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Abstract. On the 7th of February 2021, a large rock-ice avalanche triggered a debris flow in Chamoli district, Uttarakhand,

India, leaving over 200 dead or missing. The rock-ice avalanche originated from a steep, glacierized north-facing slope. In

this work, we assess the precursory signs exhibited by this slope prior to the catastrophic collapse. We evaluate monthly slope

motion from 2015 to 2021 through feature tracking of high-resolution optical satellite imagery. We then combine these data

with a time series of pre- and post-event DEMs, which we use to evaluate elevation change over the same area. Both datasets5

show that the 26.9 Mm3 collapse block moved over 10 m horizontally and vertically in the five years preceding collapse, with

particularly rapid motion occurring in the summers of 2017 and 2018. We propose that the collapse results from a combination

of snow-loading in a deep headwall crack and permafrost degradation in the heavily jointed bedrock. Our observation of a clear

precursory signal highlights the potential of satellite imagery for monitoring the stability of high-risk slopes. We find that the

timing of the Chamoli rock-ice avalanche could likely not have been forecast from satellite data alone.10

1 Introduction

1.1 Landslide hazard

Landslides represent a major geohazard, and cause thousands of deaths each year (Petley, 2012; Froude and Petley, 2018).

Preventing or mitigating landslide hazard is a major challenge facing geoscientists and hazard managers. Evaluating landslide

hazard is challenging due to the wide range of source conditions and the varying temporal scales at which the driving processes15

interact. Landslides are also associated with a wide range of short- to long-term triggers, ranging from earthquakes to water
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flow, or simple weaknesses in the rock, which further complicates their forecasting and process understanding (van Westen

et al., 2006).

Ground-based observations of displacement (e.g. with GNSS/GPS, ground-based radar interferometry), tilt (e.g. inclinome-

ters), pressure (e.g. piezometers), and other parameters can be useful in monitoring landslide progression (e.g. Uhlemann et al.,20

2016). When observed, landslide precursory signs may be used to forecast a failure time or improve monitoring (Federico

et al., 2012; Fukuzono, 1985; Intrieri et al., 2019; Wegmann et al., 2003). In many cases the nature and magnitude of these

precursory signs precludes their detection in the absence of sensitive equipment. In-situ observations can be sensitive to even

small changes in slope properties, and are therefore valuable for the forecasting of instability (Sättele et al., 2015; Stähli et al.,

2015). However, ground-based observations have important limitations: (i) Prior knowledge of a potential slope instability is25

required in order for the correct instrumentation to be installed in the right locations, (ii) the landslide source regions may

be located in inaccessible terrain, preventing the installation of in-situ monitoring equipment, (iii) monitoring systems can be

prohibitively expensive and require highly specialized expertise for data evaluation, and (iv) the area that can be monitored is

generally limited to individual hillslopes. Altogether, ground-based monitoring techniques are useful for landslide monitoring

in many cases, but are insufficient for monitoring large regions or where a-priori knowledge is lacking.30

An increase in satellite data availability and resolution has promoted remote sensing as an alternative or complementary

landslide detection and monitoring tool (e.g. Kirschbaum et al., 2019; Dille et al., 2021). Satellite remote sensing may lack the

precision of some ground-based monitoring techniques, but but it can provide a low-cost (for the end user) and easily accessible

way to monitor vast and inaccessible terrain at daily to weekly temporal and 0.3 to 30 m spatial resolution. Qualitative visual

analysis of satellite imagery allows for the rapid identification of surface changes that may be associated with slope instabilities35

or the initiation of landslide motion. Further quantitative processing of satellite imagery enables the monitoring of horizontal

and vertical land motions – for example via feature tracking or stereographic digital elevation model (DEM) generation. In-

terferometric synthetic aperture radar (InSAR) can provide mm to cm-resolution line of sight displacements (e.g. Handwerger

et al., 2019; Jacquemart and Tiampo, 2021; Manconi et al., 2018). Growing archives of high-resolution, open access Earth

observation data remain largely untapped for landslide monitoring. In this study we use the data-rich 7 February 2021 Chamoli40

rock-ice avalanche as a case study for the remote identification of landslide precursory signs. We first introduce landslide haz-

ards in the Himalaya with specific focus on the Chamoli event, and then offer a general overview of remote sensing of slope

instabilities. Next, we explain the methods used in the current study, and present and discuss the results.

1.2 Landslide hazard and risk in the Himalaya

Landslides occur in high mountain areas all over the world. Landslide risk is greatest where zones of high topographic relief45

intersect with high population densities or infrastructure – which is the case across much of the Himalayan region. Over 50

million people live directly within the Himalaya, with a further 700 million living within associated watersheds (Dimri et al.,

2019). A combination of extreme topographic relief, regular tectonic activity, high seasonal rainfall intensities, glacierization,

and steep slopes make the Himalaya particularly susceptible to landslides (Kirschbaum et al., 2019).
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Several factors have contributed to raising landslide risk across the region in recent decades: first, climatic warming has50

driven rapid thinning and retreat of Himalayan glaciers – which are currently losing over 10 Gt of mass per year (e.g. Kääb

et al., 2012; Brun et al., 2017; Shean et al., 2020; Jakob et al., 2021; Hugonnet et al., 2021). Glacier retreat may contribute to

a range of factors conducive to landslides, including a reduction in slope buttressing and an increase in meltwater availability

(Holm et al., 2004; Fischer et al., 2006; Huggel et al., 2012; Kos et al., 2016; Coe et al., 2018; Dai et al., 2020a; Glueer

et al., 2020). In addition to glacier retreat, permafrost degradation has also been documented to reduce slope stability (Gruber55

and Haeberli, 2007; Allen et al., 2011; Fischer et al., 2012; Krautblatter et al., 2013; Haeberli et al., 2017; Magnin et al.,

2019; Pörtner et al., 2019; Patton et al., 2019; Deline et al., 2021). Second, increasing populations, economic growth, and

infrastructure development in high-mountain valleys have greatly expanded the potential consequences of landslides. This

second point is apparent for the Chamoli disaster, in which the majority of deaths occurred at hydropower plants that were

recently built or were under construction (Shugar et al., 2021). Other factors, including changes in precipitation pattern (e.g. Li60

et al., 2018; Kirschbaum et al., 2020) and land use (Cummins, 2019) may also contribute to evolving landslide hazard potential.

1.3 The 2021 Chamoli hazard cascade

During the morning of 7 February 2021, a 26.9 [95% confidence interval 26.5-27.3] Mm3 wedge of rock and ice detached from

the north face of Ronti, a 5500 m peak in the Uttarakhand Himalaya (Fig 1.). This wedge then dropped around 1800 m to the

Ronti Gad valley floor, where it continued down-valley towards the Rishiganga and Dhauliganga rivers and transformed into65

a debris flow (Shugar et al., 2021; Cook et al., 2021). The collapse block was composed of approximatively 80% bedrock and

20% glacier ice. Frictional heat generation calculations suggest that most or almost all of the glacier ice melted during the 3400

m drop from the collapse source to the hydropower stations (Shugar et al., 2021). This melting of the ice faction, combined

with major sediment deposition at the confluence of the Ronti Gad and Rishiganga, increased the initial rock-ice avalanche’s

water content and converted it into a debris flow. The resulting debris flow caused further downstream damage, leaving 20470

missing or killed and destroying two hydropower stations.

