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Abstract. Potential avalanche release area (PRA) modelling is critical for generating automated avalanche terrain maps which 7 

provide low-cost large scale spatial representations of snow avalanche hazard for both infrastructure planning and recreational 8 

applications. Current methods are not applicable in mountainous terrain where high-resolution elevation models are 9 

unavailable and do not include an efficient method to account for avalanche release in forested terrain. This research focuses 10 

on expanding an existing PRA model to better incorporate forested terrain using satellite imagery and presents a novel approach 11 

for validating the model using local expertise, thereby broadening its application to numerous mountain ranges worldwide. 12 

The study area of this research is a remote portion of the Columbia Mountains in southeastern British Columbia, Canada which 13 

has no pre-existing high-resolution spatial data sets. Our research documents an open source workflow to generate high-14 

resolution DEM and forest land cover data sets using optical satellite data processing. We validate the PRA model by collecting 15 

a polygon dataset of observed potential release areas from local guides, using a method which accounts for the uncertainty of 16 

human recollection and variability of avalanche release. The validation dataset allows us to perform a quantitative analysis of 17 

the PRA model accuracy and optimize the PRA model input parameters to the snowpack and terrain characteristics of our 18 

study area. Compared to the original PRA model our implementation of forested terrain and local optimization improved the 19 

percentage of validation polygons accurately modelled by 11.7 percentage points and reduced the number of validation 20 

polygons that were underestimated by 14.8 percentage points. Our methods demonstrate substantial improvement in the 21 

performance of the PRA model in forested terrain and provide means to generate the requisite input datasets and validation 22 

data to apply and evaluate the PRA model in vastly more mountainous regions worldwide than was previously possible.  23 

1 Introduction 24 

Snow avalanches are a significant natural hazard for traffic and settlement infrastructure as well as for individuals who travel 25 

in snow covered mountainous regions. Roads, railroads, utilities, and permanent structures that are located in areas with 26 

potential avalanche hazard can be destroyed by large avalanche impacts or blocked for extended periods during winter storm 27 
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events causing financial losses and potential for injury or death from individuals being buried in the debris. In economically 28 

developed countries, the majority of avalanche fatalities occur during recreational activities (i.e., backcountry skiing, 29 

snowmobile riding, mountaineering) where individuals voluntarily expose themselves to avalanche hazard (Boyd et al., 2009), 30 

and accident avalanches are mostly triggered by the party that is caught (Schweizer and Lütschg, 2001; Techel et al., 2016). 31 

In North America and Europe, an average of approximately 140 people are killed in avalanches each year (Jamieson et al., 32 

2010; Techel et al., 2016; Colorado Avalanche Information Center, 2020). 33 

To mitigate avalanche hazard, locations with potential for avalanche release need to be identified so elements at risk can 34 

attempt to minimize their exposure by avoiding those areas, minimizing their exposure time, or implementing avalanche 35 

control methods (McClung and Schaerer, 2006). Avalanche hazard mapping is a time honored practice for determining the 36 

spatial distribution of snow avalanche hazards (Margreth and Funk, 1999; Rudolf-Miklau et al., 2015). Traditional manual 37 

hazard mapping combines multiple methods such as terrain inspection, numerical simulations, avalanche event databases and 38 

personal experience to evaluate avalanche hazard exposure and spatial extent making it both labor and cost intensive. This 39 

highly detailed approach is the gold standard for determining avalanche zoning for permanent infrastructure, but the costs 40 

make it unsuitable for mapping large areas of mountainous terrain (Bühler et al., 2018).  41 

To overcome this challenge, automated GIS and remote sensing based methods have been developed to expedite the mapping 42 

process and produce avalanche terrain indication maps based on digital elevation model (DEM) and land cover data (Maggioni 43 

and Gruber, 2003; Gruber and Haefner, 1995). The foundation of automated avalanche terrain mapping is potential avalanche 44 

release area (PRA) modelling, which estimates the location of potential hazards based on the local terrain characteristics 45 

(Bühler et al., 2013, 2018; Veitinger et al., 2016). PRA models can be applied to define the spatial extent of release areas in 46 

dynamic avalanche simulations, which estimate the runout distance, velocity, and flow height of avalanche debris (Christen et 47 

al., 2010), or as a standalone spatial layer to assist with hazard identification and trip planning for recreational activities. Their 48 

ability to operate at the mountain range scale with limited human input dramatically reduces cost and time to develop spatial 49 

data sets which can assist infrastructure planners and recreationists in making more informed decisions about their avalanche 50 

hazard exposure (Bühler et al., 2018a, b)The development of large-scale avalanche hazard indication maps in Switzerland has 51 

led to them being applied as a tool to help backcountry recreationists visualize terrain hazards and incorporate them into their 52 

trip planning process (Harvey et al., 2018). 53 

The current state of the art methods for PRA modelling have been developed and validated in regions with widely available 54 

high-resolution DEM and forest cover data as well as long term records of avalanche observations (Bühler et al., 2018; 55 

Veitinger et al., 2016). However, the majority of mountainous regions in the world do not have freely available high-resolution 56 

DEM or forest cover data yet, and long term spatially accurate records of avalanche release are very rare. This seriously limits 57 

the application and local validation of PRA models around the world. 58 

An additional limitation of existing high-resolution PRA models (e.g., Bühler et al., 2018; Veitinger et al., 2016) is that they 59 

do not account for the interaction between forest characteristics and avalanche release. Both the Bühler 2018 and Veitinger 60 
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2016 PRA models allow for forested areas to be excluded from PRA calculations based on a forest mask layer, but they do not 61 

explicitly capture forest avalanche interaction. This reduces the applicability of these PRA models in mountain ranges where 62 

a significant portion of the avalanche terrain is forest covered, such as in western North America. 63 

To address these challenges and make PRA models applicable more broadly, the objective of this research is to develop a cost-64 

effective workflow for generating the required input datasets for the Bühler et al. (2018) PRA model using satellite data and 65 

open-source remote sensing methods. In addition, we present a relatively simple method for adapting the current PRA model 66 

to work in forested terrain. In the absence of long-term avalanche observations, we developed a novel approach for utilizing 67 

the expertise and terrain knowledge of local mountain guides to validate the PRA model output and optimize the input 68 

parameter for the unique terrain and snowpack characteristics of our study area. These three developments—the use of satellite 69 

data, the adaptation of the model to work in forested terrain, and the validation with local terrain expertise—together open new 70 

opportunities for applying state of the art avalanche terrain modelling in regions with limited existing datasets and resources. 71 

2 Background 72 

Avalanche release area modelling and forest avalanche interaction are both areas of active research which have laid the 73 

foundation for our research. This section provides context on the fundamentals and development of these research areas with 74 

focus on relevant topics for the development of our research methods. 75 

2.1 Potential Avalanche Release Area Modelling 76 

Early versions of GIS based avalanche terrain models (Ghinoi and Chung, 2005; Gruber and Haefner, 1995; Maggioni and 77 

Gruber, 2003) struggled to outperform simple slope based avalanche release area estimates (Voellmy, 1955) due to the inability 78 

of low resolution DEM (20–30 m) to detect small scale terrain features. Current PRA modelling methods evolved over the 79 

course of a decade and benefit from developments in high-resolution DEM production and remote sensing (Andres and Chueca 80 

Cía, 2012; Barbolini et al., 2011; Bühler et al., 2013, 2018; Chueca Cía et al., 2014; Pistocchi and Notarnicola, 2013; Veitinger 81 

et al., 2016; Kumar et al., 2016, 2019). Bühler et al (2013) found that 5 m DEM resolution is the optimal tradeoff between 82 

processing efficiency and small-scale feature identification for PRA modelling. To define avalanche release areas the 83 

algorithms use DEM derivatives (i.e., slope angle, terrain ruggedness, curvature, and aspect) which rely on focal functions of 84 

