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Abstract

Regional volcanic threat assessments provide a large-scale comparable vision of the threat posed by multiple volcanoes. .
They are useful for prioritising risk-mitigation actions and are required by local through international agencies, industries
and governments to prioritise where further study and support could be focussed. Most regional volcanic threat studies
have oversimplified volcanic hazards and their associated impacts by relying on concentric radii as proxies for hazard
footprints, and focussing only on population exposure. We have developed and applied a new approach that quantifies and
ranks exposure to multiple volcanic hazards for 40 high-threat volcanoes in Southeast Asia. For each of our 40 volcanoes,
hazard spatial extent, and intensity where appropriate, was probabilistically modelled for four volcanic hazards across three
eruption scenarios, giving 697,080 individual hazard footprints plus 15,240 probabilistic hazard outputs. These outputs

were overlain with open-access datasets across five exposure categories using an open-source Python GIS framework

developed for this study (github.com/vharg/VolcGIS). All study outputs - more than 6,500 geotif files and 70 independent
estimates of exposure to volcanic hazards across 40 volcanoes — are provided in supplementary material in user-friendly

format. Calculated exposure values were used to rank each of the 40 volcanoes in terms of the threat they pose to
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surrounding communities. Results highlight that the island of Java in Indonesia has the highest median exposure to volcanic
hazards, with Merapi consistently ranking as the highest threat volcano. Hazard seasonality, as a result of varying wind
conditions affecting tephra dispersal, leads to increased exposure values during the peak rainy season (January, February)
in Java, but the dry season (January through April) in the Philippines. A key aim of our study was to highlight volcanoes
that may have been overlooked, perhaps because they are not frequently or recently active, but that have the potential to
affect large numbers of people and assets. It is not intended to replace official hazard and risk information provided by the
individual country or volcano organisations. Rather, this study and the tools developed provide a road map for future multi-
source regional volcanic exposure assessments, with the possibility to extend the assessment to other geographic regions

and/or towards impact and loss.

1 Introduction

Southeast Asia is one of the most densely populated regions on Earth; it is also home to over 12% (n=173) of the
world’s Holocene volcanoes and around 15% (n=1,543) of Holocene eruptions (Global Volcanism Program, 2013).
Of these recorded Southeast Asian eruptions, 93% (n=1,435) have occurred since 1500 CE, showing the dominance
of historical records reflected in our knowledge of the previous eruptive activity. The relatively short timescale of
written eruption records in the region makes capturing the past, and therefore the likely future, range of eruptive
activity challenging. There is a need for detailed geological studies to supplement short eruptive records; however,
such studies are lacking for many volcanoes around the world because they can be time-consuming, costly and
suffer from a lack of deposit exposure, especially in tropical regions such as Southeast Asia (De Maisonneuve and
Bergal-Kuvikas, 2020). In addition, the focus in volcanically active areas is often, justifiably, on monitoring and crisis
management of frequently or currently active volcanoes; however, these are not necessarily the volcanoes whose
eruptions will affect the most people in the future. For example, the first historical eruption of Galunggung, Indonesia, in
1822 - a Volcanic Explosivity Index (VEI) 5 event - killed >4,000 people after a repose of ~3,000 years (Brown et al.,
2017). Where geological studies can be carried out, priority must be given to those volcanoes that pose a major threat
to communities, because of the potential magnitude and intensity of the eruption and/or because of the exposure
of communities and their assets to volcanic hazards.

To identify volcanoes that pose a considerable threat to society, previous studies have applied consistent and
transferable methodologies to rank multiple volcanoes according to their hazard (e.g. Aspinall et al., 2011; Auker et
al,, 2015) or their population exposure (e.g. Freire et al,, 2019; Small and Naumann, 2001), with some studies

combining the two to evaluate ‘threat’ (e.g. Brown et al., 2015b; Ewert, 2007; Scandone et al., 2016) on a regional
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or global scale (Table 1). Such assessments are typically carried out on a volcano-by-volcano basis making it difficult to

compare threat across multiple volcanoes and communities.

Table 1: Previous studies (in chronological order since 2000) that have compared volcanic hazard, exposure and/or a
combination of the two (‘threat’) across multiple individual volcanoes to provide a rank. Hazard or exposure factors are listed
when there are three or less factors. Studies that ranked countries or regions, rather than individual volcanoes (e.g. Dilley et al.,
2005; Freire et al., 2019; Simpson et al., 2011), and studies that considered the hazard to a site such as a city or key infrastructure
site, rather than from a volcano (e.g. Jenkins et al., 2012a; JenKkins et al., 2012b; Jenkins et al., 2018; Magill and Blong, 2005a;

Magill and Blong, 2005b), are not included here.
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Of populations within 10 km of Holocene volcanoes, those in Southeast Asia are the largest and fastest-growing anywhere
in the world (Freire et al., 2019). Indonesia and the Philippines alone have been estimated to contain more than 75% of the
global volcanic threat (where threat is a product of an average volcanic hazard index, number of volcanoes and population
within 30 km of volcanoes: Brown et al., 2015b). Exposure and threat estimates across multiple volcanoes typically rely
on concentric radii around each volcano as a proxy for the spatial distribution of threat to life from volcanic hazards (Table
1). This approach, although facilitating regional and global exposure analyses, overlooks the complexity of hazardous
volcanic phenomena and their interactions with external factors (e.g. wind, topography). In a volcanic context, regional
assessments are complicated by the multi-hazard and spatially-varying nature of eruption products, the wide range of hazard
and impact mechanisms and the variable knowledge of eruptive records across different volcanic systems. As a result, most
existing regional estimates of population exposure to volcanic hazards rely on an overly-simplified hazard footprint extent
and intensity. A more robust estimate of exposure to volcanic hazards requires the use of numerical models able to describe
the spatial distribution and intensity of volcanic hazards. Identifying reasonable and physically sound eruption source
parameters (ESP) for these models strongly depends on the knowledge of the volcanic system obtained from the geological
mapping of past deposits. However, in areas like Southeast Asia, where studies, access and deposit preservation are limited,
defining ESPs can be challenging. For this reason, numerical models are often coupled with probabilistic approaches in
order to simulate ranges of credible potential future eruptions and environmental conditions, and quantify the likelihood of
certain areas being affected by a given hazard. Several regional (multi-volcano) studies have used probabilistic hazard
modelling to quantify hazard (Biass et al., 2014; Hoblitt et al., 1987; Hurst and Smith, 2010; Hurst and Smith, 2004; Jenkins
et al., 2012a) and threat (Jenkins et al., 2012b; Scaini et al., 2014), but they have all focussed on tephra hazard and were
limited by computing power. As a result, no comprehensive regional, multi-volcano and multi-hazard exposure analysis
has yet been achieved, which raises the question as to what extent current global volcanic exposure analyses based on
concentric radii around volcanoes are valid.

To address these issues, we developed and applied a new framework to estimate the exposure to volcanic hazards on a
volcano-by-volcano basis, with the aim of ranking volcanoes to identify those that pose the greatest threat. The approach
couples probabilistically modelled footprints from four volcanic hazards: tephra fall, large clasts, dome collapse and
column collapse pyroclastic density currents (PDCs) across three eruption scenarios (representing VEI 3, 4 and 5).

We recognise that rain-triggered, and occasionally lake breakout, lahars are key hazards in Indonesia and the Philippines
(Lavigne et al., 2007; Newhall and Punongbayan, 1996). However, they are not included in our assessment because i) their
runout and inundation area is directly controlled by the spatial distribution and characteristics of previously emplaced
pyroclastic material; ii) they can be produced independent of an eruption so that their impact over time and space is hard

to capture without detailed volcano-specific studys; iii) localised variations in rainfall can strongly influence the probability
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of lahar occurrence; and iv) empirical models that enable large numbers of simulations, like LAHARZ, have not been
calibrated for lahars in southeast Asia and do not capture the dynamics of debris and hyperconcentrated flows typical of
this region (Iverson et al., 1998; Lavigne and Thouret, 2003).

The hazard data (probabilistic footprints across four hazards and three VEI scenarios) were then coupled with open-access
Geographic Information System (GIS) data to quantify five categories of exposure (population, buildings, roads, crop and
urban areas). A Python library named VolcGIS was developed to pre-process and perform all geospatial operations required
to quantify exposure. We demonstrate the application of our framework on a selection of volcanoes in Southeast Asia that
are considered high-threat. To support the differing requirements of volcanic risk management, we consider exposure with
two different probability weightings: 1) conditional, when the assessment was conditional upon the considered eruption
scenario occurring at that volcano: this can provide important values, maps and assessments in the event of unrest or crisis
management; and ii) absolute, when the assessment incorporated the annual probability of the eruption scenario occurring:
this is valuable for comparing across multiple volcanoes on a like-for-like basis. Both methods can identify ‘hotspots’,
allowing future, more targeted hazard and risk assessments to be prioritised. Using these complementary approaches, we
ranked the volcanoes in terms of the nature of the volcanic hazard and the type of exposure.

In what follows, we outline our methods, framework and data sources before presenting and discussing our findings
and limitations. The code is published in open source and outputs are provided in Supplementary Material, with the
intention that they be used to further our understanding of exposure to volcanic hazards in this region. The proposed
methodology provides a transferable and evidence-based approach for evaluating volcanic hazard, exposure and threat
across a volcanic region. This study is not intended to replace official hazard and risk information provided by individual
country or volcano organisations (i.e., Indonesia’s Centre for Volcanology and Geological Hazard Mitigation, CVGHM,
and the Philippine’s Institute of Volcanology and Seismology, PHIVOLCS). Instead, it is designed to address a need from
international, regional and national agencies, industries and governments for large-scale hazard and risk information to

identify and prioritise volcanoes where further study and support should be focussed.

1.1 Choosing volcanoes for analysis

Here, we consider Holocene volcanoes from the Smithsonian Institution’s GVP (Global Volcanism Program, 2013) located
in Southeast Asia and with at least one recorded VEI 3 or greater eruption (n=48). To further restrict the volcanoes to those
that are more likely to pose a threat to society, we consider the Population Exposure Index (PEI) for each volcano, an index
that accounts for the increased potential for loss of life with proximity to the volcano (Aspinall et al., 2011; Brown et al.,
2015a). For our initial subset of 48 volcanoes, we update the PEI values of Brown et al. (2015a) by recalculating population

counts within 10, 30 and 100 km radii using the Landscan 2018, rather than 2011, population dataset and recalculating the
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fatality weightings within each radii using the updated fatality database of Brown et al. (2017) rather than Auker et al.
(2013). The revised fatality weightings do not differ much from those of Brown et al. (2015a), remaining at 0.003 within
the 100 km radius, and incurring only small changes at the 30 km (0.03 to 0.07) and 10 km (0.93 to 0.97) radii. We use the
updated PEI to further restrict our 48 volcanoes by considering only those with a PEI of 4 or above, indicating a fatality
weighted exposed population of 10,000 or more (Table 2). Of the remaining 40 volcanoes, 34 are in Indonesia and 6 are in
the Philippines (Figure 1). Given the relatively large number of volcanoes in Indonesia, and their geographic spread, we
further subdivide the region geographically into (from west to east): Sumatra, Java, Lesser Sunda Islands, Sulawesi,
Halmahera/Banda Sea. The updated PEI remained the same for 20 of our 40 volcanoes, increased for 17 and decreased for
3 (Table 2). The largest change in PEI is +2 for Paluweh volcano in the Lesser Sunda region of Indonesia due to an increase
from ~550,000 to more than 1 million people within 100 km, following the establishment of the new administration regency

of Nagekeo in 2007.

Table 2: Volcanoes considered for analysis in this study, the exposed and weighted summed population within 100 km (LandScan
2018) and the updated PEI (and change in PEI from that calculated in Brown et al., 2015b). Those volcanoes with a change in
PEI are shown in shaded cells. See text for details on how the PEI was updated. Volcanoes are ordered by decreasing weighted
summed population <100 km of the volcano. Volcano IDs are used in Figure 1.