1.4 Remote-sensing techniques

1.4.1 Feature tracking

Optical feature tracking is a versatile technique, which can be used to track surface motion by evaluating the relative position

of features or patterns in repeat satellite images or aerial photos. Feature tracking has been applied to a variety of problems,75

including tracking post-seismic ground deformation (e.g. Leprince et al., 2007), measuring glacier flow velocities (e.g. Bind-

schadler and Scambos, 1991; Heid and Kääb, 2012; Millan et al., 2019; Van Wyk de Vries and Wickert, 2021), and measuring

landslide displacements (e.g. Behling et al., 2014; Lucieer et al., 2014; Manconi et al., 2018; Dai et al., 2020a; Dille et al.,

2021).
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Figure 1. The 7th February Chamoli rock-ice avalanche: (a) shows the path of the collapse, along with key locations (HPP refers to hy-

dropower plant) annotated on a 10th of February 2021 Sentinel-2 image (b) 3D visualization shows the post-collapse scar with reconstruction

of the overlying bedrock and glacier ice.

1.4.2 Stereo-DEM generation80

Stereo-DEM generation uses two or more overlapping optical images to reconstruct surface topography. These images are

acquired at the same time but from different viewing angles. Software implementing photogrammetric principles can then

be used to derive elevation products (such as DEMs) from these images. With the recent availability of very high resolution

satellite stereo imagery, these approaches can now be used to generate detailed DEM products over large spatial areas (e.g.

Korona et al., 2009; Morin et al., 2016; Shean et al., 2016; Porter et al., 2018; Howat et al., 2019). Repeat DEMs obtained85

at different time periods can provide precise estimates of surface elevation change associated with many processes, including

glacier change (e.g. Brun et al., 2017; Willis et al., 2018; Zheng et al., 2019; Shean et al., 2020), snow accumulation/melt (e.g.

Deschamps-Berger et al., 2020; McGrath et al., 2019; Bhushan et al., 2021), volcanic deformation (e.g. Bisson et al., 2021;

Schaefer et al., 2012), and landslide or debris flow events (e.g. van Westen and Lulie Getahun, 2003).

1.4.3 InSAR90

Satellite-based InSAR is a powerful tool for detecting small changes at the Earth’s surface from space. It has been widely used

to quantify ground displacements caused by processes such as earthquakes (e.g. Massonnet et al., 1993; Barba-Sevilla et al.,
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2018), groundwater extraction (e.g. Samsonov and d’Oreye, 2017; Motagh et al., 2017), volcanic unrest (e.g. Rosen et al.,

1996; Tiampo et al., 2017), or landslides (e.g. Manconi et al., 2018; Handwerger et al., 2019; Dai et al., 2020b; Mondini et al.,

2021; Jacquemart and Tiampo, 2021). By measuring the shift of the radar phase relative to earlier measurements of the same95

features, InSAR can provide measurements of ground deformation at millimeter and centimeter scales. Active radar sensors

can image the Earth’s surface through clouds and darkness, a major advantage over passive optical sensors (e.g. Massonnet and

Feigl, 1998). Leveraging InSAR data for the detection and assessment of mass movements, however, is not without challenges.

The oblique viewing geometry of radar satellites means that radar data can be rendered useless in areas of steep topography due

to the effects of shadowing, foreshortening, and layover (Massonnet and Feigl, 1998; Wasowski and Bovenga, 2014). Finally,100

in case of rapid displacements that surpass the phase-aliasing thresholds or dramatic changes in the surface cover or geometry,

a loss of interferometric coherence can prohibit the quantification of (the full) ground deformation (Manconi, 2021). Despite

these drawbacks, many studies have shown that InSAR can be successfully applied to assess stability of slopes even in high

relief terrain (e.g. Manconi et al., 2018; Handwerger et al., 2019; Bekaert et al., 2020; Jacquemart and Tiampo, 2021).

1.5 Objectives105

The objective of this study is to evaluate the pre-collapse conditions of the 7 February 2021 Chamoli rock-ice avalanche, in

particular:

1. What was the scale and geometry of pre-collapse surface change, and what insight do these changes provide into the

collapse mechanisms?

2. Would these pre-collapse datasets and tools would be adequate to identify this hazardous slope without the prior knowl-110

edge of its failure?

2 Methods

We used a range of datasets and processing workflows to investigate the pre-collapse conditions of the Chamoli rock-ice

avalanche:

1. Optical satellite imagery (Landsat and Sentinel-2) was used to investigate visible changes in the collapse region over the115

years to decades prior to the rock-ice avalanche

2. Feature tracking of optical satellite imagery (Sentinel-2, Planet, Cartosat-1, and SPOT7) was used to derive horizontal

displacements

3. Digital elevation models (DEMs) from optical satellite stereo-imagery (WorldView-1/2/3,GeoEye-1, Pleiades-HR, SPOT-

7 and Cartosat-1) were used to derive vertical changes120

4. Sentinel-1 C-band radar imagery was used to calculate interferometric synthetic aperture radar (InSAR) displacement

maps
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2.1 Qualitative observations of slope change

We investigated three decades of pre-collapse optical satellite imagery to gain a preliminary understanding of pre-landslide

changes. We documented changes in the north-facing slope of Ronti peak, which sourced the February 2021 rock-ice avalanche,125

using all available data from Landsat 5 (TM), Landsat 7 (ETM+), Landsat 8 (OLI), and Sentinel-2 with a cloud cover of less

than 60%. We focused our observations on surface changes, including deformation and fracturing, and rock or ice avalanches

originating from the collapsed block or surrounding area.

Our ability to detect change is limited by the spatial resolution of the imagery used (15-30 m for Landsat and 10 m for

Sentinel-2). We examined a 31-year (1990-2021) time series of satellite imagery (Fig 2), including 122 Landsat 5 images, 43130

Landsat 7 images, 34 Landsat 8 images, and 155 Sentinel-2 images. A full list of images is provided in the supplementary

material, along with a brief description of any anomalous features.

2.1.1 Optical feature tracking

We used feature tracking with a range of medium (10 m) to high (2.5 m) resolution satellite imagery to evaluate the pre-collapse

motion of the Ronti peak north slope. We used two different feature-tracking toolboxes: GIV (Van Wyk de Vries and Wickert,135

2021) and AutoRIFT (Lei et al., 2021). Both GIV and AutoRIFT are based on three core components: a pre-processing module

which applies one or more filters to images to enhance distinct surface features for tracking, a multipass 2D image correlator,

and a post-processing module to identify and filter erroneous displacement values (Van Wyk de Vries and Wickert, 2021; Lei

et al., 2021). The GIV toolbox is written in MATLAB and performs image cross correlation in the frequency domain, while

AutoRIFT is written in python/C++ and performs the cross correlation in the spatial domain. Using GIV, we pre-processed the140

imagery using an orientation filter and ran the cross-correlation with a reducing window size from 20 to 5 pixels and a window

overlap of 50%. In AutoRIFT we pre-processed the imagery with a Laplacian filter and used adaptive window sizes between

32 and 64 pixels with a skip rate of 8 pixels for the cross-correlation.

We calculated velocities using all available Sentinel-2 images through February 2021, excluding any images with a local

cloud cover greater than 60% (based on the L1-C QA band cloud mask). A total of 155 images were available, for a total145

of 5237 image pairs with a time separation between 50 and 500 days. We processed these image pairs using GIV. We also

resampled the velocity timeseries to monthly resolution (see Fig 4 c-g) using a weighted averaging scheme described in Van

Wyk de Vries and Wickert (2021).

We downloaded all PlanetScope Dove Classic (4-band) Level-1B imagery with less than 20% cloud cover acquired between

January 2020 and January 2021. We processed 4701 image pairs using AutoRIFT with time separation of 100 to 350 days. The150

Near-infrared (NIR) band from the L1B images was orthorectified on the 2015 pre-event reference DEM (Bhushan and Shean,

2021) and the systematic median offset (computed over static, non-glacierized surfaces) was removed from each pairwise

surface displacement map in both E-W and N-S directions. Despite the higher product resolution (3 m vs 10 m Sentinel-

2 images) and use of a high-resolution DEM for improved orthorectification, the Planet velocity maps had a high random

background noise. We attribute this to spurious correlation over surfaces with varying shadow cover due to steep slopes and155
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changing illumination, as the images were captured by different satellites during different times of the day/year. To compensate

for this higher background noise, we chose a higher minimum temporal separation between Planet image pairs when calculating

time-averaged velocity maps. We also calculated displacements (using both GIV and AutoRIFT) on one pair of high-resolution

Cartosat-1 images (Oct 2017 to Nov 2018).

