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Abstract. Potential avalanche release area (PRA) modelling is critical for generating automated avalanche terrain maps which 9 

provide low-cost large scale spatial representations of snow avalanche hazard for both infrastructure planning and recreational 10 

applications. Current methods are not applicable in mountainous terrain where high-resolution (≤ 5 m) elevation models are 11 

unavailable and do not include an efficient method to account for avalanche release in forested terrain. This research focuses 12 

on expanding an existing PRA model to better incorporate forested terrain using satellite imagery and presents a novel approach 13 

for validating the model using local expertise, thereby broadening its application to numerous mountain ranges worldwide. 14 

The study area of this research is a remote portion of the Columbia Mountains in southeastern British Columbia, Canada which 15 

has no pre-existing high-resolution spatial data sets. Our research documents an open source workflow to generate high-16 

resolution DEM and forest land cover data sets using optical satellite data processing. We validate the PRA model by collecting 17 

a polygon dataset of observed potential release areas from local guides, using a method which accounts for the uncertainty of 18 

human recollection and variability of avalanche release. The validation dataset allows us to perform a quantitative analysis of 19 

the PRA model accuracy and optimize the PRA model input parameters to the snowpack and terrain characteristics of our 20 

study area. Compared to the original PRA model our implementation of forested terrain and local optimization improved the 21 

percentage of validation polygons accurately modelled by 11.7 percentage points and reduced the number of validation 22 

polygons that were underestimated by 14.8 percentage points. Our methods demonstrate substantial improvement in the 23 

performance of the PRA model in forested terrain and provide means to generate the requisite input datasets and validation 24 

data to apply and evaluate the PRA model in vastly more mountainous regions worldwide than was previously possible.  25 
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1 Introduction 26 

Snow avalanches are a significant natural hazard for traffic and settlement infrastructure as well as for individuals who travel 27 

in snow covered mountainous regions. Roads, railroads, utilities, and permanent structures that are located in areas with 28 

potential avalanche hazard can be destroyed by large avalanche impacts or blocked for extended periods during winter storm 29 

events causing financial losses and potential for injury or death from individuals being buried in the debris. In economically 30 

developed countries, the majority of avalanche fatalities occur during recreational activities (i.e., backcountry skiing, 31 

snowmobile riding, mountaineering) where individuals voluntarily expose themselves to avalanche hazard (Boyd et al., 2009), 32 

and accidental avalanches are mostly triggered by the party that is caught (Schweizer and Lütschg, 2001; Techel et al., 2016). 33 

In North America and Europe, an average of approximately 140 people are killed in avalanches each year (Jamieson et al., 34 

2010; Techel et al., 2016; Colorado Avalanche Information Center, 2020). 35 

To mitigate avalanche hazard, locations with potential for avalanche release need to be identified so elements at risk can 36 

attempt to minimize their exposure. This can be achieved by avoiding avalanche prone areas, minimizing exposure time, or 37 

implementing avalanche control methods (McClung and Schaerer, 2006). Avalanche hazard mapping is a time honored 38 

practice for determining the spatial distribution of snow avalanche hazards (Margreth and Funk, 1999; Rudolf-Miklau et al., 39 

2015). Traditional manual hazard mapping combines multiple methods such as terrain inspection, numerical simulations, 40 

avalanche event databases and expert experience to evaluate avalanche hazard exposure and spatial extent making it both labor 41 

and cost intensive. This highly detailed approach is the gold standard for determining avalanche zoning for permanent 42 

infrastructure, but the costs make it unsuitable for mapping large areas of mountainous terrain (Rudolf-Miklau et al., 2015, 43 

Bühler et al., 2018, 2022).  44 

To overcome this challenge, automated GIS and remote sensing based methods have been developed to expedite the mapping 45 

process and produce avalanche terrain indication maps based on digital elevation model (DEM) and land cover data (Maggioni 46 

and Gruber, 2003; Gruber and Haefner, 1995). The foundation of automated avalanche terrain mapping is potential avalanche 47 

release area (PRA) modelling, which estimates the location of potential hazards based on the local terrain characteristics 48 

(Bühler et al., 2013, 2018; Veitinger et al., 2016). PRA models can be applied to define the spatial extent of release areas in 49 

dynamic avalanche simulations, which estimate the runout distance, velocity, and flow height of avalanche debris (Christen et 50 

al., 2010), or as a standalone spatial layer to assist with hazard identification. Their ability to operate at the mountain range 51 

scale with limited human input dramatically reduces cost and time to develop spatial data sets which can assist infrastructure 52 

planners and recreationists in making more informed decisions about their avalanche hazard exposure (Bühler et al., 2018). 53 

The development of large-scale avalanche hazard indication maps in Switzerland has led to them being applied as a tool to 54 

help backcountry recreationists visualize terrain hazards and incorporate them into their trip planning process (Harvey et al., 55 

2018). 56 
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The current state of the art methods for PRA modelling have been developed and validated in regions with widely available 57 

high-resolution DEM and forest cover data as well as long term records of avalanche observations (Bühler et al., 2018; 58 

Veitinger et al., 2016). However, the majority of mountainous regions in the world do not have freely available high-resolution 59 

DEM or forest cover data yet, and long term spatially accurate records of avalanche release are very rare. This seriously limits 60 

the application and local validation of PRA models around the world. 61 

An additional limitation of existing high-resolution PRA models is that they do not account for the interaction between forest 62 

characteristics and avalanche release. For example, both the Bühler et al. (2018) and Veitinger et al. (2016) PRA models allow 63 

for forested areas to be excluded from PRA calculations based on a forest mask layer, but they do not explicitly capture forest 64 

avalanche interaction. This reduces the applicability of these PRA models in mountain ranges where a significant portion of 65 

the avalanche terrain is forest covered, such as in western North America. 66 

To address these challenges and make PRA models applicable more broadly, the objective of this research is to develop a cost-67 

effective workflow for generating the required input datasets for the Bühler et al. (2018) PRA model using satellite data and 68 

open-source remote sensing methods. In addition, we present a relatively simple method for adapting the current PRA model 69 

to work in forested terrain. In the absence of long-term avalanche observations, we develop a novel approach for utilizing the 70 

expertise and terrain knowledge of local mountain guides to validate the PRA model output and optimize the input parameter 71 

for the unique terrain and snowpack characteristics of our study area. These three developments—the use of satellite data, the 72 

adaptation of the model to work in forested terrain, and the validation with local terrain expertise—together open new 73 

opportunities for applying state of the art avalanche terrain modelling in regions with limited existing datasets and resources. 74 

2 Background 75 

2.1 Potential Avalanche Release Area Modelling 76 

Early versions of GIS based avalanche terrain models (e.g., Gruber and Haefner, 1995; Maggioni and Gruber, 2003) struggled 77 

to outperform simple slope based avalanche release area estimates (Voellmy, 1955) due to the inability of low resolution DEMs 78 

(20–30 m) to detect small scale terrain features. Current PRA modelling methods evolved over the course of a decade and 79 

benefit from developments in high-resolution DEM production and remote sensing (e.g., Bühler et al., 2013, 2018, 2022; 80 

Veitinger et al., 2016; Kumar et al., 2019). To define avalanche release areas the algorithms use different combinations of 81 

DEM derivatives (i.e., slope angle, terrain ruggedness, curvature, and aspect), which are calculated using focal functions of 82 

raster pixels. Bühler et al (2013) found that 5 m resolution is the optimal tradeoff between processing efficiency and small-83 

scale feature identification for PRA modelling. With DEM resolution of 5 m, a common nine cell focal neighborhood (3x3) is 84 

225 m2, which is well below the median slab size for human triggered avalanches of 4,000 m2 (Schweizer and Lütschg, 2001). 85 

Hence, high resolution input data is essential to capture sub-release area scale terrain characteristics which are critical for 86 

accurate potential release area modelling. 87 
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The development of these algorithms depends on a robust validation dataset of observed avalanche events to determine the 88 

optimal input parameter settings for the target study area. By comparing the extent of the PRA model output to the location of 89 

avalanche observations the overall accuracy of the PRA model can be evaluated and comparisons can be made between 90 

different combinations of input parameters. Such datasets can be created through recording of manual observations or 91 

generated by applying satellite mapping (Lato et al., 2012; Bühler et al., 2019; Hafner et al., 2021). The most comprehensive 92 

known avalanche release area validation dataset currently available is curated by the WSL Institute for Snow and Avalanche 93 

Research SLF in Davos, Switzerland with experienced staff manually mapping avalanche outlines throughout the winter in the 94 

surrounding mountain areas. This avalanche observation catalog began in 1970, and as of 2016 it included 5785 mapped 95 

avalanches (Bühler et al., 2018). This dataset is now expanded including data from satellite avalanche mapping (Bühler et al., 96 

2019) as well as airplane (Bühler et al., 2009; Korzeniowska et al., 2017) and drone surveys (Bühler et al., 2017). 97 

