

1 **Brief Communication: Key papers of 20 years in Natural Hazards and**
2 **Earth System Sciences**

3 Animesh K. Gain¹, Yves Bühler², Pascal Haegeli³, Daniela Molinari⁴, Mario Parise⁵, David J. Peres⁶, Joaquim G. Pinto⁷, Kai
4 Schröter⁸, Ricardo M. Trigo⁹, María Carmen Llasat¹⁰, Heidi Kreibich⁸

5 ¹Department of Economics, Ca' Foscari University of Venice, Cannaregio 873, 30121 Venice, Italy

6 ²WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland

7 ³School for Resource and Environmental Management, Simon Fraser University, Burnaby BC V5A 1S6, Canada

8 ⁴Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

9 ⁵Earth and Environmental Sciences Department, University Aldo Moro, Bari, 70126, Italy

10 ⁶Department of Civil Engineering and Architecture, University of Catania, Catania, 95123, Italy

11 ⁷Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

12 ⁸GFZ German Research Centre for Geosciences, Section Hydrology, 14473 Potsdam, Germany

13 ⁹Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal

14 ¹⁰Department of Applied Physics, University of Barcelona, Barcelona, 08028, Spain

15

16 *Correspondence to:* Animesh K. Gain (animeshkumar.gain@unive.it)

17

18 **Abstract**

19 To mark the twentieth anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and
20 international journal dedicated to the public discussion and open-access publication of high-quality studies and original
21 research on natural hazards and their consequences, we highlight eleven key publications covering major subject areas of
22 NHESS that stood out within the past 20 years. The papers cover all the subtopics contemplated in the EGU division on Natural
23 Hazards including dissemination, education, outreach and teaching. The selected articles thus represent excellent scientific
24 contributions in the major areas of natural hazards and risks and helped NHESS to become an exceptionally strong journal
25 representing interdisciplinary areas of natural hazards and risks. At its 20th anniversary, we are proud that NHESS is not only
26 used by scientists to disseminate research results and innovative novel ideas but also by practitioners and decision-makers to
27 present effective solutions and strategies for sustainable disaster risk reduction.

28

29 **1 Introduction**

30 Embracing a holistic earth system science approach, Natural Hazards and Earth System Sciences (NHESS) is an
31 interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality

studies and original research on natural hazards and their consequences. NHESS publishes state-of-the-art science as well as descriptions of effective implementation of assessments and management, outreach and education. Thus, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection, monitoring, analyses and modelling of natural hazards and risk. This includes the design and implementation of risk management and adaptation strategies, considering economical, societal, and educational aspects. NHESS started its journey in the year 2001, when the world experienced the Gujarat earthquake with a death toll more than 15000 people. Since its inception in 2001, NHESS has so far published 3436 articles until October 08, 2021. Initially (2001-2002), the number of published issues per year was only four, but while this number increased to six per year during 2003-2009, and further increased to 12 per year since 2010. To highlight the diversity of the topics covered by NHESS, we developed a word cloud based on the titles of the articles that were published in the journal over the last 20 years (see Figure 1). The word cloud represents keywords of multiple hazards, assessment methods, scales of assessment, and components of risks. Currently, there are ten subject areas in the journal: atmospheric, meteorological, and climatological hazards; sea, ocean, and coastal hazards; hydrological hazards; landslides and debris flow hazards; earthquake hazards; volcanic hazards; other hazards (e.g. glacial and snow hazards, karst, wildfire hazards, and medical geohazards); databases, GIS, remote sensing, early warning systems, and monitoring technologies; risk assessment, mitigation and adaptation strategies, socio-economic and management aspects; and dissemination, education, outreach, and teaching.

49 Figure 1: Word cloud based on the titles of all published articles in Natural Hazards and Earth System Sciences in the last 20
50 years

51 There are currently ten thematic topics covered by NHESS (Table 1). To mark the twentieth anniversary of the journal, we
52 showcase eleven key publications that stood out within the past 20 years. The selection of articles is based on the following
53 criteria: scientific novelty and community impact, and diversity of article types. The process of selecting the key papers was
54 driven by the first author together with the NHESS editorial board and was composed of the following steps: (1) based on high
55 citation and download numbers, as well as the expertise of the thematic editors, a short-list of 30 papers with the highest
56 scientific novelty and community impact was compiled. (2) Each of these papers was assigned to the NHESS topic it represents,
57 some of them represent multiple topics (e.g., Merz et al., 2010; Peduzzi et al., 2009; Mani et al., 2016). Additionally, also the
58 article type was identified, such as research paper, review, and invited perspective. (3) The NHESS editors discussed the
59 selection with the aim of optimally representing the NHESS topics and reflecting the diversity of article types. The key articles
60 were selected by consensus among the editors. Six of the hazards highlighted in our overview are closely related to weather
61 driven mechanisms that can be amplified by the ongoing climate change to various degrees, as mentioned in the latest IPCC
62 Assessment Report (Ipcc, 2021).