We used this velocity data to evaluate whether the collapsed block moved prior to collapse – with a null hypothesis that160

the block moved no more than the surrounding ‘stable’ (non-glacierized) bedrock. A medial bedrock ridge near the center of

the collapsed block provides motion of the underlying rock, rather than simply flow of the overlying glaciers. We divided the

collapse block into three different regions alongside a zone of stable ground, and create a time series of average displacement

for each zone.

2.2 DEM generation165

We produced multiple pre-event and post-event DEM products from very high-resolution (Maxar/DigitalGlobe WorldView-

1/2/3, GeoEye-1 and Airbus/CNES Pleiades, 0.3 to 0.5 m GSD) and high-resolution (Airbus SPOT-7 and ISRO CartoSat-1,

1.5 m to 2.5 m GSD) satellite imagery captured between 2015 and February 2021. The DEM products were used to calculate

the vertical motion of the collapse block from 2015 to February 10, 2021.

We used the NASA Ames Stereo Pipeline (Shean et al., 2016; Beyer et al., 2018) to process all of the images. For this170

particular study, we primarily used four products spanning two time periods: the 2015 pre-event WorldView DEM composite

(Bhushan and Shean, 2021); an intermediate period, a 2018 pre-event DEM composite produced by averaging the November

2018 CartoSat-1 (Appendix A1) and December 2018 SPOT-7 (Appendix A2); and the February 10-11, 2021 post-event com-

posite DEM derived from Pleiades and WorldView/GeoEye stereo imagery (Shean et al., 2021). We calculated the difference

between three composite DEM products to create 2015-2018, 2015-2021, and 2018-2021 DEM of difference (DoD). The first175

DoD provides insight into vertical changes in the hillslope prior to failure, while the second DoD provides the volume and ge-

ometry of the collapsed block. We calculated an empirical uncertainty estimate for each DoD using the tiling method (Berthier

et al., 2016; Miles et al., 2018; Jacquemart et al., 2020).

2.3 InSAR maps

We analyzed Sentinel-1 data from the ascending and descending orbit tracks 56 and 63, respectively, to investigate whether the180

precursory motion of the collapse block could have been detected from radar interferometry. All radar data was downloaded

from the Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC). Because the descending track is heavily

affected by layover artefacts, we only performed the full processing with data from the ascending orbit. We processed the

data with the InSAR Scientific Computing Environment (ISCE; Rosen et al., 2012), removed the topographic phase using

the 2015 pre-event WorldView DEM (Bhushan and Shean, 2021) composite (resampled to 8m), and masked out all pixels185

with an interferometric coherence of less than 0.3. Single look complex (SLC) images were multi-looked to 1 and 3 looks in

azimuth and range, respectively. We generated 108 interferograms covering the period of January 2017 to November 2020,
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each spanning 12 days. We manually selected the best interferograms and performed unwrapping with the Statistical-Cost,

Network-Flow Algorithm for Phase Unwrapping (SNAPHU; Chen and Zebker, 2002).

3 Results190

Where observation was possible, the different methods are in agreement: the slope fractured and was displaced on the order of

tens of metres prior to the eventual collapse. The 2021 rock-ice avalanche was also preceded by several other large avalanches

– although these were primarily sourced from an adjacent hanging glacier.

3.1 Qualitative observations of slope change

We identified four main types of processes in our 31 year optical satellite image time series:195

1. Major ice avalanches (01-04/2000 and 09-10/2016): Large-volume ice avalanches, which originated from the steep

hanging glacier to the west of the collapse block. These temporarily filled Ronti Gad with ice, snow, debris and sediment.

2. Minor snow or ice avalanches (2005, 2006, 2007, 2008, 2012, and 2015): Smaller volume avalanches, which may either

have originated from the adjacent hanging glacier or the seasonal snowpack. These did not appear to infill the underlying

valley with any significant quantity of material (with the exception of one ∼500 m long snow/ice deposit in May 2006).200

3. Minor landslides avalanches (2007, 2009, 2011, 2012, 2013, and 2015): Minor rockfalls or rock avalanches originating

from Ronti peak, or the weak sediment on the flanks of Ronti Gad. These also do not appear to have deposited major

volumes of sediment.

4. Opening and widening of cracks at the headwall of the collapse block (2016-2021): Gradual opening of a wide crack in

the north face of Ronti peak.205

We only interpret the 4th process type (crack opening) is a real sign of pre-collapse conditions. Minor rockfalls and snow/ice

avalanches are a common feature of high relief, high slope active landscapes. The major ice avalanches represent a serious

geohazard in the upper Ronti Gad, but appear to relate to internal dynamics of the western hanging glacier rather than instability

in the underlying bedrock. The area of these 2000 and 2016 major ice avalanches was estimated at 0.16 km2 and 0.2 km2, with

melting and/or redistribution of the the resulting valley floor deposits within three years of the event (Shugar et al. (2021);210

Supplementary section 3.1). Regular large ice avalanches have been observed at many other hanging glaciers in active, high-

mountain environments (e.g. Faillettaz et al., 2008; Vincent et al., 2015).

The conspicuous crack at the headwall of the failed block was first visible in optical imagery in March 2016, although its

location roughly aligns with a pre-existing glacier crevasse – suggesting that minor crack opening in the bedrock may have

preceded this date. The crack grew to approximately its maximum size by the end of 2018, and appeared to reduce in depth or215

become infilled over the course of 2019 and 2020. The crack widened further between 2018 and the 7 February 2021 collapse,
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Landsat 5 Landsat 7 Landsat 8 Sentinel-2

Major ice avalanches
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Figure 2. Timeline of images analysed for change at the Chamoli site prior to the 7th of Ferbuary 2021 collapse, with major events or changes

seen over this period. The first image (06/02/1990) was taken 31 years before the collapse, and the last image (05/02/2021) two days before

the collapse.

but less rapidly than the opening in 2016-2018. We confirmed these observations with several very-high ( 0.5 m) resolution

images (Fig 3).

3.2 Optical feature tracking

Feature tracking provides the most complete spatio-temporal assessment of displacement of the methods used in this study –220

with data coverage from late 2015 until early 2021. We used results from the Cartosat-1 image pair and the Planet archive for

validation of the Sentinel-2 displacements. In all three cases, the collapsed block (most notably, the bedrock ridge at the centre

of this block) exhibited displacements exceeding the background noise level on stable bedrock (<1 myr−1).

The horizontal velocity of the collapsed block ranged from around 5 myr−1 to 20 myr−1, with the most rapid motion

occurring in the summers of 2017 and 2018 (see Fig 4 d-g). We do not observe an increase in velocity of the collapsed block225

immediately prior to its failure in February 2021. The Sentinel-2 image record includes 7 cloud-free images from early 2021,

including one image taken two days prior to the collapse, therefore this lack of speed-up is unlikely the result of a temporal data

gap. Periods with the highest block velocity correspond to periods of greatest increase in headwall crack width – particularly

the summers of 2017 and 2018. This is consistent with motion occurring on the entire collapsed block, rather than only on the

glaciers or a superficial layer of rock.230

Total 2016-2021 horizontal displacements were 20-30 m (Fig 4a), of similar magnitude to the width of the crack as measured

directly from Sentinel-2 imagery. Projecting these horizontal displacements onto the steep surface slope (mean of 42.6°) results

9
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Figure 3. Time series of headwall crack opening in high-resolution optical images from SPOT-7 and Pleiades-HR.

in an apparent increase of ∼ 36 %, or ∼ 25-40 m. Overall, the feature tracking results demonstrate that the collapse block was

mobile several years prior to its collapse in 2021.