DEM pixels. With DEM pixel sizes of 5m, a common nine cell focal neighborhood (3x3) is 225 m2, which is well below the 85 

median slab size for human triggered avalanches of 4,000 m2 (Schweizer and Lütschg, 2001). Adequate PRA model resolution 86 

is essential to capture sub-release area scale terrain characteristics which are critical for accurate modelling of human avalanche 87 

triggering. 88 

The development of these algorithms depends on a robust data set of observed avalanche events to determine appropriate 89 

terrain characteristic thresholds which define avalanche release areas. Such datasets can be created through recording of manual 90 
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observations or generated by applying satellite mapping (Lato et al., 2012; Bühler et al., 2019; Hafner et al., 2021). The 91 

combination of terrain characteristics varies between the different algorithms, but some common parameters are slope angle, 92 

curvature, roughness, and aspect. In addition to DEM derived terrain variables many algorithms use vegetation coverage to 93 

define PRA based on the assumption that avalanche release is less common in areas with tall and dense vegetation. The addition 94 

of vegetation cover to a PRA model requires an additional input dataset, which can be generated from satellite imagery, created 95 

from locally available forest inventory datasets, or calculated from existing DEM data.  96 

The most comprehensive known avalanche release area validation dataset currently available is curated by the WSL Institute 97 

for Snow and Avalanche Research SLF in Davos, Switzerland with experienced staff manually mapping avalanche outlines 98 

throughout the winter in the surrounding mountain areas. This avalanche observation catalog began in 1970, and as of 2016 it 99 

includes 5785 mapped avalanches (Bühler et al., 2018). This dataset is now expanded including data from satellite avalanche 100 

mapping (Bühler et al., 2019) as well as airplane (Bühler et al., 2009; Korzeniowska et al., 2017) and drone surveys (Bühler 101 

et al., 2017). 102 

Using a subset of this validation dataset, Bühler et al. (2018) compared their PRA algorithm performance against another PRA 103 

model (Veitinger et al., 2016) and a simple slope based release area estimation method from Voellmy (1955). The results 104 

indicate slightly better performance for the Bühler et al. (2018) PRA model over the Veitinger et al. (2016) PRA model, with 105 

lower probability of false detection and higher measures of Pierce skill score and Heidke skill score. An additional advantage 106 

of the Bühler et al. (2018) PRA model is the ability to convert the raster based PRA model output to polygon features using 107 

object based image analysis. Converting the PRA model output to polygon features enables the PRA model to be paired with 108 

dynamic avalanche simulation software (Christen et al., 2010; Bühler et al., 2018a,b) to estimate runout distance, impact 109 

pressures, flow depth and velocity of the avalanche flow. This powerful combination of release area and runout modelling 110 

represent the state of the art of current avalanche terrain indication modelling practices and are a valuable resource for large 111 

scale avalanche hazard indication mapping. Therefore, this research seeks to improve and expand upon the existing Bühler et 112 

al. (2018) PRA model. 113 

The Bühler et al. (2018) PRA model has been applied in multiple regions worldwide, including Chile, Alaska, Afghanistan, 114 

and India. However, the input parameters have not been independently tested and optimized using local validation data. 115 

Therefore, it is unknown whether the input parameters optimized for Davos, Switzerland are appropriate for mountain regions 116 

with different topographic and snowpack characteristics. Our research aims to address this knowledge gap by applying an 117 

updated version of the Bühler et al. (2018) PRA model to the Columbia Mountains of southeast British Columbia, Canada and 118 

seeks to optimize the input parameters for the study area based on locally available validation data. 119 

2.2 Avalanches in Forested Terrain 120 

Avalanche release in forested terrain is an active research area due to the importance of forests as protective barriers from 121 

avalanche runout in alpine communities (Casteller et al., 2018; Feistl et al., 2014) and the complex processes that drive the 122 
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spatial distribution of forested release areas (Lutz and Birkeland, 2011; Teich et al., 2012; Bebi et al., 2009). The snowpack in 123 

forested areas is generally more stable due to the anchoring effect of trees, forest canopy snow interception, the disruption of 124 

the continuity of weak layers due to snow drop from canopy, and altered snow surface radiation and temperature conditions. 125 

However, it is still possible for avalanches to release in forested areas, especially in areas with steep slope angles, low tree 126 

density, or in openings within forested areas (Bebi et al., 2009). Small and medium avalanches generally do not have enough 127 

impact force to damage trees or tree stands, and forests tend to reduce their runout potential by detraining snow from the 128 

flowing avalanche (Feistl et al., 2014). Larger avalanches can break or uproot trees and cause massive destruction to the forest 129 

ecosystem (Feistl et al., 2015; Bebi et al., 2009). The location of avalanche release areas in relation to the forest plays a large 130 

role in whether trees will impede avalanche flow or be destroyed and possibly entrained (Teich et al., 2012).  131 

The ability to account for forest characteristics in avalanche terrain modelling is largely based on locally available data sets. 132 

Laser scanning or LiDAR data provide high-resolution DSM and DTM datasets to characterize the forest character, including 133 

canopy height, location and size of forest gaps, and basal area (Brožová et al., 2020; Dash et al., 2016). Vegetation height 134 

models derived from DSM and DTM data can be used to identify forests with protective function and input as forest masks in 135 

PRA models (Bühler et al., 2018; Waser et al., 2015). Similar to their application for DEM production, the high accuracy of 136 

these data sets comes at a high cost. Recently, drone-based photogrammetry became a flexible and economic solution to create 137 

a forest height layer in combination with an existing DTM, but this methodology can only generate DSM data and only cover 138 

limited areas of a few square kilometers.  139 

Alternative lower cost methods for estimating forest characteristics include traditional field based sample plots and radar or 140 

optical remote sensing instruments (Hyyppä et al., 2000; Ginzler and Hobi, 2015; Rahimizadeh et al., 2020; Waser et al., 141 

2015). The most accessible of these alternative methods is satellite based optical imagery, which can be used to create a forest 142 

land cover classification, to determine the extent of the forested area (Bühler et al., 2013), and can be combined with field plot 143 

observations of specific forest characteristics to create a predictive model based on the spectral and textural characteristics of 144 

the imagery (Dash et al., 2016; Rahimizadeh et al., 2020).  145 

Prior research has attempted to incorporate forest characteristics with PRA modelling (Sharp et al., 2018), but low resolution 146 

DEM and forest data combined with a limited validation data set make it challenging to evaluate the overall performance of 147 

the model. However, the principle of adjusting the potential for avalanche release based on forest character aligns with 148 

analytical and theoretical understanding of avalanche release in forested terrain (Bebi et al., 2009; Teich et al., 2012; McClung, 149 

2001). This research aims to expand existing methods for capturing forest avalanche interaction in PRA models using satellite 150 

remote sensing methods that are cost-effective and efficient for processing large scale avalanche terrain models. 151 
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3 Methods 152 

Applying the potential avalanche release area (PRA) model to the study area required two main analysis steps. First, developing 153 

a pipeline for producing high-resolution DEM and forest classification data from satellite imagery. Second, adapting the 154 

existing PRA model to better capture forested terrain and optimizing the input parameters using validation data collected from 155 

local avalanche experts. This section describes the open source data processing pipeline for developing high-resolution input 156 

data sets, the methods for incorporating a forest land cover classification into the PRA model, and the development of a 157 

quantitative accuracy assessment utilizing local validation data to optimize the PRA model for our study area.  158 

3.1 Study area 159 

The study area for this research is the tenure area of CMH Galena, a mechanized skiing operation that operates in the Selkirk 160 

Mountains of British Columbia, Canada, approximately 100 km southeast of Revelstoke (Figure 1). The tenure covers 161 

1162 km2, ranges from 450–3,050 m in elevation and is composed of roughly 60% forested terrain. The Selkirk Mountains 162 

have a transitional snow climate with a maritime influence where persistent avalanche problem types are common. The most 163 

common persistent weak layers associated with these avalanche problems are surface hoar and faceted crystals associated with 164 

a crust (Hägeli and McClung, 2003; Haegeli and McClung, 2007; Shandro and Haegeli, 2018). 165 

 166 

 167 

Figure 1. Study area map showing the extent of the CMH Galena tenure, lodge location, operational ski runs, and the subset of runs 168 
used to validate the PRA model. Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017). 169 
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 170 

3.2 Data preparation 171 

The Bühler et al. (2018) PRA model requires a high-resolution DEM (5 m) and forested land cover classification (5 m). The 172 

best existing DEM and land cover datasets for the study area are the Canadian Digital Elevation Model (CDEM) and the 2015 173 