63
64 **Table 1. Representation of the NHESS topics by the selected articles**

Topics of the journal	Selected article
1 atmospheric, meteorological, and climatological hazards	Monserrat et al. (2006); Klawa and Ulbrich (2003)
2 sea, ocean, and coastal hazards	Monserrat et al. (2006); Peduzzi et al. (2009)
3 hydrological hazards	Sousa et al. (2011); Merz et al. (2010); Peduzzi et al. (2009)
4 landslides and debris flow hazards	Bogaard and Greco (2018);
5 earthquake hazards	Solberg et al. (2010); Peduzzi et al. (2009)
6 volcanic hazards	Mani et al. (2016)
7 other hazards (e.g. glacial and snow hazards, karst, wildfire hazards, and medical geohazards)	Di Giuseppe et al (2020); Techel et al. (2018); Klawa and Ulbrich (2003)
8 databases, GIS, remote sensing, early warning systems, and monitoring technologies	Martinis et al (2009)
9 risk assessment, mitigation and adaptation strategies, socio-economic and management aspects	Merz et al. (2010); Peduzzi et al. (2009)
10 dissemination, education, outreach, and teaching	Mani et al. (2016)

65
66 For example, the selected article on ‘Assessment of economic flood damage’ (Merz et al., 2010) is one of the highly cited
67 interdisciplinary articles (637 citations, based on Scopus search dated October 5, 2021), which covers multiple topics such as
68 hydrological hazards, *meteorological hazards*, and *risk assessment, mitigation and adaptation strategies, socioeconomic and*
69 *management aspects*. The development of multi-hazards disaster risk index by Peduzzi et al. (2009), a paper with ~~more than~~
70 278 citations, was one of the initial contributions ~~on was one of the initial contributions~~ on quantitative assessments of risks

71 globally, within the topic of *risk assessment, mitigation and adaptation strategies, socioeconomic and management aspects*.
72 In the topic area of *remote sensing*, Martinis et al. (2009) developed one of the first algorithms for near-real-time
73 flood detection by using high-resolution Synthetic Aperture Radar (SAR) satellite data. Klawa and Ulbrich (2003) developed
74 one of the very first simple but effective storm loss models in the area of *atmospheric, meteorological and climatological*
75 *hazards*. In the area of *landslides and debris flow hazards*, Bogaard and Greco (2018) developed a conceptual model for
76 regional landslide hazard assessment based on physical process understanding and empirical data. Within the topic of other
77 hazards, we selected two very relevant recent studies: (i) predicting fire-weather index ~~and its capacity~~ by Di Giuseppe et al.
78 (2020) based on the ensemble forecast system of the European Centre for Medium-Range Weather Forecasts; and (ii) spatial
79 consistency and bias in public avalanche forecasts by Techel et al. (2018). In the area of *volcanic hazards and dissemination,*
80 *education, outreach and teaching*, we highlight an interesting article on the innovative use of video games for volcanic hazard
81 education and communication by Mani et al. (2016). Considering the importance of social psychology of seismic hazard
82 adjustment ~~in-at~~ household level, we selected the contribution of Solberg et al. (2010). In the area of *sea, ocean and coastal*
83 *hazards*, the contribution by Monserrat et al. (2006) on similarities and differences between seismic and meteorological
84 tsunamis was innovative. Using multiple drought indices, the important contribution by Sousa et al. (2011) helped analysing
85 the spatial and temporal evolution of drought conditions in the Mediterranean during the 20th century.
86

87 ~~Some of the hazards highlighted in our overview are closely related to weather driven mechanisms that can be amplified by~~
88 ~~the ongoing climate change to various degrees, as mentioned in the latest IPCC Assessment Report ()~~. The papers thus cover
89 ~~all the subtopics contemplated in the division on Natural Hazards including dissemination, education, outreach and teaching,~~
90

91 **2 Contributions of selected articles**

92 **2.1 Economic damage assessment of floods**

93 ~~Assessment of natural hazards covers a wide range of disciplines, representing an issue, which is of sure interest to society,~~
94 ~~given the casualties and economic losses registered annually. At this regard, t~~
95 The review article “Assessment of economic
96 flood damage” by Merz et al. (2010) is a remarkable contribution, dedicated to assessment of the damage related to floods.
97 This is a topic, which is gaining increasing interest from many stakeholders, since it is a crucial element in the policies of flood
98 risk management. In times when we have to face problems linked to climate changes, and adapt our way of ~~lives~~ to mitigate
99 the risks related to natural hazards, such an approach is ~~definitely~~ of primary importance. A variety of flood inundation maps
100 exists in the different countries of Europe, according to national laws. The flood directive of the European Union (EU) also
101 requires Member States to map the flood extent and to assess the assets and humans at risk and to take adequate and coordinated
102 measures to reduce the flood risk (Ec, 2007). In theory, flood risk maps include an assessment of the possible economic losses
on society. However, this is rarely effective as many “risk maps” in practice do not cover all needed elements, and should