3.3 DEM analysis235

We calculated the geometry of the collapsed block, equal to the zone of negative elevation change in the 2018-2021 DoD (Fig

5c; volume = 26.9 [95% confidence interval 26.5-27.3] Mm3 ; Shugar et al. (2021)). The earlier DoD (2015-2018) shows a very

different pattern (Fig 5b), with a 100 m wide zone of elevation loss at the upper altitude limit of the collapsed block (‘headwall

crack’) and a broad zone of elevation gain over the remainder of the block (‘bulge’). The magnitude of this pre-collapse

elevation loss is greatest in the central and western portion of the headwall crack, while the elevation gain is most pronounced240

on the central and eastern portions of the bulge. The DoD uncertainties scale inversely with the size of area (number of pixels)

considered: ±4.2 m, 1.7 m, 7.3 m, and 2.7 m (10 by 10 m); ±3.0 m, 0.8 m, 4.7 m, and 1.8 m (50 by 50 m); ±2.4 m, 0.2 m,

3.8 m, and 1.1 m (250 by 250 m) for the 2015-2018 Cartosat, 2015-2018 SPOT, 2018-2021 (SPOT) and 2015-2021 DoDs

respectively.

DEM analysis further confirms the results from direct image observations and feature tracking – large changes occurred on245

the collapsed block prior to its collapse. The zone of negative elevation change is wider than the crack as directly observed in

optical imagery, which may result from limits in the DEM resolution or partial collapse of the surrounding rock or ice into the

crack.
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a 2016-2021 total displacement b July 2018 median velocity
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Figure 4. Surface displacement and horizontal velocity from optical image feature tracking. (a) shows the total displacement over the

entire Sentinel-2 era, (b) shows a snapshot velocity during an episode of rapid displacement in Summer 2018, and (d)-(g) show time series

of velocity averaged across specific zones shown in (c). Note the episodes of rapid displacement in 2017-18 relative to 2016 or 2020,

corroborated by the Cartosat-1 and Planet derived velocities.
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Figure 5. Elevation change of the avalanche zone pre- and post-collapse. (a) SPOT-7 true color composite image from September 2020 with

location of cross-sections A and B for context, (b) and (c) provide DoD maps of different time periods, while (d) and (e) show two cross-

section profiles (a) across the DoD. Cross-sectional uncertainties are assigned for an area equal to the length of the section line multiplied by

the pixel size.

3.4 InSAR maps

Even with knowledge of the location of the failed block, the processed interferograms do not allow for a pre-collapse identifica-250

tion of the instability on Ronti Peak. Of the 108 available interferograms, roughly half exhibited a complete loss of coherence,

largely due to snow cover (November through May). Good quality interferograms are limited to summer months, and on the

collapse block, coherence is only retained on the ice free part at the bottom of the wedge. The upper, glacier-covered part of the

collapse block remains decorrelated, likely due to shadowing and glacier/snow cover. Figure 6a highlights the very low radar

backscatter in this zone, and Figure 6b/c confirms the spatial agreement between the loss of coherence and glacier cover. Data255

gaps lower in the valley are also related to loss of coherence, possibly due to vegetation cover or moisture variability. Many

interferograms are characterized by high amounts of noise, likely from variable atmospheric properties .
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A high quality interferogram from July 2020 (Fig. 6b) does not indicate any motion on the collapse block in the summer

prior to the failure, but this cannot be assessed in other interferograms due to high noise levels. In less steep terrain north-west

of the collapse block, the motion of a rock glacier (on the order of cmyr−1) can consistently be detected in the interferograms260

(Fig 6b). Despite its sensitivity, InSAR is not able to provide any conclusive information about the pre-failure conditions of the

collapse block in this challenging terrain.
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Figure 6. Sentinel-1 radar backscatter amplitude from the ascending orbit (a), wrapped phase (0 to 2 π) ascending orbit interferogram from

July 2020 (b) and corresponding false color image (c). Large areas of low coherence (masked as white) and patchy coverage illustrate the

complexities of InSAR monitoring in high alpine terrain. The avalanche block is outlined in black and red.

4 Discussion

The pre-collapse motion of the avalanche block raises important questions about the causes and timing of the slope failure. In

this section, we explore the answers to these questions using our multi-dataset observations, and then discuss the potential and265

limitations of satellite data for remote hazard monitoring.

4.1 Three-dimensional block motion

We examined the three-dimensional motion of the collapse block as a first step towards understanding the Chamoli rock-ice

avalanche collapse mechanism(s). Rotation and translation are the two primary modes of landslide motion (e.g. Záruba and

Mencl, 2014), with each having a distinct surface displacement pattern. We used a combination of horizontal displacement270

(feature tracking), vertical displacement (2015-2018 DoD), collapse block thickness (2018-2021 DoD), and post-landslide

topography to calculate the dominant mode of pre-collapse motion for the Chamoli collapse block.

We compared our observations of vertical and horizontal slope displacement to a synthetic displacement, with the hypothesis

that all of the observed change could be explained by translation. To model this translation, we set the direction of motion to
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that of the steepest slope (∼NNE) and its magnitude to 20 m. The displacement magnitude is chosen to match our observed275

horizontal displacement from feature tracking - and is consistent with the findings of Qi et al. (2021).

Figure 7. (a) Observed and (b) modeled elevation change of the Chamoli landslide block prior to collapse. The modeled scenario (b) is based

on 20 m of pure downslope translation. (c) shows a scatterplot comparing each observed and modelled pixel.

Figure 7 shows a comparison between the observed change in surface elevation of the landslide block, and the modeled

change. The pattern of elevation change is similar for the observed and modeled cases – both exhibit a deep summit crack,

bulging in the lower collapse zone, and greater elevation gain on this bulge to the east relative to the west. The 2D correlation

score is 0.64, with the greatest model-data difference at the headwall crack, which is as much as 150 m deeper in the model280

case. These results are consistent with the Chamoli collapsed block moving downslope by translation in the years prior to

collapse.

4.2 A possible avalanche triggering mechanism

A viable triggering mechanism for the Chamoli landslide must explain both the lag between the initial instability and collapse,

and the timing of the collapse – in the middle of the winter. Syn-collapse seismic signals show that there was no seismic trigger285

for the collapse (Pandey et al., 2021; Shugar et al., 2021; Cook et al., 2021). Nearby meteorological stations and reanalysis

data reveal heavy snowfall and a 5 K positive temperature anomaly in the week preceding collapse, as well as a temperature

inversion in the valley (e.g. Pandey et al., 2021; Dandabathula et al., 2021; Zhou et al., 2021; Shugar et al., 2021). On the

longer term, this region has warmed ∼0.14 K per decade (Qi et al., 2021; Shrestha et al., 2021).

Zhou et al. (2021) and Dandabathula et al. (2021) propose that this sudden temperature increase may have triggered the290

collapse, and Rana et al. (2021) associates it with lubrication of pre-existing fractures via melting of fresh snow. Kropáček
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et al. (2021) and Pandey et al. (2021) suggest that loading from heavy snowfall may have contributed to the failure. Despite

the positive temperature anomaly, temperatures at the collapse altitude ( 5000 m) would have been below freezing point on

the day of collapse, and liquid water would not have been present at the surface (Shugar et al., 2021; Dandabathula et al.,

2021). Positive summer temperatures (Shrestha et al., 2021) and a steep surface slope of the collapse block will have prevented295

strong cumulative surface loading of the collapse block through snow deposition. Existing hypotheses do not provide strong

mechanistic links between observed meteorological changes and the slope failure.

The stability of a slope can be described by the balance between two terms: driving forces (FD) and resistive forces (FR).