D Volcano Region Population Weighted Summed Updated PEI
(<100 km) Population (<100 km) | [Change in rank]
1 |Guntur Java 24,672,816 647,625 7 [0]
2 [Merapi Java 20,912,606 610,759 7 [0]
3 |Gede-Pangrango Java 41,052,844 464,921 7 [0]
4 |Cereme Java 24,363,615 434,438 7 [+1]
5 |Galunggung Java 23,503,160 411,713 7 [+1]
6 |Kelud Java 21,445,246 399,771 7 [+1]
7 |Dieng Volcanic Complex Java 20,836,400 381,995 7 [0]
8 [Taal Philippines 25,468,937 361,479 7 [0]
9 |Papandayan Java 19,871,707 346,022 7 [+1]
10 Mayon Philippines 3,800,811 307,870 7 [+H1]
11 [Lokon-Empung Sulawesi 1,615,751 302,849 7 [+1]
12 |Gamalama Halmahera/Banda Sea 557,971 237,081 6 [0]
13 Lamongan Java 13,034,961 232,253 6 [0]
14 [Tengger Caldera Java 19,308,100 206,610 6 [0]
15 |Agung Lesser Sunda Islands 4,932,198 173,099 6 [0]
16 [Pinatubo Philippines 20,263,766 143,351 6 [0]
17 |Soputan Sulawesi 1,672,484 135,393 6 [+1]
18 |Semeru Java 16,809,817 121,729 6 [+1]
19 |Bulusan Philippines 3,070,592 119,290 6 [+1]
20 [Rinjani Lesser Sunda Islands 3,324,266 119,250 6 [0]

6



21 |Sinabung Sumatra 7,046,711 117,027 6 [+1]
22 |Ranakah Lesser Sunda Islands 939,183 103,308 6 [+1]
23 |lya Lesser Sunda Islands 851,704 97,554 5[0]
24 [Raung Java 6,899,109 78,405 510]
25 |Camiguin Philippines 2,216,661 63,373 510]
26 |Parker Philippines 3,493,014 61,911 5 [+1]
27 [Tangkoko-Duasudara Sulawesi 1,332,181 39,204 5[0]
28 |[Lewotobi Lesser Sunda Islands 627,425 29,233 4 [-1]
29 |Gamkonora Halmahera/Banda Sea 702,145 26,855 4[0]
30 |[Krakatau Java 6,376,553 26,122 4[0]
31 |JAwu Sulawesi 74,125 25,829 410]
32 |[Lewotolo Lesser Sunda Islands 388,713 24,479 4[0]
33 Karangetang Sulawesi 90,664 22,496 3 [+1]
34 |Leroboleng Lesser Sunda Islands 603,314 22,339 4 [-1]
35 Dukono Halmahera/Banda Sea 536,125 16,989 4 [+1]
36 [Paluweh Lesser Sunda Islands 841,119 15,544 4 [+2]
37 |Suoh Sumatra 1,526,998 13,702 4 [+1]
38 [liwerung Lesser Sunda Islands 388,155 13,199 4 [+1]
39 [Tambora Lesser Sunda Islands 975,708 11,353 4[0]
40 [Banda Api Halmahera/Banda Sea 6,588 10,829 4 [-1]
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Figure 1: Active Holocene volcanoes of Southeast Asia (black triangles, as defined in Global Volcanism Program, 2013) with the
40 volcanoes considered for analysis in this study highlighted as larger triangles, with their colour dictated by their PEI. Basemap
is ambient population per 1 km? (Landscan 2018). Numbers relate to the volcano name and PEI in Table 2.

2 Methodology

This paper presents a methodology to i) assess the probabilistic hazard associated with short-lived, explosive
eruptions of VEI 3, 4 or 5, and ii) estimate various aspects of exposure to these hazards (e.g. population, buildings,
roads, urban areas and crops). We considered four hazards produced by explosive volcanic eruptions: i) the static
load caused by tephra accumulation, ii) the kinetic impact associated with large clasts, and inundation from PDC
generated from iii) dome collapse and iv) column collapse. A total of 697,080 individual model runs were carried out.

For each hazard, the spatial extent, and where appropriate intensity, was modelled for the different eruption scenarios, with
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results analysed for three differing probabilities: 10%, 50% and 90%, giving a total of 57 permutations of hazard and 285
estimates of exposure per volcano. For tephra fall, further aggregation was carried out per month to identify any seasonal
variability in hazard footprints, producing 324 additional probability aggregated hazard footprints per volcano. Hazard
modelling outputs and their associated exposure estimates were coupled with eruption frequency-magnitude estimates to
allow two separate rankings to be developed: conditional (assuming the eruption scenario had occurred) and absolute
(weighted by the eruption scenario’s probability of occurrence). Hazard and exposure were combined using the newly

developed VolcGIS framework.

2.1 GIS framework

We have developed a geospatial python framework that can source multiple derived hazard and exposure datasets of
varying resolution, unifying them to one consistent grid (Figure 2). For each volcano, the extent of the study area was
defined based on the bounds of the 1 kg/m? tephra isomass occurring at a 10% probability for a VEI 5 eruption (see Section
3.2.1). The GIS first applies preprocessing functions to both hazard model outputs and exposure datasets to i) ensure that
input files are projected onto the same WGS84 UTM zone as the target volcano, ii) depending on geographic extent of the
input file, either crop it to the extent of the study area or pad it with noData value, and iii) resample the input file to a
specified spatial resolution. This preprocessing step produces a set of files with consistent geographic references (i.e.
coordinate system, extent and pixel resolution) and equal numbers of pixels in x and y directions. This step is critical to
ensure that the spatial index of pixels is consistent amongst all files, after which exposure is estimated by translating each
pixel’s spatial index of hazard footprints onto exposure datasets. Resampling of the rasters is achieved using a cubic
interpolation for continuous hazard data and a nearest neighbor interpolation for discrete exposure data. After resampling,
population data are multiplied by the square of the ratio between original and final resolutions in order to scale population
counts to the new pixel surface area. Here, a pixel size of 90 m was adopted to keep computing and storage requirements
reasonable while retaining a high enough resolution to allow detailed analysis of exposure. The source code of the GIS

framework is available at github.com/vharg/VolcGIS.

To support the re-application of our study over space and time, all hazard modelling and exposure assessments were carried

out using only open access datasets. Data descriptions and sources are described within each relevant subsection below.
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Figure 2: Schematic outline of the study’s methodology for exposure analysis. CGLS-LC: Copernicus Global Land Service-Land

Cover; ERA 5: Reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF); GEM: Global

Earthquake Model; GVP: Global Volcanism Program of the Smithsonian Institute; OSM: OpenStreetMap; PEI: Population
185 Exposure Index; SRTM: Shuttle Radar Topography Mission; bool: Boolean Workflow was made using draw.io.

2.2 Hazard modelling

For each of the 40 volcanoes chosen for hazard modelling, we used openly available hazard models (Appendix A),
meteorological data and a DEM to probabilistically simulate potential hazard extent and, where possible, intensity from
four explosive volcanic hazards (tephra fall, large clast, dome collapse and column collapse PDC) across three VEI

190 scenarios (VEI 3, 4, and 5). Scenarios were tailored to be generic enough to be applied across all volcanoes whilst
preserving the spatially varying nature of volcanic hazardous phenomena. VEI classes were chosen to span the range of
impacts from explosive volcanic eruptions; VEI 2 eruptions were not simulated because of their limited spatial extent and
VEI 6+ eruptions were not simulated as they are of lower probability. However, we do recognise that these scenarios would
also be important to consider for comprehensive impact assessments.

195 Estimating ESPs for regional hazard assessments, especially with such variable eruptive records as those presented by

volcanoes in Southeast Asia, is always challenging. With sufficient and consistent knowledge of the eruptive history of

10
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selected volcanoes, it could be possible to tailor eruption scenarios to reflect specific types of activity and to use models of
increasing complexity (e.g. using 3D numerical tephra dispersal models; Biass et al., 2014; Titos et al., 2022). In the face
of these data and knowledge gaps, regional hazard assessments targeting volcanoes with differing eruptive histories and
record completeness require the development of more generic eruption scenarios that are uniformly assigned to all sources.
These eruption scenarios have dominantly been developed around VEI classes (e.g. Jenkins et al., 2012a) and, although
bypassing the importance of some eruptive processes, they provide key, first-order insights into regional hazard and allow
for comparison across multiple scenarios and volcanoes.

The spatial extent (and intensity where possible) of each of our four simulated hazards — tephra fall, large clasts, dome
collapse and column collapse PDCs — is quantified using a probabilistic approach designed to account for various sources
of uncertainty. The probabilistic approach is implemented either within the model (e.g. column collapse PDC) or by the
stochastic sampling of model inputs (e.g. tephra fall). For each hazard and scenario, a generic set of ESPs was developed
from global datasets and analogous volcanoes, uniformly applied to all volcanoes used in the study and modelled with a
dedicated method. More detail on our modelling approach is provided in the following subsections; we summarise the key
ESPs across all hazards in Table 3, with full details and rationale available in Appendix A.

Table 3: Key model input parameters used for the four hazards, with more details and rationale provided in the
below subsections and Appendix A.

Tephra fall (modelled using Tephra2; Bonadonna et al., 2005)

VEI 3 VEI 4 VEI 5
Simulations (n) 2,880 2,880 2,880
Erupted mass (kg) 3.2x10% 3.2x 10" 3.2x 10"
Plume height (km) 13 20 27
Large clast (modelled using Rossi et al., 2019)
VEI 3 VEI 4 VEI 5
Simulations (n) 2,880 2,880 2,880
Plume height (km) 13 20 27
Clast density (g/cm®) 2.5
Clast diameter (cm) 3

Dome collapse PDC (modelled using LAHARZ modified for use with PDCs (Schilling,
1998; Widiwijayanti et al., 2009))

Small volume Large volume
Simulations (n) 36 36
Volume (m?) 45x10° 9.8 x 10°
Column collapse PDC (modelled using ECMapProb; Aravena et al., 2020)
VEI 3 VEI 4 VEI 5
Simulations (n) 300 300 300
Column collapse
height (m) 1300 2000 2700
H/L ratio 0.24

11
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Here, we favour empirical and analytical models over more complex numerical models for two main reasons. Firstly, their
relatively lower computing costs allows running probabilistic hazard modelling for all the scenarios and volcanoes and,
secondly, they typically require fewer and more generic ESPs. While these models are not necessarily the most physically
accurate representation of eruptive processes, they have been shown in numerous circumstances to be acceptable for
determining hazard extent and probability (e.g. Tephra2: Bonadonna et al., 2005; PDCs: Ogburn and Calder, 2017, Tierz
et al., 2016; Large clasts: Rossi et al., 2019) and were suitable for creating probabilistic hazard inputs for our framework.
The next sections describe in more detail the development and the modelling process of eruption scenarios for each hazard,
with input parameters and rationalised data sources provided in Appendix A and all hazard outputs in Supplementary

Material 1.

2.2.1 Tephra fall

Tephra fall is one of the most widespread and frequently occurring volcanic hazards, and can cause damage, disruption or
other impacts to buildings, crops, and infrastructure (Jenkins et al., 2015). Here, we simulated the spatial distribution of
tephra fall using Tephra2 (Bonadonna et al., 2005), which solves the advection-diffusion-sedimentation equation using a
semi-analytical approach. For each volcano, an eruption scenario was compiled for each of VEI 3, 4 and 5. For each VEI
scenario, Tephra2 was run for each of 2,880 synoptic hourly wind profiles (across 10 years) for the wind record closest to
the volcano, using a single value of critical ESPs. The variability in the results for each VEI and each volcano is mostly

due to the variability in specified wind profiles.

For each volcano and scenario (i.e., VEI), the 2,880 simulations were post-processed to quantify the spatial distribution of
probabilities for exceeding a given accumulation of tephra. We chose tephra accumulations that reflect key impacts for our
different categories of exposure and follow those defined by Jenkins et al. (2015). A threshold of 1 kg/m? (approximately
equivalent to I mm thickness) was used to quantify exposure to people and roads (signifying potential health hazards and
disruption to roads). Also, we considered a threshold of 5 kg/m? (~5 mm) to capture disruption or productivity loss for
crops and clean-up and infrastructure disruption in urban areas. Building exposure was quantified using a 100 kg/m? (~100
mm) threshold, which is often considered as the hazard intensity marking the onset of damage to weak buildings (Blong,
1984; Jenkins et al., 2014). Based on remote damage surveys around Kelud volcano, Java, Williams et al. (2020) identified
100 kg/m? as the median tephra load associated with moderate or worse damage to tiled or metal sheet roofs: roof types

that are common across Indonesia and the Philippines.

