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Abstract. Landslide inventories are used for multiple purposes including landscape characterisation and monitoring, and 

landslide susceptibility, hazard and risk evaluation. Their quality/completeness can depend on the data and the methods with 

which they were produced. In this work we evaluate the effects of a variable visibility of the territory to map on the spatial 10 

distribution of the information collected by fourin different landslide inventories prepared using different approaches in twoa 

study areasarea. 

The method first classifies the territory in areas with different visibility levels from the paths (roads) used to map landslides, 

and then estimates the landslide density reported in the inventories into the different visibility classes. 

Our results show that 1) the density of the information is strongly related to the visibility in inventories obtained through 15 

fieldwork, technical reports and/or newspapers, where landslides are under-sampled in low visibility classesareas; and 2) the 

inventories obtained by photo-interpretation of images suffer from a marked under representation of small landslides close to 

roads or infrastructures. We maintain that the proposed procedure can be useful to evaluate the quality/completeness of 

landslide inventories and then properly orient their use. 

 20 

1 Introduction  

Landslides affect the evolution of the territory and represent a hazard to the population, structures and infrastructure (Fell et 

al., 2008). Detailed information about the spatial and temporal distribution, and characteristics of past landslides is essential 

for susceptibility/hazard statistical (Hao et al., 2020; Reichenbach et al., 2018; Steger et al., 2016; Van2016a; van Den 

Eeckhaut and Hervás, 2012; Galli et al., 2008) and physically-based modelling (Lee et al., 2020; Park et al., 2019).  25 

CompleteHowever, complete landslide inventories are difficult or impossible to achieve (Corominas et al., 2014) and when 

they are). Inventories used, they for basin or regional modelling should at least be statistically representative of the slope 

processes occurring in the studied areaareas (Cova et al., 2018; Guzzetti et al., 2012; Melzner et al., 2020). 
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Bias in sampling can prevent the realizationrealisation of statistically representative inventories and introduce errors that are 

difficult to investigate, manage, propagate and communicate (Guzzetti et al., 1999). Largely incomplete landslide inventories 30 

can have relevant impact on derivatives products such as landslide susceptibility and hazard maps (Steger et al., 2021, 2017).  

Differences in Lack of completeness and then quality of landslide inventories can largely depend on the mapping approach, 

the study area extent or the analysed time span, the availability of data, time and human resources (Fiorucci et al., 2018; 

Mondini et al., 2014; Santangelo et al., 2015). Inventories can be compiled in several ways (Guzzetti et al., 2012) and), 

exploiting different sources of data. In the case of non-automatic (or 'manual') methods which include visual interpretation of 35 

remote sensing images, direct field investigation, and responding to different requirements according to their usage. For 

example, geographical accuracy and reorganisation of data inherited from historical archives a good visibility of the territory 

can become a key factor (Bornaetxea and Marchesini, 2021; Steger et al., 2021).  

In this paper we investigate if and how the terrain visibility can limit the mapping capacity of an operator, and then influence 

the quality of an inventory.  In other words, we compare the "data collection effect" (Steger et al., 2021) produced by the 40 

mapping of landslides in the field, with that determined by the recognition of landslides by photo interpretation of remote 

sensing images. In fact, Steger et al (2021) argued that the spatial distribution of landslides also depends on the "effects" 

generated by the adopted data collection procedure. 

For this purpose, we studied a purely field-based landslide inventory available for the Gipuzkoa Province (Spain) (Bornaetxea 

et al., 2018), and a few inventories covering the Darjeeling district (north-east of India), obtained by interpreting several types 45 

of remotely sensed data, conducting field surveys from roads and collecting other types of information. The paper is organized 

as follows. In Sec. 2 we discuss the rationale behind the research. In Sec. 3 we summarize the method of the analysis while in 

Secs. 4 and 5 we describe the study area and the data used. Section 6 describes the visibility maps of our study areas and Sec. 

7 shows the results. In Sec. 8 we discuss findings, and we draw conclusions in Sec. 9. 