103 more correctly be defined as hazard maps. The incorrect use of the terms creates therefore a serious drawback in the overall
104 management of the risk. Typically, assessment of the hazard plays a much prominent part with respect to that regarding the
105 damage, and this results in a mismatch in the quality of the available models and datasets for evaluating the economic damage.
106 Therefore, the thorough review of methods for the assessment of economic flood damage provided by Merz et al. (2010) was
107 and is still of high value for both practitioners and scientists so much so that many new approaches have been. ~~However, we~~
108 ~~should also mention that many new approaches have been~~ developed in the meantime, since the review was published in 2010.
109 Even though the article by Merz et al. (2010) is focused on flood damage assessment, issues as the risk-based evaluation of
110 mitigation measures, and the methodological aspects of damage estimation are valid for other natural hazards, too. This still
111 increases its value, and the positive effect on the scientific community. A crucial point, worth of further work and of particular
112 interest to NHESS readers, is the statement that flood risk cannot be managed alone: in areas affected by many geological
113 hazards, these should all be considered in the policy of risk mitigation, according to magnitude of the phenomena and historical
114 records of their effects. Introducing economic issues, such as the considerations about stock and flow values, in an article
115 dealing with natural hazards is certainly part of a forward-looking vision, aimed at providing useful tools to decision-makers
116 in order to develop the most proper actions for flood risk management. It has to be pointed out, however, that more efforts are
117 needed in this direction: for instance, in addition to economic flood damage, here taken into account, the adverse social,
118 psychological, political and environmental consequences should be examined, in order to gain a comprehensive picture of the
119 damage.

120 **2.2 Disaster risk index**

121 Efforts to assess and map natural hazard risk at the global scale have been ongoing since the mid-2000s in order to provide
122 science-based information for disaster risk management. The global disaster risk management approach was formally adopted
123 by international policies such as the Hyogo Framework For Action and the Sendai Framework for Disaster Risk Reduction.
124 The priority two of the Hyogo Framework For Action states that “The starting point for reducing disaster risk [...] lies in the
125 knowledge of the hazards and the [...] vulnerabilities to disasters [...] followed by action taken on the basis of that knowledge”.
126 The priority was further considered by the following Sendai Framework for Disaster Risk Reduction (Unisdr, 2015). Using
127 the definition by the United Nations Development Programme in 2004, the Disaster Risk Index (DRI) (Peduzzi et al., 2009)
128 was the first attempt to produce a global, quantitative approach to assessing risk due to multiple hazards. By exploring the
129 relationship between human losses and socio-economic and environmental variables for a variety of hazards (i.e., cyclones,
130 droughts, earthquakes and floods), Peduzzi et al. (2009) provided the first statistical evidence of the links between vulnerability
131 to natural hazards and levels of development at the global scale (i.e. country by country). The study helped in supporting aid
132 organisations and governments through comparing countries across risk levels and hazard types, with an aim to make decision
133 on risk mitigation strategies in time. In fact, since 2009, the index has been adopted in the Global Assessment Reports (GAR)
134 of the United Nations Office for Disaster Risk Reduction, leading in 2017 to the publications of the GAR Risk Atlas (UNDRR,
135 2017) providing globally multi-hazard risk metrics. The significance of the DRI is further proved by the numerous researches

136 that were carried out in the same direction, providing alternative indexes to assess risk, at the global or at the local level.
137 Among them, the Index For Risk Management (INFORM) was developed by the European Joint Research Centre and is
138 published on the homonymous webGIS platform twice a year. Additional efforts were also devoted to the inclusion of climate
139 change impact in the evaluation. Indeed, vulnerability of a country is considered as a key criterion also to decide on climate
140 adaptation funding. The World Risk Index (WRI) can be quoted as an example in this direction. The WRI was developed by
141 the United Nations University – Institute for Environment and Human Security (Welle and Birkmann, 2015), and is now
142 published by the Institute for International Law of Peace and Armed Conflict of Ruhr-University Bochum. It allows to take
143 into account of climate change vulnerability and adaptive/coping capacity.

144 **2.3 Real-time flood detection using remote sensing**

145 When floods strike, emergency response and disaster relief need rapid information of the situation on the ground. In this
146 context, technological advancements open new possibilities for supporting crisis intervention. The provision of inundation
147 extent from satellites in near-real-time is one such success story. Situational awareness during floods requires reliable
148 information with a high spatial resolution to locate worst-hit areas and aid decision-making concerning the identification of
149 target areas for distributing resources. Satellite data improve our capability to detect, map and monitor river floods and their
150 impacts at local and global scales. For flood monitoring, it is advantageous and effective to utilize active sensors. In particular,
151 radar is suitable as it penetrates rain and cloud cover, which are issues in flood-hit locations. In this regard, very high-resolution
152 Synthetic Aperture Radar (SAR) data show enormous potential to improve the reliability of flood mapping. However, there is
153 usually only limited time and personnel available during emergencies to understand and process geospatial data into
154 meaningful products. Automatic processing algorithms are crucial to reducing the time lag between data acquisition and flood
155 map dissemination. The algorithm developed by Martinis et al. (2009) is one of the first algorithms that enable the completely
156 unsupervised detection of inundated areas from very high-resolution SAR data in near-real-time. It builds on a split-based
157 threshold for extracting low backscattering from open flood surfaces in SAR data in a fully automatic and time-efficient
158 manner. The segmentation of the radar scene and the context-sensitive threshold, in addition to the radar reflectivity,
159 incorporate topological information into the classification. As the authors demonstrate, this enhances the quality of the
160 outcomes. Notably, the algorithm does not require training data and is very suitable for applications even when the acquisition
161 of ground-truth data is not feasible. With this development, the authors leverage very high-resolution SAR data for near real-
162 time flood mapping in operational flood monitoring systems and improve our emergency response capabilities (Martinis et al.,
163 2015; Matgen et al., 2011). Today, numerous flood monitoring services are in operation using SAR data with unsupervised
164 classification (Schumann et al., 2018). The algorithm developed by Martinis et al. (2009) is a cornerstone in this advancement.

