of 

landslide inventories and then properly orient their use. 

1 Introduction 

Landslides affect the evolution of the territory and represent a hazard to the population, structures and infrastructure (Fell et 20 

al., 2008). Detailed information about the spatial and temporal distribution, and characteristics of past landslides is essential 

for susceptibility/hazard statistical (Hao et al., 2020; Reichenbach et al., 2018; Steger et al., 2016a; van Den Eeckhaut and 

Hervás, 2012; Galli et al., 2008) and physically-based modelling (Lee et al., 2020; Park et al., 2019). However, complete 

landslide inventories are difficult or impossible to achieve (Corominas et al., 2014). Inventories used for basin or regional 

modelling should at least be statistically representative of the slope processes occurring in the studied areas (Cova et al., 2018; 25 

Guzzetti et al., 2012; Melzner et al., 2020). 

Bias in sampling can prevent the realisation of statistically representative inventories and introduce errors that are difficult to 

investigate, manage and communicate (Guzzetti et al., 1999). Lack of completeness can largely depend on the mapping 
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approach, the study area extent or the analysed time span, the availability of data, time and human resources (Fiorucci et al., 

2018; Mondini et al., 2014; Santangelo et al., 2015). Inventories can be compiled in several ways (Guzzetti et al., 2012), 30 

exploiting different sources of data, and responding to different requirements according to their usage. For example, 

geographical accuracy and representativeness are relevant for susceptibility analysis when carried out by means of statistical 

models (Santangelo et al., 2015; Steger et al., 2021), while occurrence dates, size and location are prioritized for damage 

evaluation studies, also related to climate changes (Gariano and Guzzetti, 2016). In addition, the quality and then the usefulness 

of a landslide susceptibility map is directly related to the quality of the data used to build the model (Cascini, 2008; Corominas 35 

et al., 2014; Fressard et al., 2014; Guzzetti et al., 2006; van Westen et al., 2008). The propagation of errors caused by large 

incompleteness in inventories used to produce susceptibility maps was investigated by Steger et al. (2016b) and Steger et al. 

(2017) in Lower Austria. They discovered that biased input data generated unrealistic (or even meaningless) results, enhancing 

an apparent predictive performance of the models (Steger et al., 2021). 

According to Guzzetti et al. (2012) the quality of a landslide inventory refers to the geographical and thematic information 40 

accuracy, in particular, “completeness refers to the proportion of landslides shown in the inventory compared to the real (and 

most of the times unknown) number of landslides in the study area”.  

Some authors have already suggested ways to assess quality aspects and/or completeness of an inventory. Malamud et al. 

(2004), starting from the work of Stark and Hovius (2001), focused on characteristic landslides area statistical distributions 

(Frequency-Area Distribution - FAD) as an indicator of completeness. Galli et al. (2008) suggested pairwise comparisons to 45 

rank the quality of different inventories prepared in the same study area. Piacentini et al. (2018) analysed the spatial accuracy 

of an historical geospatial landslide database comparing different periods within the time laps covered by the catalogue. Trigila 

et al. (2010) used landslide densities in urban and non-urbanized areas to rank landslide inventories quality across the different 

administrative regions of Italy. Finally, Tanyaş and Lombardo (2020) proposed a completeness index for earthquake-induced 

landslide inventories.  50 

Currently, only the approach proposed by Malamud et al (2004) is commonly used in the literature as a tool to assess the 

completeness of inventories (e.g., Chaparro-Cordón et al., 2020; Ghorbanzadeh et al., 2019; Tanyaş et al., 2019; Zhang et al., 

2019; Nicu et al., 2021; Roberts et al., 2021; Tanyaş and Lombardo, 2020; Tekin, 2021; Ubaidulloev et al., 2021). However, 

the analysis of FADs does not include the analysis of where landslides are eventually missing in an inventory (Lima et al 

2021). In fact, an inventory may show different levels of quality where the capacity of mapping of an operator changes 55 

according to the different working conditions across the study area. 

