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Abstract. Rainfall-Induced Landslides (RIL) are an issue in the Southern Andes nowadays. RIL affected the
population losing lives and critical infrastructure. Rainfall-Induced Landslide Early Warning Systems (RILEWS)
can reduce and mitigating economic and social damages related to RIL events. The Southern Andes do not have an
operational-scale RILEWS yet. In this contribution, we present a pre-operational RILEWS based on the Weather and
Research Forecast (WRF) model and geomorphological features coupled to logistic models in the Southern Andes.
The models have been forced using precipitation simulations. We correct the precipitation derived from WRF using
12 weather  stations  through  a  bias  correction  approach.  The  models  were  trained  using  57  well-characterized
Rainfall-Induced Landslides (RIL) and validated by ROC analysis. We show that WRF has strong limitations in
representivity the spatial var of the spatial variability of the precipitation. Therefore, accurate precipitation needs a
bias correction in the study zone.  Accurate precipitation simulatiowith  high predicting capacity  (area under the
curve, AUC of 0.80) using daily precipitation data and slope. We conclude that our proposal could be suitable at
an operational level under determined conditions. A reliable RIL database and operational weather networks
that allow real-time correction of the mesoscale model in the implemented zone are needed. The RILEWS
could become a support to decision-makers during extreme-precipitation events related to climate change in
the south of the Andes.

1 Introduction

Rainfall-Induced Landslides (RIL) are natural hazards that generate a large number of casualties and economic losses every

year. Rainfall, soil and slope play a key role in RIL genesis that must be evaluated in each case. Despite the RIL research in

recent years, the RIL cannot be avoided. Rainfall-Induced Landslide Early Warning Systems (RILEWS) become a powerful

alternative for mitigating human losses and reducing infrastructure damages (Guzzetti et al., 2020; Chikalamo et al., 2020;

Hermle et al., 2021). The increase of Rainfall-Induced Landslides (RIL) events showed devastating effects, including loss of

human life and destruction of the natural  and urban environment (Marjanovi  et  al.,  2018).  Recent RIL affected critical

infrastructure and highways in populated areas (Chikalamo et al., 2020; Fustos et al., 2020a; Peruccacci et al., 2017; Fustos

et al., 2021). In South America, RIL has caused high social and economic impacts; they require better evaluation in future
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(Sepulveda & Petley, 2015). The present work evaluates the design of a RILEWS using a mesoscale atmospheric model

coupled to a logistic model to mitigate the effect of RIL in the Southern Andes. 

Due to new extreme rainfall events related to climate change, RIL events are increasing in the Southern Andes and other

parts of the world. To mitigate the impact of extreme precipitation RILEWS have gained interest to mitigate the impact of

RIL using different approaches (Peres & Cancelliere, 2014; Tiranti et al., 2014; Sättele et al., 2015; Segoni et al., 2018;

Cremonini and Tiranti, 2018; Fan et al., 2019; Tiranti et al., 2019; Thirugnanam et al., 2020; Bernard and Gregoretti, 2021;

Lee et al., 2021). RILEWS based on precipitation thresholds shows good agreement but do not consider the effect of soil

moisture, leading to bias in their predictive capacity (Marra et al., 2017; Zhao et al., 2019; Chikalamo et al., 2020). Some

historical-based  RILEWS  with  long-term  observations,  climate  reanalysis  models  and  atmospheric  mesoscale  models

experiment issues related to the spatial and temporal resolution reducing the performance due to low precipitation accuracy

(Lazzari & Piccarreta, 2018; Tichavský et al., 2019).  

RILEWS requires  accurate  precipitation data delivered from local  weather  stations in dense weather  networks,  satellite

estimations and atmospheric mesoscale models. However, atmospheric mesoscale models showed incapable of representing

accurate  precipitation  fields  in  areas  with  complex  topography like  the  Southern  Andes  (Yáñez-Morroni  et  al.,  2018).