165 **2.4 Assessment of storm losses**

166 The quantification and forecasting of impacts associated with the occurrence of natural hazards like windstorms or floods is
167 of major importance for society and stakeholders (e.g., Merz et al. (2020)). One of the first efforts to provide a simple but

168 physically based quantification of windstorm associated damage to buildings and infrastructure was the seminal work of Klawa
169 and Ulbrich (2003). The authors considered daily maximum wind gusts from German weather stations, which were scaled by
170 the local 98th percentile to account for local wind conditions and determine the area where damage potentially occurred
171 (windstorm footprint). The scaled wind gusts exceeding the 98th percentile are cubed (V^3) to account for the wind's destructive
172 power, and are weighted with the population density (a proxy for the local insured property). The authors found high
173 correlations between their loss model and the loss data from the German Insurance Association.

174 The loss model by Klawa and Ulbrich (2003) has since proved to be a highly efficient and widely applicable approach,
175 becoming a very popular and easy-to-use socio-economic loss model for insurance applications, and leading to a wide number
176 of further developments and follow up studies. For example, Leckebusch et al. (2008) developed the concept of the storm
177 severity index (SSI) further and considered "wind tracking", where the windstorm footprints for a certain time frame are linked
178 together in space and time. Pinto et al. (2012) explored the differences between the extremeness of windstorms when
179 considering purely meteorological versus population-weighted impacts.

180 The method has been applied to Reanalysis datasets and both global and regional climate model data, permitting the
181 quantification of the windstorm risk in Europe and elsewhere for recent and future decades (e.g., Pinto et al. (2012);
182 Leckebusch et al. (2008)). Recently, Pantillon et al. (2017) provided evidence that the impact of European windstorms is
183 predictable with a certain level of confidence with a lead time of 2-4 days using 20 years of European Center for Medium-
184 Range Forecasts (ECMWF) ensemble forecast data. This demonstrates the ability to assess storm damage, issue extreme
185 weather warnings in a timely manner, and respond appropriately to avoid major damage and disruption.

186 **2.5 Landslide triggering thresholds**

187 Landslides triggered by rainfall cause damage and casualties worldwide (Froude and Petley, 2018). The implementation of
188 landslide early warning systems is one of the most important measures for protecting populations at risk. A fundamental step
189 for setting up an early warning system is the identification of the relationship between the precursors and landslide occurrence
190 (Segoni et al., 2018). A large number of papers have treated this problem by attempting to derive thresholds expressed in the
191 form of a power-law between rainfall event duration and mean intensity or event rainfall (the total rainfall depth accumulated
192 over rainfall event duration), inspired by the pioneering paper by Caine (1980). Not many researchers have questioned this
193 method for decades.

194 With their invited perspective, Bogaard and Greco (2018) discussed some theoretical reasons to move beyond this traditional
195 approach. They stress that thresholds based only on rainfall event characteristics may not sufficiently reflect the hydrological
196 processes occurring along slopes. In particular, intensity-duration thresholds do not allow to explicitly take into account the
197 fact that the triggering rainfall event may be just the final "push" (trigger) after a longer wet period that predisposed the slope
198 to fail (cause). They argued then that the cause-trigger concept may be better represented by hydro-meteorological thresholds.
199 The term hydro-meteorological refers to the fact that these types of thresholds should combine a meteorological variable
200 (rainfall depth) with a hydrological one, reflecting the water storage at the catchment or local scale.

201 Water stored in the unsaturated zone, is however a variable that is more difficult to measure with respect to precipitation. On
202 the other hand, soil moisture information is increasingly becoming available, thanks to remote sensing missions. Reanalysis
203 datasets have attracted the attention by researchers in this field as well. Within this context of an increase of availability of soil
204 moisture information, the perspective paper soon stimulated an increasing number of scholars (i.e., cited 90 times in last three
205 years) to investigate the use of the hydro-meteorological approach to improve the performances of empirical thresholds
206 indicating landslide triggering conditions (Mirus et al., 2018; Marino et al., 2020; Reder and Rianna, 2021). The way through
207 this improvement remains however quite challenging. Soil moisture presents high spatial and temporal variability, and remote
208 sensing products – as well as reanalysis ones – are available only at coarse temporal/spatial resolutions; comparisons with in
209 situ measurements have shown that accuracy issues may be present as well. Notwithstanding such obstacles to deal with, the
210 invited perspective is stimulating scholars to move beyond an approach that remained nearly unquestioned for many years.

211 **2.6 The prediction of Fire-weather Indices**

212 Even if a commonly accepted definition is still lacking, it is becoming widely recognized that we are currently living in the
213 Anthropocene epoch. The impact on the makeup of our planet's atmosphere, as well as on the disruption of many biomes and
214 ecosystems are part of the Anthropocene fingerprint. In this context, it is important to stress that the three critical components
215 that control the triggering and spread of wildfires (i.e. ignitions, fuels and weather/climate) are, to a large extent, influenced
216 by human activities. Thus, the higher concentration of greenhouse gases produced by mankind is already increasing
217 significantly the likelihood of heatwaves (Fischer and Knutti, 2015) that are often linked to more intense and prolonged fire
218 seasons (Ruffault et al., 2020). Additionally, in many semi-arid areas of the globe the increasing temperatures coupled with a
219 decrease in precipitation are aggravating the dryness of fuels (Abatzoglou and Williams, 2016).