National Land Cover Dataset (NLCD). The resolution of both these datasets is too coarse for high-resolution PRA modelling, 174 

with the CDEM at 18 m and the NLCD at 30 m.  175 

Since high-resolution DEMs and forested classification data are still rare in mountainous terrain in Canada, and worldwide, 176 

we developed a processing pipeline to create high-resolution versions of these datasets using satellite imagery. The following 177 

sections will describe our processing workflow. For a more detailed description of the methods see the supplementary material 178 

and to view our processing scripts visit our Open Science Framework (OSF) directory (Sykes et al., 2021). 179 

3.2.1 DEM generation 180 

Based on our desire to develop a cost-effective and reproducible approach for applying PRA models across large areas, we 181 

chose to purchase raw satellite imagery and use open source photogrammetry software to produce our own DEM. One 182 

downside of this approach is that the vegetation cover inhibits the ability to create a bare ground DEM (known as a digital 183 

terrain model; DTM) and we end up with a digital surface model (DSM) that represents the reflective surface at the top of the 184 

vegetation. While a DSM is not the ideal representation of terrain in forested areas (Brožová et al., 2020), the high cost of 185 

LiDAR, the only remote sensing method that can produce a DTM in vegetation covered terrain, currently prevents its 186 

widespread use. 187 

Producing a 5 m DEM requires satellite imagery with a spatial resolution of at least 1.5m. After comparing the products from 188 

various providers (Pleiades 1, Worldview 1–4, GeoEye 1, SPOT 6/7, and KOMPSAT 2–3) we purchased SPOT 6/7 imagery 189 

based on our requirements of DEM resolution, study area size, and cost. The SPOT 6 tri-stereo satellite images were captured 190 

on August 19th, 2019 with 1.5% cloud cover and no visible atmospheric distortions (wildfire smoke, haze) in the images. Tri-191 

stereo imagery captures forward, nadir, and backward looking images in a single pass and provides three stereo image 192 

perspectives which increases DEM accuracy in steep terrain and minimizes sensor shading.  193 

To improve and assess the accuracy of our DEM we collected a set of 66 ground control points (GCP) distributed across our 194 

study area using a Trimble Geo7x handheld differential global navigation satellite system (DGNSS) unit connected to an H–195 

star base station network, from August 24–27th 2019. We collected GCP in locations with high contrast such as edges of 196 

snowfields, water body inlets, bridges, and land cover transitions (e.g., boundary of talus slope and vegetation) to make the 197 

locations accurately identifiable in the satellite imagery. The timing of our image collection (August 19th, 2019) and GCP data 198 

collection (August 24–27th, 2019) meant that there were minimal changes in the natural features we used as reference points 199 

(i.e., snowfields, water bodies). 200 
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To process the imagery, we used a combination of open source software tools from Geospatial Data Abstraction Software 201 

Library (GDAL), QGIS, and the Ames Stereo Pipeline (ASP) version 2.6.2 (Beyer et al., 2018; GDAL, 2021; QGIS, 2021). 202 

Several steps of preprocessing were necessary to optimize our images prior to stereophotogrammetry, including bundle 203 

adjustment and orthorectification (Shean et al., 2016). The ASP stereo tool was developed for imagery containing bare rock 204 

and glacial landscapes. Differences in image texture in forested terrain are challenging for the default settings of ASP to 205 

produce accurate pixel matches. To address this issue, we extensively tested different stereo correlation algorithms and stereo 206 

processing settings to optimize performance for forested mountainous terrain. Our best results were achieved using the smooth 207 

semi–global matching (MGM) stereo correlation algorithm (Facciolo et al., 2015). Optimizing the settings of the ASP stereo 208 

tool produced accurate pixel matches in forested terrain and was only limited by artifacts in the original imagery (cloud, cloud 209 

shadow, poor lighting conditions).  210 

Our stereo processing workflow generated 6 separate DSMs from the SPOT 6 tri–stereo imagery by taking all possible 211 

combinations of left and right stereo images. The goal of this method was to reduce DSM holes in steep or poorly lit terrain 212 

by taking advantage of the multiple view angles provided by the tri–stereo imagery. Before combining the individual DSMs 213 

to produce the final DSM mosaic, we removed pixels with a triangulation error greater than the resolution of the input images 214 

(1.5 m) to ensure robust elevation estimates (Figure 2a). Overall, we see low normalized median absolute deviation (NMAD) 215 

values across the DSM mosaic (Figure 2b), with a median NMAD of 0.32 m. 216 

 217 

 218 

Figure 2. SPOT 6 DSM error estimates. Triangulation error for each set of stereo pairs (a) with pixels where error is greater than 219 
image resolution (1.5 m) removed from DSM. Normalized median absolute deviation (NMAD) for mosaic of 6 stereo pairs (b) with 220 
inset map showing slope scale detail. Internal checkpoints (green points) with height difference between DSM surface and DGNSS 221 
measurement. 222 
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 223 

To improve the alignment of the final DSM mosaic to our GCP, we used the ASP point cloud alignment tool to co–register 224 

the output DSM to the GCP (Shean et al., 2016). To evaluate the accuracy of our DSM we used 15 internal checkpoints which 225 

were not used as part of our GCP dataset (Höhle and Höhle, 2009).  226 

Localized cloud cover and poor lighting on steep north facing terrain caused several holes in our SPOT6 DSM mosaic. We 227 

filled these holes by down sampling the existing CDEM to 5m, aligning the CDEM to our SPOT6 DSM mosaic using the point 228 

cloud alignment tool in ASP, and then blending the two DEM datasets together. To avoid smoothing the entire SPOT6 DSM 229 

we progressively blended the datasets across a 60 m buffer from holes in the SPOT 6 DSM.  230 

The methods described here were only tested on a single set of SPOT 6 tri–stereo images, but the performance in forested 231 

terrain was vastly improved compared to the default ASP settings. For more detailed information on the ASP workflow or the 232 

computer resources used to calculate the DSM please see the supplementary material or contact the authors.  233 

3.2.2 Forest classification 234 

The existing PRA model of Bühler et al. (2018) uses a binary forest mask based on photogrammetric vegetation height model 235 

classification to mask release areas in forested terrain. We tested several approaches to generate a binary forest mask for our 236 

study area. Since our SPOT 6 imagery was limited by poor lighting conditions on steep north facing terrain due to early 237 

morning sun angle, we substituted Planet Labs’ RapidEye imagery, collected on July 14th, 2018 (Planet Team, 2017). An 238 

advantage of the RapidEye imagery is that it includes a red edge band which provides additional spectral resolution to 239 

differentiate between forests and other types of vegetation (Dash et al., 2016).  240 

To perform the classification, we used the python libraries Numpy, GDAL, Rasterio, and SciKit Learn (GDAL, 2021; Gillies 241 

et al., 2013; Harris et al., 2020; Pedregosa et al., 2011). We used a random forest algorithm on the blue, green, red, red edge, 242 

and near infrared image bands. In addition, we included the normalized difference red edge index (NDRI), normalized 243 

difference vegetation index (NDVI), and normalized difference water index (NDWI). We created training data by manually 244 

drawing polygons around individual land cover types (forest, water, bare ground, snow and ice, shrub, moss and lichen) based 245 

on RapidEye, SPOT6, and Google Earth imagery from our study area. Our training dataset is composed of 253 individual 246 

polygons (12.0 km2), with 73 polygons of forested terrain (3.6 km2). For the analysis, we converted the polygons to a binary 247 

raster dataset with 144,903 forested pixels and 334,441 non–forested pixels, and randomly split the training data set into equal 248 

parts for training and testing of the random forest classifier. To determine the optimal hyperparameters for the random forest 249 

model we used a randomized search cross validation (Kuhn and Johnson, 2013). We used a fivefold cross validation with ten 250 

iterations and scored based on the accuracy of the classification to select the optimal parameters. Our python script to produce 251 

the forest land cover classification is available in the OSF directory (Sykes et al., 2021). 252 
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3.3 Integration of forest information into PRA model 253 

Our development of additional PRA model functions to improve performance in forested terrain was guided by two principles; 254 

1. Minimize additional complexity when running the PRA model compared to the original version. 2. Utilize remote sensing 255 

datasets that are available in data sparse locations and do not require extensive field validation. 256 

To integrate forest information into the PRA model, we created two additional input parameters: an ordinal forest density 257 