Using a subset of this validation data, Bühler et al. (2018) compared their PRA algorithm performance against another PRA 98 

model (Veitinger et al., 2016) and a simple slope based release area estimation method from Voellmy (1955). The validation 99 

study showed that the Bühler et al. (2018) and Veitinger et al. (2016) PRA models had lower probability of detection compared 100 

to the slope based model, by 3.5% and 2% respectively, but also had lower probability of false detection, by 13.3% and 8.4% 101 

respectively. This means that the slope only model detected a greater percentage of observed release areas compared to the 102 

PRA models but also overpredicted release areas at a higher rate than the PRA models. Due to the relatively smaller decrease 103 

in probability of detection (3.5% and 2%) compared to the decrease in probability of false detection (13.3% and 8.4%) the 104 

more sophisticated PRA models are considered more skillful than the slope based model. The relatively small improvements 105 

over the slope based release area estimate illustrates the fact PRA modelling is a field of marginal gains, but when applied over 106 

large areas marginal improvements can have a large impact on the output extent of PRA models. The results also show slightly 107 

better performance for the Bühler et al. (2018) PRA model over the Veitinger et al. (2016) PRA model, with lower probability 108 

of false detection and higher measures of Pierce skill score and Heidke skill score. 109 

An additional advantage of the Bühler et al. (2018) PRA model is the ability to convert the raster based PRA model output to 110 

polygon features using object based image analysis. Converting the PRA model output to polygon features enables the PRA 111 

model to be paired with dynamic avalanche simulation software (Christen et al., 2010; Bühler et al., 2018) to estimate runout 112 

distance, impact pressures, flow depth and velocity of the avalanche flow. This powerful combination of release area and 113 

runout modelling represent the state of the art of current avalanche terrain indication modelling practices and are a valuable 114 

resource for large scale avalanche hazard indication mapping. Therefore, this research seeks to improve and expand upon the 115 

existing Bühler et al. (2018) PRA model. 116 

The Bühler et al. (2018) PRA model has been applied in multiple regions worldwide, including Chile, Alaska, Afghanistan, 117 

and India. However, the input parameters have not been independently tested and optimized using local validation data. 118 

Therefore, it is unknown whether the input parameters optimized for Davos, Switzerland are appropriate for mountain regions 119 

with different topographic and snowpack characteristics. Our research aims to address this knowledge gap by applying an 120 
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updated version of the Bühler et al. (2018) PRA model to the Columbia Mountains of southeast British Columbia, Canada and 121 

seeks to optimize the input parameters for the study area based on locally available validation data. 122 

2.2 Avalanches in Forested Terrain 123 

In addition to DEM derived terrain variables some PRA algorithms use forest coverage to define PRA based on the assumption 124 

that avalanche release is less common in areas with tall and dense vegetation. The snowpack in forested areas is generally 125 

more stable due to the anchoring effect of trees, forest canopy snow interception, the disruption of the continuity of weak 126 

layers due to snow drop from canopy, and altered snow surface radiation and temperature conditions. However, it is still 127 

possible for avalanches to release in forested areas, especially in areas with steep slope angles, low tree density, or in openings 128 

within forested areas (Bebi et al., 2009). Small and medium avalanches generally do not have enough impact force to damage 129 

trees or tree stands, and forests tend to reduce their runout potential by detraining snow from the flowing avalanche (Feistl et 130 

al., 2014). Larger avalanches can break or uproot trees and cause massive destruction to the forest ecosystem (Feistl et al., 131 

2015; Bebi et al., 2009). The location of avalanche release areas in relation to the forest plays a large role in whether trees will 132 

impede avalanche flow or be destroyed and possibly entrained (Teich et al., 2012).  133 

The ability to account for forest characteristics in avalanche terrain modelling is largely based on locally available data sets. 134 

Laser scanning or LiDAR data provide high-resolution digital surface model (DSM) and digital terrain model (DTM) datasets 135 

to define the forest character, including canopy height, location and size of forest gaps, and basal area (Brožová et al., 2020; 136 

Dash et al., 2016). Vegetation height models derived from DSM and DTM data can be used to identify forests with protective 137 

function and input as forest masks in PRA models (Bebi et al., 2021; Bühler et al., 2018, 2022; Waser et al., 2015). Similar to 138 

their application for DEM production, the high accuracy of these data sets comes at a high cost.  139 

Alternative lower cost methods for estimating forest characteristics include traditional field based sample plots and radar or 140 

optical remote sensing instruments (Hyyppä et al., 2000; Waser et al., 2015). The most accessible of these alternative methods 141 

is satellite based optical imagery, which can be used to create a forest land cover classification, to determine the extent of the 142 

forested area (Bühler et al., 2013), and can be combined with field plot observations of specific forest characteristics to create 143 

a predictive model based on the spectral and textural characteristics of the imagery (Dash et al., 2016).  144 

Prior research has attempted to incorporate forest characteristics with PRA modelling (Sharp et al., 2018), but low resolution 145 

DEM and forest data combined with a limited validation data set make it challenging to evaluate the overall performance of 146 

the model. However, the principle of adjusting the potential for avalanche release based on forest character aligns with 147 

analytical and theoretical understanding of avalanche release in forested terrain (Bebi et al., 2009; McClung, 2001). This 148 

research aims to expand existing methods for capturing forest avalanche interaction in PRA models using satellite remote 149 

sensing methods that are cost-effective and efficient for processing large scale avalanche terrain models. 150 
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3 Methods 151 

Applying the potential avalanche release area (PRA) model to the study area required three main analysis steps (Figure 1). 152 

First, developing a pipeline for producing high-resolution DEM and forest classification data from satellite imagery. Second, 153 

adapting the existing PRA model to better capture forested terrain and processing many versions of the PRA model using a 154 

predefined range of input parameters. Third, developing new methods to validate the PRA model using polygons collected 155 

from local experts in order to optimize the input parameters for our study area. Steps two and three required many iterations 156 

(Figure 1, Step 3c) to test different baseline input parameters and evaluate performance using our grid search validation 157 

procedure. The datasets and code required for replication of our DEM processing, forest classification, and PRA validation are 158 

available in our Open Science Framework (OSF) repository (Sykes et al., 2021).  159 



 

   

 

7 

 

 160 

Figure 1. Workflow diagram illustrating the necessary input datasets and processing steps to apply and validate the PRA model in 161 
our remote, data sparse, and forested study area. The dashed lines in step 3c indicate the option to either refine the baseline input 162 
parameters of the PRA model and re-start from step 2a or select the final PRA model and move to step 3d.  163 
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 164 

3.1 Study area 165 

The study area for this research is the tenure area of CMH Galena, a mechanized skiing operation that operates in the Selkirk 166 

Mountains of British Columbia, Canada, approximately 100 km southeast of Revelstoke (Figure 2). The tenure covers 167 

1162 km2, ranges from 450–3,050 m in elevation and is composed of roughly 60% forested terrain. The Selkirk Mountains 168 

have a transitional snow climate with a maritime influence where persistent avalanche problem types are common. The most 169 

common persistent weak layers associated with these avalanche problems are surface hoar and faceted crystals associated with 170 

a crust (Hägeli and McClung, 2003; Haegeli and McClung, 2007; Shandro and Haegeli, 2018). The best existing DEM and 171 

land cover datasets for the study area are the Canadian Digital Elevation Model (CDEM) with a resolution of 18m and the 172 

2015 National Land Cover Dataset (NLCD) with a resolution of 30 m. The resolution of both these datasets is too coarse for 173 

high-resolution PRA modelling.  174 

 175 

 176 

Figure 2. Study area map showing the CMH Galena tenure, lodge location, ski run polygons, and the subset of runs used to validate 177 
the PRA model. Forest data created using Planet Labs imagery (Planet Team, 2017), inset map made with Natural Earth. 178 

 179 
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3.2 Data preparation 180 

3.2.1 DEM generation 181 

Based on our desire to develop a cost-effective and reproducible approach for applying PRA models across large areas, we 182 

chose to purchase raw satellite imagery and use open source photogrammetry software to produce our own DEM. At the time 183 

we purchased the imagery our estimate was that producing our own DEM would be roughly 2-10x less expensive than 184 

alternative methods to acquire a 5 m DEM based on price quotes from multiple commercial suppliers. However, the cost 185 

savings of producing a DEM using raw imagery come at a tradeoff of requiring significant technical knowhow to process the 186 

stereo imagery. One downside of this approach is that the vegetation cover inhibits the ability to create a bare ground DEM 187 

(known as a digital terrain model; DTM) and we end up with a digital surface model (DSM) that represents the reflective 188 

surface at the top of the vegetation. While a DSM is not the ideal representation of terrain in forested areas (Brožová et al., 189 