12
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Outputs use all 2,880 simulations from the full ten-year record to identify the 10%, 50% and 90% exceedance probability
contours at each of the loading thresholds and VEI scenarios above (27 contours per volcano). Monthly subsets were also
extracted to illustrate the variability of hazard as a function of seasonality (an additional 324 contours per volcano). In total,
345,600 individual tephra simulations were processed to produce 4,680 probabilistic outputs across the 40 study volcanoes
(i.e. 360 with aggregated wind conditions and 4,320 for monthly subsets), with each probabilistic output containing the

three probability contours.

2.2.2 Large clast

The kinetic energies of lapilli, or large clasts (i.e. particles with diameters of 2-64 mm), produce a dynamic hazard that can
cause skull fracture and roof penetration (e.g. Etna 2013, Kelud 2014, Ontake 2014; Williams et al., 2019a). As their
behaviour is partway between wind-advected particles and ballistics, and because they can be released from the plume
margin, large clasts cannot be accurately modelled by models primarily designed for either ballistic trajectory particles or
ash dispersal and sedimentation. Here, we used the model of Rossi et al. (2019) that accounts for limited gravitational
spreading of the umbrella cloud and the influence of three-dimensional atmospheric conditions on the particles. This model
was successfully validated and applied by Osman et al. (2019) to model the extent of coarse lapilli from the 23 November
2013 eruption of Etna.

Here, we considered the threat to human activity in the vicinity of the vent (e.g. hiking activity at the summit). A threshold
of kinetic energies >30 J at impact was chosen as it represents a central estimate of the impact energy required to cause
skull fracture (Yoganandan et al., 1995). This corresponds to a range of clast sizes, depending on density, from >3 cm
(lithic clasts of 2.5 g/cm® density) to >5.6 cm diameter (pumice clasts of 0.63 g/cm? density). Thus, we only considered
exposure within the extent of the 3 cm lithic isopleth, which is the same extent as a 5.6 cm pumice clast isopleth. The same
probabilistic approach was applied for large clast as for tephra fall (i.e. 2,880 wind profiles per volcano and fixed plume
heights for each of VEI 3, 4 and 5) to quantify the spatial distribution of impact probabilities by a large clast with a kinetic
energy exceeding 30 J. For each VEI, we extracted isopleth extents associated with 10%, 50% and 90% probabilities (9
outputs in total, per volcano). In total, 345,600 individual simulations were processed to produce 120 probabilistic outputs

across the 40 study volcanoes, with each containing the three probability contours.

2.2.3 Dome collapse PDC

PDCs cause more fatal events and fatalities than any other volcanic hazard (Brown et al., 2017). A common mechanism of
PDC generation is the gravitational collapse of a lava dome (Cole et al., 2015). These PDCs are typically valley-confined,

but the possible detachment of the dilute component can overspill and inundate populated areas (Lerner et al., 2022). We
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simulated the likely flowpaths of dome collapse PDCs using a recalibrated version of the LAHARZ model (Iverson et al.,
1998; Schilling, 1998), with empirical coefficients updated by Widiwijayanti et al. (2009) based on runout and area for
dome collapse PDCs at Soufriere Hills, Merapi, Colima and Unzen volcanoes (see Appendix A for more detail). Since
flow volumes are not correlated to VEIL, scenarios for our simulations were taken as the volumes corresponding to the 50
(4.5x10° m®) and 90" percentiles (9.8x10° m?) obtained from the global dataset, FlowDat (Ogburn, 2016). We did not
include the 10th percentile volume (1.1x10° m?®) as it usually results in flows restricted to the summit area. Since flow
models generally do not capture PDC overspills or inundation area (as opposed to deposit area) accurately, we applied two
buffers around each simulated volume: 300 m and 990 m (1 km rounded to the nearest DEM cell). Buffer distances were
chosen based on extents observed in previous unconfined PDCs (e.g., Merapi 2010, Fuego 2018: Lerner et al., 2022). For
each simulated volume, we output the 10%, 50% and 90% probabilities for each of the buffer extents. In total, 5,760
individual simulations were processed to produce 160 probabilistic outputs, with each containing the three probability
contours.

Although the PDC scenarios and their ESPs were deterministically chosen, we developed a stochastic approach to estimate
the directionality of PDCs from dome collapse. Lava domes often exhibit preferential growth and collapse directions
that consequently influence the direction of associated PDCs (Zorn et al., 2019). As factors controlling growth
directionality are still debated (e.g. slope and morphology of the summit region; Voight, 2000; Walter et al., 2013),
we developed a new method to automatically identify the travel direction probability for each direction around the
crater based on the summit topography. Although this method is inherently linked to the accuracy of the DEM, it
nonetheless provides a simple, consistent and replicable way to rapidly identify potential flow directions. The
method considers all azimuths - here binned by 10° intervals - around a user-selected release point, and
cumulatively assesses the morphological properties of the crater along a radial distance to express a relative
probability (more details on the method are provided in Appendix B; Tennant et al., In preparation). For each volcano
the crater radius was measured using Google Earth and used as the starting point for the flows. Figure 3 compares the
direction estimated using our method with the reported directions of dome collapse PDCs from four case-study

volcanoes and demonstrates how it successfully captures the dominant flow directions.
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Figure 3: Probabilistic forecasting of dome collapse PDC travel directions calculated using the SRTM DEM (details in
Appendices A and B). Forecasts shown in blue, with actual dome collapse PDC travel directions shown in red for a) Mayon: one
dome collapse PDC on 11 June 2001 (Global Volcanism Program, 2001), b) Sinabung: more than 100 dome collapse PDCs
between 30 December 2013 and 4 January 2014 (Global Volcanism Program, 2014), c¢) Semeru: several dome collapse PDCs
between 30 November and 30 December 2002 (Solikhin et al., 2012; Thouret et al., 2007), and d) Soputan: several dome collapse
PDCs on 1 August 2007 and 25 October 2007 (Pallister et al., 2012). When a single channel was reported this is shown with an
arrow accompanied by the channel name, while when only a general direction was reported this is shown as a wedge.

2.2.4 Column collapse PDC

Column collapse events typically produce highly mobile, radially-distributed PDCs (Cole et al., 2015). These are
particularly dangerous, since they are not confined to topographic lows in the same way as other PDCs (e.g. those from
dome collapse). Here, we modelled the PDC inundation using the probabilistic energy cone approach ECMapProb of
Aravena et al. (2020). Following the original approach of Malin and Sheridan (1982), ECMapProb simulates PDC runouts
by projecting a cone with a given height-over-length ratio (H/L) originating from a collapse height onto the topography,
stochastically exploring the uncertainty on collapse height, H/L ratio and vent location. This probabilistic approach allows
a PDC’s potential to overcome topographic barriers to be estimated. In doing so, ECMapProb is also able to redistribute
the residual energy after the cone’s initial intersection with topography to account for the frequent channelisation of PDCs
(Aravena et al., 2020).

Scenarios for column collapse PDCs were defined based on the plume height identified for each VEI, with a collapse height
estimated to be ~10% of the plume height (after Wilson et al., 1978). For each VEI scenario, spatial extents of the 10%,
50% and 90% probability of inundation were produced (9 probabilistic outputs in total, per volcano). More detail on the
inputs used are provided in Appendix A. In total, 120 sets of 300 simulations were performed (n=36,000 total), with each

set producing a probabilistic output that contained the three probability contours.
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2.3 Incorporating eruption frequency

The hazard modelling described thus far provides conditional outputs, i.e. they provide the spatial area affected by a given
hazard assuming that an eruption of a given VEI or flow volume has occurred. This is valuable information for crisis
planning in the event of unrest; however, comparing across volcanoes at the regional scale requires estimating exposure as
a function of the eruption frequency, or probability of occurrence. We achieved this by following the methodology of
Hayes et al. (In preparation), which uses a Bayesian update and model combination framework to estimate the annual
probability of each VEI for each volcano, and the uncertainty around that value (VEI annual probabilities at the 10%, 50%
and 90% probability are provided for each volcano in Supplementary Material SM2). Analogue annual eruption
probabilities were first calculated using two volcano analogue classification systems (Jenkins et al., 2018; Whelley et al.,
2015). These probabilities are then updated separately using the volcano-specific eruption record sourced from GVP
(version 4.8.5, downloaded 20 January 2020). This produces two separate frequency-magnitude probability distributions
for each volcano, based on the two analogue systems and incorporating volcano-specific eruption data. These two
probability distributions are then combined using a model stacking approach to produce a single frequency-magnitude
probability distribution for each volcano, with uncertainty. The 50% annual probabilities for each VEI were used in our
study to weight the exposure calculated for each VEI scenario, i.e. each exposure value was multiplied by the annual
probability of an eruption of that VEI at that volcano occurring, with the sum across them providing the absolute exposure
value, which represents the averaged annual exposure across all eruption simulations and scenarios for that volcano and
hazard. Incorporating eruption frequency allowed us to better assess the exposure over given timescales, for example
multiplying the absolute exposure values by 100 gives the averaged exposure over a 100-year timeframe. For dome collapse
PDCs, where flow volume cannot be linked to VEI, we do not incorporate eruption frequency, only providing conditional

probabilities.

2.4 Exposure assessment

Exposure estimates were obtained by overlapping the extent of hazard footprints with exposure datasets within our GIS.
We considered five distinct categories of exposure:
1. Population: The exposure of populations was estimated using Oak Ridge National Laboratory Landscan data for
2018. Landscan is a proxy for the ambient (i.e. 24h-average) population density at a resolution of ~1 km (Rose et
al., 2019).
2. Number of buildings: The location and number of buildings was modelled using the Global Earthquake Model
(GEM) building exposure data described by Silva et al. (2020). Disaggregation of data from the regency level into
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built up areas at a 36 by 36 mresolution was achieved using the Pesaresi et al. (2015) Global Human Settlement
Layer (GHSL). We considered only residential buildings.

3. Road lengths and hierarchies: To calculate the length of roads affected by each of our hazards, we used OpenStreet
Map (OSM) data (downloaded from Geofrabrik.de on 26 November 2020), which provides the location of roads
and their classification, e.g. motorway, primary, residential. We consolidated the 16 OSM road classifications into
four distinct hierarchies: motorway (hierarchy 4), arterial (hierarchy 3), collector (hierarchy 2) and local (hierarchy
1), on the basis that road hierarchy is an indicator of the scale of disruption experienced by the road network from
hazardous impacts (Hayes et al., Under review).

4. Area of crop land: Land cover is used as a proxy for estimating exposure of crops to volcanic hazards. Here we
use the Copernicus Global Land Cover v3 at a 100 m resolution (CGLS-LC100: Buchhorn et al., 2020) for 2019
and extract the cultivated and managed vegetation classes from the discrete classification dataset.

5. Urban area: As for crops, with the urban/built-up class extracted.

All exposure data were interpolated from their original resolution to the 90 x 90 m grid used within our GIS framework, as

described in Section 2.1.

3 Results

The multi-hazard and multi-exposure analysis presented here required nearly 700,000 individual simulations and produced
26,640 probabilistic outputs, comprised of:

15,240 hazard estimates: 40 volcanoes x 3 probabilities x [(3 VEI scenarios for column collapse PDC) + (2 flow volumes

x 2 buffers for dome collapse PDC) + (3 VEI scenarios for large clast) + (3 VEI scenarios x 3 thickness thresholds x (12
individual months + 1 whole year average wind conditions))];

11,400 exposure estimates: 5 exposures X 40 volcanoes x 3 probabilities x [(3 VEI scenarios for column collapse PDC) +

(2 flow volumes x 2 buffers for dome collapse PDC) + (3 VEI scenarios for large clast) + (3 VEI scenarios x 3 thickness
thresholds x 1 whole year average wind conditions)].

Such outputs can be useful at the individual volcano scale (e.g. maps of probabilistic dome collapse PDC inundation or the

number of buildings exposed to a VEI 4 tephra fall 21 kg/m?, at the 10%, 50% and 90% probabilities) as well as the

regional scale. We provide all our hazard and exposure results in the Supplementary Material (SM1, SM2 and SM3).
Hazard outputs are provided per volcano and include processed wind direction and speed information and hazard model

outputs. Exposure analysis results are provided as an excel file: these serve as the raw data for all figures and tables in this
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study. More information on data format for the wind, hazard and exposure data are provided in SM1, SM2 and SM3. These

supplemental files include all our data output files, available in user-friendly formats (tif, xlsx).