(Open – 0, Sparse – 1, Moderate – 2, Dense – 3, Very Dense – 4) and a numeric forest slope scalar (0.0–2.0). The forest density 258 

parameter controls what classes of forest are included in the PRA model, while the forest slope scalar adjusts the slope angle 259 

minimum threshold based on the forest density class for each pixel. If the forest density parameter is set to 0, then the forest 260 

slope scalar parameter is not applied. Otherwise, the value of the forest slope scalar is determined by the slope angle minimum 261 

input parameter and forest density value. Including these parameters takes advantage of the existing forest mask functions of 262 

the PRA model and only adds two input parameters to the model input. 263 

3.3.1 Forest density 264 

To estimate forest density, we used a focal function to calculate the total number of forested pixels within a five–cell 265 

neighborhood (625 m2). We included this step to capture the fuzzy transition between forested and non–forested snowpack 266 

characteristics. In areas adjacent to forested terrain the snowpack can be altered by forest cover (i.e., wind dynamics, radiation 267 

balance, canopy snowfall interception) despite not being directly covered by the forest canopy (Bebi et al., 2009). This method 268 

also helps to identify glades or meadows within the forest canopy by creating a fuzzy buffer around small non–forested islands 269 

within densely forested terrain. The size of the neighborhood function (625 m2) is representative of small human triggered 270 

avalanches that have the potential to bury or injure a person, especially if they are carried into a forested area (Schweizer and 271 

Lütschg, 2001). This step resulted in a forest sum raster with values ranging from 0 to 25, with 0 meaning no forested cells 272 

and 25 meaning all cells within the five–cell neighborhood are forested (Figure 3). 273 

 274 
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 275 

Figure 3. Forest density layer processing workflow. 276 

 277 

We then reclassified each forest sum cell into an ordinal variable with the forest density categories open (0 cells), sparse (1–278 

10 cells), moderate (11–20 cells), dense (21–24 cells), and very dense (25 cells) (Figure 3). We chose this uneven classification 279 

scheme to bias the application of the forest slope scalar parameter towards increasing the slope angle minimum more strongly 280 

in densely or very densely forested areas (i.e., cells with 21 to 25 neighboring forested cells). Since areas with more surrounding 281 

forested pixels likely represent more mature forests, this approach captures the fact that more mature forests have a greater 282 

potential impact on avalanche release. The resulting forest density layer provides a foundation to control how forested cells 283 

are included in the PRA model. 284 

3.3.2 Forest slope scalar 285 

As an additional control on how the PRA model is applied in forested terrain, we introduced a forest slope scalar parameter 286 

to increase the slope angle minimum based on the forest density value. Applying this parameter assumes that steeper slopes 287 

are necessary to release avalanches in forested terrain, which is supported by prior research (Campbell and Gould, 2013; 288 

Schneebeli and Bebi, 2004). The rate of slope angle increase is controlled by the forest slope scalar parameter (0.0–2.0), which 289 

is applied as an exponent to the forest density value (0–4) and added to the slope angle minimum value (e.g., 30°). For example, 290 

a slope angle minimum of 30° and a forest slope scalar value of 1 would result in the following slope angle minimums for 291 

forested terrain: open (0) 30°, sparse (1) 31°, moderate (2) 32°, dense (3) 33°, very dense (4) 34°. Whereas, a slope angle 292 

minimum of 28° and a forest slope scalar value of 2 would result in the following slope angle minimums: open (0) 28°, sparse 293 

(1) 29°, moderate (2) 32°, dense (3) 37°, very dense (4) 44° (Figure 4). 294 
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 295 

Figure 4. Forest slope scalar functions applied to a 30° minimum slope angle threshold. 296 

 297 

3.4 Parameter tuning and validation 298 

When developing a new version of a PRA model or applying it to a new area, long-term records of spatially accurate avalanche 299 

observations that support a standard validation approach as described in Bühler et al. (2018) might not always be available. 300 

However, local avalanche safety experts such as mountain guides can have extensive knowledge about local avalanche activity 301 

patterns. To determine the optimal parameter settings and assess the performance of our PRA extension into forested terrain, 302 

we developed a novel method that takes advantage of this type of expertise and collaborated with two CMH Galena guides 303 

who each have decades of experience in our study area. 304 

3.4.1 Validation data collection 305 

CMH Galena primarily operates on approximately 300 defined ski runs within their tenure. The runs range in size from 0.2–306 

19.0 km2 and their locations have been mapped with polygons that outline the typical skiing terrain (Figure 1). The frequency 307 

of how often these runs are used varies significantly depending on terrain characteristics, weather conditions for flying, and 308 

snowpack conditions. To validate the PRA model, the two collaborating guides selected five runs based on their familiarity 309 
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with the terrain and the balance of forested and alpine avalanche terrain contained in the runs (highlighted validation runs in 310 

Figure 1). 311 

Since mapping the precise location of start zones based on personal recollection without being in the terrain at the time is 312 

extremely difficult, we developed a workflow that would explicitly accommodate this uncertainty. Instead of forcing the 313 

participating guides to explicitly outline all avalanche release areas, our data collection workflow asked them to draw validation 314 

polygons in a map interface that contain terrain of consistent character and specify for each polygon what proportion represent 315 

potential release areas (0%, 25%, 50%, 75%, 100%) (Figure 5). Polygons of obvious probable release areas or non–release 316 

areas where guides had high confidence about their spatial extent were labeled with 100% and 0% respectively. Areas with 317 

scattered probable release areas, such as open forests with glades, where the identification of each probable release area would 318 

be cumbersome and unreliable, were marked as larger polygons and labelled with the estimated spatial proportion of the 319 

probable release areas (25%, 50% or 75%). Release areas that require specific snowpack structures and weak layer types (e.g., 320 

surface hoar) were minimized in the validation dataset in order to focus avalanche release types that occur more frequently. 321 

The process of collecting validation polygons from the CMH guides was carried out on a custom designed website. The website 322 

platform enabled us to develop and present meaningful reference layers (e.g., satellite imagery, topo maps, terrain data, GPS 323 

tracks, heat maps) and provide the guides with multiple perspectives of the study area to assist with drawing the validation 324 

polygons. Both guides drew release area polygons for the five validation runs individually before creating a final consensus 325 

set of polygons in collaboration.    326 

Our fuzzy approach to mapping probable release areas has several advantages. Foremost, accommodating uncertainty in the 327 

spatial extent of release areas is a requirement when relying on human memory to generate the validation data as specifying 328 

probable release areas with higher precision from memory is simply unrealistic. This method also accounts for the variability 329 

in release area extent that results from the dynamic nature of snowpack and weather conditions. The workflow also minimizes 330 

the effects of local errors in the reference layers that we provided the guides with to record their validation polygons. Specific 331 

examples of uncertainty caused by reference layers are variations in satellite imagery lighting due to sun angle and artifacts of 332 

the DSM generation process, such as over steepened slope angle values caused by transitions from forested to non–forested 333 

terrain.  334 

 335 
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 336 

Figure 5. Validation polygons from one run at CMH Galena. Polygons are color coded based on the release area proportion of each 337 
polygon.  Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017). 338 

 339 

Our final validation dataset consists of 167 polygons across five runs with a total area of 8.42 km2. In locations where the 340 

polygons overlapped, we retained the highest proportion value of the overlapping polygons. The overlapping region was also 341 

clipped from the total area of the lower probability polygon. Locations within the run polygons that were not explicitly mapped 342 

by the guides were assumed not to be release areas. However, our validation approach differentiates between these implied 343 

and the explicit 0% validation polygons because we have more confidence in the latter. 344 

3.4.2 PRA model grid search 345 

In contrast to the raster based validation approach of Bühler et al. (2018), our validation dataset requires analysis on the scale 346 

of individual polygons. Since we do not know the explicit locations of the release areas in polygons with release area 347 

proportions of 25%, 50%, or 75%, we cannot directly compare the PRA model output to the validation polygons on a pixel-348 

by-pixel basis. Instead, we have to compare the total area within each polygon that is considered a PRA by the model to the 349 

proportion provided by the local guides. To calculate the error between the model and the guides’ assessment for each polygon, 350 

we subtracted the proportion of the area of each polygon that the PRA model determines as a release area from the release area 351 

proportion determined by the guides. This PRA error value is the basis of our grid search process.  352 

To properly reflect the validation data collection process in our analysis we also need to consider the hierarchical structure of 353 

assessment polygons collected from the local guides. The highest value validation data are the 100% and 0% polygons because 354 
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they provide explicit spatial extents for PRA locations. These polygons are from locations the participating guides are most 355 

familiar with and have the highest level of confidence in. We therefore placed more emphasis on PRA model performance in 356 

these areas when selecting the optimal inputs. The validation polygons with the greatest uncertainty are the run polygons. They 357 

were not explicitly drawn by the guides and the absence of PRA within these polygons was implicit and not explicitly specified. 358 