Currently, mesoscale models are restricted to the quality of their atmospheric forcings, needing to generate ensembles to

obtain approximate  solutions (Wayand et  al.,  2013).  Moreover,  the mesoscale  models  demand intensive computational

efforts that increase the difficulty of coupling to RILEWS (Yáñez-Morroni et al., 2018; Schumacher et al., 2020; Yang et al.,

2021). Recently, mesoscale atmospheric models coupled to local weather stations allow delimitating susceptible to RIL areas

means deterministic numerical models (Fustos et al., 2020a). Nowadays, bias correction approaches contribute to reducing

the time computing of mesoscale models, improving the estimation of precipitation using in-situ stations (Srivastava et al.,

2015; Bannister et al., 2019; Heredia et al., 2018; Jeong & Lee, 2018; Osman et al., 2019; Worku et al., 2020). Therefore, a

correct implementation of mesoscale models could allow accurate precipitation in RILEWS. Nonetheless, the application of

corrected mesoscale models in RILEWS in complex topography has not been evaluated yet.  

The objective of the present work was to evaluate the implementation of a RILEWS based on mesoscale atmospheric model

coupled to logistic model. We corrected mesoscale models (models that allow represent atmospheric process to synoptic-

scale) using weather stations, generating likely-RIL probability zones for the first time in the Southern Andes. The paper is

structured as follows: after the introduction, the second section describes the study site and its pertinence to implement

RILEWS. In the third section, we describe the data and methods, including the calibration and validation procedures. In the

fourth section, we outline the main results of the proposed RILEWS, focusing on the quality of predictors and model outputs.

The fifth and final section comprises the discussion and conclusions, presenting the implications of this proposal and their

general applicability to the southern Andes. 
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2 Study area

We evaluated the implementation of RILEWS in the Southern Andes and the northern part of the Patagonian Andes (~40.0°

– 42.5°S, ~72.0° – 73.5° W, Figure 1). A prolonged increase of RIL events in this area took place during the period 2012-

2019, generated by extreme precipitation events (Espinoza et al., 2019). The area presents three principal morphological

units in bands oriented north-south. From west to east, they are the Coastal Range, the Central Valley and the Andes Range

(Figure 1). In the western area, altitudes range from 100-1,000 m a.s.l., with slopes between 0 and 25°. In the central valley,

the maximum altitude is 150 masl, with slopes between 0 and 15 e in the central part and between 25 and 45° towards the�

Andes. Finally, the highest altitudes (400 to 2,700 masl) and the steepest slopes (25 – 70°) are found in the eastern zone

(Gomez-Cardenas & Garrido-Urzua, 2018).

Average annual precipitation is strongly correlated with topography and latitude. In the north segment (~40°33’ – ~41°10’ S)

it is over 1,200 mm per year, while in the south (~41°10’ – ~42°10’ S) it rises to over 1,400 mm per year. In the Central

Valley, the precipitation exceeds 1,910 mm per year. The highest precipitations are recorded in the Andes Range, of over

4,000 mm (Alvarez-Garreton et al., 2018). The climate in the area is classified as oceanic climate (Beck et al., 2018) with a

dry summer in the north portion, but no dry months in the south (Alvarez-Garreton et al., 2018).

The  oldest  geological  units  in  the  area  correspond  to  cretaceous  intrusive  bodies  which  emerge  in  the  Rupanco  lake

peninsula and further south. In the Coastal Range, there are outcrops of metamorphic rocks from the Paleozoic Triassic (300-