3.1 Case study examples

A total of 381 probabilistic hazard outputs were produced for each volcano (SM1), giving 15,240 in total. Figure 4
highlights three case-study volcanoes, with the reason for choosing each described in the below. We use these as examples
of our model outputs and calculated exposure, and the associated hazard and exposure insights that can be derived from
our results. We do not compare our maps with official CVGHM or PHIVOLCS hazard maps where they are available for
our study volcanoes for the following reasons: i) Comparison implies that one can be calibrated or validated by the other;
but ii) We use different methodologies (probabilistic vs. deterministic); iii) Our input data (i.e. analytical vs. geological)
are different; and iv) The purpose and expected end-user is not the same.

Merapi volcano in central Java, Indonesia, is one of the most active and hazardous volcanoes in the world, with more than
20 million people living within 100 km (Table 2) and more than 20,000 within 10 km (SM3). Our modelling confirms that
large clasts and dome collapse PDCs are primarily near-vent hazards, with a maximum radial extent of around 7 km to the
west for large clasts, and 10 km to the southeast through northwest for dome collapse PDC (Figure 4a). These distances
and directionality fit well with deposits produced during the last c.100 years (Charbonnier and Gertisser, 2008; Jenkins et
al., 2016; Voight et al., 2000). Results suggest that large clasts and dome collapse PDCs do not affect heavily populated
areas, although transient hiking populations at or near the summit and more heavily populated areas to the northwest (a
low probability impact area) are exposed (Figure 4b). Comparison of our model outputs (simulated volume of 9.8 x 10° m?
and buffer extent of 990 m), with mapped 2006 dome collapse PDCs (<2.6 x 10° m® to the southwest (Ratdomopurbo et
al., 2013) and 6 x 10° m? to the south (Charbonnier and Gertisser, 2008)) show reasonable similarity in runout extent,
highlighting the south and southwest as particularly high hazard areas. The comparison also shows that a 30 m-resolution
DEM fails to capture the strong topographic controls evident in mapped PDCs. Note that PDCs during the 2010 eruption
(not shown) extended beyond our simulated PDC footprints to the south by ~5 to 7 km because they were generated by
dome explosion and partial column collapse, both of which promote greater runout distances (Komorowski et al., 2013).
Taal volcano, ~60 km to the south of Metro Manila in the Philippines, is a caldera-forming volcano with a history of
explosive volcanism (Reyes et al., 2018). More than 25 million people live within 100 km (Table 2) and nearly 60,000
within 10 km (SM3). The strong topographic control of the caldera walls in limiting column collapse PDC runout and
exposure at Taal is evident in Figure 4c. Within the caldera scarp, roads are relatively sparse, except for the town of Taal
in the southwest where gentler relief results in higher road and population density (Figure 4c,d) and subsequently an

increased exposure to topographically controlled hazards such as PDCs. For a VEI 4 scenario, 653 km of predominantly
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lower hierarchy 1 and 2 roads are exposed to column collapse PDCs at the 10% probability contour, but only 98 km at the
50% probability contour, as PDC runout remains mostly confined to the lake and island. Figure 4d shows the influence of
seasonality on the tephra fall impact area, discussed in more detail in Section 4.1. Regardless of season, our modelling
shows that ~50 to 60 km of the EH2 highway to the east of the volcano, which links the cities of Batangas and Manila, is
likely to be impacted by a VEI 4 eruption from Taal.
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Gede-Pangrango is an active, but recently quiet, volcano with a poorly known eruptive history that lies ~60 km to the south
of Jakarta in western Java (Tennant et al., 2021). This proximity to Jakarta leads to Gede-Pangrango having the greatest
number of people living within 100 km (more than 41 million) of any volcano in our study (Table 2) or the world (Small
and Naumann, 2001). Closer to the volcano, numbers are more modest, with ~15,000 within 10 km (SM3). Figures 4¢ and
4f show 1) the probability of exceeding a certain tephra load (>5 kg/m? in Figure 4e), and ii) the tephra load expected at a
given probability (50% in Figure 4f). Both approaches show that tephra falls are most likely to be dispersed towards the
west, affecting only the southernmost parts of Jakarta with relatively low loads (>1 kg/m?). Given a VEI 4 scenario, the
city of Sukabumi to the south-southwest and communities to the west of Gede, along the highway leading into Bogor and
Jakarta, are threatened by potentially damaging tephra fall loads (>100 kg/m?: Figure 4f); very atypical wind conditions
blowing from the south are needed to result in such loads across the densely built areas of Jakarta. Considering the low
exceedance probability scenario (10%) from a VEI 4 eruption, most of the crops exposed to >5 kg/m? tephra fall
accumulation are located to the east of Gede-Pangrango while urban areas are to the northwest, specifically Bogor (Figure
4e). For the high probability scenario (90%), exposed crops and urban areas are concentrated within ~20 km to the west of

Gede.

3.2 Exposure assessment

Each probabilistic hazard output was combined with each of the five exposure datasets to produce 95 exposure estimates
per volcano (3,800 in total: SM3). For most hazards, the exposure increases significantly with increasing VEIs, reflecting
the increased distance reached with greater eruption intensity and/or magnitude (Figures 6, 7, 8). Column collapse PDC
marks the exception, with a VEI 4 or 5 eruption not marking a significant increase in exposure compared to a VEI 3 eruption
(Figure 9). In general, the hazards resulting in the highest values of exposure are, in decreasing order: tephra fallout, PDC
from column collapse, large clasts and PDC from dome collapse. Tephra fall yields a higher population exposure compared
to column collapse PDCs up to accumulations of ~5 kg/m? for all VEIs. Above a tephra accumulation of 5 kg/m?, column

collapse PDCs result in higher population exposure for a VEI of 3.

3.2.1 Population exposure

For all regions and all hazards, the distribution of population exposure across different volcanoes is often asymmetrical
(positively skewed), with a long tail suggesting that a smaller number of volcanoes provide the very large exposure values
(Figure 5). For tephra fall, populations in Java are by far the most exposed to our study volcanoes (n=13) of any region
(Figures 5 and 6). As the dominantly east-west wind directions across Java coincide with the island’s orientation, tephra is

mostly deposited on land. For an eruption of VEI 5 at the 50% probability, 12 of the 13 volcanoes in Java result in >10
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million people exposed to tephra falls >1 kg/m? from the volcano; for a VEI 4 50% scenario, with the exception of Krakatau
(~11,000 people), between 3.4 million (Raung) and 9.6 million (Cereme) are exposed to the same tephra fall threshold.
Within Java, Krakatau volcano always shows a lower tephra fall exposure relative to other Javanese volcanoes, whilst
Cereme, due to its upwind location to Jakarta, is consistently amongst the volcanoes resulting in higher exposure to tephra
fall. Sulawesi is the region with the second highest median exposure to tephra fall from eruptions with VEI 3, but larger
eruptions of VEI>4 see the Philippines ranked second (Figure 5).

Exposure to large clasts is 3 to 4 orders of magnitude smaller than for tephra fall, as expected. Populations in Java and the
Philippines have the greatest median exposure to eruptions of VEI 3 and 5 whereas populations in the Halmahera/Banda
Sea region have the greatest median exposure to VEI 4 eruptions (Figure 7). This indicates that our analysis accurately
captures the distribution of population in the region, with less people on the flanks of the volcanoes and most settlements
being 5-10 km away, often on the shores of volcanic islands.

For column collapse PDCs, with a maximum runout distance partway between the maximum extents of large clasts and
tephra fall, populations in Java again have the greatest median exposure (Figure 9). For dome collapse PDCs, which
typically have a more directed and relatively short maximum extent compared to the other simulated hazards, median
exposure numbers are relatively small but highlight volcanoes in Sumatra (n=2) as those with greatest median exposure
and Sulawesi (n=5) as those with the largest exposure values (Figure 8). Lokon-Empung volcano in Sulawesi is driving
the larger values in the region (>7,000 people exposed) with the most likely flow direction being to the southeast, affecting
communities along the Tomohon-Manado main road, ~5 km away. In Java, Guntur volcano provides the largest outlier
exposure value for dome collapse PDCs, with more than 11,000 people exposed in communities ~7 km southeast from the

volcano, on the outskirts of Garut.
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Figure 5: Distribution of the population exposure for each volcano colour-coded by region. The horizontal bars and the coloured
circles show the 95% confidence interval and the median, respectively, whereas the small dark dots show the underlying data.
Each column is a different eruption scenario (i.e. flow volume for dome collapse PDC, VEI otherwise). The hazard used here
considers a conditional exceedance probability of occurrence of 50%. The number of volcanoes in each region are as follows:
Halmahera/Banda Sea (4), Java (13), Lesser Sunda (10), Sulawesi (5), Sumatra (2), Philippines (6).

3.2.2 Building exposure

For VEI 3, Sulawesi and Sumatra have the largest median number of buildings exposed to tephra accumulations >100
kg/m? and Java has the smallest. For VEI>4, on average, Java becomes the most exposed region with Merapi (VEI 4) and
Cereme (VEI 5) producing the largest numbers (Figure 6). Sulawesi and the Philippines are the second two most exposed

regions, on average. For large clasts, the regions that have, on average, the most buildings exposed to eruptions of VEI<4
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are Halmahera/Banda Sea, Sulawesi and Sumatra. For VEI<4, our Javanese volcanoes have virtually no exposed buildings
to large clasts, but the region climbs to first place for VEI 5. For column collapse PDCs, the regions with the greatest
median exposure are, in decreasing order: Java, Sulawesi, Sumatra and the Philippines across all VEI classes. For dome

collapse PDCs, Sulawesi and Sumatra have the highest median exposure, followed by Halmahera and Java (Figure 8).

3.2.3 Road network

Due to the proximity to large and complex urban centres (e.g. Jakarta, Yogyakarta), on average Java has by far the greatest
road network exposed to tephra accumulations of >1 kg/m? over all VEIs (Figure 6). For VEI>4, the region with the second
greatest median exposure is the Philippines, with the notable case of Taal volcano that can affect metropolitan Manila. For
VEI 3, only Sumatra and Lesser Sunda have some sections of road (i.e. <20 km) exposed to large clasts. For VEI 4 and 5,
the regions with the greatest median exposure are Sumatra and Java, respectively. The pattern of exposure of the road
network to column collapse PDC inundation is generally the same as for tephra fall, the only exception being significantly
lower median exposure in the Philippines. Due to its location within a caldera lake, Taal volcano requires large eruptions
to affect the road network. Interestingly, the case study of Mayon volcano illustrates the variability of exposure with VEI
between tephra fall and PDC. For tephra fall, the main wind direction is westwards, and the urban centre of Legazpi, located
~15 km south-southwest of the vent, becomes increasingly affected by larger eruptions that develop significant crosswind
and downwind sedimentation patterns (Figure 6). Conversely, column collapse PDCs are less directional, and the exposed
road network varies little across VEIs (Figure 9). Finally, only a limited length of roads (i.e. maximum of 50 km) is typically
exposed to inundation from dome collapse PDCs. For the largest volume and buffer, Guntur and Merapi are the two

volcanoes producing the largest road exposure values (Figure 8).

3.2.4 Crop area

Regions displaying the largest median exposure of crop land to all hazards are Sumatra and Java. For large clasts and dome
collapse PDCs, Sumatra displays the largest median crop exposure across all eruption scenarios (Figure 7 and 9). For large
eruption scenarios (i.e. VEI>4 for tephra and VEI 5 for column collapse PDC), volcanoes in Java have the largest exposure,
on average. The median exposure of crops to tephra accumulations >5 kg/m? in Java varies by two orders of magnitude

between VEI 3 (~30 km?) and VEI 5 (~1,700 km?).

3.2.5 Urban area

Java and Sulawesi show the highest median exposure to both tephra accumulation >1 kg/m? (Figure 6) and column collapse

PDCs (Figure 9). The third most exposed region, on average, across our volcanoes, is the Philippines for tephra and Sumatra
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for column collapse PDCs. Considering a VEI 4 eruption, <1 km? of urban area is exposed, on average, to large clasts in
500 these regions. This increases to 6, 11 and 25 km? for Sumatra, Sulawesi and Java, respectively, for a VEI 5 scenario (Figure
7). The median exposure of urban areas to dome collapse PDC is <2 km? for all regions and scenarios, and is virtually null

for Lesser Sundra (Figure 8).

Halmahera/Banda Sea Java Lesser Sunda Sulawesi Sumatra Philippines
sE 10 ||
52 .
S 105 ..... 1 B
8— N
a

Buildings (n)
2100 kg/m?