Hence, the accuracy of these polygons was weighted least in selecting the optimal PRA input parameters.  359 

To select optimal input parameters for the PRA model we performed a grid search as described by Bühler et al. (2018) using 360 

the following values: slope angle minimum (default 30°, range 20°–40°), slope angle maximum (default 60°, range 45°–65°), 361 

ruggedness window (default 9, range 3–15), ruggedness maximum (default 6.0, range 0.5–10.0), curvature maximum (default 362 

6.0, range 0.5–10.0),  forest density (default NA, range 0–4), forest slope scalar (default NA, range 0.0–2.0) (Table 1). We 363 

used a set of default parameters from Bühler et al. (2018) as a baseline and iterated over each parameter to analyze the impact 364 

on the accuracy of the model. The input parameters slope angle minimum, slope angle maximum, ruggedness window, 365 

ruggedness maximum, and curvature maximum are derived from the DEM (Figure 6 a–c). The forest density input parameter 366 

is derived from the forest mask (Figure 6d). 367 

Table 1. Grid search input parameter values 368 

Input Parameter Range Interval Default Optimized 

Slope Angle Minimum 
20°–

40° 
1° 30° Yes 

Slope Angle Maximum 
45°–

65° 
1° 60° No 

Ruggedness Window 3–15 2 9 No 

Ruggedness Maximum 
0.5–

10.0 
0.5 6.0 No 

Curvature Maximum 
0.5–

10.0 
0.5 6.0 No 

Forest Density 0–4 1 NA Yes 

Forest slope scalar 0.0–2.0 0.25 NA Yes 

 369 

Selecting the optimal set of input parameters did not rely on any single statistic. Each PRA model iteration was compared 370 

using the mean absolute error (MAE), mean bias error (MBE), proportion of accurate polygons, and proportion of 371 

underestimated and overestimated errors. MAE values can range from 0 to 100, with lower values indicating a more accurate 372 

model. MBE values can range from -100 to 100, with 0 indicating a balance between positive and negative errors. 373 

Underestimated and overestimated polygons are defined as having a PRA error greater than ± 12.5%, because the validation 374 
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polygon release area proportion bins have a range of 25%. Polygons with a PRA error greater than ± 25% were considered 375 

severely overestimated or underestimated. 376 

The accuracy statistics for each grid search iteration were calculated on the basis of the total number of polygons (n = 167). 377 

We elected not to weight the statistics based on polygon size because the highest value validation polygons (0% and 100%) 378 

are generally the smallest. Selecting the optimal input parameters for our PRA model required evaluating performance across 379 

all these statistics and taking the structure of our validation dataset into account.  380 

When selecting the optimal set of input parameters we erred on the side of a model that overestimates the extent of potential 381 

avalanche release areas, which is indicated by a negative MBE. We consider this an appropriate approach because the guides’ 382 

polygons reflect only the avalanche conditions that they have experienced and recall. Despite their multiple decades of 383 

experience, the guides have not witnessed all potential combinations of snowpack conditions, which could cause avalanche 384 

release in uncommon areas. In contrast, the PRA model is a terrain based tool which aims to identify locations in the study 385 

area which have the potential for avalanche release independent of snowpack conditions.  386 

 387 
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 388 

Figure 6. PRA model input parameters. Slope angle, curvature, and ruggedness derived from the DEM (a–c) and forest density derived 389 
from the forest mask (d). Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017). 390 

  391 
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4 Results and discussion 392 

Since the context of the input data, parameter settings, and output from the original model are vital for evaluating the 393 

performance of our updated version of the PRA model, we combine the results and discussion into a single section. After 394 

presenting and commenting on the results, we conclude this section with an evaluation of some likely sources of error for our 395 

updated PRA model and share our thoughts on the limitations of a purely satellite remote sensing based method for capturing 396 

forest character in the PRA model. 397 

4.1 Data preparation pipeline 398 

The data preparation pipeline produced a 5m resolution satellite DSM and forested land cover data set as input for the PRA 399 

model. Using 15 internal check points (ICP), the DSM accuracy can be described with a median vertical error of -0.43 m and 400 

normalized median absolute deviation (NMAD) of 4.72 m (Table 2). These accuracy metrics indicate good performance of the 401 

stereo DSM method, especially considering the rugged mountainous terrain across our study area and close proximity of steep 402 

slopes to some of the ICP. Compared to the best available existing DEM for our study area (18 m resolution CDEM), the 403 

SPOT 6 DSM provides vastly improved small scale terrain feature identification (Figure 7). 404 

 405 

 406 

Figure 7. Comparison of existing 18 m resolution CDEM to 5 m resolution SPOT6 satellite stereo DSM, derived from our data 407 
preparation pipeline. 408 

  409 
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Table 2. Accuracy statistics for SPOT6 satellite stereo DSM based on 15 ICP. 410 

Metric Error Type Value (m) 

Median Δ h -0.43 

NMAD Δ h 4.72 

68.3% 

quantile 
|Δ h| 3.96 

95% quantile |Δ h| 9.25 

 411 

The forested land cover classification that emerged from our random forest analysis yielded an overall accuracy of 98.88% 412 

based on 253 training polygons (12.0 km2). The training polygons were rasterized and split randomly into training and testing 413 

data sets composed of 239,672 pixels each. We also calculated the area under the receiver operating characteristic curve (AUC) 414 

to compare true positive rate and false positive rate of the classification and found an area of 99.89%. The classification feature 415 

importance showed heavy reliance on the red edge (59.8%), NDWI (15.2%), and green (14.9%) bands. 416 

The overall accuracy of the classifier is critical for providing a distinction between forested land cover and other types of 417 

vegetation, such as shrubs and herbaceous plants. For avalanche release area modelling this distinction is important because 418 

shrubs and herbaceous plants are buried or pressed down beneath the winter snowpack and therefore have minimal effect on 419 

the potential for avalanche release. Trees with rigid trunks that resist being laid over by the winter snowpack and canopy 420 

heights greater than the snowpack depth (approximately 2–3 m) have an anchoring effect on the snowpack which is essential 421 

to capture accurately in order to account for their effect on avalanche release. 422 

Creating the forested land cover classification using the same satellite imagery as the stereo DSM processing would be the 423 

most efficient workflow for producing the necessary input data sets for PRA modelling, because it uses the least possible input 424 

data and thereby minimizes data acquisitions costs and effort. However, in our study, we elected to utilize Rapid Eye imagery 425 

as an alternative due to better overall lighting conditions and improvements in accuracy, primarily due to the red–edge spectral 426 

band. The overall accuracy of our classifier and the feature importance of the red edge band highlight the strength of RapidEye 427 

imagery for forest classification modelling.  428 

Our processing pipeline provides a cost-effective approach for creating high-resolution DEM and forested land cover 429 

classification data in remote and data sparse regions. Compared to alternative methods, such as LiDAR and commercial 430 

satellite stereo DEM products, purchasing raw satellite stereo imagery to produce a high-resolution DEM provides significant 431 

cost savings, control over the DEM generation settings, and produces a DEM product with sufficient accuracy (Kramm and 432 

Hoffmeister, 2019; Shean et al., 2016). The primary limitations are the inability to resolve bare ground terrain features, 433 

susceptibility to DEM holes due to cloud cover and lighting conditions, and degree of technical knowhow and computer 434 
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processing resources required to convert the raw imagery to a DEM product. Despite these limitations, the processing pipeline 435 

enhances accessibility for high-resolution PRA modelling in remote regions. 436 

4.2 Model parameter selection based on grid search 437 

Based on the grid search we determined the optimal model input values for our study area are: slope angle minimum 27°, slope 438 

angle maximum 60°, curvature maximum 6.0, ruggedness window 9, ruggedness maximum 6.0, forest density 4, and forest 439 

slope scalar 1.25. The grid search method that we implemented is based on a set of default input parameters and does not 440 

calculate all possible combinations of input parameters in order to reduce the amount of computer resources necessary. 441 

Therefore, the results of the grid search are dependent on the selected default parameters. We tested a wide range of potential 442 

default parameters for our grid search and used the values from Bühler et al. 2018 as a starting point. We selected the optimal 443 

values by visualizing the distribution of the PRA error and plotting the MAE and MBE values for each grid search iteration 444 