2 Rationale 50 

It is widely accepted the primary role that landslide inventories play for (i) showing the location and type of landslides in a 

region, (ii) mapping the effects of landslide triggering events, (iii) describing the abundance of mass movements, (iv) 

determining the frequency-area statistics of slope failures, and (v) providingrepresentativeness are relevant information to train 

and validate landslide for susceptibility and/or hazardanalysis when carried out by means of statistical models (Galli et al., 

2008; Santangelo et al., 2015; Steger et al., 2021), while occurrence dates, size and location are prioritized for damage 55 

evaluation studies, also related to climate changes (Gariano and Guzzetti, 2016). In addition, the quality and then the et al., 

2012). The usefulness of a landslide susceptibility map is directly related to the quality of the data used to build the model 

(Cascini, 2008; Corominas et al., 2014; Fressard et al., 2014; Guzzetti et al., 2006; van Westen et al., 2008). The propagation 

of the errorerrors caused by large incompleteness in the inventories used to produce a susceptibility mapmaps was investigated 

by Steger et al. (20162016b) and Steger et al. (2017) in Lower Austria. They discovered that biased input data can 60 
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generategenerated unrealistic (or even meaningless) results, and enhance theenhancing an apparent predictive performance of 

a model.the models (Steger et al., 2021). 

Quality requirements depend on the inventory usage. Geographical accuracy (Santangelo et al., 2015) and representativeness 

are relevant for susceptibility analysis when carried out by means of statistical models (Steger et al., 2021), while occurrence 

dates, size and location are prioritized for damage evaluation studies, also related to climate changes (Gariano and Guzzetti, 65 

2016).  

According to Guzzetti et al. (2012) the quality of a landslide inventory refers to the geographical and thematic information 

accuracy, in particular, ñcompleteness (or level of completeness) refers to the proportion of landslides shown in the inventory 

compared to the real (and most of the times unknown) number of landslides in the study areaò. Full completeness is 

unachievable (Corominas et al., 2014) while ña substantially complete inventory must include a substantial fraction of the 70 

smallest landslidesò (Malamud et al., 2004). More specifically, the  

Some authors have already suggested ways to assess quality aspects and/or completeness of an inventory has often been 

evaluated in relation to the size of the landslides (. Malamud et al. (2004), starting from the work of Stark and Hovius,  (2001), 

focused on characteristic landslides area statistical distributions (Frequency-Area Distribution - FAD) as an indicator of 

completeness. Galli et al. ) with the expectation that the ratios between the number of landslides present in (2008) suggested 75 

pairwise comparisons to rank the quality of different size classes is equal or very similar to the ratios observed when 

considering the whole population of landslides. Guzzetti et al. (2012) stated that only event inventories prepared in the same 

study area. Piacentini et al. can be statistically representative, i.e., they contain a representative sample of the (2018) analysed 

the spatial accuracy of an historical geospatial landslide database comparing different periods within the time laps covered by 

the catalogue. Trigila et al. (2010) used landslide densities in urban and non-urbanized areas to rank landslide inventories 80 

quality across the different administrative regions of Italy. Finally, Tanyaĸ and Lombardo (2020) proposed a completeness 

index for earthquake-induced landslide inventories. landslide size classes, while other types of inventories canôt ( 

Currently, only the approach proposed by Malamud et al.,  (2004) is commonly used in the literature as a tool to assess the 

completeness of inventories (e.g., Chaparro-Cordón et al., 2020; Ghorbanzadeh et al., 2019; Tanyaĸ et al., 2019; Zhang et al., 

2019; Nicu et al., 2021; Roberts et al., 2021; Tanyaĸ and Lombardo, 2020; Tekin, 2021; Ubaidulloev et al., ). 2021). However, 85 

the analysis of FADs does not include the analysis of where landslides are eventually missing in an inventory (Lima et al 

2021). In fact, an inventory may show different levels of quality where the capacity of mapping of an operator changes 

according to the different working conditions across the study area. 

Landslide inventories obtained from remotely sensed images are the most recurrent source of information used in landslide 

susceptibility studies at regional scale (Reichenbach et al., 2018). In the inventories produced through the interpretation of 90 

satellite or aerial images, geometric resolution of the image limits the minimum size of the landslides that can be visible and 

mapped by the operator in the whole scene (Guzzetti et al., 2012). However, they can suffer from certain limitations related to 

the image's spatial resolution, the expertise of the operator (for manual and automatic classification) or the slope orientation 

and shadowing effects (Brardinoni et al., 2003; Jacobs et al., 2017). 
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In practice, many works devoted to the landslide susceptibility/hazard zoningSince in this case the visibility of the territory is 95 

referred to the position of the sensor, and it can be assumed almost constant along the territory, we assume that inventories 

based in remotely sensed images were compiled in homogeneous working condition and then with uniform Capacity of 

Landslide Mapping (CoLM) over the studied area.  In contrast, many scientific works were and are still based on information 

acquired from field surveys or from historical inventories and catalogues derived from heterogeneous information sources 

(Bera et al., 2019; Hussain et al., 2019; Jacobs et al., 2020; Knevels et al., 2020; Meena et al., 2019; Reichenbach et al., 2018; 100 