4
10
k- 5
££ 10
22
S
TN 10’
SE
o
T2
€
3
¢ 10
o <
oD
i 1
©
o'l 10 .
o
<
] LI
3
<~ 10 --
. ) g
1<
e rmal |0 1T 87T PEspemged E
SN e - [ ot |
g L — T T T T T 1 T T T 1T T T T 1 1 0 T 11 T T T 1 1 T T T T 1
5 o0 6®c® O X DO 55 3cgc o3 ® D0 95 0<£ £ O S ooc © o < cC € c 5 9®
2EES 588523858885 E8558:%88553 :5E8s E8  §582S¢
g X 8 g 0 255858 2sa3 e > 5 SRR <2 23323 a S22 8"
- 35 ® O s EB 23 X 5 S © ] o 58 EcE © a >3 @ 3 S T
2 A3 g ¥ 832020 s =2xgd < 3 S 35853 o £ oB [ 2 E=0 ¢
T & E O35 ¥ G © et = S a0 = FYPS n O a
® 08 284 - 8 S s 55 O
=l i . .
] 3 o 2 X ¥ 2 Indonesia Philippines
= ] o 3 ]
S o = % Value L] L]
) Rl (V20 ococcooooo0 ecnnoeonoon
2 F Vel 345 345

Figure 6: Exposure to tephra fall accumulation summarised per region and exposure type for a conditional exceedance

505 probability of occurrence of 50%. Overlying (not stacked) bars illustrate the variability of exposure with VEI (with the top of
the bar representing exposure for that VEI) and dotted lines the median for the region. Note that specific thresholds of tephra
loads (as defined in section 2.2.1) are used for various exposure types.

25



Halmahera/Banda Sea Lesser Sunda Sulawesi Sumatra Philippines

Population (n)
>

Buildings (n)

Crop area Road length
(km)

Urban area

a 0 ® ® x 0O 5 %5 3 c @ c = o 53 0 £ £ © 3 c © cC c cC 5 0 ®
%CES gggmaémm%mgaa g’g)z-g)'g—cwmg‘a ;g)g'ma 85683 §
S & T 2 3£ Qg DE >3 o S 3 o 2 2 3 x & 8 I 8 3535 25 >E S -
o x 8 ¢© 2 D 6 53 X c 0o @™ m £ 2 o 5 S © © © C = o S 20 g &
<] £ hy < 9] o =] £ 5] a 3 = ©
T3 8= Q5 20 NOEE'I‘DS < 3 a8 22555 o £ 60 S E=Sa ¢
§° EE ©35g cET§ 99 £ 9338 gT < T 3 g £
o o8 o ®q 3 3 o K] [ a
© S0 9 o 8 L8 ¢
8 3 S K] 5 Indonesia Philippines
o =4 e~
> © o Vave WM m
g i Mean T Ty
a VEI 3 4 5 345

Figure 7: Exposure to the large clasts hazard (i.e. hazard caused by a kinetic impact >30 J) summarised per region and exposure
510 type for a conditional exceedance probability of occurrence of 50%. Overlying (not stacked) bars illustrate the variability of
exposure with VEI (with the top of the bar representing exposure for that VEI) and dotted lines the median for the region.
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Figure 8: Exposure to inundation from dome collapse PDCs summarised per region and exposure type. The hazard is extracted
for a conditional exceedance probability of occurrence of 50% and considers a 990 m buffer around the flow footprint. Overlying

515 (not stacked) bars illustrate the variability of exposure with the initial flow volume (with the top of the bar representing exposure
for that volume) and dotted lines the median for the region.
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Figure 9: Exposure to inundation from column collapse PDCs summarised per region and exposure type for a conditional
exceedance probability of occurrence of 50%. Bars illustrate the variability of exposure with VEI and dotted lines the median

for the region.
3.2 Hazard seasonality

Tephra hazard, and related exposure, is strongly controlled by wind conditions at the time of the eruption, which vary
across the region as a function of the season. Figure 10 shows the discrepancy between the values of population exposure
presented above, which aggregate probabilities of tephra fallout over all months, and those calculated using wind conditions
from each month separately. We acknowledge two limitations to quantifying our exposure estimates as a function of season.
Firstly, the potential influence of increased rain on hazard modelling (e.g. aggregation increasing proximal sedimentation;
Brown et al., 2012) and post-deposition hazard intensity estimates (e.g. increased load due to water-saturated deposits:
Macedonio and Costa, 2012; Williams et al., 2021) is ignored here. Secondly, the population count provided by Landscan
is an ambient averaged population, which does not capture any demographical seasonal dynamics (e.g. seasonal workers,

tourism etc.).
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Three dominant climatic regions exist across our study area (Aldrian and Dwi Susanto, 2003): i) Sumatra, Java, Lesser
Sunda; ii) Sulawesi, Halmahera/Banda Sea; and iii) the Philippines. Population exposure values for tephra fall from our
study volcanoes in Java generally increase during the peak rainy season (January, February) and decrease during the peak
dry season (July, August, September). For the Philippines, the reverse is true with larger population exposure during the
dry season (January through April). Across all study volcanoes, the percent changes to population exposure estimates as a
result of seasonal variability are typically positive, and within 150% of the whole year estimate across Indonesia (with the
notable exception of Krakatau) but up to 600% in the Philippines, with Camiguin and Pinatubo showing the largest percent
changes (Figure 10).
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Monthly variability in population exposure to tephra accumulations 2 1 kg/m? (VEI=4, P=50%)
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Figure 10: Seasonality patterns in population exposure values (top row) and % changes in population exposure (second row)
from the 50% probability of >1 kg/m? tephra fallout associated with a VEI 4 eruption. Values represent the difference in exposure
value between the tephra hazard estimated from all 2,880 hourly synoptic wind profiles across the whole 12 months of a year
(normalised to the 0, or 100%, line) and a subset of this total population of wind profiles extracted per month, where each line
represents a different month. A value lower than zero or 100% represents a decreased exposure in that month and a value
greater than zero or 100% the opposite. Averaged wind conditions for the dry and rainy seasons for the three main climatic
regions are shown in the next rows for altitudes of 5 to 15 km above sea level.

Three volcanoes in the region best illustrate changes in population exposure as a function of the month of the eruption.

Firstly, an eruption at Krakatau volcano in January leads to a relatively drastic increase in population exposure compared
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to the rest of the year. Considering a VEI 4 eruption and a 50% exceedance probability of occurrence, an eruption in
January leaves ~270,000 people exposed to an accumulation >1 kg/m? compared to ~11,000 (a 2,350% increase) when all
months are aggregated. Population exposure throughout the year at Krakatau is typically low relative to the other volcanoes
in our study as winds predominantly disperse tephra towards the west and over the sea. Wind conditions below ~15 km in
January blow mostly to the north or west-southwest, reducing the westward extent of the >1 kg/m? isopach and extending
it eastwards, affecting human settlements on the western parts of Java. A similar behaviour is observed at Guntur volcano;
although the dominant wind direction is towards the southwest, winds during the rainy months (Dec-Apr) also display
dispersal towards the north and the east, which increase the probability of Bandung (9 million people, northwest of Guntur)
and Garut (100,000 people, southeast of Guntur) being affected by >1 kg/m? of tephra, leading to a small percent increase
from the whole year value, but a large number of people exposed. Finally, winds at Taal volcano show a strong northward
component around the tropopause (~8 to 15 km) during the peak dry season (e.g. January) compared to the rest of the year,
when winds at this height mostly blow towards the west. As a result, eruptions during the month of January increase the

probability of tephra deposits affecting Metro Manila, as demonstrated by Taal’s January 2020 eruption.

4 Volcano ranking

The multi-hazard and multi-exposure analysis presented here allows us to rank all 40 volcanoes according to their exposure
to the four volcanic hazards simulated here (Figure 11). The ranking is performed separately for each hazard and exposure
type and simply reflects the relative rank of the computed exposure in decreasing order. Separate rankings are presented
per VEI scenario, providing 55 “conditional” (i.e. conditional to the occurrence of the eruption scenario) estimates and 15
“absolute” scale (i.e. accounting for the probability of occurrence of the eruption scenarios: Section 3.2) insights for each
volcano. Aggregated results are shown here for each hazard separately (Figures 12 through 15), with individual volcano
results provided in Supplementary Material 3.

The five volcanoes that rank the highest overall (Merapi, Guntur, Dieng, Cereme, Gede-Pangrango: Figure 11) include
ranks that range between 1 and 38 (out of 40), showing the wide variability in exposure when multiple hazards, scenarios
and exposure categories are considered. Raung, Suoh and Pinatubo exhibit ranks across the full range; for example,
Pinatubo ranks as the volcano with the greatest exposure of crop areas to dome collapse PDCs and large clasts from a VEI
4 scenario and as the volcano with the smallest exposure of population to VEI 3 and 4 column collapse PDCs and VEI 5

large clasts, with other permutations falling between rank 4 and 39 (Figure 11a).
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Figure 11: upper) Heat map to show the number of times (cell colour) that a certain rank (x axis) is assigned for each volcano (y
axis) for the 55 ranking permutations across hazard, VEI/volume, and exposure; lower) Individual ranks and exposure estimates
580 for our highest overall ranked volcano, Merapi. The y-axis and text numbers shows the rank for each combination of hazard
(columns), VEI or volume (rows) and exposure (colour), with the size of the circle reflecting the exposure values normalised to
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the largest value for that combination from any of our 40 study volcanoes; the black circle represents this largest value. For
example, for a VEI 3 tephra fall from Merapi, while buildings rank higher (3) than crop area (6), the exposure value for crop
area is closer to the maximum calculated across all of our volcanoes than it is for buildings.

Merapi is the only one of our 40 study volcanoes to remain within the top five ranked volcanoes for population exposure
across all hazards, all VEI scenarios and for both conditional probabilities and those incorporating eruption frequency
(Figure 11b; Supplementary Material 3). For other exposure categories, Merapi remains within the top six of all volcanoes
for the more distal tephra fall and column collapse PDC hazards. For the more proximal hazards of large clasts and dome
collapse PDCs, there is large variation within the lower VEI and volume scenarios while the higher VEI and volume
scenarios all give ranks within the top nine. For example, building exposure to VEI 4 large clast and lower volume dome
collapse PDC scenarios give ranks of 24 and 23, respectively, while the same exposure for VEI 5 large clast and upper
volume dome collapse PDC results in ranks of 1 and 2, respectively (Figure 11b). This supports our earlier finding (Section
3.1) that large clasts and dome collapse PDCs are less likely to affect heavily populated areas unless the eruption is large,
although exposure estimates are still higher than for most of our study volcanoes.

Gede-Pangrango, a stratovolcano ~60 km to the south of Jakarta, ranks as having high population exposure when radii are
assumed (Small and Naumann, 2001; Table 2). For the more distal hazards of relatively thin (>1 or >5 kg/m?) tephra fall
(Figure 12) and column collapse PDC (Figure 15a), this mostly holds true (ranked within the top 12 for all but building
exposure to tephra falls >100 kg/m? from a VEI 3 scenario, which is rank 31). For the more proximal large clast and dome
collapse PDC hazards, Gede-Pangrango for the most part ranks relatively low for all exposure categories (14 to 37), with
the exception of the VEI 5 large clast scenario (ranks 5 through 10). Large clasts typically fall within a 10 km radius for
the VEI 5 scenario at Gede-Pangrango, meaning that they affect the outskirts of a number of towns, e.g. Cibodas to the
northeast, and associated cropland that rises up the valleys between the towns and the volcano (Figure 4e). Ranks are
generally lower for the absolute, rather than conditional, estimates, reflecting a relatively low eruption frequency compared
to other case-study volcanoes. These findings highlight that while Gede-Pangrango has previously been considered the
volcano with the highest population exposure in the world (Table 2), this is not the case when likely hazard footprints and
eruption probabilities are taken into account: while exposure remains high for the more distal hazards, for more proximal
hazards, other volcanoes in our study pose a greater threat.

Closed-vent systems (sealed conduit), such as Gede-Pangrango, Guntur and Cereme, are more likely to produce large
explosive eruptions (Bebbington, 2014), and these are exactly the volcanoes that we want to highlight with our approach:
those that may be currently quiet but that have the potential to cause significant impact when they reawaken. This study
provides a preliminary assessment of areas, populations and assets that may be affected in a future eruption from such
volcanoes, highlighting hotspots where there could be a relatively large impact. Guntur is one such volcano as it lies ~35

km southeast of the second largest metropolitan area in Indonesia, Bandung and ~10 km northwest of the town of Garut
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and hosts abundant crop areas on the plains around the volcano. Guntur is a complex of overlapping stratovolcanoes, with
the youngest cone having produced frequent explosive eruptions (VEI 2-3) between 1800 and 1847 (n=21), making it one
of the most active volcanoes in the study area during this time; however, there have been no eruptions since 1847 (Global
Volcanism Program, 2013) suggesting that the eruptive regime has changed from that of an open-vent to a closed-vent
system. Exposure around Guntur is particularly high for modelled dome collapse and column collapse PDCs and for VEI
5 large clast impact, as hazard footprints reach the outskirts of Garut. For tephra fall, Guntur is ranked within the top 10
volcanoes for all exposure categories and VEI scenarios, with the rank typically decreasing with increasing VEI as
volcanoes with larger distal downwind populations begin to dominate the rankings.