Landslide inventories obtained from remotely sensed images are the most recurrent source of information used in landslide 

susceptibility studies at regional scale (Reichenbach et al., 2018). In the inventories produced through the interpretation of 

satellite or aerial images, geometric resolution of the image limits the minimum size of the landslides that can be visible and 

mapped by the operator in the whole scene (Guzzetti et al., 2012). Since in this case the visibility of the territory is referred to 60 

the position of the sensor, and it can be assumed almost constant along the territory, we assume that inventories based in 

remotely sensed images were compiled in homogeneous working condition and then with uniform Capacity of Landslide 
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Mapping (CoLM) over the studied area.  In contrast, many scientific works were and are still based on information acquired 

from field surveys or from historical inventories and catalogues derived from heterogeneous information sources (Bera et al., 

2019; Hussain et al., 2019; Jacobs et al., 2020; Knevels et al., 2020; Meena et al., 2019; Reichenbach et al., 2018; Rohan and 65 

Shelef, 2019; Zhang et al., 2019). In the case of field surveys is the visual acuity, i.e. the ability of the human eye to resolve 

objects that occupy a small portion of the field of view, which is potentially affecting the possibility to detect landslides due 

to their size and/or relative position or distance respect to the operator. In fact, size, distance and orientation determine the 

visibility of an observed object (like a landslide) (Bornaetxea and Marchesini, 2021; Domingo-Santos et al., 2011) and, since 

surveyors often follow predetermined roads and observe different portions of the territory from different observation points, 70 

the working condition changes and the CoLM is not-uniform over the surveyed area. This study presents a framework to assess 

where and how the point of observation of the operator affects the CoLM uniformity, and hence the quality/completeness of 

the inventory.  

The method is based on the concept of “estimated visibility” (EV), which is a computer-based simulation of the real visibility 

of an object from a point of observation, and on the measure of the spatial landslide density in an area related to the EV. We 75 

tested the proposed framework using three inventories available for the Darjeeling district (north-east of India) and prepared 

with different data and methods including field-based surveys, aerial and satellite photo-interpretation. 

2 Study area 

We applied the approach in an area of ~513 km² within the Darjeeling district, the northernmost district of West Bengal state 

(north-east of India) (Fig. 1). The area starts just above the foothills of Himalaya in the south and goes beyond the Higher 80 

Himalayas in the north. The area lies within the highly dissected hill ranges of the sub to higher Himalayas with elevation 

varying from 200 m to 2900 m. About 48% of the area has slopes between 15° and 30°, however the steeper slopes are mainly 

restricted in the escarpment or cliffs present in the area. The major part of the area is covered by Tea plantation (39%), followed 

by Moderate vegetation (24%), Sparse vegetation (19%), Thick vegetation (8%), Settlement and Cultivated land (4% each). 

The area is a part of active fold thrust belt of Darjeeling Himalayas where sedimentary rocks of Sub-Himalayas, low grade 85 

meta-sedimentaries of lesser Himalayas and high-grade rocks of Higher Himalayas are present with or without the overburden 

cover of varied thickness. These sequences of different grades of rocks are separated by E-W trending major tectonic features 

like Himalayan Frontal Thrust (HFT), Main Boundary thrust (MBT) and its splay as well as Main Central Thrust (MCT). The 

area is located within the seismic Zone-IV of seismic zonation map of India. 
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Figure 1: Location map of Darjeeling district (India) - Projection: WGS 84 / UTM zone 45N. Location Base Maps: © OpenStreetMap 

contributors 2021. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.  

The Darjeeling study area experiences a temperate climate with wet summers which gradually moves into monsoon season 

when the area receives a number of wet spells, notorious for triggering landslides. This part of the Eastern Himalayas receives 

the maximum amount of precipitation within the entire Himalayas.  95 

The Darjeeling Himalayas is perennially landslide-prone and frequently experiences landsliding events of variable magnitudes. 

Most of these landslides are triggered by incessant monsoon rain between June and September, with some occasional major 

landsliding events in between.  Notice that in Darjeeling roads are usually positioned along the relief’s ridges (Fig. 1). 

3 Methods and Data 

3.1 Methods 100 

Estimated visibility (EV) simulates the visibility of an object from an observation point. In this paper EV is measured by the 

“solid angle” (SA - unit of measurement: square minutes [min2]), a metric that quantifies the level of visibility of an object, of 

known size and orientation, located at a certain distance from an observer or, in other words, a metric that measures the portion 

of the observer field of view occupied by an object. 