Driving forces are primarily gravitational, while resistive forces are primarily related to slope cohesion and friction. For a

detached wedge such as the Chamoli collapse block, dominant resistive forces are likely friction along the margins and base of300

the collapsed block. The balance between these two forces is known as the factor of safety FS:

FS =
FR
FD

(1)

A slope is considered unstable when its factor of safety falls below 1 (e.g. Záruba and Mencl, 2014; Das and Sivakugan,

2016).

The Chamoli collapse area is composed of heavily jointed bedrock (e.g. Shugar et al., 2021). A pure translational pre-305

collapse motion is consistent with a collapse block basal shear plane along a single bedding plane. High-resolution post-

collapse satellite imagery also suggests that the detachment occurred along a bedding plane. This failure plane may have been

superficially weakened by freeze-thaw fracturing (Qi et al., 2021; Kropáček et al., 2021; Shrestha et al., 2021), or at greater

depth by changes in permafrost conditions (e.g. Gruber and Haeberli, 2007; Krautblatter et al., 2013). The surface velocity

peaks in summers 2017 and 2018 suggest that surface meltwater may have reached into the later failure surface. Meltwater310

infiltration may directly impact friction (FD), and in a delayed way also alter ground temperatures through advection of heat

and release of latent heat upon refreezing. Gruber and Haeberli (2007) note that advection-driven melt of permafrost thaw

corridors may drive destabilization of large volumes of rock. Deep permafrost thaw may occur over long timescales (e.g.

Gruber and Haeberli, 2007; Krautblatter et al., 2013), and provides one potential explanation for the 5-year lag between initial

instability and collapse.315

The deep headwall crack provides accommodation space for cumulative snow accumulation and loading, and also limits the

melting of accumulated snow by reducing its surface exposure. Observations of elevation change over 2015-2018 show the

opening of a crack at least 25 m deep at the collapse block headwall (Fig 7a), although DEMs may underestimate the true

depth of the crack due to viewing angle, slope geometry, and stereo DEM processing parameters. The purely translation model

of block motion (Fig 7b) suggests that the true crack depth would have been closer to 150 m. Snow, ice, or rock debris loading320

within a headwall crack would exert a horizontal force on the collapse block. This horizontal force (’push’) acts to reduce the

factor of safety both by directly increasing the driving force of the collapse block, and reducing the angle between the driving

force vector and slope direction (equivalent to an increase in slope, see Appendix B).
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Accumulation of snow or ice in the crack is visible in optical satellite imagery, with additional input from snow/ice

avalanches from the overlying slope (e.g. Fig 3b-d). A storm in the days preceding the 7th February collapse brought substan-325

tial snowfall to the Chamoli region, with local snowfall estimates ranging from 8.5 to 48 mm water equivalent of precipitation

(Shugar et al. (2021); estimates from local weather stations and Weather Research and Forecasting Model). We use these data

to calculate the potential range of snow loading on the collapsed block, which is equivalent to a slope-parallel force of 7000-

40,000 kN (Appendix A3). Considering the total precipitation between crack initiation (March 2016) and collapse (February

2021) this rises to 6.3× 109 N to 9.9× 109 N, or 2-3% of the total driving force of the collapse block.330

In the absence of in-situ instrumentation and observations, it may not be possible to determine the exact cause of the failure at

Chamoli. Nevertheless, we propose a mechanism which is compatible with both the lag between initial instability and collapse,

and the timing of the eventual collapse. Snow and ice loading in the headwall crack would progressively increase the driving

force of the collapse block, while meltwater infiltration and permafrost degradation in a bedrock fracture would steadily reduce

its resistive forces (basal friction). The combination of these two processes would reduce the factor of safety and pre-condition335

the block for failure, with the early February positive temperature anomaly and loading from snowfall providing a final driver

for mid-winter collapse.

4.3 Future perspectives : remote-sensing based hazard monitoring

Our work on the Chamoli avalanche took place after the collapse, with the full knowledge of the position of the avalanche

source. This work is useful for better understanding the conditions of the slope collapse. However, to be directly useful for340

hazard monitoring and prevention, these techniques must identify avalanche locations and sizes before – rather than after –

they occur. The key questions therefore remain: would it have been possible to identify the Chamoli landslide prior to its

collapse using the methods used in our study, and can these methods be applied elsewhere to identify future failures?

Several factors suggest that the available pre-collapse data may have been useful for identifying the Chamoli rock-ice insta-

bility. Careful qualitative analyses of optical satellite images, feature tracking, and DEM analysis show clear precursory signs345

of slope failure around the Chamoli collapsed block. Satellite images show a crack growing over the 5 years prior to failure

(Fig 3), feature tracking reveals tens of metres of horizontal displacement of the collapsed block, and DEM differences show

tens of metres of vertical elevation change over the collapsed block. Combining this information with background knowledge

about this region, such as the extreme relief, steep slopes, and historic avalanches, it would in principle have been possible to

identify this as an unstable slope with high collapse potential.350

While the data are sufficient to identify precursory signs of this rock-ice avalanche, there are important limitations to their

use. The first key limitation is the very low signal to noise ratio of these data in the steep terrain most susceptible to slope

failure. For feature tracking, the noise level of the composite 2016-2021 mean velocity maps is low (<1 m per year). However,

the background noise level (as evaluated over stable bedrock) of individual velocity maps is much higher – and in some cases

comparable to the magnitude of the signal (∼5-20 m per year). For the DEMs, artifacts range from metres to tens of metres in355

scale, and additional "noise" is introduced by real elevation changes from glacier and snowpack change (Fig 8b). While these

issues with false positives can be mitigated, this is challenging without knowing the signal of interest.
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InSAR, while also being susceptible to false positives, is additionally prone to false negatives. The north-facing aspect of

Ronti peak provides a twofold challenge: the illumination of the slope is limited (low backscatter, Fig 6a), and any motion –

assuming it is largely in the direction of the steepest slope – is oriented in the direction in which the radar instrument is least360

sensitive. Additionally, the non-glacierized area of the collapse wedge is small, making it challenging to identify fringe patterns

amongst the noise. Furthermore, with the largest velocities reaching tens of meters per year, the InSAR measurements are prone

to phase aliasing and underestimation of the true displacement. Sentinel-1 InSAR would not have provided an adequate tool

for monitoring in this case, even with knowledge of the location of the instability.

-25 +25

Elevation change (m)
ba

N

1 km

N

1 km

Figure 8. Optical satellite image (a: Sentinel-2; 28th of September 2020) and DoD (b; 2018-2015) of the Chamoli collapse site. Note the

large number of steep slopes, complex terrain, and high noise levels in the DoD. In order to be useful for hazard prevention, these methods

need to be able to identify potentially hazardous slopes without prior knowledge about collapses (e.g. green arrow shows the location of the

headwall crack).

The second key limitation is that none of the datasets produced in this work could predict the timing of collapse. While most365

methods pick up precursory signs of slope failure, these begin almost five years prior to eventual collapse. In addition, the

largest magnitude changes did not occur immediately prior to failure, but rather preceded failure by around three years. Even

with the knowledge that the collapse occurred on 7 February 2021, there are no obviously anomalous signs that a failure was

imminent in late 2020 or early 2021.

One final limitation is related to the immense size of hazardous areas relative to the scale of hazards themselves. The Chamoli370

collapsed block had an area of around 0.25 km2, while the Himalaya cover over half a million km2. Any methods aimed at

automatically detecting hazards prior to their occurrence must have a low ‘false positive’ (identified as a hazard in the database,
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but not of real concern) rate, or any resulting database will be populated primarily with these incorrectly flagged regions. This

becomes a major challenge when considering the high incidence of noise and artifacts in feature-tracking derived displacement

or DoD maps (e.g. Figure 8).375

Overall, forecasting the 7 February 2021 Chamoli rock-ice avalanche prior to its occurrence from remotely sensed datasets

would have been very challenging, and certainly not routine work using well-established methods. Current image resolution,

characteristics, and processing algorithms result in noise levels on a similar order to the signal itself – although joint interpre-

tation of feature tracking results, DEM differences, and satellite images does reveal clear precursory signs of slope instability.