Rohan and Shelef, 2019; Zhang et al., 2019). Historical or field-based inventories often show an abundant quantity of landslides 

near urban areas or infrastructure, where damage is more frequent, sites are more accessible, and mitigation plans are elaborated 

(Guzzetti et al., 1999, 1994; Ibsen and Brunsden, 1996; Steger et al., 2021; Trigila et al., 2010; Wood et al., 2020). Usually, 

the accumulation of information along roads is particularly rich, highlighting that landslides and transport networks are 

intrinsically interconnected in terms of process and impacts (Taylor et al., 2020). The reasons of that close relationship are 105 

very complex and not fully unravelled (Brenning et al., 2015; Donnini et al., 2017; Giordan et al., 2018; McAdoo et al., 2018; 

Meneses et al., 2019; Santangelo et al., 2015; Sidle et al., 2014; Sidle and Ziegler, 2012), raising a need to investigate whether 

the major availability of roadside landslide information in inventories is purely causal (roads act as predisposing factors) or 

also depends on other factors, such as visibility matters. 

Size2019). In the case of field surveys is the visual acuity, i.e. the ability of the human eye to resolve objects that occupy a 110 

small portion of the field of view, which is potentially affecting the possibility to detect landslides due to their size and/or 

relative position or distance respect to the operator. In fact, size, distance and orientation determine the visibility of an observed 

object (like a landslide) (Bornaetxea and Marchesini, 2021; Domingo-Santos et al., 2011). In the case of field mapping,) and, 

since surveyors often follow predetermined roads and observe different portions of the territory from different observation 

points. Small landslides can be easily detectable if they are close to , the working condition changes and the path, but not when 115 

they are located far away. In addition, due to their position/orientation, itCoLM is possible that even large landslides cannot 

be detected. In contrast, in a satellite or aerial image,not-uniform over the visibilitysurveyed area. This study presents a 

framework to assess where and how the point of observation of the territory is referred to the position ofoperator affects the 

sensor, and it can be assumed to be almost constant and homogeneous, even though spatial resolution and geometric acquisition 

may limit the minimum size of landslides that can be detected (Mondini et al., 2014). Therefore,CoLM uniformity, and hence 120 

the quality and /completeness of anthe inventory can be intrinsically linked to the data acquisition method. .  

The method is based on the concept of ñestimated visibilityò (EV), which is a computer-based simulation of the real visibility 

of an object from a point of observation, and on the measure of the spatial landslide density in an area related to the EV. We 

tested the proposed framework using three inventories available for the Darjeeling district (north-east of India) and prepared 

with different data and methods including field-based surveys, aerial and satellite photo-interpretation. 125 
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2 Study area 

We applied the approach in an area of ~513 km² within the Darjeeling district, the northernmost district of West Bengal state 

(north-east of India) (Fig. 1). The area starts just above the foothills of Himalaya in the south and goes beyond the Higher 

Himalayas in the north. The area lies within the highly dissected hill ranges of the sub to higher Himalayas with elevation 

varying from 200 m to 2900 m. About 48% of the area has slopes between 15° and 30°, however the steeper slopes are mainly 130 

restricted in the escarpment or cliffs present in the area. The major part of the area is covered by Tea plantation (39%), followed 

by Moderate vegetation (24%), Sparse vegetation (19%), Thick vegetation (8%), Settlement and Cultivated land (4% each). 

The area is a part of active fold thrust belt of Darjeeling Himalayas where sedimentary rocks of Sub-Himalayas, low grade 

meta-sedimentaries of lesser Himalayas and high-grade rocks of Higher Himalayas are present with or without the overburden 

cover of varied thickness. These sequences of different grades of rocks are separated by E-W trending major tectonic features 135 

like Himalayan Frontal Thrust (HFT), Main Boundary thrust (MBT) and its splay as well as Main Central Thrust (MCT). The 

area is located within the seismic Zone-IV of seismic zonation map of India. 

 

Figure 1: Location map of Darjeeling district (India) - Projection: WGS 84 / UTM zone 45N. Location Base Maps: © OpenStreetMap 

contributors 2021. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.  140 

The Darjeeling study area experiences a temperate climate with wet summers which gradually moves into monsoon season 

when the area receives a number of wet spells, notorious for triggering landslides. This part of the Eastern Himalayas receives 

the maximum amount of precipitation within the entire Himalayas.  

The Darjeeling Himalayas is perennially landslide-prone and frequently experiences landsliding events of variable magnitudes. 