We intend here the visibility of a landslide as the portion of the field of view of an observer occupied by the landslide itself, 105 

and we estimate it (Estimated Visibility, or EV) through the relative solid angle (SA) in square minutes [min2]. The apex is the 

point from which the slope is observed and the landslide subtends its solid angle from that point. EV depends then from the 

size and the orientation of the slope/landslide, and the distance. 

We used r.survey to simulate the EV (Bornaetxea and Marchesini, 2021). r.survey is an open source spatial analysis tool useful 

to assess how the terrain morphology is perceived by an observer located at a defined observation point, or a group of points. 110 
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It was designed for evaluating the visibility of features lying on the terrain slopes, including landslides. Among the different 

outputs, the tool provides the map of the maximum solid angle (SA). In the maximum solid angle map, each pixel has only 

one value. However, each pixel is potentially observed from several observation points. Here, the pixel value represents the 

maximum solid angle value calculated among all observation points from which the pixel is visible. SA value depends on the 

size of the observed object, the distance (between observers and target) and the relative orientation of the target with respect 115 

to the observation point.  

The data required to run r.survey are a Digital Terrain Model (DTM), a landslide inventory, and a set of points of observations. 

In this work, during the field surveys, the surveyors mainly travel on roads. Consequently, the simulation of visibility was 

performed starting from the road network. For this purpose, we generated a set of closely spaced points along the roads to 

simulate the observation points of a surveyor moving along the roads. Then we used r.survey to calculate the maximum SA 120 

map for a circular object, similar in size to the smallest landslide in the inventory. The SA values were then collapsed into SA 

classes in order to obtain an EV map. Additionally, we filtered the EV map by replacing the central pixel values with the most 

frequent class (mode) in a 3x3 moving window, in order to remove isolated pixels belonging to different classes with respect 

to the surrounding ones. Finally, we estimated the landslide density counting the number of landslides in each SA class. Since 

landslides are commonly collected as polygonal areas, it may happen that a single landslide overlaps more than one SA class. 125 

In this case, we assigned the landslide to the most present class within the landslide polygon. 

We used two metrics to measure the spatial density: the Normalized Landslide Count (NLC) and the Standardized Landslide 

Density (SLD).  

We used NLC to compare the spatial density of landslides included in different inventories prepared for the same study area 

(Eq. 1): 130 

𝑁𝐿𝐶𝑖 =  
𝑛𝑖

𝑛𝑡
,                                                                                                                                                                               (1) 

where ni and nt represent the number of landslides in the SA class i and the total number of landslides, in the inventory, 

respectively. 

Alternatively, we used SLD (Eq. 2) to compare the spatial density of landslides inventories prepared for different study areas 

(see section 4.3): 135 

𝑆𝐿𝐷𝑖 =  
𝑁𝐿𝐶𝑖

(𝐴𝑖/𝐴𝑡)
,                                                                                                                                                                          (2) 

where Ai and At are respectively the area of SA class i and the total area. 

The SLD metric normalises NLC according to the percentage of territory occupied by the SA classes. These percentages, in 

fact, can be slightly different among the study areas, due to the smoothing performed to remove isolated pixels. 

The entire flowchart is described in Fig. 2. 140 
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Figure 2: Conceptual-chart illustrating the proposed GIS-based approach. 

3.1 Data 

The Geological Survey of India (GSI) provided us with an inventory that was the result of a field-work campaign carried out 

after the monsoon period (that goes from June to September) of 2019. This inventory, named GSI Field, provides landslides 145 

locations as points. Additionally, GSI also provided us with a historical landslide inventory (GSI Historic) for the Darjeeling 

area. It is a multi-temporal landslide inventory devoted to landslide susceptibility modelling and studying triggering 

mechanisms, landslide domains and mitigation actions. This database gathers information about landslides that have occurred 

since 1968. As it usually occurs with national or regional multi-temporal databases (van Den Eeckhaut and Hervás, 2012), the 

information in this data-base is heterogeneous. Out of 1240 landslides, 80% are represented as polygons, while 20% are single 150 

points. Almost half of the landslides (47.6%) were mapped by means of satellite image photo-interpretation, using the available 

images coming from diverse sources, such as Cartosat PAN (2%) (2.5m x 2.5m), LISS IV (1%) (5.8m x 5.8m) and Google 