2020), the high cost of LiDAR, the only remote sensing method that can produce a DTM in vegetation covered terrain, currently 190 

prevents its widespread use. 191 

Producing a 5 m DEM requires satellite imagery with a spatial resolution of at least 1.5 m. After comparing the products from 192 

various providers (Pleiades 1, Worldview 1–4, GeoEye 1, SPOT 6/7, and KOMPSAT 2–3) we purchased SPOT 6/7 imagery 193 

based on our requirements of DEM resolution, study area size, and cost. The listed price for tasking new imagery collection 194 

for 1.5 m resolution SPOT 6/7 tri-stereo imagery at the time of acquisition was USD $12.65 per km2 for a minimum study area 195 

of 500 km2, which does not account for any academic or other discounts available through imagery suppliers. The SPOT 6 tri-196 

stereo satellite images were captured on August 19th, 2019 with 1.5% cloud cover and no visible atmospheric distortions 197 

(wildfire smoke, haze) in the images. Tri-stereo imagery captures forward, nadir, and backward looking images in a single 198 

pass and provides three stereo image perspectives which increases DEM accuracy in steep terrain and minimizes sensor 199 

shading. For a more detailed description of our DEM processing interested readers should reference the supplementary material 200 

‘DSM production in mountainous, forested terrain using SPOT 6 tri-stereo imagery with Ames Stereo Pipeline’. 201 

To improve and assess the accuracy of our DEM we collected a set of 66 ground control points (GCP) distributed across our 202 

study area using a Trimble Geo7x handheld differential global navigation satellite system (DGNSS) unit connected to an H–203 

star base station network, from August 24–27th 2019. We collected GCP in locations with high contrast such as edges of 204 

snowfields, water body inlets, bridges, and land cover transitions (e.g., boundary of talus slope and vegetation) to make the 205 

locations accurately identifiable in the satellite imagery. The timing of our image collection (August 19th, 2019) and GCP data 206 

collection (August 24–27th, 2019) meant that there were minimal changes in the natural features we used as reference points 207 

(i.e., snowfields, water bodies). 208 

To process the imagery, we used a combination of open source software tools from Geospatial Data Abstraction Software 209 

Library (GDAL), QGIS, and the Ames Stereo Pipeline (ASP) version 2.6.2 (Beyer et al., 2018; GDAL, 2021; QGIS, 2021). 210 

Several steps of preprocessing were necessary to optimize our images prior to stereophotogrammetry, including bundle 211 
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adjustment and orthorectification (Shean et al., 2016). The ASP stereo tool was developed for imagery containing bare rock 212 

and glacial landscapes. Differences in image texture in forested terrain are challenging for the default settings of ASP to 213 

produce accurate pixel matches. To address this issue, we extensively tested different stereo correlation algorithms and stereo 214 

processing settings to optimize performance for forested mountainous terrain. Our best results were achieved using the smooth 215 

semi–global matching (MGM) stereo correlation algorithm (Facciolo et al., 2015), which resulted in fewer DEM holes in 216 

forested terrain and terrain with suboptimal lighting conditions. Optimizing the settings of the ASP stereo tool produced 217 

accurate pixel matches in forested terrain and was only limited by artifacts in the original imagery (cloud, cloud shadow, poor 218 

lighting conditions).  219 

Our stereo processing workflow generated 6 separate DSMs from the SPOT 6 tri–stereo imagery by taking all possible 220 

combinations of left and right stereo images. The goal of this method was to reduce DSM holes in steep or poorly lit terrain 221 

by taking advantage of the multiple view angles provided by the tri–stereo imagery. Before combining the individual DSMs 222 

to produce the final DSM mosaic, we removed pixels with a triangulation error greater than the resolution of the input images 223 

(1.5 m) to ensure robust elevation estimates (Figure 3a). Overall, we see low normalized median absolute deviation (NMAD) 224 

values across the DSM mosaic (Figure 3b), with a median NMAD of 0.32 m. 225 

 226 

 227 

Figure 3. SPOT 6 DSM error estimates. Triangulation error for each set of stereo pairs (a) with pixels where error is greater than 228 
image resolution (1.5 m) removed from DSM. Normalized median absolute deviation (NMAD) for mosaic of 6 stereo pairs (b) with 229 
inset map showing slope scale detail. Internal checkpoints (green points) with height difference in meters between DSM surface and 230 
DGNSS measurement (negative values indicate the DSM surface height is lower than ICP height). 231 

 232 
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To improve the alignment of the final DSM mosaic to our GCP, we used the ASP point cloud alignment tool to co–register 233 

the output DSM to the GCP (Shean et al., 2016). To evaluate the accuracy of our DSM we used 15 internal checkpoints which 234 

were not used as part of our GCP dataset (Höhle and Höhle, 2009).  235 

Localized cloud cover and poor lighting on steep north facing terrain caused several holes in our SPOT6 DSM mosaic, which 236 

account for approximately 1% of the total DEM area (11.7 km2). We filled these holes by down sampling the existing Canadian 237 

DEM to 5m, aligning the CDEM to our SPOT6 DSM mosaic using the point cloud alignment tool in ASP, and then blending 238 

the two DEM datasets together. To avoid smoothing the entire SPOT6 DSM we progressively blended the datasets across a 239 

60 m buffer from holes in the SPOT 6 DSM.  240 

The methods described here were only tested on a single set of SPOT 6 tri–stereo images, but the performance in forested 241 

terrain was vastly improved compared to the default ASP settings. For more detailed information on the ASP workflow or the 242 

computer resources used to calculate the DSM please see the supplementary material or contact the authors.  243 

3.2.2 Forest classification 244 

The existing PRA model of Bühler et al. (2018) uses a binary forest mask based on photogrammetric vegetation height model 245 

classification to mask release areas in forested terrain. We tested several approaches to generate a binary forest mask for our 246 

study area. Since our SPOT 6 imagery was limited by poor lighting conditions on steep north facing terrain due to early 247 

morning sun angle, we substituted Planet Labs’ RapidEye imagery, collected on July 14th, 2018 (Planet Team, 2017). An 248 

advantage of the RapidEye imagery is that it includes a red edge band which provides additional spectral resolution to 249 

differentiate between forests and other types of vegetation (Dash et al., 2016).  250 

The overall accuracy of the classifier is critical for providing a distinction between forested land cover and other types of 251 

vegetation, such as shrubs and herbaceous plants. For avalanche release area modelling this distinction is important because 252 

shrubs and herbaceous plants are buried or pressed down beneath the winter snowpack and therefore have minimal effect on 253 

the potential for avalanche release. Trees with rigid trunks that resist being laid over by the winter snowpack and canopy 254 

heights greater than the snowpack depth (approximately 2–3 m) have an anchoring effect on the snowpack which is essential 255 

to capture accurately in order to account for their effect on avalanche release. By iteratively fine tuning the training dataset we 256 

were able to control how the classier identified forested terrain and opted to select a model that primarily captured densely 257 

forested areas and omitted areas with isolated smaller trees surrounded by shrubs and herbaceous plants.  258 

To perform the classification, we used a random forest algorithm on the blue, green, red, red edge, and near infrared image 259 

bands utilizing the python libraries Numpy, GDAL, Rasterio, and SciKit Learn (GDAL, 2021; Gillies et al., 2013; Harris et 260 

al., 2020; Pedregosa et al., 2011). To improve the classification accuracy, we included the normalized difference red edge 261 

index (NDRI), normalized difference vegetation index (NDVI), and normalized difference water index (NDWI) as additional 262 

bands for the random forest classifier. Training data were created by manually drawing polygons around individual land cover 263 

types (forest, water, bare ground, snow and ice, shrub, moss and lichen) based on RapidEye, SPOT6, and Google Earth imagery 264 
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from our study area. Our training dataset is composed of 253 individual polygons (12.0 km2), with 73 polygons of forested 265 

terrain (3.6 km2). For further details on the analysis methods used for the forest classification interested readers are referred to 266 

our OSF directory where the data and code are available for review (Sykes et al., 2021).  267 

3.3 Integration of forest information into PRA model 268 

Our development of additional PRA model functions to improve performance in forested terrain was guided by two principles; 269 

1. Minimize additional complexity when running the PRA model compared to the original version. 2. Utilize remote sensing 270 

datasets that are available in data sparse locations and do not require extensive field validation. 271 

To integrate forest information into the PRA model, we created two additional input parameters: an ordinal forest density 272 

(Open – 0, Sparse – 1, Moderate – 2, Dense – 3, Very Dense – 4) (Figure 4) and a numeric forest slope scalar (0.0–2.0) (Figure 273 

5). The forest density parameter controls what classes of forest are included in the PRA model, while the forest slope scalar 274 

adjusts the slope angle minimum threshold based on the forest density class for each pixel. Including these parameters takes 275 

advantage of the existing forest mask functions of the PRA model and only adds two input parameters when running the PRA 276 

model, both of which are optional and can be omitted to run the PRA model in the prior configuration from Bühler et al. 277 

(2018). 278 

3.3.1 Forest density 279 

To estimate forest density, we used a focal function to calculate the total number of forested pixels within a five–cell 280 

neighborhood (625 m2). The function simply summed up the total number of forested pixels and did not account for the location 281 

of the forested pixels within the five-cell neighborhood. This step resulted in a forest sum raster with values ranging from 0 to 282 