Most of these landslides are triggered by incessant monsoon rain between June and September, with some occasional major 145 

landsliding events in between.Some authors have suggested ways to assess the quality and/or the completeness of an inventory. 

Malamud et al. (2004) proposed the landslides area statistical distribution (Frequency-Area Distribution - FAD) as an indicator 
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of completeness, which was used by many authors (e.g., Chaparro-Cordón et al., 2020; Ghorbanzadeh et al., 2019; Tanyaĸ et 

al., 2019; Zhang et al., 2019). According to Malamud et al. (2004), the inverse gamma distribution can be used to model the 

frequency density of landslide sizes in an inventory. A number of authors consider an inventory statistically representative 150 

only for landslides larger than the roll-over value (Nicu et al., 2021; Roberts et al., 2021; Tanyaĸ and Lombardo, 2020; Tekin, 

2021; Ubaidulloev et al., 2021). Galli et al. (2008) suggested a framework, based on pairwise comparisons (geographical 

abundance, cartographic matching, frequency area statistics, and effectiveness in modelling landslides), to rank inventories 

prepared in the same study area. Piacentini et al. (2018) analysed the spatial accuracy of a historical geospatial landslide 

database comparing different periods within the time laps covered by the catalogue. They also verified the completeness of the 155 

database by the conventional FAD analysis. Trigila et al. (2010) used landslide densities in urban and non-urbanized areas to 

rank landslide inventories quality across the different administrative regions of Italy. Setting a buffer of 750 m around the 

urban areas they ranked higher those inventories where the percentage of landslides mapped outside the buffer areas was larger. 

The approach requires the choice of a fixed buffer a-priori not connected to the local morphology of the area, to the related 

geomorphological processes and to the visibility of the slopes from urban centres. Finally, Tanyaĸ and Lombardo (2020) 160 

proposed a completeness index for earthquake-induced landslide inventories. The index is a function of the Peak Ground 

Acceleration values and therefore cannot be applied to rain-induced landslide inventories or historical archives.  

In this work we analyse the possible relationship between the degree of visibility of the territory from roads and the spatial 

distribution of information on landslides contained in 4 inventories, prepared with different data and methods. In other words, 

the "data collection effect" (sensu Steger et al. (2021)), on different types of inventories, is investigated and discussed. 165 

  Notice that in Darjeeling roads are usually positioned along the reliefôs ridges (Fig. 1). 

3 Methods and Data 

3.1 Methods 

Estimated visibility (EV) simulates the visibility of an object from an observation point. In this paper we estimated EV is 

measured by the ñsolid angleò (SA - unit of measurement: square minutes [min2]), a metric that quantifies the level of visibility 170 

of the territory using roads as observation points for the inventories obtained through field investigation and we assumed 

constant visibility when remotely sensed images were used.  

For field-based maps, we used the solid angle (SA) metric as an object, of known size and orientation, located at a certain 

distance from an observer or, in other words, a measure of the visibility of an object. SA valuemetric that measures the portion 

of the observer field of view occupied by thean object.  175 

We calculated SA maps using We intend here the visibility of a landslide as the portion of the field of view of an observer 

occupied by the landslide itself, and we estimate it (Estimated Visibility, or EV) through the relative solid angle (SA) in square 
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minutes [min2]. The apex is the point from which the slope is observed and the landslide subtends its solid angle from that 

point. EV depends then from the size and the orientation of the slope/landslide, and the distance. 

We used r.survey to simulate the EV (Bornaetxea and Marchesini, 2021). r.survey is an open source spatial analysis tool useful 180 

to assess how the terrain morphology is perceived by an observer located at a defined observation point, or a group of points. 

It was designed for evaluating the visibility of features lying on the terrain slopes, including landslides. The positions of the 

observer, a DTM and the size of the target object whose visibility is going to be assessed (a landslide in this case) are the 

mandatory inputs. Among the different outputs, the tool provides the map of the maximum solid angle (SA). In the maximum 

solid angle map, each pixel has only one value. However, each pixel is potentially observed from several observation points. 185 

Here, the pixel value represents the maximum solid angle value calculated among all observation points from which the pixel 

is visible. SA value depends on the size of the observed object, the distance (between observers and target) and the relative 

orientation of the target with respect to the observation point.  