Earth or other base satellite maps available in ESRI’s ArcGIS 10.2 (44.6%). The rest of the data came mainly from legacy 

data, including data collected from GSI reports, and Toposheet (34.6%). The latter corresponds to a Topobase map of Survey 

of India (SOI) surveyed in 1969-70 at 1:25000 scale. Other sources such as Darjeeling Himalayan Railway’s database (7.5%), 155 

Blogs or Newspapers (3.5%) and Field-work (6.8%) complete the available information. Debris slides (69.43%) and rock 

slides (18.4%) are the most frequently reported failures together with debris flows (5.3%), rock fall (0.23%), deep rotational 

slides (1.95%) and unknown (4.69%). Lastly, we mapped landslides triggered by the 2019-2020 monsoon season using a pre-

event pan sharpened Spot 6 image acquired on 22th March of 2019 and a pan sharpened post-event image acquired on 3th April 

of 2020 by the same satellite. We used the two 2.5 x 2.5 m spatial resolution images to detect landslides occurring in between 160 

the two acquisitions following a photo interpretation approach. In this inventory, referred to as Spot 2020, we classified most 
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of the landslides (95%) as earth and debris flows, and the rest as complex movements. Figure 3 shows that GSI Historic and 

Spot 2020 FAD curves reveal a power law shape on the right of the rollover value (Malamud et al., 2004). The FAD curve 

could not be computed for GSI Field inventory due to the absence of the information about the landslide sizes. Fig. 3 also 

describes some characteristics of the available inventories. 165 

In addition to the landslide information, GSI also provided us with the road network map of Darjeeling, together with the 

10x10 meters resolution DTM. 

 

Figure 3: Frequency area distribution curves (FAD curves) for Spot 2020 (green), GSI Historic (brown). Landslide distribution map 

for Spot 2020, GSI Historic, GSI Field and Gipuzkoa inventories. Summary table of the inventories. 170 

4 Results 

4.1 Classified Estimated Visibility map 

We obtained the EV map of the study area using r.survey with the settings listed in Tab. 1. We used the entire road network 

(including roads slightly outside the boundaries of the studied area) and a maximum distance between points of 50 m for 

modelling the estimated visibility of an observer moving along the study area. We considered all the possible roads accessible 175 

in the study area, even though this probably overestimates the actual places from which the territory is commonly observed.   

The EV map was calculated for hypothetical landslides with an area equal to 78.54 m², which corresponds to the smallest 

landslides inventoried in Darjeeling (Tab. 1). We set to infinity the maximum line of sight distance in order to assess the 

visibility level for the complete territory. 

 Darjeeling 

Distance between points 50 
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Number of points 11054 

Maximum visible distance infinity 

DTM resolution (m) 10 

Target Object size (m²) 78.54 

Table 1: Summary of the specific settings to calculate SA maps for each study area. 180 

We classified the EV map in 6 classes using 16.67th, 33.33th, 50th, 66.67th, and 83.33th and 100th quantiles, of the SA map 

values, as thresholds. Then we applied a 3x3 smoothing moving window. Details about the threshold values for each SA class 

are available in Fig. 4. 

 

 185 

Figure 4: EV map for an object having a size of 78.54 m2. Red lines in the zoom insets represent the roads used as reference 

observation points. The abbreviation Quant. refers to quantiles and min2 stands for square minutes, a unit of measure of the solid 

angle. 