25, with 0 meaning no forested cells and 25 meaning all cells within the five–cell neighborhood are forested (Figure 4, step 283 

3). We included this step to capture the fuzzy transition between forested and non–forested snowpack characteristics. In areas 284 

adjacent to forested terrain the snowpack can be altered by forest cover (i.e., wind dynamics, radiation balance, canopy snowfall 285 

interception) despite not being directly covered by the forest canopy (Bebi et al., 2009). This method also helps to identify 286 

glades or meadows within the forest canopy by creating a fuzzy buffer around small non–forested islands within densely 287 

forested terrain. The size of the neighborhood function (625 m2) is representative of small human triggered avalanches that 288 

have the potential to bury or injure a person, especially if they are carried into a forested area (Schweizer and Lütschg, 2001).  289 

 290 
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 291 

Figure 4. Forest density layer processing workflow. 292 

 293 

We then reclassified each forest sum cell into an ordinal variable with the forest density categories open (0 cells), sparse (1–294 

10 cells), moderate (11–20 cells), dense (21–24 cells), and very dense (25 cells) (Figure 4, step 4). We chose this uneven 295 

classification scheme to bias the application of the forest slope scalar parameter towards increasing the slope angle minimum 296 

more strongly in densely or very densely forested areas (i.e., cells with 21 to 25 neighboring forested cells). Since areas with 297 

more surrounding forested pixels likely represent more mature forests, this approach captures the fact that more mature forests 298 

have a greater potential impact on avalanche release. The resulting forest density layer provides a foundation to control how 299 

forested cells are included in the PRA model. 300 

3.3.2 Forest slope scalar 301 

As an additional control on how the PRA model is applied in forested terrain, we introduced a forest slope scalar parameter 302 

to increase the slope angle minimum based on the forest density value. Applying this parameter assumes that steeper slopes 303 

are necessary for avalanche release in forested terrain, which is supported by prior research (Campbell and Gould, 2013; 304 

Schneebeli and Bebi, 2004). The rate of slope angle increase is controlled by the forest slope scalar parameter (0.0–2.0), 305 

which is applied as an exponent to the forest density value (0–4) and added to the slope angle minimum value (e.g., 30°). For 306 

example, a slope angle minimum of 30° and a forest slope scalar value of 1 would result in the following slope angle 307 

minimums for forested terrain: open (0) 30°, sparse (1) 31°, moderate (2) 32°, dense (3) 33°, very dense (4) 34°. Whereas a 308 

slope angle minimum of 30° and a forest slope scalar value of 2 would result in the following slope angle minimums: open 309 

(0) 30°, sparse (1) 31°, moderate (2) 34°, dense (3) 39°, very dense (4) 46° (Figure 5). Altering the slope angle minimum 310 

input parameter changes the starting position of the forest slope scalar function but does not impact the rate of increase for 311 

each forest density value. 312 
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 313 

Figure 5. Forest slope scalar functions applied to a 30° minimum slope angle threshold. 314 

 315 

3.4 Parameter tuning and validation 316 

To develop a meaningful validation dataset in the absence of long term records of avalanche events, we collaborated with two 317 

CMH Galena guides, who each have decades of experience in the study area, to develop a novel method that takes advantage 318 

of their local expertise to optimize the PRA model for our study area. For technical details on our statistical calculations and 319 

processing workflow, our validation processing script and data necessary to reproduce our results are available in our OSF 320 

repository (Sykes et al., 2021). 321 

3.4.1 Validation data collection 322 

CMH Galena primarily operates on approximately 300 defined ski runs within their tenure. The runs range in size from 0.2–323 

19.0 km2 and their locations have been mapped with polygons that outline the typical skiing terrain (Figure 2). The frequency 324 

of how often these runs are used varies significantly depending on terrain characteristics, weather conditions for flying, and 325 

snowpack conditions. To validate the PRA model, the two collaborating guides selected five runs (highlighted in Figure 2) 326 

based on their familiarity with the terrain, their representativeness of the terrain characteristics relative to the entire study area, 327 

and the balance of forested and alpine avalanche terrain contained in the runs. 328 
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The process of collecting validation polygons from the CMH guides was carried out on a custom designed website. The website 329 

platform enabled us to develop and present meaningful reference layers (e.g., satellite imagery, topo maps, terrain data, GPS 330 

tracks, heat maps) and provide the guides with multiple perspectives of the study area to assist with drawing the validation 331 

polygons. Both guides drew release area polygons for the five validation runs individually before creating a final consensus 332 

set of polygons in collaboration. Through the process of developing the validation data collection workflow we found that 333 

mapping the precise location of start zones based on personal recollection without being in the terrain at the time is extremely 334 

difficult. ThereforeTherefore, we developed an alternative method that would explicitly accommodate this uncertainty. Instead 335 

of forcing the participating guides to explicitly outline all avalanche release areas, we asked them to draw validation polygons 336 

around terrain features with similar characteristics (i.e. slope angle, forest density, ruggedness) and specify for each polygon 337 

what proportion represent potential release areas (0%, 25%, 50%, 75%, 100%) (Figure 6). Polygons of obvious probable 338 

release areas or non–release areas where guides had high confidence about their spatial extent were labeled with 100% and 339 

0% respectively. Areas with scattered probable release areas, such as open forests with glades, where the identification of each 340 

probable release area would be cumbersome and unreliable, were marked as larger polygons and labelled with the estimated 341 

spatial proportion of the probable release areas (25%, 50% or 75%). Outliers, such as infrequent release areas with very low 342 

slope angles that require specific snowpack structures and weak layer types (e.g., surface hoar), were not included in the 343 

validation dataset in order to avoid biasing the validation dataset toward rare events that are not representative of typical 344 

conditions in the study area. . 345 

Our fuzzy approach to mapping probable release areas has several advantages. Foremost, accommodating uncertainty in the 346 

spatial extent of release areas is a requirement when relying on human memory to generate the validation data as specifying 347 

probable release areas with higher precision from memory is simply unrealistic. This method also accounts for the variability 348 

in release area extent that results from the dynamic nature of snowpack and weather conditions. The workflow also minimizes 349 

the effects of local errors in the reference layers that we provided the guides with to record their validation polygons. Specific 350 

examples of uncertainty caused by reference layers are variations in satellite imagery lighting due to sun angle and artifacts of 351 

the DSM generation process, such as over steepened slope angle values caused by transitions from forested to non–forested 352 

terrain.  353 

 354 
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 355 

Figure 6. Validation polygons from one run at CMH Galena. Polygons are color coded based on the release area proportion of each 356 
polygon.  Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017). 357 

 358 

Our final validation dataset consists of 167 polygons across five runs with a total area of 8.42 km2, with sample sizes of 100% 359 

= 91, 75% = 23, 50% = 23, 25% = 18, 0% = 7, run polygons = 5. In locations where the polygons overlapped, we retained the 360 

highest proportion value of the overlapping polygons. The overlapping region was also clipped from the total area of the lower 361 

probability polygon. Locations within the run polygons that were not explicitly mapped by the guides were assumed not to be 362 

release areas. However, our validation approach differentiates between these implied and the explicit 0% validation polygons 363 

because we have more confidence in the latter. 364 

3.4.2 PRA model grid search 365 

In contrast to the raster based validation approach of Bühler et al. (2018), our validation dataset requires analysis on the scale 366 

of individual polygons. Since we do not know the explicit locations of the release areas in polygons with release area 367 

proportions of 25%, 50%, or 75%, we cannot directly compare the PRA model output to the validation polygons on a pixel-368 

by-pixel basis. Instead, we have to compare the total area within each polygon that is considered a PRA by the model to the 369 

proportion provided by the local guides. To calculate the PRA error we subtracted the proportion of the polygon that the PRA 370 

model determines as a release area (0-100%) from the release area proportion determined by the guides (0%, 25%, 50%, 75%, 371 

100%) for each validation polygon. For example, if the PRA model output predicted that a polygon contained 60% PRA and 372 

the guides designated that polygon as containing 50% release area, then the PRA error would be -10%. This PRA error value 373 
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is the basis of our grid search process and can range from -100% to 100% depending on whether the PRA model overpredicted 374 

or underpredicted the guides estimated release area proportion.  375 

To properly reflect the validation data collection process in our analysis we also need to consider the hierarchical structure of 376 

assessment polygons collected from the local guides. The highest value validation data are the 100% and 0% polygons because 377 

they provide explicit spatial extents for PRA locations. These polygons are from locations the participating guides are most 378 

familiar with and have the highest level of confidence in. We therefore placed more emphasis on PRA model performance in 379 

these areas when selecting the optimal inputs. The validation polygons with the greatest uncertainty are the run polygons. They 380 

were not explicitly drawn by the guides and the absence of PRA within these polygons was implicit and not explicitly specified. 381 

Hence, the accuracy of these polygons was weighted least in selecting the optimal PRA input parameters.  382 