The data required to obtain SArun r.survey are a digital terrain model,Digital Terrain Model (DTM), a landslide inventory, 

and a set of points of observations. 190 

In this work, during the field surveys, the surveyors mainly travel on roads. Consequently, the simulation of visibility was 

performed starting from the road map.  Firstnetwork. For this purpose, we generated a set of closely spaced points along the 

roads. These points redundantly to simulate the observation points of a surveyor moving along the roads. Then we used r.survey 

to calculate the maximum SA map for a circular object, similar in size to the smallest landslide in the inventory. After that, we 

obtained the visibility class map (SAc) by thresholding theThe SA values. were then collapsed into SA classes in order to 195 

obtain an EV map. Additionally, we smoothedfiltered the SAc maps,EV map by replacing the central pixel values with the 

most frequent class (mode) in a 3x3 moving window, in order to remove isolated pixels belonging to different classes with 

respect to the surrounding ones. Finally, we estimated the landslide density counting the number of landslides in each 

visibilitySA class. Since landslides are commonly collected as polygonal areas, it may happen that a single landslide overlaps 

more than one visibilitySA class. In this case, we assigned the landslide to the most present class within the landslide polygon. 200 

We used two metrics to measure the spatial density: the Normalized Landslide Count (NLC) and the Standardized Landslide 

Density (SLD).  

We used NLC to compare the spatial density of landslides included in different inventories prepared for the same study area 

(Eq. 1): 

ὔὒὅ ,                                                                                                                                                                                (1) 205 

where ni and nt represent the number of landslides in the SA class i and the total number of landslides, in the inventory, 

respectively. 

WeAlternatively, we used SLD (Eq. 2) to compare the spatial density of landslides included in different inventories prepared 

for different study areas (Eq. 2see section 4.3): 

ὛὒὈ 
Ⱦ

,                                                                                                                                                                          (2) 210 
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where Ai and At are respectively the area of visibilitySA class i and the total area. 

The SLD metric normalises NLC according to the percentage of territory occupied by the visibilitySA classes. These 

percentages, in fact, can be slightly different among the study areas, due to the smoothing performed to remove isolated pixels. 

The entire flowchart is described in Fig. 12. 

 215 

 

Figure 12: Conceptual-chart illustrating the proposed GIS-based approach. 
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4 Study areas 

We first tested the approach in Gipuzkoa Province. It is a ~1980 km² region located in the north of the Iberian Peninsula, along 

the western end of the Pyrenees (Fig. 2a). It is lithologically heterogeneous, with deposits dated from Paleozoic to Quaternary, 220 

and presents the typical hilly and mountainous Atlantic landscape. The average annual precipitation is 1597 mm, with two 

maximum seasons: NovemberïJanuary and April. More detailed description about this study area can be found in (Bornaetxea 

et al., 2018). 

We applied the same approach in an area of ~513 km² within the Darjeeling district, the northernmost district of West Bengal 

state (north-east of India) (Fig. 2b). The area starts just above the foothills of Himalaya in the south and goes beyond the Higher 225 

Himalayas in the north. The area lies within the highly dissected hill ranges of the sub to higher Himalayas with elevation 

varying from 200 m to 2900 m. About 48% of the area has slopes between 15° and 30°, however the steeper slopes are mainly 

restricted in the escarpment or cliffs present in the area. The major part of the area is covered by Tea plantation (39%), followed 

by Moderate vegetation (24%), Sparse vegetation (19%), Thick vegetation (8%), Settlement and Cultivated land (4% each). 

The area is a part of active fold thrust belt of Darjeeling Himalayas where sedimentary rocks of Sub-Himalayas, low grade 230 

meta-sedimentaries of lesser Himalayas and high-grade rocks of Higher Himalayas are present with or without the overburden 

cover of varied thickness. These sequences of different grades of rocks are separated by E-W trending major tectonic features 

like Himalayan Frontal Thrust (HFT), Main Boundary thrust (MBT) and its splay as well as Main Central Thrust (MCT). The 

area is located within the seismic Zone-IV of seismic zonation map of India (BIS 2002). 

 235 

Figure 2: Location maps of Darjeeling district (India) - Projection: WGS 84 / UTM zone 45N - and Gipuzkoa province (Spain) 

- Projection: ETRS89 / UTM zone 30N. Location Base Maps: © OpenStreetMap contributors 2021. Distributed under the Open 

Data Commons Open Database License (ODbL) v1.0.  
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The Darjeeling study area experiences a temperate climate with wet summers which gradually moves into monsoon season 

when the area receives a number of wet spells, notorious for triggering landslides. This part of the Eastern Himalayas receives 240 

the maximum amount of precipitation within the entire Himalayas.  

The Darjeeling Himalayas is perennially landslide-prone and frequently experiences landsliding events of variable magnitudes. 

Most of these landslides are triggered by incessant monsoon rain between June and September, with some occasional major 

landsliding events in between. 