We carried out a spatial analysis to investigate possible natural causes for different landslide density in the different SA classes 

(see Fig. 5). Terrain slope, lithology and land use are the most important factors that may condition the occurrence of landslides 190 

(Reichenbach et al. 2018). So, we analysed the empirical densities distribution of the slope values and the percentual spatial 

coverage of the lithology and land cover categories inside each SA class. Figure 5 shows that slope empirical distributions are 

similar among the SA classes, and so are the distributions of the lithological and land cover categories. Data in Fig. 5 suggests 

that any difference in landslide density, between SA classes, is unlikely to be related to morphology, land cover, and lithology.  
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Figure 5: Slope probability density plots and Land Use and Lithology distribution by SA classes for Darjeeling study areas.  Land 

use types are Br: Barren; Cult: Cultivated land; Mveg: Moderate vegetation; Riv: River; Stl: Settlement; Spr: Sparse vegetation; 

Tea: Tea plantation; Tveg: Thick vegetation; Wt: Waterbody. The lithology types are Mig: Banded migmatite, Gt-Bt gneiss, mica 

schist, biotite gneiss; Brw: Brownish, yellow oxidised soil with boulders-pebbles and latsol; Cgn: Calc granulite, quartzite, gneiss, 

Gar, Sil, Kya schists; Csch: Chlorite sericite schist and quartzite, meta-graywacke; Myl: Mylonitic granite gneiss; Qrz: Quartz 200 
arenite, black slate, cherty phyllite, quartzite; Snd1: Sand, silt and clay; Snd2: Sandstone, clay, shale, conglomerate; Snd3: 

Sandstone, shale with minor coal. 

4.2 Description and analysis of NLC plots 

Figure 6 shows NLC versus the SA classes of the EV map, for the available landslide inventories.  Fig. 6a shows that, in the 

GSI Field inventory (a field-based-inventory), most of the landslides are located within the classes having higher SA values 205 

(class 1 and class 2). Landslide density in the other classes is very fluctuating, probably due to the small number of landslides 

in the inventory.  

GSI Historic (Fig. 6b) includes landslides mapped using different methods. It shows a slight, but monotonic, decreasing trend.  

 

 210 
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Figure 6: Normalized landslide count plot for GSI Field, GSI Historic and Spot 2020 inventories. The values above each column 

signify the number of landslides in each SA class. 

Figure 6c shows the calculated NLC values for the Spot 2020 inventory, produced through photo-interpretation of satellite 

imagery. The values calculated in the SA classes are fairly homogeneous and without trends.  215 

GSI Historic inventory contains two main types of information: landslides mapped exploiting satellite/aerial images or 

collected during field-based survey and from legacy data. We separated data obtained by satellite/aerial images from the rest 

of the data sources and called them GSI Historic Sat and GSI Historic Others respectively.  

NLC values show a pronounced monotonic decreasing trend for the GSI Historic Others inventory (Fig. 7a) while GSI Historic 

Sat (Fig. 7b) behaves similarly to the Spot 2020 inventory (Fig. 6c), with the landslide density not dependent on SA classes. 220 

 

Figure 7: Normalized landslide count distribution plot for GSI Historic Others and GSI Historic Sat inventories. The values above 

each column signify the absolute number of landslides in each visibility class. 

 

We additionally compared landslides sizes in the different SA classes (Fig. 8). In GSI Historic Others we merged 4,5,6 to have 225 

enough samples. We did not consider Spot 2020 and GSI Field inventories because of the little amount of data. 
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Figure 8: Landslide area boxplots per SA classes. Numbers in the x axis are the SA classes of the EV map. Horizontal solid line, 

inside each box, indicates the median value. 

Landslides in class 1 are significantly smaller than those included in the other classes for GSI Historic Others inventory (Fig. 230 

8a). Furthermore, the landslide size median in this inventory tends to increase when the estimated visibility decreases (i.e.  the 

median of the landslide area in classes 3,4,5,6 is up to 20 times larger than in class 1 and 2). For the GSI Historic Sat we did 

not observe a clear increasing trend in the medians of the landslide sizes (Fig. 8b) which are more homogeneous across the SA 

classes (even if in classes 1 and 2 landslides are generally small).  

4.3 Testing the method with external and modelled data 235 

We performed two additional analyses to further confirm the observed behaviour. First, we verified how many of the landslides 

recorded in Spot 2020 and GSI Historic Sat inventories would have been visible if observed from the same roads used to 

estimate the visibility for the other inventories. Second, we applied the EV analysis to a purely field-based inventory available 

for a different study area. 