 383 

Figure 7. PRA model input parameters. Slope angle, curvature, and ruggedness derived from the DEM (a–c) and forest density derived 384 
from the forest mask (d). Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017). 385 

 386 

To select optimal input parameters for the PRA model we performed a grid search as described by Bühler et al. (2018) using 387 

the following values: slope angle minimum (default 30°, range 20°–40°), slope angle maximum (default 60°, range 45°–65°), 388 

ruggedness window (default 9, range 3–15), ruggedness maximum (default 6.0, range 0.5–10.0), curvature maximum (default 389 

6.0, range 0.5–10.0),  forest density (default NA, range 0–4), forest slope scalar (default NA, range 0.0–2.0) (Table 1). It is 390 

computationally not feasible to test all possible combinations of input parameters, therefore we used a set of default parameters 391 
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from Bühler et al. (2018) as a baseline and iterated over each parameter to analyze the impact on the accuracy of the model. 392 

Based on validation using the guide polygons we systematically updated the default parameters to optimize the PRA model 393 

accuracy for our study area (Figure 1, Step 3c). The input parameters slope angle minimum, slope angle maximum, ruggedness 394 

window, ruggedness maximum, and curvature maximum are derived from the DEM (Figure 7 a–c). The forest density input 395 

parameter is derived from the forest mask (Figure 7 d). 396 

Table 1. Grid search input parameter values. Optimized input parameters indicate that the grid search led us to change the default 397 
input parameter to a value that improved the PRA model accuracy for our study area.  398 

Input Parameter Range Interval Default Optimized 

Slope Angle Minimum 20°–40° 1° 30° Yes 

Slope Angle Maximum 45°–65° 1° 60° No 

Ruggedness Window 3–15 2 9 No 

Ruggedness Maximum 0.5–10.0 0.5 6.0 No 

Curvature Maximum 0.5–10.0 0.5 6.0 No 

Forest Density 0–4 1 NA Yes 

Forest slope scalar 0.0–2.0 0.25 NA Yes 

 399 

Selecting the optimal set of input parameters did not rely on any single statistic. Each PRA model iteration was compared 400 

using the mean absolute error (MAE), mean bias error (MBE), proportion of accurate polygons, and proportion of 401 

underestimated and overestimated errors. MAE values can range from 0 to 100, with lower values indicating a more accurate 402 

model. MBE values can range from -100 to 100, with 0 indicating a balance between positive and negative errors. Polygons 403 

were considered accurately predicted if the PRA error was within ± 12.5%, meaning that the area of the PRA model output 404 

and guide estimate were within a 25% range of each other which is equivalent to 1 step in the guides rating scale (0%, 25%, 405 

50%, 75%, 100%). Underestimated and overestimated polygons are defined as having a PRA error greater than ± 12.5%, and 406 

polygons with a PRA error greater than ± 25% were considered severely overestimated or underestimated. 407 

The accuracy statistics for each grid search iteration were calculated on the basis of the total number of polygons (n = 167). 408 

We elected not to weight the statistics based on polygon size because the highest value validation polygons (0% and 100%) 409 

are generally the smallest. Selecting the optimal input parameters for our PRA model required evaluating performance across 410 

all these statistics and taking the structure of our validation dataset into account.  411 

When selecting the optimal set of input parameters we erred on the side of a model that overestimates the extent of potential 412 

avalanche release areas, which is indicated by a negative MBE. We consider this an appropriate approach because the guides’ 413 

polygons reflect only the avalanche conditions that they have experienced and recall. Despite their multiple decades of 414 

experience, the guides have not witnessed all potential combinations of snowpack conditions, which could cause avalanche 415 
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release in uncommon areas. In contrast, the PRA model is a terrain based tool which aims to identify locations in the study 416 

area which have the potential for avalanche release independent of snowpack conditions.  417 

4 Results and discussion 418 

Since the context of the input data, parameter settings, and output from the original model are vital for evaluating the 419 

performance of our updated version of the PRA model, we combine the results and discussion into a single section. After 420 

presenting and commenting on the results, we conclude this section with an evaluation of some likely sources of error for our 421 

updated PRA model and share our thoughts on the limitations of a purely satellite remote sensing based method for capturing 422 

forest character in the PRA model. 423 

4.1 Data preparation pipeline 424 

The data preparation pipeline produced a 5 m resolution satellite DSM and forested land cover data set as input for the PRA 425 

model. Using 15 internal check points (ICP), the DSM accuracy can be described with a median vertical error of -0.43 m and 426 

normalized median absolute deviation (NMAD) of 4.72 m (Table 2). These accuracy metrics indicate good performance of the 427 

stereo DSM method, especially considering the rugged mountainous terrain across our study area and close proximity of steep 428 

slopes to some of the ICP. Compared to the best available existing DEM for our study area (18 m resolution CDEM), the 429 

SPOT 6 DSM provides vastly improved small scale terrain feature identification (Figure 8). 430 

 431 

 432 

Figure 8. Comparison of existing 18 m resolution CDEM to 5 m resolution SPOT6 satellite stereo DSM, derived from our data 433 
preparation pipeline. Canadian DEM data from Natural Resources Canada. 434 
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Table 2. Accuracy statistics for SPOT6 satellite stereo DSM based on 15 ICP. The error type Δ h indicates the change in height 435 
between the ICP and the DSM surface. 436 

Metric Error Type Value (m) 

Median Δ h -0.43 

NMAD Δ h 4.72 

68.3% quantile |Δ h| 3.96 

95% quantile |Δ h| 9.25 

 437 

The forested land cover classification that emerged from our random forest analysis yielded an overall accuracy of 98.88% 438 

based on 253 training polygons (12.0 km2). The area under the receiver operating characteristic curve (AUC) is 99.89%. The 439 

classification feature importance showed heavy reliance on the red edge (59.8%), NDWI (15.2%), and green (14.9%) bands. 440 

This indicates that the red edge band was by far the most important imagery band to delineate forested pixels.  441 

Creating the forested land cover classification using the same satellite imagery as the stereo DSM processing would be the 442 

most efficient workflow for producing the necessary input data sets for PRA modelling, because it uses the least possible input 443 

data and thereby minimizes data acquisitions costs and effort. However, in our study, we elected to utilize Rapid Eye imagery 444 

as an alternative due to better overall lighting conditions and improvements in accuracy, primarily due to the red–edge spectral 445 

band. The overall accuracy of our classifier and the feature importance of the red edge band highlight the strength of RapidEye 446 

imagery for forest classification modelling.  447 

Our processing pipeline provides a cost-effective approach for creating high-resolution DEM and forested land cover 448 

classification data in remote and data sparse regions. Compared to alternative methods, such as LiDAR and commercial 449 

satellite stereo DEM products, purchasing raw satellite stereo imagery to produce a high-resolution DEM provides significant 450 

cost savings, control over the DEM generation settings, and produces a DEM product with sufficient accuracy (Kramm and 451 

Hoffmeister, 2019; Shean et al., 2016). The primary limitations are the inability to resolve bare ground terrain features, 452 

susceptibility to DEM holes due to cloud cover and lighting conditions, and degree of technical knowhow and computer 453 

processing resources required to convert the raw imagery to a DEM product. Despite these limitations, the processing pipeline 454 

enhances accessibility for high-resolution PRA modelling in remote regions. 455 

An alternative approach, which has the advantage of decreasing the technical skills required to produce a stereo DEM while 456 

still having significant cost saving benefits over LiDAR, is to purchase an off the shelf stereo DEM from a commercial satellite 457 

imagery provider. Costs vary greatly depending on resolution, location, and whether archival imagery is available for a given 458 

study area. In our case existing DEMs or stereo imagery were not available in our study area, so the added costs of new image 459 

acquisition and processing made producing our own DEM more advantageous. Those interested in applying these methods to 460 

their own area should carefully evaluate costs of acquiring a 5 m DEM to assess the feasibility of high resolution PRA 461 

modelling. 462 
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4.2 Model parameter selection based on grid search 463 

Based on the grid search we determined the optimal model input values for our study area are: slope angle minimum 27°, slope 464 

angle maximum 60°, curvature maximum 6.0, ruggedness window 9, ruggedness maximum 6.0, forest density 4, and forest 465 

slope scalar 1.25. The grid search method that we implemented is based on a set of default input parameters and does not 466 

calculate all possible combinations of input parameters in order to reduce the amount of computer resources necessary. 467 

Therefore, the results of the grid search are dependent on the selected default parameters. We tested a wide range of potential 468 

default parameters for our grid search and used the values from Bühler et al. 2018 as a starting point. We selected the optimal 469 

values by visualizing the distribution of the PRA error and plotting the MAE and MBE values for each grid search iteration 470 