Study areas road networks are shown in Fig. 2. In Gipuzkoa roads are mostly located along the valleys while in Darjeeling 245 

roads are usually positioned along the reliefôs ridges. 

53.1 Data 

For Gipuzkoa Province, we used a landslide inventory prepared, by one of the authors, during the field-work campaign carried 

out in the period from June to August 2016 (Bornaetxea et al., 2018). We cleaned the database from landslides not detected by 

means of visual inspection on the field, and 542 shallow landslides remainedThe. This inventory is referred to as Gipuzkoa 250 

inventory. Additionally, the map of the roads followed during the field-work campaign and 5 meters resolution DTM was 

available. For the Darjeeling study area, the Geological Survey of India (GSI) provided us with an inventory that was the result 

of a field-work campaign carried out after the monsoon period (that goes from June to September) of 2019. This inventory, 

named GSI Field, provides landslidelandslides locations as points, so the FAD curve cannot be computed.. Additionally, GSI 

also provided us with a historical landslide inventory (GSI Historic) for the Darjeeling area. It is a multi-temporal landslide 255 

inventory devoted to landslide susceptibility modelling and studying triggering mechanisms, landslide domains and mitigation 

actions. This database gathers information about landslides that have occurred since 1968. As it usually occurs with national 

or regional multi-temporal databases (Vanvan Den Eeckhaut and Hervás, 2012), the information in this data-base is 

heterogeneous. Out of 1240 landslides, 80% are represented as polygons, while 20% are single points. Almost half of the 

landslides (47.6%) were mapped by means of satellite image photo-interpretation, using the available images coming from 260 

diverse sources, such as Cartosat PAN (2%),%) (2.5m x 2.5m), LISS IV (1%) (5.8m x 5.8m) and Google Earth or other base 

satellite maps available in ESRIôs ArcGIS 10.2 (44.6%). The rest of the data came mainly from legacy data, including data 

collected from GSI reports, and Toposheet (34.6%). The latter corresponds to a Topobase map of Survey of India (SOI) 

surveyed in 1969-70 at 1:25000 scale. Other sources such as Darjeeling Himalayan Railwayôs database (7.5%), Blogs or 

Newspapers (3.5%) and Field-work (6.8%) complete the available information. Debris slides (69.43%) and rock slides (18.4%) 265 

are the most frequently reported failures together with debris flows (5.3%), rock fall (0.23%), deep rotational slides (1.95%) 

and unknown (4.69%). We named this inventory as GSI Historic . We obtained the corresponding FAD curve only using the 

landslides mapped as polygons. The curve (Fig. 3) shows the conventional power-law fit with a relatively low roll-over 

(Malamud et al., 2004). Lastly, we mapped landslides triggered by the 2019-2020 monsoon season using a pre-event pan 

sharpened Spot 6 image acquired on 22th March of 2019 and a pan sharpened post-event image acquired on 3th April  of 2020 270 
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by the same satellite. We used the two 2.5 x 2.5 m spatial resolution images to detect landslides occurring in between the two 

acquisitions following a photo interpretation approach. In this inventory, referred to as Spot 2020, we classified most of the 

landslides (95%) as earth and debris flows, and the rest as complex movements. Figure 3 shows the that GSI Historic and Spot 

2020 FAD curves reveal a power law shape of the FAD curve on the right of the rollover and a low rollover value (Malamud 

et al., 2004). Table 1 summarizes the The FAD curve could not be computed for GSI Field inventory due to the absence of the 275 

information about the fourlandslide sizes. Fig. 3 also describes some characteristics of the available inventories. 

In addition to the landslide information, GSI also provided us with the road network map of Darjeeling, together with the 

10x10 meters resolution DTM. 
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 280 

Figure 3: Frequency area distribution curves (FAD curves) for Spot 2020 (green), GSI Historic (brown) and Gipuzkoa inventories 

(red).). Landslide distribution map for Spot 2020, GSI Historic, GSI Field and Gipuzkoa inventories. Summary table of the 

inventories. 

 Gipuzkoa Spot 2020 GSI Historic  GSI Field 

Number of landslides 542 82 1240 25 

Source Field survey Satellite image photo-interpretation Miscellaneous Field survey 

Geometry type Polygons Polygons Points and polygons Points 

Table 4 Results 

4.1: Descriptive table for the landslide inventories. 285 

6 Classified Estimated Visibility class mapsmap 

We obtained the visibility class maps for field-based inventories in the two EV map of the study areasarea using r.survey 

with the settings listed in Tab. 2. 