In addition, none of the data in this study are able to adequately forecast the timing of collapse. As such, current archives380

of satellite images do not currently appear to be practical for forecasting individual events. At the same time, this should not

prevent remote monitoring of hazardous zones, particularly when adjacent to vulnerable areas. Every slope failure will exhibit

a different range of pre-collapse signals, and new instabilities might be recognized in some cases. Even though the forecasting

of individual events remains a challenge, these data have value for identifying zones of highest risk for in-situ monitoring or

the installation of early-warning systems (Cook et al., 2021).385

Feature-tracking, DEM difference, and InSAR datasets can be processed and analyzed on a regional or even global scale

– and in many cases pre-processed datasets are already available online (e.g. Morin et al., 2016; Gardner et al., 2018). While

these pre-processed datasets are not generally produced for slope stability monitoring, they can be used to improve hazard maps

and reduce landslide related damage. Future advances in Earth observation satellite capabilities and processing algorithms will

improve the quality of such products.390

5 Conclusions

The deadly 7 February 2021 Chamoli rock-ice avalanche was initiated by failure of >25 Mm3 of rock and ice high in the Ut-

tarakhand Himalaya. We investigated the conditions of the avalanche source zone over the decades preceding collapse through

a combination of optical and radar satellite images. We used feature tracking to calculate horizontal slope displacements, and

differenced photogrammetrically generated DEMs to investigate vertical displacements. We showed that the collapsed block395

moved 20-30 m prior to its collapse, with most rapid motion occurring around 3 years prior to failure. Comparison between

our datasets and synthetic displacement maps shows that the motion occurred primarily via down-slope translation, opening up

a deep crack at the headwall. A combination of permafrost degradation and snow and ice debris loading within this headwall

crack may explain both the lag between initial instability and collapse, and the mid-winter timing of the collapse. Finally,

we assessed the potential of these datasets and approaches for monitoring other unstable slopes. While they were effective at400

identifying precursory signals at a known collapse site, it remains very challenging to predict such collapses with sufficient

levels of confidence in high-mountain areas.
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Code and data availability. All code used in this study is openly available online. GIV can be downloaded from https://github.com/MaxVWDV/glacier-

image-velocimetry, AutoRIFT from https://github.com/nasa-jpl/autoRIFT, ASP from https://github.com/NeoGeographyToolkit/StereoPipeline,

and ISCE from https://github.com/isce-framework/isce2. The 2015 pre-event DEM is available at https://doi.org/10.5281/zenodo.4554646,405

and the 2021 post-event DEM at https://doi.org/10.5281/zenodo.4558691.

Appendix A: Pre-event DEM mosaics

A1 CartoSat-1 (2017/2018)

We procured four CartoSat-1 stereo pairs from October 2017 and November 2018 (Supplementary Data sheet) to compute

DEMs for an intermediate period between 2015 to 2021. Initial assessments of the CartoSat-1 products revealed high stereo410

ray intersection errors (> 100 m) and offsets from reference elevation models (∼ 400 m), indicative of poor relative and

absolute accuracy of the vendor supplied RPC models. To address these issues we employed ASP’s bundle_adjust utility

on all the eight overlapping images and the corresponding RPC models using similar techniques as described in Bhushan

et al. (2021); Dehecq et al. (2020). The bundle adjustment procedure matches similar features between all input overlapping

images and minimises their reprojection error by updating the RPC camera with translation and rotation parameters. Using the415

updated RPC model obtained after bundle adjustment, we generated a draft DEM from one of the four pairs using the default

ASP settings and aligned it to a filtered and masked version of the HMA 8 m DEM mosaic v2 (Shean, 2021). The alignment

matrix was used to further update the self-consistent RPC model output from bundle adjustment, ensuring improved absolute

geolocation accuracy. Following this, the input images were orthorectified at their native resolution of 2.5 m using the 30 m

Copernicus DEM (converted to ellipsoidal heights) and stereo processing (correlation and triangulation) was performed for all420

the four input pairs using the settings described in Shean and Bhushan (2021).

The CartoSat-1 DEMs were posted at 10 m resolution with UTM 44N projection and heights above the WGS84 ellipsoid.

Consequently, the DEMs were co-registered to the HMA 8 m DEM mosaic v2 (Shean, 2021) over non-glacierized surfaces

using a two step procedure: ASP’s pc_align followed by Nuth and Kääb (2011) alignment implemented in Shean et al. (2019)]

to remove any residual horizontal and vertical offsets in the final output DEMs.425

A2 SPOT-7 (2018)

We also derived a DEM from the December 24, 2018 SPOT-7 stereo pair using ASP’s Semi Global Matching correlator and

other settings similar to those described in Lacroix (2016); Deschamps-Berger et al. (2020). The final output DEM was posted

at a resolution of 10 m with UTM 44N projection and heights above the WGS84 ellipsoid. The DEM was co-registered to

the HMA 8 m DEM mosaic v2 (Shean, 2021) over non-glacierized surfaces to ensure consistency with all the DEM products430

derived in this study.
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Appendix B: Factor of safety calculations for the Chamoli bloc

The factor of safety FS is calculated from the balance driving and resistive forces (e.g. Záruba and Mencl, 2014; Das and

Sivakugan, 2016).:

FS =
FR
FD

=
AC +Mgcos(α)tan(φ)

Mgsin(α)
(B1)435

In which A is slip surface area, C is cohesion, M is the mass of the unstable region, g is gravity, α is slope, and φ is the

friction angle. A system may be considered unstable when the factor of safety falls below 1.

Introducing an additional horizontal force FH modifies this balance in two ways: firstly by increasing the driving force, and

secondly by altering the angle between the driving force vector and resistive forces vector:

FS =
AC +Mgcos(α+α′)tan(φ)

FH +Mgsin(α+α′)
(B2)440

The change in angle of the driving force vector α′ is then given by α′ = arctan( FH

Mgsin(α) ). In our situation, for a given mass

accumulated in the headwall crack MC we have FH =MCsin(α).

The pre-event storm brought 8.5 to 48 mm water equivalent of precipitation (Shugar et al. (2021); estimates from local

weather stations and Weather Research and Forecasting Model). We may use this data to calculate possible loading of this

snow on the collapsed block - considering a 500 m long, 70 m wide crack with a 500 m long and fed by a 180 m wide445

avalanche zone. Assuming that all of the snowfall was channeled into the crack, total loading MC would be equal to:

MC =AA ∗P ∗ ρP ∗ g (B3)

With AA being the accumulation area feeding the crack, P being precipitation (in metres), ρP being the density of the

precipitation. Total snow loading in the headwall crack associated with this single precipitation event would therefore be

10000-60000 kN, equivalent to a slope-parallel horizontal force of 7000-40000 kN.450

GPM IMGERG precipitation data suggests that around 9 ± 2 m of precipitation fell in the collapse area between crack

initiation in 2016 and collapse in 2021. Using the same calculation, maximum snow load in the headwall crack is equal to

8.6-13.5 × 109 N, equivalent to a slope-parallel horizontal force of 6.3-9.9 × 109 N. For reference, the estimated total driving

force of the collapse bloc, composed of 21 Mm3 of rock and 6 Mm3 of ice, is 4.0 × 1011 N.

Author contributions. All authors designed the study and conducted the research. MVWDV wrote the paper, with input from all co-authors.455

The final version has been approved by all co-authors.

Competing interests. The authors declare no competing interests.