(Figure 9). 471 

Due to the high quality and long-term avalanche observation records used for validation in Bühler et al. 2018, we retained their 472 

default parameter values if the grid search did not demonstrate notable improvement in overall accuracy based on the local 473 

validation dataset. This was the case for slope angle maximum, ruggedness window, ruggedness maximum, and curvature 474 

maximum. The results of our grid search for these parameters are similar to those shown in Figure 3 of Bühler et al. 2018, with 475 

relatively low variation in accuracy across the range of grid search values (Figure 9, panels b to e). The consistency of these 476 

input parameters for both Davos and Galena are likely due to using the same DEM resolution of 5m and points to the 477 

universality of the physical characteristics necessary for avalanche release. In addition, this consistency is a testament to the 478 

accuracy of our satellite DSM in comparison to the high-resolution DEM data used in the Davos research. 479 
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 480 

Figure 9. Results of PRA model grid search. In each of the panels, the left Y–axis shows the percentage of polygons in different PRA 481 
error classes with colored bars (accurate – yellow, underestimated – red, overestimated – blue). Black squares and triangles show 482 
the values of MAE and MBE for each grid search iteration with a grey dashed horizontal line to show the 0 threshold which 483 
correspond to the right Y–axis. The vertical back lines indicate the optimized parameter settings. 484 
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4.2.1 Slope angle minimum 485 

Slope angle minimum has the largest impact on the performance of the PRA model. Selecting the optimal input parameter 486 

required balancing the performance of the PRA model against the different types of validation polygons and considering our 487 

target of a frequent avalanche scenario. When considering the entire validation polygon data set, there is a sharp increase in 488 

the percentage of underestimated validation polygons as the slope angle minimum threshold increases from 25°, which 489 

indicates that the PRA model progressively excludes observed release areas (Figure 9, panel a). The MAE minimum of 490 

approximately 18 occurs between 26° and 28°, indicating that these values produce the most accurate versions of the PRA 491 

model. The MBE is negative for slope angle minimum values below 30° with a steep decrease between 26° and 30°. This 492 

shows that decreasing the slope angle minimum below 30° creates PRA models that are progressively more biased towards 493 

overestimating release areas. 494 

To further analyze the performance of the PRA model we separated the validation polygons based on the validation polygon 495 

type. 0% and 100% polygons have the highest accuracy with values of slope angle minimum less than 25° (Figure 109, panel a). 496 

This trend strongly contrasts the other polygon types (Figure 109, panels b and c), which have higher percentages of accurate 497 

polygons for slope angle minimum values > 26°. For 0% and 100% polygons the percentage of accurate polygons declines 498 

steeply above 26° accompanied by an increase in severely underestimated polygons. The MAE and MBE statistics follow a 499 

similar trend, with relatively uniform values until 27° followed by steeply increasing error rates and positive bias for the 500 

remaining grid search inputs. 501 

 502 
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 503 

Figure 10. Frequent avalanche scenario PRA model grid search results for slope angle minimum with validation polygons split based 504 
on the type of polygon. 505 

 506 

The 25%, 50%, and 75% polygons (Figure 10, panel b) have a bimodal distribution for percent of accurate polygons, with 507 

slight peaks at 27° and 33°, accompanied by a steep increase in underestimated polygons from 27° upward. The MAE values 508 

are at their minimum between 27° and 33° with relatively uniform values within that range. Both above and below that range 509 

we see increasing MAE values, indicating a less accurate model for this group of polygons. Below 30° the MBE values indicate 510 

a negative bias and have a steeply negative trajectory. This shows a strong bias toward overestimating PRA area for 25%, 511 

50%, and 75% polygons at lower values of slope angle minimum. 512 

The run polygons (Figure 10, panel c) have the highest accuracy with slope angle minimum greater than 31°. However, the 513 

percentage of severely overestimated polygons decreases drastically at 27°. Below 28°, the MAE and MBE have steeply 514 

increasing error rates and negative biases, respectively. Above 28° the curves flatten out and trend towards 0 for both MAE 515 

and MBE. 516 

Our choice of a 27° slope angle minimum strikes a balance between PRA model performance for each polygon type with a 517 

priority towards optimizing performance on the 0% and 100% polygons, which are the most spatially explicit and have the 518 
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highest degree of certainty. Setting the slope angle minimum lower than 27° would result in too strong of a bias towards 519 

minimizing underestimated errors which is not appropriate given our target of a frequent avalanche scenario. This is illustrated 520 

by a decrease in overestimated and severely overestimated polygons at a slope angle minimum value of 27° for the 25%, 50%, 521 

75% polygon dataset as well as the run polygons (Figure 10, panels b and c). 522 

4.2.2 Forest density and forest slope scalar 523 

Determining the optimal value for forest density was the most straightforward of the three parameters we optimized because 524 

the percentage of accurate polygons, lowest MAE, and lowest proportion of underestimated polygons all occur at a density 525 

value of very dense (4) (Figure 9, panel f). Setting forest density to very dense (4) means that the PRA model is not restricted 526 

by any forest mask and the forest slope scalar is applied across the full range of forest density values. 527 

Out of the three parameters we optimized, forest slope scalar has the least variation in percentage of accurate polygons, MAE, 528 

and MBE across the range of values tested in the grid search (Figure 9, panel g). This indicates that the PRA model 529 

performance is less sensitive to changes in forest slope scalar compared to slope angle minimum and forest density. However, 530 

setting this parameter to 1.25 helps to create a more balanced model by decreasing the number of overestimated polygons, 531 

which is illustrated in the upward trend of the MBE value. 532 

Similar to slope angle minimum, we see a decrease in the percentage of severely overestimated polygons for the 25%, 50%, 533 

and 75% and run polygon datasets for higher values of forest slope scalar (Figure 11, panels b and c). This is a trade off with 534 

a slight decrease in the percentage of accurate polygons and increase of percentage of underestimated polygons for the 0% and 535 

100% polygons (Figure 11, panel a). This is reflected in the 0% and 100% polygon MBE value of -0.81 at 1.25, which is 536 

relatively high compared to the other polygon types. Given our target of a frequent avalanche scenario this trade off is justified 537 

to create a balanced PRA model and account for the influence of forested terrain on avalanche release. 538 

 539 
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 540 

Figure 11. Frequent avalanche scenario PRA model grid search results for forest slope scalar with validation polygons split based on 541 
the type of polygon. 542 

 543 

4.3 PRA model output and comparison 544 

The final PRA model captures 57.5% (96 of 167) of the consensus validation polygon data set accurately, which we define as 545 

the PRA model predicted area is within ± 12.5% of the area specified by the guides for each validation polygon (Table 3). The 546 

remainder of the validation polygons were either underestimated 10.2% (17 of 167) or overestimated 32.3% (54 of 167), 547 

compared to the guides’ consensus estimates of release area proportion. The MAE value is 18.2, which is a measure of the 548 

average error across all polygons. The MBE value is -10.9, which indicates that the PRA model errors are negatively biased 549 

towards overestimating release areas. This interpretation of the MBE value aligns with the skewed distribution of 550 

underestimated and overestimated polygons. 551 

 552 

 553 

 554 
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Table 3. PRA model comparison 555 

PRA Model MAE MBE Accurate % Under % Over % 

Present model 18.2 -10.9 57.5 10.2 32.3 

Bühler 2018 – Forest Mask 33.1 22.3 31.0 58.3 10.7 

Bühler 2018 – No Forest Mask 21.4 -3.7 45.8 25.0 29.1 

 556 

 557 

To evaluate whether our parameter optimization demonstrates meaningful improvement, we compared the accuracy statistics 558 

of the model using the optimized parameters (Present model) to the Bühler et al. (2018) defaults both with and without a forest 559 

mask (Table 3). The ‘Bühler 2018 – forest mask’ PRA model does not identify release areas in any terrain identified as forested 560 

based on the land cover classification, whereas the ‘no forest mask’ version allows the PRA model to calculate release areas 561 

in all terrain. Since the ‘forest mask’ version naturally performs substantially worse in most accuracy statistics due to the large 562 

proportion of forested terrain in our study area, we will focus the comparison on the ‘Bühler 2018 – no forest mask’ model 563 

version. 564 

Overall, we see improvements in the MAE, percent of accurate polygons, and percent of underestimated polygons using the 565 

locally optimized input parameters. The MAE for the present model is 18.2 compared to 21.4 for the ‘Bühler 2018 – no forest 566 

mask’ version, demonstrating a slight improvement in overall model error (Table 3). The present model improves the percent 567 

of accurate polygons by 11.7 percentage points over the ‘Bühler 2018 – no forest mask’ PRA model, which is a substantial 568 

improvement given the marginal gains observed in prior PRA model comparisons (Bühler et al. 2018). Similarly, the reduction 569 

of 14.8 percentage points for underestimated polygons between the present model and the ‘Bühler 2018 – no forest mask’ 570 

demonstrates the improved performance of the grid search optimization. These improvements can be attributed to optimizing 571 

the slope angle minimum and forest slope scalar input parameters using the local validation data.  572 