220 Besides destroying property worth billions of Euros, wildfires are still capable of impinging a disconcerting large number of
221 human fatalities, even in some of the most highly developed regions of the world, (e.g Portugal 2017, California and Greece
222 2018, Australia 2020). Prediction of many weather driven natural hazards (e.g. heatwaves, floods or tropical cyclones) reached
223 a fairly mature standard, however, the forecast of wildfire prone conditions still lags behind with fire danger indicators mostly
224 relying on environmental monitoring. In 2020, a study led by Francesca Di Giuseppe (Di Giuseppe et al., 2020) published in
225 NHESS suggested extending fire danger warnings with the use of the most advanced weather forecast model available, i.e.
226 the European Centre for Medium-Range Weather (ECMWF) models. By systematically evaluating the ECMWF ensemble
227 forecast system performance to reproduce fire weather index (FWI) from observing stations at the global scale, the authors
228 demonstrate the capacity of this ensemble approach to be reasonably accurate up to 10 days ahead, especially for some of
229 the largest fires that took place in 2017, namely in Chile and Portugal. Their results confirm that early warning could be
230 extended by up to 1–2 weeks by using advanced numerical weather models, allowing for better coordination of resource-
231 sharing and mobilization within and across countries (Di Giuseppe et al., 2020).

232 **2.7 Avalanche forecasting**

233 Since the inception of the journal NHESS, more than 80 avalanche research articles have been published covering a wide range
234 of topics including terrain mapping, hazard and risk assessment approaches, developments in avalanche runout models,
235 avalanche-forest interactions, assessments of risk mitigation approaches and others. Of the many excellent contributions, we
236 would like to highlight the paper of Techel et al. (2018), who examined the spatial consistency and bias in avalanche forecasts
237 across the European Alps. While globally the largest number of avalanche fatalities are caused by catastrophic avalanches
238 hitting villages or infrastructure in mountain ranges such as the Himalayas, more than 90% of avalanche deaths in western
239 countries involve backcountry recreationists who voluntarily expose themselves to avalanche hazard. For this user group,
240 avalanche forecasts published by local, regional or national avalanche warning services are a critical source of information for
241 developing an informed understanding of the existing conditions and deciding when, where and how to recreate in avalanche
242 terrain. Despite substantial scientific advances in our understanding of the factors affecting avalanche hazard and our ability
243 to predict it, the compilation of avalanche forecasts from a variety of different data sources still relies heavily on the personal
244 experience and judgment of avalanche forecasters, which makes it susceptible to inconsistencies and human biases.

245 Focusing on the avalanche danger ratings, a prominent component of avalanche forecasts, Techel et al. (2018) show that there
246 are considerable inconsistencies among the published ratings in the European Alps, and that the largest differences are mainly
247 found along national or agency boundaries and less between climatological or topographic regions where one would expect
248 them based on physical processes. These regional discrepancies make it challenging for backcountry users travelling across
249 forecast regions to properly understand the published ratings and apply them in a consistent way. In addition, these
250 inconsistencies can negatively affect the credibility of avalanche forecasts and lead to judicial problems in the case of avalanche
251 accidents. While experienced forecasters were aware of this challenge, the innovative analysis approach developed by Frank
252 Techel and his team was the first to explicitly quantify the issue in a way that circumvents the inherent challenges associated
253 with validating danger ratings. The resulting insights have played an important role in initiating informed conversations about
254 differences in avalanche forecasting practices and creating a meaningful foundation for evidence-based improvements in the
255 future.

256 **2.8 Video game as hazard education and communication**

257 In 2015, the United Nations formalised the Sendai Framework for Disaster Risk Reduction 2015–2030, which identified the
258 need for participating countries to “strengthen public education and awareness in disaster risk reduction”, specifically
259 promoting the use of social media and community mobilisation campaigns and encouraging the education of all at-risk
260 communities (Unisdr, 2015). Considering the importance of science communication for the natural hazards, the *dissemination,*
261 *education, outreach, and teaching* is considered as one of the key subject for NHESS. However, this is less explored area in
262 natural hazards research.. ‘Using video games for volcanic hazard education and communication’ by Mani et al. (2016) is one
263 of the very few studies which contributes in this direction. They developed a video game for St. Vincent's Volcano in the

264 eastern Caribbean island with an aim to enhance residents' education and communication of potential future volcanic hazards.
265 The findings suggest that serious games have the potential to be effective tools in volcano education for both traditional (school
266 students) and non-traditional (i.e., adults) stakeholder groups. Though ~~serious-video~~ games, therefore is a promising
267 communication and educational technique, this approach faces a number of challenges such as expensive and time consuming
268 processes of game development. The study by Mani and his colleagues (Mani et al., 2016) offers exciting opportunities to
269 build knowledge and resilience among a diverse range of social groups within at-risk communities.
270

271 **2.9 The psychological factors shaping human adjustments of seismic hazards**