(Figure 8). 445 

Due to the high quality and long-term avalanche observation records used for validation in Bühler et al. 2018, we retained their 446 

default parameter values if the grid search did not demonstrate notable improvement in overall accuracy based on the local 447 

validation dataset. This was the case for slope angle maximum, ruggedness window, ruggedness maximum, and curvature 448 

maximum. The results of our grid search for these parameters are similar to those shown in Figure 3 of Bühler et al 2018, with 449 

relatively low variation in accuracy across the range of grid search values (Figure 8, panels b to e). The consistency of these 450 

input parameters for both Davos and Galena are likely due to using the same DEM resolution of 5m and points to the 451 

universality of the physical characteristics necessary for avalanche release. In addition, this consistency is a testament to the 452 

accuracy of our satellite DSM in comparison to the high-resolution DEM data used in the Davos research. 453 
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 454 

Figure 8. Results of PRA model grid search. In each of the panels, the left Y–axis shows the percentage of polygons in different PRA 455 
error classes with colored bars (accurate – yellow, underestimated – red, overestimated – blue). Black squares and triangles show 456 
the values of MAE and MBE for each grid search iteration with a grey dashed horizontal line to show the 0 threshold which 457 
correspond to the right Y–axis. The vertical back lines indicate the optimized parameter settings. 458 
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4.2.1 Slope angle minimum 459 

Slope angle minimum has the largest impact on the performance of the PRA model. Selecting the optimal input parameter 460 

required balancing the performance of the PRA model against the different types of validation polygons and considering our 461 

target of a frequent avalanche scenario. When considering the entire validation polygon data set, there is a sharp increase in 462 

the percentage of underestimated validation polygons as the slope angle minimum threshold increases from 25°, which 463 

indicates that the PRA model progressively excludes observed release areas (Figure 8, panel a). The MAE minimum of 464 

approximately 18 occurs between 26° and 28°, indicating that these values produce the most accurate versions of the PRA 465 

model. The MBE is negative for slope angle minimum values below 30° with a steep decrease between 26° and 30°. This 466 

shows that decreasing the slope angle minimum below 30° creates PRA models that are progressively more biased towards 467 

overestimating release areas. 468 

To further analyze the performance of the PRA model we separated the validation polygons based on the validation polygon 469 

type. 0% and 100% polygons have the highest accuracy with values of slope angle minimum less than 25° (Figure 9, panel a). 470 

This trend strongly contrasts the other polygon types (Figure 9, panels b and c), which have higher percentages of accurate 471 

polygons for slope angle minimum values > 26°. For 0% and 100% polygons the percentage of accurate polygons declines 472 

steeply above 26° accompanied by an increase in severely underestimated polygons. The MAE and MBE statistics follow a 473 

similar trend, with relatively uniform values until 27° followed by steeply increasing error rates and positive bias for the 474 

remaining grid search inputs. 475 

 476 
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 477 

Figure 9. Frequent avalanche scenario PRA model grid search results for slope angle minimum with validation polygons split based 478 
on the type of polygon. 479 

 480 

The 25%, 50%, and 75% polygons (Figure 9, panel b) have a bimodal distribution for percent of accurate polygons, with slight 481 

peaks at 27° and 33°, accompanied by a steep increase in underestimated polygons from 27° upward. The MAE values are at 482 

their minimum between 27° and 33° with relatively uniform values within that range. Both above and below that range we see 483 

increasing MAE values, indicating a less accurate model for this group of polygons. Below 30° the MBE values indicate a 484 

negative bias and have a steeply negative trajectory. This shows a strong bias toward overestimating PRA area for 25%, 50%, 485 

and 75% polygons at lower values of slope angle minimum. 486 

The run polygons (Figure 9, panel c) have the highest accuracy with slope angle minimum greater than 31°. However, the 487 

percentage of severely overestimated polygons decreases drastically at 27°. Below 28°, the MAE and MBE have steeply 488 

increasing error rates and negative biases, respectively. Above 28° the curves flatten out and trend towards 0 for both MAE 489 

and MBE. 490 

Our choice of a 27° slope angle minimum strikes a balance between PRA model performance for each polygon type with a 491 

priority towards optimizing performance on the 0% and 100% polygons, which are the most spatially explicit and have the 492 
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highest degree of certainty. Setting the slope angle minimum lower than 27° would result in too strong of a bias towards 493 

minimizing underestimated errors which is not appropriate given our target of a frequent avalanche scenario. This is illustrated 494 

by a decrease in overestimated and severely overestimated polygons at a slope angle minimum value of 27° for the 25%, 50%, 495 

75% polygon dataset as well as the run polygons (Figure 9, panels b and c). 496 

4.2.2 Forest density and forest slope scalar 497 

Determining the optimal value for forest density was the most straightforward of the three parameters we optimized because 498 

the percentage of accurate polygons, lowest MAE, and lowest proportion of underestimated polygons all occur at very dense 499 

(4) (Figure 8, panel f). Setting forest density to very dense (4) means that the PRA model is not restricted by any forest mask 500 

and the forest slope scalar is applied across the full range of forest density values. 501 

Out of the three parameters we optimized, forest slope scalar has the least variation in percentage of accurate polygons, MAE, 502 

and MBE across the range of values tested in the grid search (Figure 8, panel g). This indicates that the PRA model 503 

performance is less sensitive to changes in forest slope scalar compared to slope angle minimum and forest density. However, 504 

setting this parameter to 1.25 helps to create a more balanced model by decreasing the number of overestimated polygons, 505 

which is illustrated in the upward trend of the MBE value. 506 

Similar to slope angle minimum, we see a decrease in the percentage of severely overestimated polygons for the 25%, 50%, 507 

and 75% and run polygon datasets for higher values of forest slope scalar (Figure 10, panels b and c). This is a trade off with 508 

a slight decrease in the percentage of accurate polygons and increase of percentage of underestimated polygons for the 0% and 509 

100% polygons (Figure 10, panel a). This is reflected in the 0% and 100% polygon MBE value of -0.81 at 1.25, which is 510 

relatively high compared to the other polygon types. Given our target of a frequent avalanche scenario this trade off is justified 511 

to create a balanced PRA model and account for the influence of forested terrain on avalanche release. 512 

 513 
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 514 

Figure 10. Frequent avalanche scenario PRA model grid search results for forest slope scalar with validation polygons split based on 515 
the type of polygon. 516 

 517 

4.3 PRA model output and comparison 518 

The final PRA model captures 57.5% (96 of 167) of the consensus validation polygon data set accurately, meaning that the 519 

PRA model predicted area is within ± 12.5% of the area specified by the guides for each validation polygon (Table 3). The 520 

remainder of the validation polygons were either underestimated 10.2% (17 of 167) or overestimated 32.3% (54 of 167), 521 

compared to the guides’ consensus estimates of release area proportion. The MAE value is 18.2, which is a measure of the 522 

average error across all polygons. The MBE value is -10.9, which indicates that the PRA model errors are negatively biased 523 

towards overestimating release areas. This interpretation of the MBE value aligns with the skewed distribution of 524 

underestimated and overestimated polygons. 525 

 526 

 527 

 528 
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Table 3. PRA model comparison 529 

PRA Model MAE MBE Accurate % Under % Over % 

Present model 18.2 -10.9 57.5 10.2 32.3 

Bühler 2018 – Forest Mask 33.1 22.3 31.0 58.3 10.7 

Bühler 2018 – No Forest 

Mask 
21.4 -3.7 45.8 25.0 29.1 

 530 

 531 

To evaluate whether our parameter optimization demonstrates meaningful improvement, we compared the accuracy statistics 532 

of the model using the optimized parameters (Present model) to the Bühler et al. (2018) defaults both with and without a forest 533 

mask (Table 3). The ‘Bühler 2018 – forest mask’ PRA model does not identify release areas in any terrain identified as forested 534 

based on the land cover classification, whereas the ‘no forest mask’ version allows the PRA model to calculate release areas 535 

in all terrain. Since the ‘forest mask’ version naturally performs substantially worse in most accuracy statistics due to the large 536 

proportion of forested terrain in our study area, we will focus the comparison on the ‘Bühler 2018 – no forest mask’ model 537 

version. 538 

Overall, we see improvements in the MAE, percent of accurate polygons, and percent of underestimated polygons using the 539 

locally optimized input parameters. The MAE for the present model is 18.2 compared to 21.4 for the ‘Bühler 2018 – no forest 540 

mask’ version, demonstrating a slight improvement in overall model error (Table 3). The present model improves the percent 541 

of accurate polygons by 11.7 percentage points over the ‘Bühler 2018 – no forest mask’ PRA model, which is a substantial 542 

improvement. Similarly, the reduction of 14.8 percentage points for underestimated polygons between the present model and 543 

the ‘Bühler 2018 – no forest mask’ demonstrates the improved performance of the grid search optimization. These 544 

improvements can be attributed to optimizing the slope angle minimum and forest slope scalar input parameters using the local 545 

validation data  546 

The trade off of the optimized input parameters for the present model is a bias towards overestimation, which is indicated by 547 

the MBE of -10.9 compared to -3.7 for the ‘Bühler 2018 – no forest mask’. This is also shown by the slight increase of 548 