The trade off of the optimized input parameters for the present model is a bias towards overestimation, which is indicated by 573 

the MBE of -10.9 compared to -3.7 for the ‘Bühler 2018 – no forest mask’. This is also shown by the slight increase of 574 

3.2 percentage points in overestimated polygons from the ‘Bühler 2018 – no forest mask’ to the present model. Producing a 575 

more negatively biased PRA model is in line with our mindset of creating a PRA model that errs on the side of overestimating 576 

observed release areas. In our opinion, the benefits of improved percentage of accurate polygons and underestimated polygons 577 

outweighs the downside of a slight increase in overestimated polygons. 578 

The present model has a substantially lower slope angle minimum of 27° compared to the default value of 30° from Bühler et 579 

al. (2018), which results in a notable increase in the overall area of the PRA output due to expansion into lower angle terrain 580 

(Figure 12). The fact that the validation data led us to a substantial decrease in slope angle minimum is likely due to differences 581 

in the terrain and snowpack characteristics in our study area compared to the region of Davos in Switzerland where the model 582 
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was initially validated. The avalanche character in our study area is prone to persistent avalanche problem types with the most 583 

common weak layers being either surface hoar or faceted crystals associated with a crust (Hägeli and McClung, 2003; Haegeli 584 

and McClung, 2007; Shandro and Haegeli, 2018). As a weak layer, surface hoar can release at lower slope angles and has 585 

increased potential to propagate across terrain features compared to other weak layer types (McClung and Schaerer, 2006). 586 

Despite our aim of excluding outlier release areas with extremely low slope angles that are only capable of producing 587 

avalanches under very specific snowpack conditions from the validation dataset in order to target a more frequent avalanche 588 

scenario, the widespread influence of surface hoar as a weak layer in our study area still contributes to an overall lower 589 

minimum slope angle threshold. The fact that our validation data set and grid search approach produced a PRA model that also 590 

aligns with our theoretical understanding of the snowpack properties in our study area is an encouraging result. However, in 591 

terrain within the study area that is not prone to surface hoar development, such as alpine terrain with a high degree of wind 592 

and sun exposure, our PRA model is likely to overestimate PRA extent. 593 

 594 

 595 

Figure 12. Comparison of present PRA model to ‘Bühler 2018 – forest mask’. Present model PRA area is dark purple with light 596 
purple for forested areas. ‘Bühler 2018 – forest mask’ is shown in orange for comparison. Inset map shows detailed PRA comparison 597 
on a local scale, extent shown by black dotted line. Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017). 598 
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 599 

4.4 Potential sources of PRA model errors 600 

Based on discussions with our collaborating guides and exploring spatial patterns of discrepancies between our validation data 601 

set and PRA model output, we have highlighted two likely sources of error in our PRA model. First is the limitation of using 602 

a relatively simple remote sensing based approach to account for forested release areas in the PRA model, which does not 603 

explicitly capture forest characteristics that are known to have a strong bearing on the interaction of avalanches and forest, 604 

such as crown cover, stem density, and gap size (Bebi et al., 2009; Teich et al., 2012). Second is the inherent uncertainty of 605 

relying on human experience to generate validation data, which can be subject to individual biases and faulty recollection. 606 

Overall, we believe that the forest characterization is responsible for a larger portion of the PRA model error and is the most 607 

fruitful direction for future research to try and address. This section provides examples of these sources of error and discusses 608 

how we have attempted to minimize their impact on the PRA model accuracy. 609 

4.4.1 Forest characteristics 610 

To shed light on potential sources of PRA model errors we applied two different approaches that consider different spatial 611 

scales. First, we visualized the spatial patterns in the PRA errors for each validation run and consulted the local guides to 612 

provide their insight. Second, we extracted the terrain characteristics of the entire set of validation polygons and compared the 613 

distributions of the terrain characteristics based on the PRA error value. Both approaches yielded similar insight, which 614 

highlight the challenge of capturing forested avalanche release areas accurately using an approach based purely on satellite 615 

imagery.  616 

Visualizing the patterns of PRA model error by validation run reveals concentrated clusters of higher PRA error on specific 617 

runs or subregions within runs (Figure 13). The ‘Lunatic Fringe’ run has by far the highest proportion of overestimated 618 

polygons out of the five validation runs, with 22 out of the 42 validation polygons being overestimated (Figure 13, panel a). 619 

Based on information provided by the local guides, this run is characterized by a steep continuous face with several well-620 

defined large avalanche paths dissecting mostly forested terrain. The forest is very dense and impassable for a guided group at 621 

the upper elevations of this run. In contrast, the ‘Red Baron’ run, which is located directly across the valley from ‘Lunatic  622 

Fringe’, contains lower slope angle terrain with a large proportion of mature forest (Figure 13, panel b). The forest has greater 623 

canopy height with widely spaced gaps between the individual trees. The forest canopy between each tree extends horizontally 624 

enough that the land cover classification is unable to detect many of the gaps on the forest floor. This run contains 7 out of 8 625 

of the severely underestimated validation polygons, with the other polygon located in a forested area with similar 626 

characteristics on the ‘Bandito’ run.  627 

 628 
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 630 

Figure 13. PRA model accuracy for each validation run, with the downslope direction at the bottom of each panel. The validation 631 
polygons are labelled with their release are proportion and color coded based on the PRA error for each individual polygon. For 632 
overlapping validation polygons we retain the highest release area proportion value and clip that area from the surrounding lower 633 
proportion polygon.  634 
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 635 

While the forest slope scalar input parameter is designed to account for the interaction of forest and avalanche release, it is 636 

challenging to apply it on these two drastically different types of forested terrain. For ‘Lunatic Fringe’, increasing the forest 637 

slope scalar input parameter would improve accuracy by increasing the slope angle minimum threshold based on the local 638 

forest density. However, increasing the forest slope scalar would be detrimental for ‘Red Baron’ because of the potential for 639 

avalanche release in forest gaps within densely forested areas. These two contrasting examples of how the PRA model handles 640 

avalanche forest interaction highlight the challenge in creating a balanced PRA model which compromises performance in 641 

each type of forested terrain. 642 

The guides’ descriptions of the local forest character causing PRA errors for ‘Lunatic Fringe’ and ‘Red Baron’ are supported 643 

by our analysis of terrain characteristics based on the validation polygon dataset. To investigate whether there are common 644 

patterns in the terrain characteristics of validation polygons based on their PRA error value we extracted the aspect, curvature, 645 

elevation, forest cover, forest density, ruggedness, and slope angle distributions for the validation polygon dataset. While the 646 

majority of these terrain characteristics had similar distributions for all classes of PRA error, forest cover percentage and forest 647 

density had distinct differences. For ‘severely underestimated’ polygons the distributions and median values are biased towards 648 

higher percentages of forest cover and forest density compared to other PRA error classes (Figure 14). 649 

 650 

 651 

Figure 14. Analysis of PRA error based on forest density and percentage of forested area for the validation polygon data set. The 652 
plots show the distribution of forest density and forest cover percentage for validation polygons based on their PRA error. 653 
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 654 

This further illustrates the guides’ interpretation that the severely underestimated polygons on ‘Red Baron’ have high forest 655 

density and the limitation of our forest slope scalar approach for accounting for forested terrain with highly variable 656 

characteristics. It is important to note that the sample size of ‘severely underestimated’ polygons is small with only eight 657 

polygons. For context, the distribution ‘severely overestimated’ (n = 37) polygons also include high percentages of forest cover 658 

and forest density, which can be partially attributed to the dense and tightly spaced forested terrain on ‘Lunatic Fringe’. 659 

The PRA errors on ‘Lunatic Fringe’ and ‘Red Baron’ demonstrate the limitations of our approach in capturing the real world 660 

forest characteristics. Further improving the performance of the PRA model in forested terrain would require more detailed 661 

data sets such as LiDAR or a field based forest inventory which could capture additional forest characteristics such as stem 662 

spacing (Waser et al., 2015; Hyyppä et al., 2000; Dash et al., 2016), which are beyond the scope of this research. A notable 663 

publicly available source of LiDAR vegetation height measurements which could be used to interpolate forest height or overall 664 

biomass and potentially improve the performance of PRA models in forested terrain is the NASA ICESat-2, which collects 665 

LiDAR point measurements across the globe. The benefit of our method is to create cost-effective and high-resolution 666 

avalanche terrain maps based exclusively on remotely sensed data which can be applied in any location, regardless of 667 

remoteness or accessibility. For this purpose, our approach allows forested terrain to be captured in the PRA model on a basic 668 

level and broadens the range of avalanche terrain that the model can be applied to. 669 

4.4.2 Uncertainty in validation data 670 

One of the key differences in relying on local expertise for model validation is the necessity to incorporate uncertainty. There 671 

are two distinct types of uncertainty that are relevant for validating the PRA model: 1) Uncertainty in the accuracy of the 672 

observations, recollection, and experience of our collaborating guides, and 2) uncertainty in the reference datasets we provided 673 

them with to transfer their knowledge into spatial datasets and precision of polygon drawing.  674 