For the first analysis we estimated the solid angle of the landslides included in Spot 2020 and GSI Historic Sat inventories (by 240 

considering their real size). Then we selected only those landslides with a SA larger than 400 square minutes, which is a value 

slightly larger than a person's maximum visual acuity (Bornaetxea and Marchesini, 2021; Healey and Sawant, 2012). We refer 

to these two samples as “Spot 2020 visible” and “GSI Historic Sat visible” respectively. In this scenario, the number of 

(potentially) visible landslides became 55 for “Spot 2020 visible” and 301 for “GSI Historic Sat visible”, i.e. -59.8% and -

32.9% with respect to the original datasets.  245 

 

 



12 

 

 

Figure 9: Standardized landslide density plot for six different landslide inventories. Spot 2020 visible and GSI Historic Sat visible 

are simulated sub samples of Spot 2020 and GSI Historic Sat respectively. 250 

For the second analysis, we used a landslide inventory prepared, by one of the authors, during a field-work campaign carried 

out in the period from June to August 2016 in Gipuzkoa Province (Spain) (Bornaetxea et al., 2018). The inventory includes 

542 shallow landslides. The roads followed during the survey are known. This inventory is referred to as Gipuzkoa inventory. 

We applied the approach explained in section 3, but using a 5x5 meters resolution DTM and a distance of 200 meters between 

observation points. 255 

Results are shown in Fig. 9, where we compared the standardized landslide density (SLD, see section 3) values with respect 

to the central value of each SA class. SA values are plotted in logarithmic scale and we excluded GSI Field and GSI Historic 

inventories from this analysis due to data scarcity or because of the non-homogeneous source of the data. 

In Fig. 9 we observe that, for values of log(SA) smaller than about 3.0 (where the central value of the SA classes 3, 4, 5 and 6 

are), “Spot 2020 visible” and “GSI Historic Sat visible” show a marked reduction of the SLD respect to the original Spot 2020 260 

and GSI Historic Sat inventories. The reduction is caused by the worse visibility from roads than from satellites in classes from 

3 to 6. 

In the same range of log(SA) values, the pattern of SLD for the  “Spot 2020 visible” and “GSI Historic Sat visible” inventories 

is monotonically non decreasing, likewise the GSI Historic Others inventory.  

From Fig. 9 we note that also the Gipuzkoa inventory, entirely field-based, shows a marked monotonically non decreasing 265 

pattern. The SLD curve is similar to GSI Historic Others in shape, which suggests that both show a substantial dependence 

from the EV. This is also conformal to the pattern of the SLD values for the “Spot 2020 visible” and “GSI Historic Sat visible” 

inventories when SA is low. In contrast, GSI Historic Sat and Spot 2020 show an almost flat behaviour, where the number of 

landslides does not vary according to the EV from the roads.  
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It is interesting to note that for the highest log(SA) values (i.e., for estimated visibility class 1), the SLD values for "Spot 2020 270 

visible" and "GSI Historic Sat visible" are similar to those in the original inventories. This shows that the landslides in class 1 

can all be mapped from roads.  

5 Discussion 

In this paper, we assess the CoLM uniformity of landslides inventories in relationship with the visibility offered by well-known 

observation points. We estimated the visibility offered by a set of points of observation using a geometric approach that takes 275 

into account the local morphology of a territory. The most visible areas are generally located near the points of observations 

(i.e. roads in this work). But, unlike in the geometric distance buffering, the SA classes show a non-symmetric propagation of 

the EV, which allows to detect portions of territories very close to roads but poorly visible (Fig. 4).   

The spatial densities of landslide information (measured by the NLC and SLD metrics) and the estimated visibility (EV) are 

positively related to the GSI Field (Fig. 6a) and GSI Historic Others (Fig. 7a) inventories. The deviations from a monotonic 280 

trend, observed in the GSI Field inventory, are probably related to the low data density and location inaccuracy. Since the 

distribution of the main landslide predisposing factors is homogeneous across all the SA classes (Fig. 5), we consider these 

trends as relevant evidence of the scarce CoLM uniformity of the inventories and, as a consequence, of their uneven 

completeness. On the contrary, for the satellite imagery-based inventories (Spot 2020 and GSI Historic Sat) the NLC and SLD 

values in the SA classes are quite uniform (Fig. 6c and 7b). This is assumed to be a consequence of the neutral CoLM 285 

uniformity offered by the remote acquisition. 