As we did not simulate all volcanic hazards, volcanoes at the lower end of the ranking cannot be assumed to pose low
threat from all volcanic hazards. For example, Krakatau volcano ranks as our lowest threat volcano (Figure 11) but the
2018 tsunamigenic flank collapse, which killed more than 400 people (Williams et al., 2019b), highlights the importance

of considering other volcanic hazards and conducting volcano-specific field studies to determine a volcano’s overall threat.

34



630

635

Figure 12: Individual rankings for calculated exposure using the 50% tephra fall hazard for all volcanoes across the five exposure
categories. Columns °3’, ‘4, ‘5’ quantify the exposure to the conditional occurrence of VEI 3, 4 and 5 scenarios. Column ‘A’
quantifies the absolute exposure, using the sum of all scenarios, where each scenario was weighted by its probability of
occurrence. For each individual column, all volcanoes are attributed a rank between 140, where 1 is considered the highest (i.e.
the largest exposure; dark red cells) and 40 the lowest (dark blue cells). Volcanoes are ordered from highest to lowest ranking
across all conditional categories (equal weighting assumed). For instance, Raung volcano is the 11th ranked volcano for
population exposure to >1 kg/m? when considering a VEI 5 eruption (with the highest and lowest being Cereme and Banda Api,
respectively), but is amongst the volcanoes with the lowest rank (39) for building exposure to 100 kg/m?* when considering a VEI

3 eruption.
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Population (n) exposed | Buildings (n) exposed to Road length (km) Crop areas (km2) Urban areas (km2)
to 21 kg/m> 2100 kg/m?> exposed to 21 kg/m> exposed to 25 kg/m? exposed to 21 kg/m>
VEI 3] a]s[Aal3]a[s5][als[a[s][A|l3[a]s]a[3]a]s]a
Merapi
Tengger Caldera 12 12 O]
Cereme 122 | 30 11 11 | 9 12 11 10
Guntur 7 0 | 9 9 10| 9 0| 9
Kelut 9 9
Dieng Volcanic Complex | 13 9 12 100 13 14
Semeru 11 9 21 11
Galunggung 10| 13| 9 13 1 11 | 14 10 11 | 15 1 11 | 14
Gede-Pangrango 31 10 9 9 9 9 12 12 | 10 9 9
Lamongan 21 12 10 | 10 18 11
Taal 9 10 12| 10 12 14|12 |13 12 15| 11|14 14 18 | 12| 13 13 14| 11
Raung 18 13 11 20| 9 6 13 8 | 16 0 7
Agung 10 14 14| 19 18 11 10 13| 16|24 17 16| 17 | 12 12 13| 16
Mayon 11 16 16| 11|17 7 15 19 20 17 | 10 15 17 | 8 |17 20 2| 12
Papandayan 15 12 13 | 15 | 29 26 13| 21|15 15 12 | 19 |17 18 13 | 18 | 18 15 12 | 19
Rinjani 2 15 15 | 14 |15 29 16 | 17 | 17 14 14 | 13 [ 30 16 15| 14 [ 20 14 15 | 13
Sinabung 24 23 27 [ 32|10 15 23| 28|21 19 20| 30 11 21|19 |23 21 23| 28
Pinatubo 17 17| 23|11 24 24 |30 [B5M 16 16| 27 9 | 16 17 16 | 23
Tangkoko-Duasudara 14 19 24 | 25 10 17 20 11 17 27 25 28 30 31 10 6 20| 21
Bulusan 19 20 18 | 16 | 26 13 19 | 18 | 22 23 22| 20| 15 19 19 | 13 | 26 26 24 | 22
Lokon-Empung 16 18 22| 18 |12 19 18 | 16 | 18 21 25 | 17 28 [245| 15 18 17 | 17
Soputan 7 212 23| 17| 8 17 20| 14|20 22 26| 15|31 29 25| 22|16 19 18| 15
Ranakah 210 2 26| 26 | 18 16 22 | 23| 14 18 21| 23| 19 23 26 |245| 19 28 27 | 30
Tambora 31 28 20| 28 27 31 [ 32|25 27 18| 29|23 21 14| 20|30 30 19| 2
lya 23 24 28 | 27 14 27 | 24| 28 24 23| 24 31 27| 28|24 2232 8
Lewotolo 2% 29 3230|199 22 2| 2| 24 28 31 | 22 26 32|31 |2 23 31|28
Parker 277 27 25 23 21 23 26 30 20 20 22 | 30|32 3 30
Lewotobi 26 25 29| 22 |28 31 25| 22|30 29 28| 21|21 25 29| 23|28 29 29| 24
Suoh 20 28 26 25 13 22 24|27 |27 25 26
lliwerung 30 30 29 | 23 29 [ 27 | 29 31 26 | 25 27 29 | 25 27 25
Camiguin 29 35 19 | 24 | 2 19 | 28 | 27 133 20 | 21 25
Lerobol 26 30 31 30 29 26 28 30 31 24 28
Gamalama 20 | 31 21 | 27 28 30 | 19 | 27 2 21 | 31 20
Paluweh 31 | 31 | 24 31 29 24 23| 26
Dukono 28 14
Awu 25 25 29
Gamkonora 16 31
Krakatau 21 | 20 24 | 18 21 | 18
Karangetang 25 29
Banda Api 13 30 31




Population (n) Buildings (n) Road length (km) Crop areas (km?) Urban areas (km?)

VEI 3 [a]s5[a|l3]a[s[a][3]a]s[a[3]a]s]A[3][a]s5]AaA
Guntur 13 22 18 22
Dieng Volcanic Complex 22 23 22
Merapi 14 2 24 23 22 19
Papandayan 17 2 23 19 [ 15 | 2 14 12 |155 13 | 22 | 22 205 12 |185
Galunggung 6 12 | 11 20| 2 21 11 23 19 | 22 23 15.5
Tengger Caldera 205 19 22 12 | 2 14 23 20
Suoh 235 14 21 | 18 12 12 23
Lokon-Empung 25 20 22 27 24 29 22
Sinabung 17 | 26 | 19 18 16 | 26 | 22 19 16 23 %5 | 22 15 18 | 24
Ranakah 2 26 18| 17 29 13| 21 21|23 19 22| 14| 22 4 14 |185
Taal 15 19 | 12 | 255 20 2 23 22 23 17 | 18 | 22 165 19 | 155
Gamalama 19 13 21 12 22 17 18 23 22 13
Soputan 15 14 2 30 19 23 25 | 12 | 22 15 |12.5
Gede-Pangrango 30 29 24 22 23 215 22
Cereme 30 30 14 14 | 2 26 135| 23 18 15 | 22 12.5
lliwerung 18 28 19 30 23 13 26 | 20
Lamongan 15 14 | 24 28 2 55| 23 14 19 22 205
Mayon 30 20 26 2 15 23 22
Kelut 235 18 | 23.5 2 2 29 23 22
Awu 12 23 25 17 | 27 | 2 22 25 23 275 2 | 22 24 | 24
Gamkonora 175 080 27 | 23 13 25 | 2 12 23 22 30
Lewotobi 30 2 24|29 |27 30 30 |23| 2 29 | 18 | 23 155 18 | 21 | 22 25 | 24
Lewotolo 30 14 28 |30 |17 15 25 | 31| 22 27 | 21| 23 20 21 |265] 22 28
Paluweh 205 30 21 22 29 | 2 20 155 30 | 22 165
Agung 25.5 11 | 20 | 255 15 | 18 | 2 13 18 | 23 15 | 13 | 22 [ 33 2| 24
Bulusan 16 | 13 | 12 27 18 | 13| 22 25 20| 12 | 23 17 14 | 17 | 22 25 26 | 24
Semeru 27 23|15 |16 17 29 | 16 | 2 17 23 12 16 2 33 2| 14
Camiguin 12 20| 28 28 21 | 24 | 2 24 23 215 235| 28 | 22 23 29
Tangkoko-Duasudara 28 21 19 28 | 22 15 13 23 23 22 13 18.5
Pinatubo 15 23 22 13.5| 23 22 18
Banda Api 255 13 27 16 27 2 23 30 | 22 24
Karangetang 14 29 | 25 25 19 | 2 23 26 16 | 22 23 24
Rinjani 26 | 21 12 26 | 2|2 23 24 28 22
lya 17.5 13 | 16 | 235 17 | 2 26 23 29 | 22 17 | 185
Tambora 16 24 18 24 2 23 2 14
Leroboleng 20 2 28 28 23 27 22 27
Dukono 21 22 23 22
Raung 2 21 | 23 275 235|265 22
Parker 27 2 16 23 23 24 20 22
Krakatau 22 30 | 22 23 22

Figure 13: Individual rankings for calculated exposure using the 50% large clast hazard. Column names, volcano order and cell
colour as for Figure 12.
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Population (n) Buildings (n) Road length (km) Crop areas (km?) Urban areas (km?)
Flow volume (m?): 4.5E+05 | 9.8E+06 | 4.5E+05 | 9.8E+06 | 4.5E+05 | 9.8E+06 | 4.5E+05 | 9.8E+06 | 4.5E+05 | 9.8E+06
Dieng Volcanic Complex 12 19
Guntur 23.5 25
Lokon-Empung 12 22.5
Suoh | 16 20 12
Merapi 11 235 22.5
Tengger Caldera 13.5 23.5 25.5
Papandayan 13 12 16 22,5 26
Sinabung 13 235 25.5 22.5
Pinatubo 20.5 24 11 23.5
Camiguin 24 13 255 11 | 225
Gamkonora 18 235 25.5 27.5 22.5
Karangetang 11 12 15 17 23.5 13.5 225
Kelut 17 22 24 24 22,5
Soputan 23.5 25.5 27.5 225
Dukono 11 23.5 25.5 27.5 225
Awu 15 23.5 255 27.5 22,5
Mayon 25 21 21 19 23.5 225
Gede-Pangrango 15 14 14 15 235 25.5 27.5 22.5
Semeru 22 17 14 23.5 25.5 13.5 22.5
Rinjani 20 22 23.5 25.5 A7) 22.5
Gamalama 20.5 18 17 20 23.5 25.5 27.5 22,5
Lamongan 135 19 23.5 25.5 27.5 225
Banda Api 16 25 27 23.5 255 27.5 225
Agung 23 26.5 23 25 23.5 25.5 27.5 225
Cereme 19 25 18 21 23.5 25.5 S 22.5
Tangkoko-Duasudara 23 26 235 25.5 27.5 22.5
Bulusan 16 18 23.5 25.5 AT 22.5
Krakatau 22 23 23.5 25.5 27.5 22,5
Parker 26.5 23.5 25.5 27.5 22,5
lya 23.5 255 27.5 22,5
Ranakah 23.5 25.5 27.5 225
Paluweh 23.5 25.5 27.5 22,5
Lewotolo 23.5 25.5 LTS 22.5
Lewotobi 235 25 P 225
Leroboleng 235 25.5 27.5 22.5
lliwerung 235 25.5 205 22,5
Raung 23.5 25.5 27.5 225
Galunggung 23.5 25.5 27.5 225
Tambora 23.5 25.5 27.5 225
Taal 23.5 25 27.5 22.5