3.2 percentage points in overestimated polygons from the ‘Bühler 2018 – no forest mask’ to the present model. Producing a 549 

more negatively biased PRA model is in line with our mindset of creating a PRA model that errs on the side of overestimating 550 

observed release areas. In our opinion, the benefits of improved percentage of accurate polygons and underestimated polygons 551 

outweighs the downside of a slight increase in overestimated polygons. 552 

The present model has a substantially lower slope angle minimum of 27° compared to the default value of 30° from Bühler et 553 

al. (2018), which results in a notable increase in the overall area of the PRA output due to expansion into lower angle terrain 554 

(Figure 11). The fact that the validation data led us to a substantial decrease in slope angle minimum is likely due to differences 555 
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in the terrain and snowpack characteristics in our study area compared to the region of Davos in Switzerland where the model 556 

was initially validated. The avalanche character in our study area is prone to persistent avalanche problem types with the most 557 

common weak layers being either surface hoar or faceted crystals associated with a crust (Hägeli and McClung, 2003; Haegeli 558 

and McClung, 2007; Shandro and Haegeli, 2018). As a weak layer, surface hoar can release at lower slope angles and has 559 

increased potential to propagate across terrain features compared to other weak layer types (McClung and Schaerer, 2006). 560 

The fact that our validation data set and grid search approach produced a PRA model that also aligns with our theoretical 561 

understanding of the snowpack properties in our study area is an encouraging result. However, in terrain within the study area 562 

that is not prone to surface hoar development our PRA model is likely to overestimate PRA extent. 563 

 564 

 565 

Figure 11. Comparison of present PRA model (a) to ‘Bühler 2018 – forest mask’ (b). Present model PRA area is pink with purple 566 
for forested areas. ‘Bühler 2018 – forest mask’ is shown in blue on panel b for comparison. Inset maps show detailed PRA comparison 567 
on a local scale. Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017). 568 

 569 

4.4 Potential sources of PRA model errors 570 

Based on discussions with our collaborating guides and exploring spatial patterns of discrepancies between our validation data 571 

set and PRA model output, we have highlighted two likely sources of error in our PRA model. First is the limitation of using 572 

a relatively simple remote sensing based approach to account for forested release areas in the PRA model, which does not 573 
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explicitly capture forest characteristics that are known to have a strong bearing on the interaction of avalanches and forest, 574 

such as crown cover, stem density, and gap size (Bebi et al., 2009; Teich et al., 2012). Second is the inherent uncertainty of 575 

relying on human experience to generate validation data, which can be subject to individual biases and faulty recollection. This 576 

section provides examples of these sources of error and discusses how we have attempted to minimize their impact on the PRA 577 

model accuracy. 578 

4.4.1 Forest characteristics 579 

To shed light on potential sources of PRA model errors we applied two different approaches that consider different spatial 580 

scales. First, we visualized the spatial patterns in the PRA errors for each validation run and consulted the local guides to 581 

provide their insight. Second, we extracted the terrain characteristics of the entire set of validation polygons and compared the 582 

distributions of the terrain characteristics based on the PRA error value. Both approaches yielded similar insight, which 583 

highlight the challenge of capturing forested avalanche release areas accurately using an approach based purely on satellite 584 

imagery.  585 

Visualizing the patterns of PRA model error by validation run reveals concentrated clusters of higher PRA error on specific 586 

runs or subregions within runs (Figure 12). The ‘Lunatic Fringe’ run has by far the highest proportion of overestimated 587 

polygons out of the five validation runs, with 22 out of the 42 validation polygons being overestimated (Figure 12, panel a). 588 

Based on information provided by the local guides, this run is characterized by a steep continuous face with several well-589 

defined large avalanche paths dissecting mostly forested terrain. The forest is very dense and impassable for a guided group at 590 

the upper elevations of this run. In contrast, the ‘Red Baron’ run, which is located directly across the valley from ‘Lunatic 591 

Fringe’, contains lower slope angle terrain with a large proportion of mature forest (Figure 12, panel b). The forest has greater 592 

canopy height with widely spaced gaps between the individual trees. The forest canopy between each tree extends horizontally 593 

enough that the land cover classification is unable to detect many of the gaps on the forest floor. This run contains 7 out of 8 594 

of the severely underestimated validation polygons, with the other polygon located in a forested area with similar 595 

characteristics on the ‘Bandito’ run.  596 

 597 
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 598 

Figure 12. PRA model accuracy for each validation run. The validation polygons are labelled with their release are proportion and 599 
color coded based on the PRA error for each individual polygon. 600 

 601 

While the forest slope scalar input parameter is designed to account for the interaction of forest and avalanche release, it is 602 

challenging to apply it on these two drastically different types of forested terrain. For ‘Lunatic Fringe’, increasing the forest 603 

slope scalar input parameter would improve accuracy by increasing the slope angle minimum threshold based on the local 604 

forest density. However, increasing the forest slope scalar would be detrimental for ‘Red Baron’ because of the potential for 605 

avalanche release in forest gaps within densely forested areas. These two contrasting examples of how the PRA model handles 606 

avalanche forest interaction highlight the challenge in creating a balanced PRA model which compromises performance in 607 

each type of forested terrain. 608 

The guides’ descriptions of the local forest character causing PRA errors for ‘Lunatic Fringe’ and ‘Red Baron’ are supported 609 

by our analysis of terrain characteristics based on the validation polygon dataset. To investigate whether there are common 610 

patterns in the terrain characteristics of validation polygons based on their PRA error value we extracted the aspect, curvature, 611 

elevation, forest cover, forest density, ruggedness, and slope angle distributions for the validation polygon dataset. While the 612 

majority of these terrain characteristics had similar distributions for all classes of PRA error, forest cover percentage and forest 613 

density had distinct differences. For ‘severely underestimated’ polygons the distributions and median values are biased towards 614 

higher percentages of forest cover and forest density compared to other PRA error classes (Figure 13). 615 
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 616 

 617 

Figure 13. Analysis of PRA error based on percentage of forested area for the validation polygon data set. The plot shows the 618 
distribution of forest cover percentage for validation polygons based on their PRA error. 619 

 620 

This further illustrates the guides’ interpretation that the severely underestimated polygons on ‘Red Baron’ have high forest 621 

density and the limitation of our forest slope scalar approach for accounting for forested terrain with highly variable 622 

characteristics. It is important to note that the sample size of ‘severely underestimated’ polygons is small with only eight 623 

polygons. For context, the distribution ‘severely overestimated’ (n = 37) polygons also include high percentages of forest cover 624 

and forest density, which can be partially attributed to the dense and tightly spaced forested terrain on ‘Lunatic Fringe’. 625 

The PRA errors on ‘Lunatic Fringe’ and ‘Red Baron’ demonstrate the limitations of our approach in capturing the real world 626 

forest characteristics. Improving the performance of the PRA model in forested terrain would require more detailed data sets 627 

such as LiDAR or a field based forest inventory which could capture additional forest characteristics such as stem spacing 628 

(Ginzler and Hobi, 2015; Waser et al., 2015; Wallner et al., 2015; Rahimizadeh et al., 2020; Hyyppä et al., 2000; Dash et al., 629 