Roads, which are by definition always included in the first visibility class, are also considered by many authors as a 

predisposing factor since cut-and-fill failures, drainage and groundwater alteration can influence the occurrence of landslides 

(Brenning et al., 2015; Donnini et al., 2017; Giordan et al., 2018; McAdoo et al., 2018). Moreover, Taylor et al. (2020) suggest 

that transport networks and landslides are interconnected in terms of process and impacts. Indeed, Tanyaş et al. (2022) also 290 

state that road construction acts as a major causative factor of landslides. However, the reasons of that close relationship are 

very complex and not fully unravelled (Meneses et al., 2019; Santangelo et al., 2015; Sidle et al., 2014; Sidle and Ziegler, 

2012), which justifies the need to investigate whether the major availability of roadside landslide information in inventories 

may also depend on other factors. 

Based on the above considerations, a higher density of landslides (higher NLC and SLD values) should be expected only along 295 

the roads and, as a consequence, in the SA class 1 respect to the SA classes 2 to 6. But at the same time, all the SA classes but 

the first one, should show fairly similar density of landslides. In inventories based on satellite imagery (GSI Historic Sat and 

Spot 2020) the latter condition was fulfilled, but we didn’t observe a higher number of landslides in SA class 1 (Figs. 6c and 

7b). In the GSI Field and GSI Historic Others, the abundance in SA class 1 is evident, but the number of landslides still drops 

monotonically also in SA classes 2 to 6. So, we conclude that in both types of inventories, there is a data collection effect 300 

(Steiger et al. 2021), albeit different. 
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In fact, since roadside landslides are typically small (Voumard et al., 2018), they can be easily under-represented when the 

inventories are prepared with images without an adequate resolution or unsuitable acquisition geometry (Martha et al., 2021). 

When considering GSI Historic Others, landslides are very abundant in the highly visible areas (Fig. 7a), and at the same time 

they are considerably smaller than in the rest of the classes (Fig. 8a). On the contrary, for GSI Historic Sat inventory, comparing 305 

Fig. 7b and 8b, we observe a relatively low number of small size landslides in class 1. In this case, limits in the type and quality 

of the satellite images (e.g., spatial resolution, acquisition time and geometry, etc.), can be the factors hampering the possibility 

of mapping small landslides (Mondini et al., 2014). Furthermore, in GSI Historic Sat the variation of landslide size in the 

different visibility classes does not show a clear trend and presents much smaller variations than in GSI Historic Others 

inventories (Fig. 8), where the size of the mapped landslides rises progressively according to the lack of the visibility. This 310 

suggests that the visibility can also affect the size distributions (Fig. 8) of the reported landslide information. These results are 

in line with Steger et al (2021) hypothesis on the "data collection effect", which states that the method used to compile 

inventories can influence the distribution of landslides information in the inventories. 

We partially observed a monotonic behaviour of the relationship between estimated visibility and landslide density obtained 

in the field and historic-based inventories also in Spot 2020 Visible and GSI Historic Sat Visible. These two inventories include 315 

only those landslides present in the remotely sensed inventories that would result visible through hypothetical field surveys 

along the roads. SLD values (Fig. 9) highlight that the least visible areas (low SA values) lost the majority of landslides. 

Moreover, in the most visible areas, SLD values from the Spot 2020 Visible and GSI Historic Sat Visible inventories are much 

lower than those observed for the GSI Historic Others. This possibly suggests that some small landslides were not detected in 

visibility class 1 for Spot 2020 and GSI Historic Sat, eventually caused by the inadequate resolution of the images. We conclude 320 

that even if the CoLM uniformity of the landslide inventories produced using satellite-based images is generally large, they 

can still be not able to reach, in the SA class 1 (i.e. in the areas very visible from the roads) the same completeness they have 

in the other SA classes. 