In Gipuzkoa we deployed points every 200 m along the road paths followed during the field-work. According to the 

experiments carried out in Bornaetxea et al. (2018) 200 m was considered suitable for this concrete case. In Darjeeling we 290 

knew that field-based inventories were produced by visual inspection from roads but not the real path followed by the 

surveyors. As a consequence, we1. We used the entire road network (including roads slightly outside the boundaries of the 

studied area) and a maximum distance between points of 50 m for modelling the visibility.estimated visibility of an observer 
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moving along the study area. We considered all the possible roads accessible in the study area, even though this probably 

overestimates the actual places from which the territory is commonly observed.   295 

We set to infinity (Tab. 2)The EV map was calculated for hypothetical landslides with an area equal to 78.54 m², which 

corresponds to the smallest landslides inventoried in Darjeeling (Tab. 1). We set to infinity the maximum line of sight distance 

in order to assess the visibility level for the complete territory. We calculated maximum solid angle (SA) maps for hypothetical 

landslides with an area similar to the smallest landslides inventoried in Gipuzkoa and Darjeeling (Tab. 2), and we assumed 

that larger landslides were therefore visible. 300 

 Gipuz

koa 

Darjeeling 

Distance 

between points 

200 50 

Number of 

points 

14352 11054 

Maximum visible 

distance 

infinity  infinity  

DTM 

resolution (m) 

5 10 

Target Object 

size (m²) 

19.63 78.54 

Table 21: Summary of the specific settings to calculate SA maps for each study area. 

We classified the SA mapsEV map in 6 classes (SAc map), using 16.67th, 33.33th, 50th, 66.67th, and 83.33th and 100th quantiles, 

of the SA map values, as thresholds. Then we applied thea 3x3 smoothing moving window smoothing. Details about the SAc 

maps and the threshold values for each SA class are available in Tab. 3 and Fig. 4. 

 
Gipuzkoa Darjeeling 

Quant. Class Bin (min²) Area (km²) Bin (min²) Area (km²) 

100.0 1 4897.85 ï 74141600 334.93 4561.02 - 74141601 90.87 

83.33 2 1039.20 ï 4897.85 329.46 942.98 - 4561.02 88.124 

66.67 3 271.42 ï 1039.20 328.31 345.36 - 942.98 85.29 

50.0 4 63.27 ï 271.42 328.23 150.36 - 345.36 83.27 

33.33 5 4.67 ï 63.27 328.18 59.74 - 150.36 81.94 
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16.67 6 0.0 ï 4.67 326.99 0 - 59.74 84.21 

Total 
 

1976.12 
 

513.70 

Table 3: Details about the visibility classes for Gipuzkoa and Darjeeling study areas. The abbreviation Quant. Refers to quantiles. 305 
min2 stands for square minutes, a unit of measure of the solid angle. 
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Figure 4: Visibility classEV map for an object having a size of Gipuzkoa and Darjeeling study areas78.54 m2. Red lines in the 310 
zoom insets represent the roads used as reference observation points. The abbreviation Quant. refers to quantiles and min2 stands 

for square minutes, a unit of measure of the solid angle. 

The territory We carried out a spatial analysis to investigate possible natural causes for different landslide density in the 

different visibilitySA classes is quite homogeneous in terms of morphometry(see Fig. 5). Terrain slope, lithology and land 

use as shown inare the plots of (i)most important factors that may condition the probability densityoccurrence of landslides 315 

(Reichenbach et al. 2018). So, we analysed the empirical densities distribution of the Slopeslope values and (ii) the 

percentual spatial coverage of the Lithology and Land Use categories (Fig. 5).  

The slope distribution in Gipuzkoa (Fig. 5a) shows a local maximum for the very low slope values in visibility classes 1, 2 and 

3. This is probably due to the fact that roads in Gipuzkoa are mainly on the valley floor, and consequently the plains are located 

in the most visible portions of the territory. In Darjeeling (Fig. 5b), where roads are primarily located along ridges, slope values 320 

are very homogeneous among the visibility classes. Concerning lithology, in Gipuzkoa (Fig. 5a) only the slate rocks show a 

relevant difference in class 6. This is due to the localized outcrop of this metamorphic material in the eastern part of the 

territory. Regarding the  and land use, although the general trends are always homogeneous, anthropic and grass land uses are 

dominant in the most visible classes (classes 1 and 2), while forests and scrubs and hedges are more abundant in the less visible 

classes. In Darjeeling (Fig. 5b), cover categories inside each SA class. Figure 5 shows that slope empirical distributions are 325 

similar among the SA classes, and so are the distributions of the lithological and land usecover categories are also similarly 

represented within the different visibility classes.. Data in Fig. 5 suggests that any difference in landslide density, between SA 

classes, is unlikely to be related to morphology, land cover, and lithology.  
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 330 