In the case of guide observations, the primary sources of uncertainty in determining the location of avalanche release areas are 675 

the variability of avalanche conditions, how often the terrain is observed throughout the season, the guides recollection of 676 

avalanche events, and the potential for altered snowpack structure due to frequent guiding. These limitations are inherent to 677 

relying on human recollection as a source of validation data. However, our approach for capturing validation polygons from 678 

local experts accommodates these limitations by allowing for fuzzy boundaries in drawing polygons, collecting validation data 679 

from multiple guides independently, and intentionally minimizing the specificity that we ask the guides to label the release 680 

area proportions (0%, 25%, 50%, 75%, 100%). 681 

The process for collecting validation data from our collaborating guides evolved through frequent back and forth discussions. 682 

When applying the validation polygons to select optimal input parameters for our study area we accounted for the nature of 683 

the data collection by placing more emphasis on the performance of 0% and 100% polygons, which have the highest level of 684 

certainty for the guides and are the most spatially explicit. We also preferred input parameters that resulted in a PRA model 685 



 

   

 

34 

 

that is biased toward overestimating release areas in order to account for the potential that the guides have not witnessed all 686 

possible combinations of snowpack and weather conditions in our study area, despite their extensive experience. 687 

An example of how the guides' experience can influence our validation data set can be seen in the right half of the ‘Rendezvous’ 688 

ski run, where there are many severely overestimated validation polygons (Figure 13, panel c). According to our DEM, the 689 

slope angles in this area are predominantly in the low to mid thirties, which are within the range observed for human triggered 690 

avalanches (Schweizer and Lütschg, 2001). However, the guiding operation frequently uses this piece of terrain and 691 

intentionally manages the snowpack using skier traffic to minimize the potential for weak layers to form and persist on the 692 

surface (e.g., surface hoar). Frequent guiding use and intentional maintenance of weak layers can create a modified snowpack 693 

structure (Haegeli and Atkins, 2016) and has the potential to impact the guides’ perception of release area potential. In areas 694 

where the guide's experience is largely based on modified snowpack structures there is a high potential for the PRA model to 695 

overestimate avalanche release compared to the validation data set.  696 

While our workflow for collecting validation data from local guides was customized for our use case, these methods could be 697 

adapted to other professional communities such as avalanche forecasters or ski patrol. We recommended considering the 698 

following key principles for developing meaningful PRA validation datasets:  699 

1. Identify a manageable size area to create the validation dataset that is representative of the terrain and snowpack 700 

conditions in the larger study area you want to apply the PRA model.  701 

2. Solicit feedback from collaborators to identify sources of uncertainty in their ability to translate their local experience 702 

into polygons that can be compared to the PRA model output.  703 

3. Incorporate that uncertainty into the validation process by allowing them to use fuzzy boundaries to identify potential 704 

release areas.  705 

4. Take the structure of the validation data into account when performing statistical comparisons to the PRA model 706 

output.  707 

This process can be time consuming and iterative, but it is critical to ensure shared understanding of the validation data between 708 

researchers and collaborators. In the absence of long-term observations of avalanche events in most mountainous regions the 709 

development of methods to extract local knowledge from human experts is critical to the application and validation of PRA 710 

models.  711 

4.5 Limitations 712 

The primary limitations of this research are direct consequences of our aim to minimize the cost of input data production and 713 

create a flexible workflow to apply and validate the PRA model in remote and data sparse regions. Using a DSM as input for 714 

a PRA model has not been thoroughly tested, and the inability to detect bare ground features within forest canopy likely causes 715 

localized errors in the PRA model. Recently, a comparison of high-resolution DSM and DTM models for avalanche runout 716 

modelling demonstrated some of the limitations of a DSM for dynamic avalanche simulation (Brožová et al., 2020). We were 717 
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unable to test the accuracy of the SPOT6 DSM compared to a DTM due to the lack of alternative high-resolution data in our 718 

study area.  719 

Relying exclusively on optical satellite imagery to account for forest avalanche interaction provides limited detail on 720 

meaningful forest characteristics. Explicit modelling of stem density, gap size, or crown cover could improve the PRA model’s 721 

ability to capture forest avalanche interaction (Dash et al., 2016; Wallner et al., 2015). However, our focus is on minimizing 722 

field data collection to create a workflow that is applicable in remote areas. 723 

Finally, the experience of local experts is not an ideal source to generate validation data compared to long term observation 724 

records. Observations from individual experts are prone to biases in their experience and potential for faulty recollection. We 725 

attempted to minimize these effects on our dataset by collaborating closely with the guides to develop a system for recording 726 

their observations that allows for uncertainty and is based on independent observations of multiple guides.  727 

5 Conclusions 728 

This research aimed to increase the range of application for existing high-resolution PRA modelling by developing a cost-729 

effective workflow for generating the required input datasets, expanding current PRA modelling methods to include avalanche 730 

forest interaction, and by creating a novel approach for validating the model based on the local expertise of avalanche 731 

practitioners for data sparse regions. The research produced an updated version of the Bühler et al. (2018) PRA model which 732 

enables high-resolution avalanche terrain modelling in a vastly greater proportion of mountainous terrain than previously 733 

possible. This is thanks to the widespread availability of the necessary satellite remote sensing input data and local expertise 734 

required to validate and optimize the PRA model input parameters. The updated model also allows for inclusion of forested 735 

terrain with varying densities, contributing to a substantial improvement in the performance of the PRA model in our study 736 

area.  737 

The data preparation pipeline developed for this research is based on open source software and intended to be reproducible in 738 

areas without existing high-resolution DEM and forest cover data sets, which achieves our goal of making high-resolution 739 

PRA modelling more accessible in remote and data sparse areas. Producing a satellite stereo DSM based on raw imagery 740 

provides control over the DSM characteristics and minimizes the cost associated with acquiring this essential data set. Further 741 

testing of the DSM pipeline developed for this research is required, especially in forested terrain, and could provide a 742 

meaningful direction for future research. Despite the dramatic cost reduction of our workflow, high resolution satellite stereo 743 

imagery areis still relatively costly so readers interested in applying PRA models in their own area should carefully evaluate 744 

costs of acquiring the necessary input data. 745 

Using locally optimized input parameters, our updated PRA model has a higher overall accuracy and less underestimated 746 

release areas compared to the default parameters developed for Davos, Switzerland in Bühler et al. (2018). Our validation 747 

approach utilizes local expertise to collect avalanche release area polygons via a custom-built online mapping tool and applies 748 
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spatial and statistical analysis to quantify the accuracy of the PRA model. We leveraged this unique validation data set to 749 

develop a new polygon based grid search approach to optimize the PRA model input parameters. Creating a validation method 750 

that allows for optimization of the PRA model in areas without a long standing avalanche observation dataset is essential to 751 

evaluate the PRA model performance in new locations. This method also provides the opportunity for comparison of optimal 752 

input parameters in different snow and avalanche climates. Future research applying the PRA model in maritime and 753 

continental snow climates would provide additional insight into how the input parameters can be optimized for a broader range 754 

of snowpack and avalanche conditions, which are not captured in the existing Davos or Galena study areas. 755 

To include forested terrain in the PRA model we focused on creating a simple addition to the existing PRA model which does 756 

not require any additional input data and remains an optional extension of the existing PRA model framework. We also focused 757 

on maintaining the ability to create the input data sets via optical satellite remote sensing methods to minimize the overhead 758 

cost and effort to produce forest characteristic data. Our approach allows the PRA model to capture the interactions between 759 

forests and avalanche release by controlling the forest density where the PRA model is applied and altering the slope angle 760 

minimum threshold based on the local forest density. These two changes are simple yet effective methods to account for forest 761 

cover in PRA modelling.  762 

Additional research focused on satellite imagery based modelling of forest characteristics (Dash et al., 2016; Hyyppä et al., 763 

2000), such as stem density and gap size, could further improve the performance of PRA models in forested terrain. While the 764 

availability of high-resolution LiDAR, laser scanning, or field measured forest characteristics are essential for meaningfully 765 

validating the derivation of these forest characteristics datasets (Waser et al., 2015), this type of development and analysis was 766 

beyond the scope of this research. The forest regions in our study area are dominated by coniferous tree species, which limits 767 

our ability to generalize the effectiveness of the PRA model in coniferous or mixed forest ecosystems. Hence, we encourage 768 

other researchers to explore our approach in other forest types.  769 

Despite the limitations and shortcomings of our approach, the present research improves the accessibility of high-resolution 770 

PRA modelling by combining an existing state of the art PRA model with open source software tools and lower cost input data 771 

and presenting a flexible validation method to assess accuracy of the model output based on local terrain expertise. These 772 

developments have the potential to enable a more widespread application of high-resolution avalanche terrain indication 773 

modelling worldwide.  774 

Code and data availability.  775 

The data, code, and output for our analysis and the data and code for the figures and tables included in this paper are available 776 

at osf.io/yq5s3 (Sykes et al., 2021). 777 
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