The monotonic non-decreasing trend observed for field–based or legacy-based landslides inventories was confirmed by the 

analysis carried out with a landslide inventory prepared in a completely different study area, in Spain (Gipuzkoa). For this 325 

inventory, the accurate road path followed by the surveyor was also well known and there was not the need to conservatively 

assess the EV along the entire road network (as we did for the Darjeeling study area). This allowed a more accurate simulation 

of the EV which, in turn, determined a pronounced non-descending monotonic pattern of the SLD values (Fig. 9). Results 

obtained on Gipuzkoa confirm that by means of the EV analysis it is possible to assess the CoLM uniformity of an inventory, 

and therefore also of its completeness. In addition, the use of the SLD metric makes it possible to compare the CoLM 330 

uniformity of different inventories produced in the same or in different study areas. 

Notwithstanding, we acknowledge that our results depend on some user-driven decisions, such as the distance between 

observation points placed along the roads, and the choice of the thresholds to obtain the visibility classes. In Darjeeling, the 

real path followed by the field surveyor was unknown and we applied a conservative approach (visibility overestimation) by 

considering all roads as potential observation points and a four-time smaller maximum distance between points than in 335 
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Gipuzkoa. This is probably one of the reasons for the more pronounced monotonic pattern shown in Gipuzkoa with respect to 

GSI Historic Others. Furthermore, we chose quantile values of the EV map to obtain the SA classes covering similar portions 

of the study area. We run several tests with different threshold values showing results in terms of landslide densities always 

very similar to those described by Figs. 6, 7, and 9.   

The resolution of the DTM can also have an impact on the results. A coarse representation of the morphology of the territory 340 

can affect the calculation of the solid angle and the delineation of non-visible areas. In this work, we performed the analysis 

with the higher resolution DTMs available in each study area, but further tests on the influence of the quality of the data should 

be conducted. Future works should also incorporate the role of the vegetation in the visibility for landslide detection by field-

work, although the information about the elevation of each type of vegetation is rare.  

In addition, although EV could be measured using different metrics (e.g. by counting the number of points that have a direct 345 

line of sight to a particular object (Fontani 2017)), we maintain that our method offers the unique perspective of considering 

several geometric aspects of the object and the territory under investigation. This makes our approach adequate for 

morphologically complex areas. 

6 Conclusions 

We analysed the relationship between the spatial density of landslides reported in different inventories prepared through field 350 

surveys, collection of previous data and interpretation of remotely acquired images, and the visibility of the territory from 

observation points located along the roads. We also introduced the concept of uniformity in capacity of landslide mapping 

(CoLM), as a tool to discern whether the completeness of a landslide inventory is homogeneous across the territory. 

The results of the present work show that in inventories prepared using field survey and/or historic legacy data, the CoLM 

uniformity can be poor and this is reflected in marked inhomogeneity in completeness. This is demonstrated by (i) the positive 355 

correlation observed between landslide density and the visibility of the terrain from the observation points, (ii) the lack of 

small landslides in areas with low visibility, and (iii) a number of landslides in remote areas intercepted by the satellite images 

but invisible from roads. 

In addition, we observed that inventories based on the use of remote sensing images, where the CoLM is uniform, may also 

be affected by a different form of "data collection effect" (sensu Steiger et al. 2021). In fact, results show that, contrary to what 360 

expected (Brenning et al., 2015; Donnini et al., 2017; Giordan et al., 2018; McAdoo et al., 2018; Meneses et al., 2019; 

Santangelo et al., 2015; Sidle et al., 2014; Sidle and Ziegler, 2012), our inventories don’t show abundance of landslides close 

to roads. Reasons may be searched in the inadequate spatial resolution of the satellite images, that can prevent the recognition 

of small roadsides landslides. Thus, our inventories proved not to be uniformly representative of the real spatial distribution of 

landslides in the study area, requiring for an informed and appropriate usage (Bornaetxea et al., 2018; Steger et al., 2021).  365 

Our procedure enriches the portfolio of solutions to evaluate the quality of landslide inventories introducing local morphology 

in the analysis. We think that the procedure and methods presented in this work can be used, in other study areas, to: (i) test 
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whether the information in existing inventories (especially those created by fieldwork) is affected by a scarce CoLM (and 

therefore completeness) uniformity, (ii) identify portions of land where landslide density information is larger with respect to 

other areas and can be more properly used to train susceptibility, hazard and risk models, (iii) identify portions of land where 370 

landslide inventories need improvement, (iv) plan exhaustive field mapping campaigns.  
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