250 Ma). These rocks are largely covered by sedimentary deposits of various origins: marine from the Oligocene-Miocene

(eastern flank of the Coastal Range), volcanic from the Oligocene-Miocene (40 to 5 Ma; south of Rupanco lake), and glacial

from the  Pleistocene-Holocene.  In  the  SE of  the  region  is  the  North  Patagonian  Batholith  (132-77  Ma),  consisting  of

granites, granodiorites, tonalites and leucogranites (Gomez-Cardenas & Garrido-Urzua, 2018). Elsewhere in the region, there

are clayey soils called trumaos and ñadis, which have developed from glacial-fluvial-volcanic sediments. These soils present

a high organic content, poor drainage and low development (Blanco & de la Balze, 2004).
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Figure  1 Study area in the Southern Andes Zone and the northern part of the Patagonian Andes. RIL events in the area are
highlighted in yellow dots and red stars mark the meteorological stations available. Hillshade based on SRTM data.
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3 Methodology

We assessed the feasibility of a RILEWS applied to RIL using geomorphological and precipitation forcings for the Southern

Andes. We consider an approximation of the probability of occurrence of RIL through logistic distributions. The probability

allows  a  spatialization  of  "likely-landslide"  or  "not  likely-landslide"  conditions  under  established  precipitation  and

topographical conditions. Precipitation data and local geomorphological features were integrated into a logistic model as

predictors to evaluate the occurrence of RIL. These variables were taken into account because both the precipitation and the

topography predispose the study area  to RIL (Fustos et  al.,  2017; 2020a).  We do not use additional  data,  such as soil

moisture or climatic index, to avoid complex models allowing fast estimations into an operational stage. We used a RIL

database  (Gomez-Cardenas  &  Garrido-Urzua,  2018)  being  separated  into  calibration  sub-database  and  validation  sub-

database to evaluate the models' performance.The bias associated with the precipitation obtained from the mesoscale model

was corrected using in-situ stations (Figure 2). To establish the reliability of the model for the correct prediction of RIL, its

sensitivity was calculated using the validation subset. This allowed the RIL prediction sensitivity to be characterised for

operational implementation in future LEWS.
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Figure  2 Short methodological description. The first phase explained in detail in section 3.1 and the second stage explained in
sections 3.2 and 3.3.

3.1 Atmospheric modelling

The  study  area  contains  a  limited  number  of  meteorological  stations,  becoming  a  challenge  to  represent  the  spatial

distribution  of  precipitation.  To overcome the  limitation  imposed  by  the  meteorological  data,  precipitation fields  were

estimated using the Weather and Research Forecast model 4.0 (WRF, Skamarock et al., 2019). Atmospheric conditions were

simulated for the period 2014 to 2018 at hourly time resolution. We used a spatial resolution of 4 km that allows representing

the complex topography of the Andes. WRF parametrisation followed the WSM 3-Class Simple Ice Scheme microphysical

model (Hong et al., 2004), while the soil-atmosphere interaction was parametrised by the Unified Noah Land-Surface Model

(Tewari et al., 2004). Final Operational Global Analysis product from the US–National Centers for Environmental Prediction

NCEP, also known as FNL (NCEP, 2000), was used as the global forcing to obtain the solutions of precipitation at 4-km or

mesoscale (resolution to an order of kilometres).

The precipitation fields of the WRF model were compared with 12 meteorological stations available in the area to evaluate

the bias of the numerical model (Figure 1). Biases associated with local effects of the parametrisation selected in WRF were

corrected  by  MeteoLab  (Wilcke,  2013)  using  three  different  methods.  The first  approach  corresponds  to  the  PP_M4A
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method with a perfect prognosis approach (San-Martin et al., 2017). The perfect prognosis establishes statistical relationships

between the variables at large and local scales. The physical processes on intermediate scales could be ignored (Maraun et

al., 2010). The second approach, corresponding to the ISI_MIP method, corrects at different time scales using the monthly

mean and followed by correction of the daily variability about the monthly mean (Hempel et al., 2013). The ISI-MIP method

requires a long time series of data, requiring weather stations with low gap data. The last method corresponds to BC_QPQM

which  focuses  on  extreme  value  correction  and  its  effects  on  the  bias  correction  on  the  temporal  change  signal.  The

methodology requires  weather  stations without gap data in  the time series.  In  some cases,  outliers  take  place  showing

problems to correct these situations (Gutjahr and Heinemann, 2013). We compared the three methods with WRF without

corrections  using  different  statistics  functions  such  as  bias,  MAE,  RMSE,  and  Pearson  and  Spearman  correlations

coefficients.  Subsequently,  the  model  corrected  with  the  lowest  RMSE  in  precipitation  was  used  in  a  RILEWS

implementation.