Figure 5: Slope probability density plots and Land Use and Lithology distribution by visibilitySA classes for Gipuzkoa and 

Darjeeling study areas.  In Gipuzkoa land use types are Agr: Agricultural; Ant: Antropic; Bea: Beach and peatlands; For: 

Forest; Grss: Grass; Rck: Rock; Scr: Scrub and hedges; Wtr: Water. The Lithology types are ClDt: Clay and Detrital rock; 

Lms: Limestones; Mgm: Magmatic rocks; Mar: Marls; No: No rock; Slt: Slate; Srd: Surface deposits. In Darjeeling 

landDarjeeling study areas.  Land use types are Br: Barren; Cult: Cultivated land; Mveg: Moderate vegetation; Riv: River; Stl: 335 
Settlement; Spr: Sparse vegetation; Tea: Tea plantation; Tveg: Thick vegetation; Wt: Waterbody. The lithology types are Mig: 

Banded migmatite, Gt-Bt gneiss, mica schist, biotite gneiss; Brw: Brownish, yellow oxidised soil with boulders-pebbles and latsol; 

Cgn: Calc granulite, quartzite, gneiss, Gar, Sil, Kya schists; Csch: Chlorite sericite schist and quartzite, meta-graywacke; Myl: 

Mylonitic granite gneiss; Qrz: Quartz arenite, black slate, cherty phyllite, quartzite; Snd1: Sand, silt and clay; Snd2: Sandstone, 

clay, shale, conglomerate; Snd3: Sandstone, shale with minor coal. 340 

74.2 Description and analysis of the results 

In Fig. 6 we show NLC values for the Gipuzkoa Inventory, which is a strictly field based landslide database. Figure 6 

highlights that the majority of landslides are located in very visible areas i.e., classes 1 to 3, and only a negligible number 

of landslides is located in scarcely visible areas (class 5 or 6). Data show a near monotonic decrease of the NLC as the 

level of the visibility decreases, or what is equivalent, as the visibility class increases.plots 345 

Figure 6 shows NLC versus the SA classes of the EV map, for the available landslide inventories.  Fig. 6a shows that, in the 

GSI Field inventory (a field-based-inventory), most of the landslides are located within the classes having higher SA values 

(class 1 and class 2). Landslide density in the other classes is very fluctuating, probably due to the small number of landslides 

in the inventory.  
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GSI Historic (Fig.  350 

6b) includes landslides mapped using different methods. It shows a slight, but monotonic, decreasing trend.  

 

 

 

Figure 6: Normalized landslide count distribution plot for Gipuzkoa inventory. The values above each column indicate the number of 355 
landslides in each visibility class. 
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Figure 7: Normalized landslide count distribution plot for GSI Field, GSI Historic and Spot 2020 inventories. The values above 

each column signify the number of landslides in each visibilitySA class. 

Figure 7 shows NLC versus visibility classes for the landslide inventories of Darjeeling. In GSI Field (a field-based inventory), 360 

we used single points to locate the (few) landslides (Fig. 7a), and we sampled visibility class values from the pixel in which 

they fell. As expected, most of the landslides are located within the most visible classes (class 1 and class 2). The values in the 

other classes are very fluctuating but this is probably due to the fact that the number of landslides in the inventory is very 

small.6c  

GSI Historic (Fig. 7b) includes landslides mapped using different methods and shows a slight, but still monotonic, 365 

decreasing trend.  

Figure 7c shows the calculated NLSNLC values for the Spot 2020 inventory, produced solely bythrough photo-interpretation 

of satellite imagery. The values calculated in the visibilitySA classes are fairly homogeneous and show a non-monotonic 

trendwithout trends.  

GSI Historic inventory contains two main types of information: landslides mapped exploiting satellite/aerial images or 370 

collected during field-based survey and from legacy data. We separated data obtained by satellite/aerial images from the rest 

of the data sources and called them GSI Historic Sat and GSI Historic Others respectively.  

NLC values show a pronounced monotonic decreasing trend for the GSI Historic Others inventory (Fig. 8a), copying7a) while 

GSI Historic Sat (Fig. 7b) behaves similarly to the pattern observed for the field-based GipuzkoaSpot 2020 inventory (Fig. 6). 

6c), with the landslide density not dependent on SA classes. 375 
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