640 Figure 14: Individual rankings for calculated population exposure for the 50% dome collapse PDC hazard for all volcanoes
across the five exposure categories. Exposure is provided for the smaller and larger volume scenarios using the 990 m buffer.
Volcano order and cell colour as for Figure 12. Dome collapse PDCs are not VEI dependent and so the absolute ranks are not
calculated, and these results are therefore applicable to the conditional estimate.
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Population (n) Buildings (n) Road length (km) Crop areas (km?) Urban areas (km?)
VEI 3| a4a[s5s[A|3]a]s]A|3]a[s5]A|3[]a[s][Aa|[3]a]s]a
Cereme 11 12
Merapi
Gede-Pangrango
Guntur
Mayon 14 10 14
Agung 13 15 14 2 16 |15| 10 10 12| 16
Dieng Volcanic Complex 9 | 10 127 /10 11 13|10]| 11 13 10| 11
Semeru 15 15 12 19 10
Galunggung 20 14 10 | 19 | 10 14 | 17 16 11| 19 | 12 14 | 15 15
Lokon-Empung 11 100|109 9 10| 9|30 30 | 27 10
Sinabung 27|13 13 12| 24| 12 15 15| 24 13 | 18 27
Papanday 17 | 18 16 14 | 21| 10 13 18 | 20 | 14 14 15 | 17 | 12 17
Lamongan 26 24 22| 16 16 17 12| 11| 9
Kelut 15 21 16 | 18 | 16 11 12 | 15 | 13 19 13.5
Raung 16 2 112|132 199|102 18
Tengger Caldera 25 19 18 | 12 12 15 18 12 17 17 13 14 24 20 19 [135
Soputan 2 12 14 |10| 16 11 13| 11| 14 17 19| 13 |28 25 24| 22|17 16 15| 12
Bul 13 16 19 |14 | 12 14 17 |12 |15 21 21|16 |11 15 17 | 12 | 23 24 27 | 195
Gamalama 1 15 9 17 20 1 2 2 13 17 21| 9 |
Ranakah 17 20 22 | 24| 14 19 24| 23 14 13| 21|20 24 22| 24|16 18 20 | 24
Tangkoko-Duasudara | 21 23 26 | 29 | 15 15 18 | 22 | 13 18 20 | 25 14 15 16 | 18
lya 14 17 21| 21|20 18 19| 20| 30 30 20 21 24| 24
Rinjani 29 21 17 | 20 |32 28 23| 26 [/35 20 16| 18 | 26 23 19 | 20 23 18 | 24
Camiguin 18 22 25 | 26 | 21 23 27 | 28 | 19 245 28 | 29 | 23 26 27 | 27 | 25 31 31 [305
Lewotobi 22 26 27 | 23| 28 31 32| 27|23 28 27| 2|19 20 23| 19|21 25 26 [195
Taal 286 23 | 22|23 25 25| 19 [ 33 34 24| 26|18 19 21| 18 29 23| 24
Awu 23 27 29| 25| 17 20 26| 17 | 21 245 26 | 23 2 2 25| 2
Lewotolo 28 29 30 | 25 27 30| 29| 20 23 31|27 |21 22 26| 23| 28 26 30285
Suoh 27 26 25 15 16 18 | 21 | 27 27 29
Pinatubo 22 26 29 9 10 11| 16
Parker 28 21 2% 27 23 24 21 20 | 27
Leroboleng 30 24 29 30 27 29 29 26 28 28 |305|
Gamkonora 24 25 30 | 28 | 30 29 | 30 | 29 30 28.5
Karangetang 26 30 18 25 25 17 30 21
Dukono 24 29 30 28 29 22
lliwerung 28 28 25 28 28 27
Tambora 24 29 27 25 27
Paluweh 27 29 30
Banda Api 27 30
Krakatau

Figure 15: Individual rankings for calculated exposure using the 50% column collapse PDC hazard. Column names, volcano
order and cell colour as for Figure 12.

Overall, the consideration of eruption frequency into the rankings does not considerably change the overall trend across
our volcanoes, scenarios, hazards or exposure categories (Supplementary Material 3). Disparity in rankings across the
volcanoes is strongly driven by variability in location affected, and thus exposure. There are nevertheless interesting case-
studies to be observed. Considering the population exposure to >1 kg/m? of tephra fall (Figure 12), Cereme ranks 1st when
considering the conditional occurrence of eruptions of VEI>4, but ranks 12th when the absolute probabilistic hazard

assessment is considered, i.e. when the probabilities associated with the three VEI scenarios are used to weight the
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exposure. In contrast, Raung volcano ranks between 11-18 when considering the conditional occurrence of VEI 3-5
separately but ranks 4th when considering absolute probabilities. These different behaviours lie in the eruptive histories of
the individual volcanoes and the computation of the probabilities of occurrences for each VEI (Section 2.3). Raung is a
more frequently erupting volcano, with 62 recorded eruptions since 1800, compared to just three at Cereme in the same
time period. This translates into a higher annual probability of an explosive eruption for each VEI at Raung than Cereme,
which considerably influences the exposure rankings for these two volcanoes. Although the occurrence of large eruptions
at Cereme results in high exposure (Figure 6), eruptions of VEI 3, 4 and 5 have annual probabilities of occurrence of 0.4%,
0.2% and 0.1%, respectively. By contrast, simulated eruptions from Raung result in, on average, one third of the total
exposure attributed to Cereme, but their annual probabilities are on average one order of magnitude higher (e.g. 3.6%, 1.6%
and 0.6% for VEI 3, 4 and 5, respectively). This observation highlights the benefits and pitfalls of conditional vs absolute
probabilistic hazard assessments, and their combined use and understanding is required to fully inform decision-making

during various phases of volcanic crises.

5 Limitations

As with any consistently applied regional approach to hazard or exposure assessment, there are limitations to using widely
available data. We discuss these limitations in more detail over the next sections to highlight how our results may differ

with further data and/or study.

5.1 Hazard approach

A regional approach to hazard simulation can omit local context (e.g. recent unrest crises) and data (e.g. unpublished
eruption records) that could be included within a volcano-specific hazard assessment. By employing more generic inputs
across all volcanoes, our results are relevant and comparable at a regional scale, but caution should be used in considering
such assessments at the individual volcano scale. However, they do provide a solid foundation from which more detailed

assessments can be applied. Specifically, the following factors could be improved in a local single volcano assessment:

% By using global datasets for ESPs (e.g. GVP, VEI classification), datasets can be biased towards particular eruptions,
and more recent times.

% Simulating with a continuous spectrum of, rather than fixed, ESPs for each VEI scenario. This is particularly important
for capturing the larger exposure estimates, as ESPs that represent the upper end of a VEI, while lower probability
than the fixed ESPs we chose or those at the lower end of a VEI, are more likely to produce the larger footprints and

thus the larger exposure values (Sandri et al., 2016).
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% Since we modelled hazard probabilistically across 40 volcanoes, we were constrained to using empirical models that
do not fully capture the physical processes underpinning volcanic phenomena. This is an unavoidable consequence of
the computational power required for physical models.

% To constrain the scope of this study, other volcanic hazards such as lahars, lava, gases, volcanogenic tsunami and
lightning were not included.

% For tephra, we considered the hazard from both tephra fall and large clasts, and for PDC, we considered the hazard
from both column collapse and dome collapse generation mechanisms. Not all volcanoes are likely to produce all
hazard types, and we do not distinguish here; therefore overall rankings, i.e. the ordering of volcanoes in Figures 12-
15, may require further interpretation for certain volcanoes. However, individual values and rankings are still
appropriate and we provide all data so that the reader can choose certain assessments only if preferred.

%  Some of our case-study volcanoes have produced PDCs that differ in their generation mechanism, and thus dynamics,
from the dome and column collapse mechanisms simulated here. For example, the 2010 eruption of Merapi produced
PDCs from boiling over, dome explosion/lateral blast, fountain collapse and dome collapse over the course of 11 days
(Jenkins et al., 2016; Komorowski et al., 2013). In the case of repeated PDCs, our modelling does not capture
modification of the subsurface topography or smoothness as a result of previous deposits, which would affect runout.
Additionally, the use of the SRTM 2000 DEM for modelling could result in less reliable inundation areas where major
topographic changes have occurred since its acquisition, although we did not observe this effect at Merapi (Figure 4

a,b).

5.2 Exposure data

The limitations and features of regionally applicable exposure data have been well detailed for our data sources (see
references in Section 2.4), although the interpolation or extrapolation of our data to a consistent grid for calculation across
different hazards and exposure categories inevitably meant that some resolution in data was lost. For example, we
disaggregated the number of buildings and people within a grid cell and calculated exposure to a hazard as the proportion
of each of our 90 x 90 m cells covered by the hazard so that any clustering of buildings at the original scale (~1 km? for
people and 36 m? for buildings) has been lost; we don’t expect this to have a major effect on our overall results but for
detailed local inspection there may be some variation as a result. We also noticed a small number of irregularities in our
building exposure results that unavoidably arose as a result of the dataset limitations, and we note them here; as with the
interpolation, they do not have a major effect on results but would be worth investigating further if results are interpreted

at the individual volcano scale:
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% The GHSL data used to spatially distribute buildings exhibits a 300 km long horizontal line through central Java that
appears to overestimate built up areas immediately to the south and underestimate built up areas immediately to the
north. This affects the distribution of our buildings and the artifact comes within 30 km of several volcanoes in our
analysis.

% A second artefact in the GHSL is its interpretation of built-up areas using remote-sensing. We found that in a small
number of specific locations, bare rock areas such as riverbeds (e.g. to the northwest of Kelud) or volcanic craters
(e.g. Gede-Pangrango) had been misinterpreted as built-up areas resulting in the disaggregation of buildings into

areas where they are unlikely to exist.

6 Discussion and conclusions

With this study we have evaluated five categories of exposure to four volcanic hazards and three VEI scenarios to give
probabilistic outputs for 40 high-threat volcanoes. Ranking was performed using both conditional probabilities, where the
exposure was conditional on the occurrence of the eruption scenario, and absolute probabilities, which accounted for the
probability of occurrence of the different eruption scenarios considered at each volcano. We explicitly list our
simplifications and how different initial conditions were determined. This work expands significantly upon previous
approaches to regional volcanic hazard and exposure assessment that considered concentric radii to reflect hazard extent
and/or population exposure only. By probabilistically modelling multiple volcanic hazards and coupling them with open-
access exposure data, our approach provides a consistent and transferable method for comparing hazard and exposure at a
volcano and across multiple volcanoes, hazards and exposures. While the modelling provides valuable information that
can act as a foundation to more detailed local assessments, especially for volcanoes that have limited or no hazard and
exposure assessments already conducted, it is not intended to replace local assessments. Wherever possible, local context,
data and knowledge should all be incorporated.

We found Merapi to pose the greatest threat when all hazards, exposures and VEI scenarios are considered with equal
weighting. For a VEI 4 scenario, a c. 1 in 100-year event at Merapi, approximately 7.8 million people, 210,000 buildings,
38,000 km of road, 930 km? of crops and 1,150 km? of urban area have a 50% probability of being affected by tephra fall

accumulations 21 kg/m?. The threat that Merapi poses is well appreciated and it is likely one of the most studied volcanoes

in Indonesia. A key aim of our study was to highlight those volcanoes that may have been overlooked, perhaps because
they are not frequently or recently active, but that have the potential to affect large numbers of people and assets. Guntur

volcano in Java fits that description well, with comparable, and in some cases larger (e.g. Figure 8) exposure than Merapi.
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Retnowati et al. (2018a) carried out a current and projected exposure estimate for concentric radii of lava flow and

exponentially thinning tephra fall, extending it towards estimates of building damage and loss. A more detailed local hazard

and risk assessment for Guntur would be of high value, especially as the volcano appears to be a closed system at present

so that a future eruption may be larger than those experienced in the recent past.

The GIS framework developed for this work is modular with the code freely provided (github.com/vharg/VolcGIS) so that

future works can simply plug in updated or improved hazard or exposure data. For example, the key improvements that we

anticipate will be most influential in improving our findings are:

*

Field studies: improving our knowledge of the past behaviour at volcanoes in the region, and their likely ESPs, will
help us refine our model outputs. The rankings provided by this method can support the prioritisation of which
volcanoes to focus risk reduction activities on.

The incorporation of more sophisticated hazard models that can better describe the physical processes underpinning
volcanic hazards; such models also require greater data and computing resources, which will hopefully improve over
time.

The open-access data underpinning our hazard and exposure assessment, e.g. DEMs, Open Street Map, are expected
to improve in quality and resolution going forward and these can be used within the framework to provide updated,
higher resolution outputs.

A robust and evidence-based method for aggregating exposure scores across multiple hazard and exposure categories,
potentially multiple different aggregations are needed to cover diverse aspects such as life safety, loss of livelihoods

or economic impacts.

We also identify further areas for study that could widen the assessment provided here:

*

Extending the assessment to include all hazardous volcanic phenomena and all relevant exposure categories. These
likely vary on a volcano-by-volcano basis, e.g. volcanogenic tsunami will not be applicable to all volcanoes, nor will
the exposure of fish farms.