20

https://doi.org/10.5194/nhess-2021-333
Preprint. Discussion started: 10 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Acknowledgements. MVWDV was funded by a University of Minnesota College of Science and Engineering fellowship and a Doctoral

Dissertation Fellowship. DHS was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant

2020-04207. SG and EB acknowledge funding from the French Space Agency (CNES). SG received funding from the Programme Na-460

tional de Télédétection Spatiale (PNTS grant no. PNTS-2018-4). AK acknowledges support from the ESA Glacier CCI project (grant no.

4000109873/14/I-NB). MJ was funded by the WSL research program Climate Change Impacts on Alpine Mass Movements (CCAMM) and

the Swiss National Science Foundation (grant no. 200021_184634). SB was supported by a NASA FINESST award (80NSSC19K1338).

DES was supported by a NASA HiMAT-2 award (80NSSC20K1595).

21

https://doi.org/10.5194/nhess-2021-333
Preprint. Discussion started: 10 November 2021
c© Author(s) 2021. CC BY 4.0 License.



References465

Allen, S. K., Cox, S. C., and Owens, I. F.: Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional

study considering possible climate change impacts, Landslides, 8, 33–48, https://doi.org/10.1007/s10346-010-0222-z, company: Springer

Distributor: Springer Institution: Springer Label: Springer Number: 1 Publisher: Springer-Verlag, 2011.

Barba-Sevilla, M., Baird, B. W., Liel, A. B., and Tiampo, K. F.: Hazard Implications of the 2016 Mw 5.0 Cushing, OK Earthquake from a

Joint Analysis of Damage and InSAR Data, Remote Sensing, 10, 1715, https://doi.org/10.3390/rs10111715, 2018.470

Behling, R., Roessner, S., Kaufmann, H., and Kleinschmit, B.: Automated Spatiotemporal Landslide Mapping over Large Areas Using

RapidEye Time Series Data, Remote Sensing, 6, 8026–8055, https://doi.org/10.3390/rs6098026, 2014.

Bekaert, D. P. S., Handwerger, A. L., Agram, P., and Kirschbaum, D. B.: InSAR-Based Detection Method for Mapping and Monitoring Slow-

Moving Landslides in Remote Regions with Steep and Mountainous Terrain: An Application to Nepal, Remote Sensing of Environment,

249, 111 983, https://doi.org/10.1016/j.rse.2020.111983, 2020.475

Berthier, E., Cabot, V., Vincent, C., and Six, D.: Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-

Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area, Frontiers in Earth Science, 4, 63,

https://doi.org/10.3389/feart.2016.00063, 2016.

Beyer, R. A., Alexandrov, O., and McMichael, S.: The Ames Stereo Pipeline: NASA’s Open Source Software for De-

riving and Processing Terrain Data, Earth and Space Science, 5, 537–548, https://doi.org/10.1029/2018EA000409, _eprint:480

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018EA000409, 2018.

Bhushan, S. and Shean, D.: Chamoli Disaster Pre-event 2-m DEM Composite: September 2015, https://doi.org/10.5281/zenodo.4554647,

type: dataset, 2021.

Bhushan, S., Shean, D., Alexandrov, O., and Henderson, S.: Automated digital elevation model (DEM) generation from very-high-

resolution Planet SkySat triplet stereo and video imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 173, 151–165,485

https://doi.org/10.1016/j.isprsjprs.2020.12.012, 2021.

Bindschadler, R. A. and Scambos, T. A.: Satellite-Image-Derived Velocity Field of an Antarctic Ice Stream, Science, 252, 242–246,

https://doi.org/10.1126/science.252.5003.242, 1991.

Bisson, M., Spinetti, C., Andronico, D., Palaseanu-Lovejoy, M., Fabrizia Buongiorno, M., Alexandrov, O., and Cecere, T.: Ten years of

volcanic activity at Mt Etna: High-resolution mapping and accurate quantification of the morphological changes by Pleiades and Lidar490

data, International Journal of Applied Earth Observation and Geoinformation, 102, 102 369, https://doi.org/10.1016/j.jag.2021.102369,

2021.

Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A spatially resolved estimate of High Mountain Asia glacier mass

balances from 2000 to 2016, Nature Geoscience, 10, 668–673, https://doi.org/10.1038/ngeo2999, bandiera_abtest: a Cg_type: Na-

ture Research Journals Number: 9 Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Cryospheric sci-495

ence;Hydrology;Projection and prediction Subject_term_id: cryospheric-science;hydrology;projection-and-prediction, 2017.

Chen, C. and Zebker, H.: Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models, IEEE

Transactions on Geoscience and Remote Sensing, 40, 1709–1719, https://doi.org/10.1109/TGRS.2002.802453, 2002.

Coe, J. A., Bessette-Kirton, E. K., and Geertsema, M.: Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve,

Alaska detected from 1984 to 2016 Landsat imagery, Landslides, 15, 393–407, https://doi.org/10.1007/s10346-017-0879-7, 2018.500

22

https://doi.org/10.5194/nhess-2021-333
Preprint. Discussion started: 10 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Cook, K. L., Rekapalli, R., Dietze, M., Pilz, M., Cesca, S., Rao, N. P., Srinagesh, D., Paul, H., Metz, M., Mandal, P., Suresh, G., Cotton, F.,

Tiwari, V. M., and Hovius, N.: Detection and potential early warning of catastrophic flow events with regional seismic networks, Science,

374, 87–92, https://doi.org/10.1126/science.abj1227, publisher: American Association for the Advancement of Science, 2021.

Cummins, P. R.: Irrigation and the Palu landslides, Nature Geoscience, 12, 881–882, https://doi.org/10.1038/s41561-019-0467-7,

bandiera_abtest: a Cg_type: Nature Research Journals Number: 11 Primary_atype: News & Views Publisher: Nature Publishing Group505

Subject_term: Developing world;Hydrogeology;Natural hazards;Tectonics Subject_term_id: developing-world;hydrogeology;natural-

hazards;tectonics, 2019.

Dai, C., Higman, B., Lynett, P. J., Jacquemart, M., Howat, I. M., Liljedahl, A. K., Dufresne, A., Freymueller, J. T., Geertsema, M.,

Jones, M. W., and Haeussler, P. J.: Detection and Assessment of a Large and Potentially Tsunamigenic Periglacial Landslide in

Barry Arm, Alaska, Geophysical Research Letters, 47, e2020GL089 800, https://doi.org/https://doi.org/10.1029/2020GL089800, _eprint:510

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL089800, 2020a.

Dai, C., Higman, B., Lynett, P. J., Jacquemart, M., Howat, I. M., Liljedahl, A. K., Dufresne, A., Freymueller, J. T., Geertsema, M., Ward Jones,

M., and Haeussler, P. J.: Detection and Assessment of a Large and Potentially-tsunamigenic Periglacial Landslide in Barry Arm, Alaska,

Geophysical Research Letters, https://doi.org/10.1029/2020GL089800, 2020b.

Dandabathula, G., Sitiraju, S. R., and Jha, C. S.: Investigating the 7th February, 2021 Landslide Triggered Flash Flood515

in the Himalayan Region Using Geospatial Techniques, European Journal of Environment and Earth Sciences, 2, 75–86,

https://doi.org/10.24018/ejgeo.2021.2.4.170, number: 4, 2021.

Das, B. M. and Sivakugan, N.: Fundamentals of geotechnical engineering, Cengage Learning, 2016.

Dehecq, A., Gardner, A. S., Alexandrov, O., McMichael, S., Hugonnet, R., Shean, D., and Marty, M.: Automated Processing of Declas-

sified KH-9 Hexagon Satellite Images for Global Elevation Change Analysis Since the 1970s, Frontiers in Earth Science, 8, 566 802,520

https://doi.org/10.3389/feart.2020.566802, 2020.