3.2 Rainfall-Induced Landslide Early Warming

We propose a model for RILEWS based on the probability of occurrence of RIL in space and time. The probability was

determined using Logit and Probit logistic distribution functions, which have been implemented previously in the Southern

Andes (Fustos et al., 2017; 2020b). The advantage of logistic regressions is that they establish statistical relations between

physical processes at different scales with a limited quantity of information (Fustos et al., 2020b). The logistic regressions

were trained based on the local geomorphological conditions (slope) and previously modelled and corrected precipitation

simulations. We used slope values derived from SRTM data with a spatial resolution of 30m. A limited number of 4,987 RIL

have been reported for the south of Chile (Gomez-Cardenas & Garrido-Urzua, 2018).  However, 2.035 RIL exist in the zone,

and only 57 RIL events have an exact  date.  The final  database considers mudflow, debris flow and mass wasting. The

current dataset is the most comprehensive landslide catalogue for the zone in comparison to well-validated global datasets

such  as  Global  Landslide Catalog (GLC) (Kirschbaum et  al.,  2010) and the Global  Fatal  Landslide Database  (GFLD)

(Froude and Petley, 2018) developed into other studies (Destro et al., 2017; Rossi et al., 2017; Wang et al., 2021).    

The Logit distribution model fit the probability of occurrence of an event using a logistic curve (Li et al., 2011). The Logit

distribution model (L) is given by:

L ( y i=1 )=

exp(β0
'
+∑

k=1

N

βk
' X k )

1+exp (β0
'
+∑

k=1

N

βk
' X k)

(Eq. 1).
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where L ( y i=1 ) is the probability of occurrence of a RIL, N  is the number of predictors used ( X k ), βk
'  are the coefficients

of the function and β0
'  is the intercept. A Probit distribution also uses binary dependent variables and its main difference

from the Logit distribution is the use of the inverse standard normal distribution. The Probit distribution ( P) (McCullagh &

Nelder, 1989; Javier & Velazquez, 1990) is given by: 

P ( y i=1 )=Φ− 1( β0+∑
k=1

N

βk X k+ε ) (Eq. 2).

where  k ,  β and  X k refer to the same variables as the Logit distribution,  ε  is the error of the fit with standard normal

distribution  ε∼N (0 ,Σ ) and  Φ−1 denotes  an inverse  normal  probability function (McCullagh & Nelder,  1989).  Four

predictors were used for both the Logit and Probit functions, daily precipitation, precipitation over the previous 7 and 30

days, and slope (Table 1).  

The complete RIL database was split into a calibration sub-base (DB1) and an independent calibration validation sub-base

(DB2) for subsequent evaluation (Figure 2). The database was split by taking from 20 to 30% of the data, chosen at random,

for calibration. A calibration set was selected 100 times to obtain βk and βk
' , and their standard deviations denoted by σ k

and σ k
' respectively, calculated according to the methodology presented by Fustos et al. (2020b).

Table 1 Models and predictors incorporated.