272 The risk reduction efforts of natural hazards including seismic hazards are at the forefront of discussions on contemporary
273 global forums such as the United Nations (UN) Sustainable Development Goals (SDGs) and the Sendai Framework for
274 Disaster Risk Reduction (SFDRR) (Rahman and Fang, 2019). Besides structural measures, non-structural measures including
275 emotional and socio-cultural factors play a key role in people's risk-related behavior for disaster risk reduction (Mohibullah
276 et al., 2021). As people tend to be guided more strongly by their emotional reactions than by scientific or logical approach,
277 psychological adaptation to disasters is an interesting area of research. Given the importance, Solberg et al. (2010) reviewed
278 the psychological factors that shape human adjustments to seismic risk. This is one of the very few studies that synthesise the
279 major findings from the 40 years of the international literature on the psychological adjustments of seismic hazards including
280 the normative beliefs of earthquake protection responsibility and trust among key stakeholders of seismic risks (e.g.,
281 management authorities and local people). They also analyse the importance of seismic adjustment attributes such as beliefs
282 about efficacy, control and fate. The findings suggest that the consideration of norms, trust, power and identity play a key role
283 in seismic hazards adjustment. The article by Solberg et al. (2010) stimulated interesting discussion and further development
284 on psychological and behavioural adjustment of seismic hazard.

285 **2.10 Meteorological tsunamis**

286 Meteorological tsunamis (or simply known as meteotsunamis) are typically recognized as long ocean waves, which have the
287 same frequencies and spatial scales as tsunami waves of seismic origin, but produced by atmospheric processes. They are
288 triggered by extreme weather events ~~atmospheric conditions at the ground or mid troposphere~~ including severe thunderstorms,
289 squall ~~lines~~ (a sudden violent gust of wind or localized storm, especially one bringing rain, snow, or sleet), storm fronts,
290 hurricanes or instable intense mid-troposphere jets ~~generating atmospheric gravity waves, generated through the rapid changes~~
291 ~~in barometric pressure, (a few hectopascals over a few minutes) or wind~~. The similarity between atmospherically generated
292 "meteotsunamis" and seismically generated tsunamis is strong enough that it can be difficult to distinguish one from the other.
293 The article by Monserrat et al. (2006) is one of the very few studies that describes the hazardous phenomena of meteotsunamis
294 in the World Ocean to show the similarities and differences with seismic tsunamis. Analysing several cases, Monserrat and his
295 team found that both tsunamis and meteotsunamis have the same periods, same spatial scales, similar physical properties and

affect the coast in a comparably destructive way. In addition, some specific features of meteotsunamis such as the coupling between the moving disturbance and the surface ocean waves make them akin to landslide-generated tsunamis. Monserrat et al. (2006) found that the major difference between the tsunamis and Meteotsunamis is associated with the specific properties (mainly the resonant factors) of corresponding sources. During resonance of the ocean driven by atmospheric forcing, the atmospheric disturbance propagating over the ocean surface is able to generate significant long ocean waves by continuously pumping energy into these waves. This contrasts to seismic tsunamis that can have globally destructive effects without any resonant factor. However, the Meteotsunamis are always local and much less energetic than seismic tsunamis. The destructive meteotsunamis are always the result of a combination of several resonant factors such as Proudman, Greenspan, shelf, harbour. As the probability of occurrence for such a combination is very low, the destructive meteotsunamis are infrequent and observed only at some specific locations in the ocean.

2.11 Drier conditions in Mediterranean regions

The Mediterranean Region is considered a hot-spot of climate change. This qualification is supported by different natural and socioeconomic reasons, being one of them its impact over hydrometeorological hazards, specifically, droughts. Despite the high uncertainty associated to the application of climatic models over the rainfall in this region, there is a high confidence on the drought risk increase (Medecc, 2020), mainly due to precipitation reduction, a negative trend in moisture availability, and warming-enhanced evaporation. In a region where, in average, more than 65% of the freshwater is for agriculture near a 30% is for the direct use of water by the population, and the remaining 5% is for industry, energy and tourism, droughts increase implies that water related intersectoral conflicts are likely to be exacerbated. Even more so if we consider that in 2025 about 530 million people will live in the Mediterranean, and that the increase in temperature will lead to an increase in irrigation needs from 4 to 18% (Medecc, 2020). Although today there are already numerous studies at local and regional scale on the observed spatial and temporal evolution of drought conditions, the paper by Sousa et al. (2011) updated the state of the art and provided a robust and complete analysis of these conditions at Mediterranean scale during the 20th century.

Droughts constitute a complex and difficult risk to evaluate, so it is usual to define indices to estimate their onset, duration and intensity. Sousa et al. (2011) applied the Palmer Drought Severity Index (PDSI) adapted to Europe (scPDSI) by the Climatic Research Unit. The scPDSI is based on the water budget for a certain period estimated from precipitation, temperature and soil characteristics and self-calibrated from local data. This index was applied to the Mediterranean Region and to four selected sub-regions, homogeneous in terms of drought characteristics and socio-economic relevance, for the period 1900-2000. After a robust analysis the scPDSI showed a clear trend towards drier conditions in most Mediterranean Region. This index reproduced well the strong decadal and inter-annual variability between subregions along all the century and showed how the drought period recorded during the 1940s was extended from Iberia until the Balkans Region. Having in mind that determined synoptic patterns favours the deficit of precipitation and previous literature, and after analysing different major potential teleconnections, authors selected the North Atlantic Oscillation (NAO) and the Scandinavian index as the most representative

328 for this region. The paper revealed the link between dry periods estimated by scPDSI and the positive phase of the NAO during
329 winter and subsequent climatic seasons over the western Mediterranean, while the Scandinavian index presented a less
330 homogeneous but significant pattern between winter and summer over central Mediterranean. Those teleconnections joined to
331 the influence of the sea surface temperature (SST) anomalies allowed the creation of a stepwise regression model that was able
332 to forecast summer drought conditions six months in advance and was capable of reproducing the observed scPDSI time series
333 fairly well. Although it is a simple algorithm it provides a useful approach to seasonal forecasting of droughts, that can be very
334 useful in a panorama characterized by an increase in dry periods.