This study is limited to the quantification of the exposure of populations and their assets to a range of volcanic hazards.
Future efforts should contribute to the development of applicable - rather than theoretical - models to quantify critical
aspects of vulnerability which, when incorporated into such GIS frameworks as the one proposed here, will allow to
estimate measures of impact and risk as a function of the spatial distribution of hazard intensities and exposed assets.
Efforts to better constrain the relationship between hazard intensity and impact have dominantly focused on the hazard

caused by tephra fallout. In parallel, the impact of other hazards is often oversimplified. For instance, our method
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considers a binary impact from PDCs where inundation implies impact. Recent studies have demonstrated that this
assumption is disproved by field observations (Jenkins et al., 2013; Lerner et al., 2022). Shifting from probabilistically
estimating exposure to impact for flows requires advances in two directions. Firstly, there is a need for flow models
compatible with probabilistic approaches that predict not only a binary inundation but also some measure of impact
intensity metrics (e.g. flow depth, dynamic pressure) whilst requiring ESPs that can realistically be estimated for
purposes of hazard assessments. We acknowledge that the complexity of the physical processes governing such flows
makes this task challenging. Secondly, more research should be dedicated to investigate how, when and why flows
can affect populations and their assets. Again, the diversity of flows (e.g. dense vs dilute components for PDC) makes
this task complex, but post-event impact assessments, experimental and theoretical studies all contribute to establishing
the baseline for better vulnerability and impact models.

Finally, volcanic risk is intrinsically dynamic. On the one hand, hazards can interact in a nonlinear fashion. For
instance, forecasting lahar triggering is challenging as it depends on the properties of the fresh pyroclastic deposit, the
topography and the rainfall magnitude and intensity. Similarly, large clasts can perforate roofs, but the presence of
tephra might cushion the impact and reduce this hazard (Williams et al., 2019a). On the other hand, exposure and
vulnerability also vary in space and time. For instance, the risk to the tourist hikers in Southeast Asia varies as a
function of the day and the season, exposing populations from various cultures and awareness of volcanic hazards.
Here, we have explored the variability of population exposure as a function of hazard seasonality, and the proposed
framework could also be applied to estimate the changes in exposure using yearly datasets of land cover and
population. Future efforts should therefore aim at modelling the impact and risk from volcanic eruptions as a dynamic

rather than static process
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Appendix A: Model input parameters

Table A1: Model input parameters, and their rationale, used for simulating tephra dispersion and fallout.

Inputs
Hazard; Model Parameter Data source/Rationale
VEI 3 VEI 4 VEI 5
Tephra fall; Erupted mass 32x 32x 32x The midpoint of the logarithmically bounded range
(kg) 10'° 10" 102 of bulk volume provided by the VEI classification,
Tephra2 assuming a bulk density of 1000 kg/m?.
(Bonadonna et al.,
2005) Plume height 13 20 27 Based on the original classification of Newhall and
(km above Self (1982). Single values, rather than stochastically
vent) sampled ranges, were used to prevent the simulation
of a broad spectrum of eruption intensities that could
not be equally applied across the wide range of
volcanoes and eruptive styles considered in this
regional study, thus making results non-comparable
across volcanoes. The plume height is the mid-point
of the calculated column heights using Eq. 3 of Mastin
et al. (2009) based on the minimum and maximum
volumes defining each VEL
TGSD: p=- pn= pn= The total grain size distribution (TGSD) is one of the
mean () 0.74 0.9 1.35 most difficult parameters to constrain since it is
S.D. (o) c=24 c= c= dependent on the collection of well preserved field
(phi) 1 1.16 data (Pioli et al., 2019). We use analogue TGSDs of
Grain size Ruapehu (1996; Bonadonna et al 2005) for VEI 3,
range: Kelud (2014; constrained from TEPHRA?2 inversion
7 to -6 phi modelling by Williams et al. 2020) for VEI 4 and
Pinatubo (1991) for VEI 5 (Volentik, 2009 compiled
from Koyaguchi and Ohno; 2001).
Particle Pumice: 1000 Scollo et al. (2008) suggested that tephra density does
density Lithics: 2600 not greatly affect the simulated results in Tephra2 and
(kg/m?) so we use typical values here.
Plume model alpha=3; beta=1.5 Uses a beta distribution to constrain a plume with the
majority of tephra dispersed at ~80% height.
Diffusion 5000 These empirical parameters describing atmospheric
coefficient diffusion in Tephra2 should ideally be constrained
(m/s) through inversion of field deposits. As this is not
possible here, for consistency across the regional
Fall time 4000 analysis, we use the values of Biass et al. (2012) for
threshold (s) subplinian/Plinian eruptions of Cotopaxi volcano.
Eddy 0.04 Standard for the Earth’s atmosphere.
constant
(m?/s)
Wind Synoptic hourly data from a 10 year record (2010-2019) at the point closest to each
conditions volcano. Geopotential height, u- and v-wind components were retrieved at a spatial

resolution of 0.25° for 37 pressure levels from the European Center for Medium-Range
Weather Forecasts (ECMWF) ERAS (Hersbach et al., 2020) - the highest temporal and

anatial reanalveic datacet available The data was formatted to <inole nrofile< for




Table A2: Model input parameters, and their rationale, used for simulating large clast emplacement.

Inputs
Hazard; Model Parameter Data source/Rationale
VEI 3 VEI 4 VEI 5
Large clast; Clast density 2.5 Lithic size corresponding to a kinetic energy of
(g/cm?) 30 J, identified as a threshold for skull
Rossi et al (2019) fracturation and roof penetration. A similar
Clast diameter 3 energy can be produced by a 5.6 cm pumice

(cm) with a density of 0.63 g/cm®
Atmospheric As for tephra fall, with the additional parameters of temperature and humidity, the
conditions latter being used to estimate air density and viscosity. Three-dimensional
atmospheric data were retrieved using the LagTrack code (Poulidis et al., 2021).
Topography Elevation data source the Shuttle Radar Topography Mission (SRTM) 1 Arc-Second

Global dataset. acquired in 2000 to provide a continuous elevation surface at a resolution
of ~30 m (Farr et al., 2007). The extent of each selected volcano is set to be 60 km from
the vent. The higher resolution ~8 m DEMNAS (Julzarika, 2019) was found to be less
accurate for steep volcanic terrains, and is only available for Indonesia.

Table A3: Model input parameters,

and their rationale, used for simulating dome collapse PDCs.

LAHARZ (Iverson et al. (1998)
developed by Schilling (1998) and
adapted to MATLAB by Rudiger
Escobar-Wolf, using the PDC
calibration of Widiwijayanti et al.
(2009))

Inputs
Hazard; Model Parameter Data source/Rationale
Small Large
volume volume
scenario | scenario
Dome collapse PDC; Volume 4.5x 9.8 x This semi-empirical model is based on a scaling
(m3) 10° 10° argument that relates flow volume (V) to channel

cross sectional area (A) and planimetric area (B) as
follows: A = CV”2/3, B=cV”2/3. The model was
originally calibrated using data from 27 lahars (C
=0.05, c =200), however more recent calibrations
have been undertaken to derive coefficients for
alternative  flow  types, including PDCs
(Widiwijayanti et al., 2009). In this work we use
the calibration presented by Widiwijayanti et al.,
(2009) (with C = 0.05, ¢ = 40), which is based on
data for BAF’s acquired at Soufriere Hills, Merapi,
Colima and Unzen volcanoes.

Simulated flow volumes are the 50" and 90"
percentiles obtained from the global block and ash
flow dataset Flowdat (Ogburn, 2016). The 10th
percentile is not included here as such volume
usually results in flows restricted to the crater area.

Topography

As for large clasts




Table A4: Model input parameters, and their rationale, used for simulating column collapse PDCs.

Inputs
Hazard; Model Parameter Data source/Rationale
VEI 3 VEI 4 VEI 5
Column collapse PDC; | Column collapse 1300 2000 270 The height of column collapse for sustained
height (m) 0 eruptions has been suggested to represent ~10%
ECMapProb [130] [200 of the total column height (Wilson et al., 1978)
(Aravena et al., [Variability ] [27 and so we consider our collapse heights as 10%
2020) applied] 0] of the heights used for tephra fall modelling.
A +/- 10% range was applied to represent the
variability in this assumption.

Vent location

Summit or centre of active

The vent location was selected based on the

crater summit or active crater centre of each volcano,
[Variability determined from Google Earth and eruption
applied] [crater radius] records.

Variability was based on the size of the summit
area or crater at each volcano, determined from

Google Earth.
H/L 0.24 The H/L ratio (a value based on the ratio of the
height to length travelled by flows in the past)
[Variability [0.08] was taken from the median value in pumice flow
applied] category of the FlowDat database (Ogburn,

2016).
The variability represents the middle 50% of
values in the FlowDat database (Ogburn, 2016).

Topography

As for large clasts and dome collapse PDCs
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Appendix B: Probabilistic forecasting of dome collapse PDC travel directions

A MATLAB implemented methodology was developed to rapidly analyse a volcano’s summit topography, using this to
assign probabilities to the travel directions of future effusive flows (here applied to dome collapse PDCs) . Inputs to the
code include: a DEM, coordinates of the crater center, the radius of the crater or summit region and the swath length. The
swath length is the entire length from the start point over which topography is considered in the calculation; it should
extend outside of the crater or summit region and include any localized topographic highs. For this study we have used the
‘summit width’ parameter obtained from the global database of composite volcano morphology (Grosse et al., 2014) to
identify swath lengths, with the addition of a 20% buffer to ensure the full summit topography was included in the
calculation. For volcanoes not present in the database, a default length of 1500 m is used. The procedure is as follows:

1. Upon acquisition of the swath length, 360 swath profiles (SW1.360) (each with a width of 50 m) are created radiating
from the starting coordinate to the full swath length. Each swath consists of n cells from start to the full length (see
Figure B1)

2. At each cell along the length of the swath, elevation values (E) are compared with elevation values in the total
population of swaths at position # by computing percentiles (P). In Figure B1.1 cell populations are denoted by colour,
for example all £; values are considered a population, as are all £ ...E». This way elevation is analysed at each radial
distance step from the start point to the full swath length. Elevation values E1.n are transformed into P1. such that (Eq.
B1):

SWi(EL), SWo(E1) ...SWseo(E1) -> SWi(P1), SW2(P1) ...SW360(P1)
SWI(E2), SW(E2) ...SWs60(E2) -> SWi(P2), SW2(P3) ...SW360(P2)

SWi(Es), SWA(Es) ...SWsso(En) > SWi(Ps), SWo(Ps) ...SWsso(Ps).
(B1)

3. Percentiles are summed down-swath to get a final (¥) value that can be considered a proxy for the elevation. Values

are inverted and interpolated to 10° intervals, such that high (¥) values are the more likely flow directions (Eq. B2):

Vi=2SWi(Pin)
(B2)
4. To estimate probabilities (Pr) for each swath, we calculate (Eq. B3):

5. Pry=Vi/2XViss
(B3)
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The tool outputs a table featuring 36 10°, azimuth bins, their associated probabilities and the XY coordinates for each start
point. In this work output coordinates were fed into the dome collapse PDC-calibrated LAHARZ, and dome collapse PDCs
were simulated in all directions. Binary LAHARZ output hazard footprints were multiplied by their travel direction
probability and aggregated to produce a final conditional dome collapse PDC probability raster that quantifies both the
probability of travel direction and the probability of inundation at each grid cell.

Figure Bl: A graphical representation of the
methodology used to quantify dome collapse PDC
travel direction probabilities. Radial swaths (SW;) are
initiated from the crater start point (X,Y). For each
distance step from the start to the full swath length,
populations of elevation values E; (represented by cells
of the same colour) are compared and the percentile
calculated.

Swath length
Crater radius
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Code availability

The open-source Python code, VolcGIS, which implements all of the spatial operations required for our exposure analyses

is freely available at github.com/vharg/VolcGIS.

Data availability

All hazard and exposure data, and associated format descriptions, are provided in user-friendly format and openly available

at the NTU research data repository DR-NTU (Data), via the links below:

Supplementary Material SM1 - Hazard model outputs: https://doi.org/10.21979/N9/B8O0UMQO

Supplementary Material SM2 - Eruption Frequency-Magnitude: https://doi.org/10.21979/N9/CGKS6C

Supplementary Material SM3 - Exposure results: https://doi.org/10.21979/N9/OUJPZO
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