Deline, P., Gruber, S., Amann, F., Bodin, X., Delaloye, R., Failletaz, J., Fischer, L., Geertsema, M., Giardino, M., Hasler, A., Kirkbride, M.,

Krautblatter, M., Magnin, F., McColl, S., Ravanel, L., Schoeneich, P., and Weber, S.: Chapter 15 - Ice Loss from Glaciers and Permafrost

and Related Slope Instability in High-Mountain Regions, in: Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition), edited

by Haeberli, W. and Whiteman, C., pp. 501–540, Elsevier, https://doi.org/10.1016/B978-0-12-817129-5.00015-9, 2021.525

Deschamps-Berger, C., Gascoin, S., Berthier, E., Deems, J., Gutmann, E., Dehecq, A., Shean, D., and Dumont, M.: Snow depth mapping

from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data, The Cryosphere, 14, 2925–2940,

https://doi.org/10.5194/tc-14-2925-2020, number: 9, 2020.

Dille, A., Kervyn, F., Handwerger, A. L., d’Oreye, N., Derauw, D., Mugaruka Bibentyo, T., Samsonov, S., Malet, J.-P., Kervyn, M., and

Dewitte, O.: When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense530

radar and optical time series, Remote Sensing of Environment, 258, 112 402, https://doi.org/10.1016/j.rse.2021.112402, 2021.

Dimri, A. P., Bookhagen, B., Stoffel, M., and Yasunari, T.: Himalayan Weather and Climate and their Impact on the Environment, Springer

Nature, google-Books-ID: 7Ea9DwAAQBAJ, 2019.

Faillettaz, J., Pralong, A., Funk, M., and Deichmann, N.: Evidence of log-periodic oscillations and increasing icequake activity during the

breaking-off of large ice masses, Journal of Glaciology, 54, 725–737, https://doi.org/10.3189/002214308786570845, publisher: Cambridge535

University Press, 2008.

Federico, A., Popescu, M., Elia, G., Fidelibus, C., Internò, G., and Murianni, A.: Prediction of Time to Slope Failure: A General Framework,

Environmental Earth Sciences, 66, 245–256, https://doi.org/10.1007/s12665-011-1231-5, 2012.

23

https://doi.org/10.5194/nhess-2021-333
Preprint. Discussion started: 10 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Fischer, L., Kääb, A., Huggel, C., and Noetzli, J.: Geology, glacier retreat and permafrost degradation as controlling factors of slope

instabilities in a high-mountain rock wall: the Monte Rosa east face, Natural Hazards and Earth System Sciences, 6, 761–772,540

https://doi.org/10.5194/nhess-6-761-2006, number: 5 Publisher: Copernicus, 2006.

Fischer, L., Purves, R. S., Huggel, C., Noetzli, J., and Haeberli, W.: On the influence of topographic, geological and cryospheric

factors on rock avalanches and rockfalls in high-mountain areas, Natural Hazards and Earth System Sciences, 12, 241–254,

https://doi.org/10.5194/nhess-12-241-2012, publisher: Copernicus GmbH, 2012.

Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Natural Hazards and Earth System Sciences, 18,545

2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, publisher: Copernicus GmbH, 2018.

Fukuzono, T.: A Method to Predict the Time of Slope Failure Caused by Rainfall Using the Inverse Number of Velocity of Surface Displace-

ment, Landslides, 22, 8–13_1, https://doi.org/10.3313/jls1964.22.2_8, 1985.

Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., Broeke, M. v. d., and Nilsson, J.: Increased West Antarctic and

unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/https://doi.org/10.5194/tc-12-550

521-2018, publisher: Copernicus GmbH, 2018.

Glueer, F., Loew, S., and Manconi, A.: Paraglacial history and structure of the Moosfluh Landslide (1850–2016), Switzerland, Geomorphol-

ogy, 355, 106 677, https://doi.org/10.1016/j.geomorph.2019.02.021, 2020.

Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, Journal

of Geophysical Research: Earth Surface, 112, https://doi.org/10.1029/2006JF000547, publisher: John Wiley & Sons, Ltd, 2007.555

Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating

mountain ranges, Geomorphology, 293, 405–417, https://doi.org/10.1016/j.geomorph.2016.02.009, 2017.

Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M., and Bürgmann, R.: A Shift from Drought to Extreme Rainfall Drives a

Stable Landslide to Catastrophic Failure, Scientific Reports, 9, 1569, https://doi.org/10.1038/s41598-018-38300-0, 2019.

Heid, T. and Kääb, A.: Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical560

satellite imagery, Remote Sensing of Environment, 118, 339–355, https://doi.org/10.1016/j.rse.2011.11.024, 2012.

Holm, K., Bovis, M., and Jakob, M.: The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern

British Columbia, Geomorphology, 57, 201–216, https://doi.org/10.1016/S0169-555X(03)00103-X, 2004.

Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674,

https://doi.org/https://doi.org/10.5194/tc-13-665-2019, publisher: Copernicus GmbH, 2019.565

Huggel, C., Clague, J. J., and Korup, O.: Is climate change responsible for changing landslide activity in high mountains?, Earth Surface

Processes and Landforms, 37, 77–91, https://doi.org/10.1002/esp.2223, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/esp.2223,

2012.

Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:

Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z,570

number: 7856 Publisher: Nature Publishing Group, 2021.

Intrieri, E., Carlà, T., and Gigli, G.: Forecasting the Time of Failure of Landslides at Slope-Scale: A Literature Review, Earth-Science

Reviews, 193, 333–349, https://doi.org/10.1016/j.earscirev.2019.03.019, 2019.

Jacquemart, M. and Tiampo, K.: Leveraging Time Series Analysis of Radar Coherence and Normalized Difference Vegetation Index Ratios

to Characterize Pre-Failure Activity of the Mud Creek Landslide, California, Natural Hazards and Earth System Sciences, 21, 629–642,575

https://doi.org/10.5194/nhess-21-629-2021, 2021.

24

https://doi.org/10.5194/nhess-2021-333
Preprint. Discussion started: 10 November 2021
c© Author(s) 2021. CC BY 4.0 License.



Jacquemart, M., Loso, M., Leopold, M., Welty, E., Berthier, E., Hansen, J. S., Sykes, J., and Tiampo, K.: What drives large-scale glacier

detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska, Geology, 48, 703–707, https://doi.org/10.1130/G47211.1,

2020.

Jakob, L., Gourmelen, N., Ewart, M., and Plummer, S.: Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of580

Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019, The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-

1845-2021, publisher: Copernicus GmbH, 2021.

Kirschbaum, D., Watson, C. S., Rounce, D. R., Shugar, D. H., Kargel, J. S., Haritashya, U. K., Amatya, P., Shean, D., Anderson, E. R., and

Jo, M.: The State of Remote Sensing Capabilities of Cascading Hazards Over High Mountain Asia, Frontiers in Earth Science, 7, 197,

https://doi.org/10.3389/feart.2019.00197, 2019.585

Kirschbaum, D., Kapnick, S. B., Stanley, T., and Pascale, S.: Changes in Extreme Precipitation and Landslides Over

High Mountain Asia, Geophysical Research Letters, 47, e2019GL085 347, https://doi.org/10.1029/2019GL085347, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL085347, 2020.

Korona, J., Berthier, E., Bernard, M., Rémy, F., and Thouvenot, E.: SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images

and Topographies during the fourth International Polar Year (2007–2009), ISPRS Journal of Photogrammetry and Remote Sensing, 64,590

204–212, https://doi.org/10.1016/j.isprsjprs.2008.10.005, 2009.

Kos, A., Amann, F., Strozzi, T., Delaloye, R., von Ruette, J., and Springman, S.: Contemporary glacier retreat triggers a rapid landslide

response, Great Aletsch Glacier, Switzerland, Geophysical Research Letters, 43, 12,466–12,474, https://doi.org/10.1002/2016GL071708,

_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL071708, 2016.

Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space, Earth595

Surface Processes and Landforms, 38, 876–887, https://doi.org/10.1002/esp.3374, publisher: John Wiley & Sons, Ltd, 2013.
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