335 **3 Conclusion**

336 The above articles represent excellent scientific contributions in the major subject areas of natural hazards and risks and helped
337 NHESS to become an exceptionally strong journal representing interdisciplinary areas of natural hazards and risks. As a
338 pioneer of the open access model including open discussion and peer review, Pioneered in the open access model, NHESS is
339 not only advancing promotes scientific contributions and original research on broader areas of natural hazards and their
340 consequences, but also the journal is dedicated to the open discussion engaging interdisciplinary scientific communities. At its
341 20th anniversary, we are proud that NHESS is not only used by scientists to disseminate research results and innovative novel
342 ideas but also by practitioners and decision-makers to present effective solutions and strategies for sustainable disaster risk
343 reduction.

344 **Acknowledgement**

345 All authors would like to acknowledge two reviewers and the editor for their insightful revisions and editing. A. Gain gratefully
346 acknowledge Marie Skłodowska Curie grant agreement no. 787419, under the European Union's Horizon 2020 research and
347 innovation programme.

348 **References**

349 Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests,
350 Proceedings of the National Academy of Sciences, 113, 11770, 10.1073/pnas.1607171113, 2016.
351 Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for
352 landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31-39, 10.5194/nhess-18-
353 31-2018, 2018.
354 Caine, N.: The Rainfall Intensity - Duration Control of Shallow Landslides and Debris Flows, Geografiska Annaler: Series A,
355 Physical Geography, 62, 23-27, 10.1080/04353676.1980.11879996, 1980.
356 Di Giuseppe, F., Vitolo, C., Krzeminski, B., Barnard, C., Maciel, P., and San-Miguel, J.: Fire Weather Index: the skill provided
357 by the European Centre for Medium-Range Weather Forecasts ensemble prediction system, Nat. Hazards Earth Syst. Sci., 20,
358 2365-2378, 10.5194/nhess-20-2365-2020, 2020.

359 EC: Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and
360 management of flood risks, Official Journal of the European Union, 2007.
361 Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature
362 extremes, *Nature Climate Change*, 5, 560-564, 10.1038/nclimate2617, 2015.
363 Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, *Nat. Hazards Earth Syst. Sci.*, 18, 2161-
364 2181, 10.5194/nhess-18-2161-2018, 2018.
365 IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report
366 of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger,
367 N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield,
368 O. Yelekçi, R. Yu, and B. Zhou (eds.)]. In Press. , Intergovernmental Panel on Climate Change Geneva, Switzerland, 2021.
369 Klawa, M. and Ulbrich, U.: A model for the estimation of storm losses and the identification of severe winter storms in
370 Germany, *Nat. Hazards Earth Syst. Sci.*, 3, 725-732, 10.5194/nhess-3-725-2003, 2003.
371 Leckebusch, G. C., Renggli, D., and Ulbrich, U.: Development and Application of an Objective Storm Severity Measure for
372 the Northeast Atlantic Region, *Meteorologische Zeitschrift*, 17, 575-587, , 10.1127/0941-2948/2008/0323, 2008.
373 Mani, L., Cole, P. D., and Stewart, I.: Using video games for volcanic hazard education and communication: an assessment of
374 the method and preliminary results, *Nat. Hazards Earth Syst. Sci.*, 16, 1673-1689, 10.5194/nhess-16-1673-2016, 2016.
375 Marino, P., Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: Soil moisture information can improve shallow
376 landslide forecasting using the hydrometeorological threshold approach, *Landslides*, 17, 2041-2054, 10.1007/s10346-020-
377 01420-8, 2020.
378 Martinis, S., Kersten, J., and Twele, A.: A fully automated TerraSAR-X based flood service, *ISPRS Journal of Photogrammetry*
379 and *Remote Sensing*, 104, 203-212, <https://doi.org/10.1016/j.isprsjprs.2014.07.014>, 2015.
380 Martinis, S., Twele, A., and Voigt, S.: Towards operational near real-time flood detection using a split-based automatic
381 thresholding procedure on high resolution TerraSAR-X data, *Nat. Hazards Earth Syst. Sci.*, 9, 303-314, 10.5194/nhess-9-303-
382 2009, 2009.
383 Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., and Savenije, H. H. G.: Towards an automated SAR-based
384 flood monitoring system: Lessons learned from two case studies, *Physics and Chemistry of the Earth, Parts A/B/C*, 36, 241-
385 252, <https://doi.org/10.1016/j.pce.2010.12.009>, 2011.
386 MedECC: Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. First
387 Mediterranean Assessment Report Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France,
388 10.5281/zenodo.4768833, 2020.
389 Merz, B., Kreibich, H., Schwarze, R., and Thielen, A.: Review article "Assessment of economic flood damage", *Nat. Hazards*
390 *Earth Syst. Sci.*, 10, 1697-1724, 10.5194/nhess-10-1697-2010, 2010.
391 Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D. N., Domeisen, D. I. V., Feser, F., Koszalka, I., Kreibich,
392 H., Pantillon, F., Parolai, S., Pinto, J. G., Punge, H. J., Rivalta, E., Schröter, K., Strehlow, K., Weisse, R., and Wurpts, A.:
393 Impact Forecasting to Support Emergency Management of Natural Hazards, *Reviews of Geophysics*, 58, e2020RG000704,
394 <https://doi.org/10.1029/2020RG000704>, 2020.
395 Mirus, B. B., Morphew, M. D., and Smith, J. B.: Developing Hydro-Meteorological Thresholds for Shallow Landslide
396 Initiation and Early Warning, *Water*, 10, 10.3390/w10091274, 2018.
397 Mohibullah, M., Gain, A. K., and Ahsan, M. N.: Examining local institutional networks for sustainable disaster management:
398 Empirical evidence from the South-West coastal areas in Bangladesh, *Environmental Science & Policy*, 124, 433-440,
399 <https://doi.org/10.1016/j.envsci.2021.07.016>, 2021.
400 Monserrat, S., Vilibić, I., and Rabinovich, A. B.: Meteotsunamis: atmospherically induced destructive ocean waves in the
401 tsunami frequency band, *Nat. Hazards Earth Syst. Sci.*, 6, 1035-1051, 10.5194/nhess-6-1035-2006, 2006.
402 Pantillon, F., Knippertz, P., and Corsmeier, U.: Revisiting the synoptic-scale predictability of severe European winter storms
403 using ECMWF ensemble reforecasts, *Nat. Hazards Earth Syst. Sci.*, 17, 1795-1810, 10.5194/nhess-17-1795-2017, 2017.
404 Peduzzi, P., Dao, H., Herold, C., and Mouton, F.: Assessing global exposure and vulnerability towards natural hazards: the
405 Disaster Risk Index, *Nat. Hazards Earth Syst. Sci.*, 9, 1149-1159, 10.5194/nhess-9-1149-2009, 2009.
406 Pinto, J. G., Karreman, M. K., Born, K., Della-Marta, P. M., and Klawa, M.: Loss potentials associated with European
407 windstorms under future climate conditions, *Climate Research*, 54, 1-20, 2012.