2016), which are beyond the scope of this research. The benefit of our method is to create cost-effective and high-resolution 630 

avalanche terrain maps based exclusively on remotely sensed data which can be applied in any location, regardless of 631 

remoteness or accessibility. For this purpose, our approach allows forested terrain to be captured in the PRA model on a basic 632 

level and broadens the range of avalanche terrain that the model can be applied to. 633 
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4.4.2 Uncertainty in validation data 634 

One of the key differences in relying on local expertise for model validation is the necessity to incorporate uncertainty. There 635 

are two distinct types of uncertainty that are relevant for validating the PRA model: 1) Uncertainty in the accuracy of the 636 

observations, recollection, and experience of our collaborating guides, and 2) Uncertainty in the reference datasets we provided 637 

them with to transfer their knowledge into spatial datasets and precision of polygon drawing.  638 

In the case of guide observations, the primary sources of uncertainty in determining the location of avalanche release areas are 639 

the variability of avalanche conditions, how often the terrain is observed throughout the season, the guides recollection of 640 

avalanche events, and the potential for altered snowpack structure due to frequent guiding. These limitations are inherent to 641 

relying on human recollection as a source of validation data. However, our approach for capturing validation polygons from 642 

local experts accommodates these limitations by allowing for fuzzy boundaries in drawing polygons, collecting validation data 643 

from multiple guides independently, and intentionally minimizing the specificity that we ask the guides to label the release 644 

area proportions (0%, 25%, 50%, 75%, 100%).  645 

The process for collecting validation data from our collaborating guides evolved through frequent back and forth discussions. 646 

When applying the validation polygons to select optimal input parameters for our study area we accounted for the nature of 647 

the data collection by placing more emphasis on the performance of 0% and 100% polygons, which have the highest level of 648 

certainty for the guides and are the most spatially explicit. We also preferred input parameters that resulted in a PRA model 649 

that is biased toward overestimating release areas in order to account for the potential that the guides have not witnessed all 650 

possible combinations of snowpack and weather conditions in our study area, despite their extensive experience. 651 

An example of how the guides' experience can influence our validation data set can be seen in the right half of the ‘Rendezvous’ 652 

ski run, where there are many severely overestimated validation polygons (Figure 12, panel c). According to our DEM, the 653 

slope angles in this area are predominantly in the low to mid thirties, which are within the range observed for human triggered 654 

avalanches (Schweizer and Lütschg, 2001). However, the guiding operation frequently uses this piece of terrain and 655 

intentionally manages the snowpack using skier traffic to minimize the potential for weak layers to form and persist on the 656 

surface (e.g., surface hoar). Frequent guiding use and intentional maintenance of weak layers can create a modified snowpack 657 

structure (Haegeli and Atkins, 2016) and has the potential to impact the guides’ perception of release area potential. In areas 658 

where the guide's experience is largely based on modified snowpack structures there is a high potential for the PRA model to 659 

overestimate avalanche release compared to the validation data set.  660 

4.5 Limitations 661 

The primary limitations of this research are side effects of our aim to minimize the cost of input data production and create a 662 

flexible workflow to apply and validate the PRA model in remote and data sparse regions. Using a DSM as input for a PRA 663 

model has not been thoroughly tested, and the inability to detect bare ground features within forest canopy likely causes 664 
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localized errors in the PRA model. Recently, a comparison of high-resolution DSM and DTM models for avalanche runout 665 

modelling demonstrated some of the limitations of a DSM for dynamic avalanche simulation (Brožová et al., 2020). We were 666 

unable to test the accuracy of the SPOT6 DSM compared to a DTM due to the lack of alternative high-resolution data in our 667 

study area.  668 

Relying exclusively on optical satellite imagery to account for forest avalanche interaction provides limited detail on 669 

meaningful forest characteristics. Explicit modelling of stem density, gap size, or crown cover could improve the PRA model’s 670 

ability to capture forest avalanche interaction (Dash et al., 2016; Wallner et al., 2015). However, our focus is on minimizing 671 

field data collection to create a workflow that is applicable in remote areas. 672 

Finally, the experience of local experts is not an ideal source to generate validation data compared to long term observation 673 

records. Observations from individual experts are prone to biases in their experience and potential for faulty recollection. We 674 

attempted to minimize these effects on our dataset by collaborating closely with the guides to develop a system for recording 675 

their observations that allows for uncertainty and is based on independent observations of multiple guides.  676 

5 Conclusions 677 

This research aimed to increase the range of application for existing high-resolution PRA modelling by developing a cost-678 

effective workflow for generating the required input datasets, expanding current PRA modelling methods to include avalanche 679 

forest interaction, and to create a novel approach for validating the model based on the local expertise of avalanche practitioners 680 

for data sparse regions. The research produced an updated version of the Bühler et al. (2018) PRA model which enables high-681 

resolution avalanche terrain modelling in a vastly greater proportion of mountainous terrain than previously possible. This is 682 

thanks to the widespread availability of the necessary satellite remote sensing input data and local expertise required to validate 683 

and optimize the PRA model input parameters. The updated model also allows for inclusion of forested terrain with varying 684 

densities, contributing to a substantial improvement in the performance of the PRA model in our study area.  685 

The data preparation pipeline developed for this research is based on open source software and intended to be reproducible in 686 

areas without existing high-resolution DEM and forest cover data sets, which achieves our goal of making high-resolution 687 

PRA modelling more accessible in remote and data sparse areas. Producing a satellite stereo DSM based on raw imagery 688 

provides control over the DSM characteristics and minimizes the cost associated with acquiring this essential data set. Further 689 

testing of the DSM pipeline developed for this research is required, especially in forested terrain, and could provide a 690 

meaningful direction for future research.  691 

Using locally optimized input parameters, our updated PRA model has a higher overall accuracy and less underestimated 692 

release areas compared to the default parameters developed for Davos, Switzerland in Bühler et al. (2018). Our validation 693 

approach utilizes local expertise to collect avalanche release area polygons via a custom-built online mapping tool and applies 694 

spatial and statistical analysis to quantify the accuracy of the PRA model. We leveraged this unique validation data set to 695 
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develop a new polygon based grid search approach to optimize the PRA model input parameters. Creating a validation method 696 

that allows for optimization of the PRA model in areas without a long standing avalanche observation dataset is essential to 697 

evaluate the PRA model performance in new locations. This method also provides the opportunity for comparison of optimal 698 

input parameters in different snow and avalanche climates. Future research applying the PRA model in maritime and 699 

continental snow climates would provide additional insight into how the input parameters can be optimized for a broader range 700 

of snowpack and avalanche conditions, which are not captured in the existing Davos or Galena study areas. 701 

To include forested terrain in the PRA model we focused on creating a simple addition to the existing PRA model which does 702 

not require any additional input data and remains an optional extension of the existing PRA model framework. We also focused 703 

on maintaining the ability to create the input data sets via optical satellite remote sensing methods to minimize the overhead 704 

cost and effort to produce forest characteristic data. Our approach allows the PRA model to capture the interactions between 705 

forests and avalanche release by controlling the forest density where the PRA model is applied and altering the slope angle 706 

minimum threshold based on the local forest density. These two changes are simple yet effective methods to account for forest 707 

cover in PRA modelling.  708 

Additional research focused on satellite imagery based modelling of forest characteristics (Dash et al., 2016; Hyyppä et al., 709 

2000; Rahimizadeh et al., 2020), such as stem density and gap size, could further improve the performance of PRA models in 710 

forested terrain. While the availability of high-resolution LiDAR, laser scanning, or field measured forest characteristics are 711 

essential for meaningfully validating the derivation of these datasets (Ginzler and Hobi, 2015; Waser et al., 2015), this type of 712 

development and analysis was beyond the scope of this research. The forest regions in our study area are dominated by 713 

coniferous tree species, which limits our ability to generalize the effectiveness of the PRA model in coniferous or mixed forest 714 

ecosystems. Hence, we encourage other researchers to explore our approach in other forest types.  715 

Despite the limitations and shortcomings of our approach, the present research improves the accessibility of high-resolution 716 

PRA modelling by combining an existing state of the art PRA model with open source software tools and low cost input data 717 

and presenting a flexible validation method to assess accuracy of the model output based on local terrain expertise. These 718 

developments have the potential to enable a more widespread application of high-resolution avalanche terrain indication 719 

modelling worldwide.  720 

Code and data availability.  721 

The data, code, and output for our analysis and the data and code for the figures and tables included in this paper are available 722 

at osf.io/yq5s3 (Sykes et al., 2021). 723 
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