408 Rahman, A.-u. and Fang, C.: Appraisal of gaps and challenges in Sendai Framework for Disaster Risk Reduction priority 1
409 through the lens of science, technology and innovation, *Progress in Disaster Science*, 1, 100006,
410 <https://doi.org/10.1016/j.pdisas.2019.100006>, 2019.

411 Reder, A. and Rianna, G.: Exploring ERA5 reanalysis potentialities for supporting landslide investigations: a test case from
412 Campania Region (Southern Italy), *Landslides*, 18, 1909-1924, 10.1007/s10346-020-01610-4, 2021.

413 Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Koutsias, N., Pimont, F., Martin-StPaul, N., Barbero, R., Dupuy,
414 J.-L., Russo, A., and Belhadj-Khedher, C.: Increased likelihood of heat-induced large wildfires in the Mediterranean Basin,
415 *Scientific Reports*, 10, 13790, 10.1038/s41598-020-70069-z, 2020.

416 Schumann, G. J. P., Brakenridge, G. R., Kettner, A. J., Kashif, R., and Niebuhr, E.: Assisting Flood Disaster Response with
417 Earth Observation Data and Products: A Critical Assessment, *Remote Sensing*, 10, 10.3390/rs10081230, 2018.

418 Segoni, S., Piciullo, L., and Gariano, S. L.: A review of the recent literature on rainfall thresholds for landslide occurrence,
419 *Landslides*, 15, 1483-1501, 10.1007/s10346-018-0966-4, 2018.

420 Solberg, C., Rossetto, T., and Joffe, H.: The social psychology of seismic hazard adjustment: re-evaluating the international
421 literature, *Nat. Hazards Earth Syst. Sci.*, 10, 1663-1677, 10.5194/nhess-10-1663-2010, 2010.

422 Sousa, P. M., Trigo, R. M., Aizpurua, P., Nieto, R., Gimeno, L., and Garcia-Herrera, R.: Trends and extremes of drought
423 indices throughout the 20th century in the Mediterranean, *Nat. Hazards Earth Syst. Sci.*, 11, 33-51, 10.5194/nhess-11-33-2011,
424 2011.

425 Techel, F., Mitterer, C., Ceaglio, E., Coléou, C., Morin, S., Rastelli, F., and Purves, R. S.: Spatial consistency and bias in
426 avalanche forecasts – a case study in the European Alps, *Nat. Hazards Earth Syst. Sci.*, 18, 2697-2716, 10.5194/nhess-18-
427 2697-2018, 2018.

428 UNISDR: Sendai framework for disaster risk reduction 2015–2030, The United Nations International Strategy for Disaster
429 Reduction, Geneva, 2015.

430 Welle, T. and Birkmann, J.: The World Risk Index – An Approach to Assess Risk and Vulnerability on a Global Scale, *Journal*
431 *of Extreme Events*, 02, 1550003, 10.1142/S2345737615500037, 2015.

432