Daily precipitation
Seven-day

accumulated
precipitation

Thirty-day
accumulated
precipitation

Slope

Model 1 Considered - - Considered

Model 2 - Considered - Considered

Model 3 - - Considered Considered

Model 4 Considered Considered - Considered

3.3 Performance assessment

The quality of each regression was evaluated by ROC analysis (Fawcett, 2006) using the independent database BD2 (Figure

2). The DB2 has georeferenced the initial failure zone. We compared the initial failure zone to the pixel of our models (pixel

that includes the point). This allowed us to understand the degree of accuracy in identifying a RIL event under determined

conditions of slope and precipitation. A probability threshold (tolerance) was established to define the instant when the
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models  identify  a  RIL event  correctly.  The  tolerance  was  defined  from the  results  of  the  ROC curve  for  probability

thresholds between 50 and 95%. In this way, the sensitivity of each iteration was estimated (Eq. 3), representing the capacity

of the set of estimators to detect RIL events correctly (Fawcett, 2006; Hand & Till, 2001). The sensitivity (S) was defined as

the ratio of true positive predictions of events (TP), over the total of positive events (including false-negative predictions –

FN). The specificity (E) was also calculated (Eq. 4) to evaluate the capacity of detection of non-RIL events or true negative

(TN), to avoid false positives (FP) (Fawcett, 2006). Therefore, this methodology made it possible to evaluate the capacity of

each model to detect RIL events (Fustos et al., 2020b). We propose that the threshold must be suitable to separate a likely-

landslide event from a non-likely-landslide event. The threshold maximizes the sensibility in the four models with different

degrees of performance of RILEWS.

S=TP/(TP+FN) (Eq. 3).

E=TN/(TN+FP) (Eq. 4).

4 Results

This  work  evaluated  a  new RILEWS based  on  two logistic  models  and  forced  by  geomorphological  and  atmospheric

conditions on a mesoscale in the Southern Andes. We analysed the quality of the representation of atmospheric conditions of

our  RILEWS  based  on  logistic  identifiers  and  the  performance  in  identifying  RIL  correctly  in  areas  with  complex

topography.

4.1 Atmospheric modelling

The uncertainty of precipitations is  a  critical  factor  for  RILEWS (Guzzetti  et  al.,  2019; Chikalamo et  al.,  2020).   The

uncorrected precipitation simulation showed (~0.26-0.49) to medium (~0.32-0.67) correlation values (Pearson and Spearman

correlation  coefficients)  in  comparison  to  in-situ  weather  stations.  Our  results  showed  a  spatial  dependence  of  the

precipitation error between the mesoscale model and weather station. Stations located in the SW and NW extremes of the

domain presented low correlations in comparison to the WRF model (Figure 3). Moreover, the meteorological stations in the

eastern zone had RMSE between 16.33 up to 18.00 mm respectively. The RMSE for the rest of the stations ranged between

8.79 and 12.24 mm. Meanwhile,  MAE showed similar values for all the stations (3.44-6.67 mm), while the bias varies

between -4.0 up to 5.2 mm, except in the stations on the W and SE borders (Figure 4). Therefore, our results showed that the

atmospheric model did not represent the distribution spatial and temporal of the precipitation.

The corrected precipitation model showed higher performance in RMSE, correlation and bias than in the original simulations

(Figure 3).  The methods of the perfect  prognosis (PP_M4A) family gave better performance than bias correction (BC)

methods. The PP_M4a method generated smaller errors in the corrected fields compared to meteorological stations. The

best-performing  BC  method,  gpQM,  did  not  diminish  the  MAE,  which  increased  by  0.05  mm  on  average  over  the
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uncorrected model, but it did improve the RMSE by 2.47 mm on average (Figure 3). Finally, the Spearman correlation

coefficient  produced  a lower  correspondence  with the observations than did the uncorrected  simulation. Therefore,  our

results showed that the mesoscale correction allows improving the rainfall representation quality.

Figure  3 Precision  and  Reliability  Indicators.  Bias  (mm),  MAE  (mm),  RMSE (mm)  and  Spearman  correlation

coefficient. WRF is the uncorrected model, while the other models are the different methodologies used for correction

by Meteolab.
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Figure  4 Spatial distribution of model corrected at weather stations using best results (PP_M4a). a) BIAS of the simulation in
comparison with stations; b) MAE of the simulation in comparison with stations; c) RMSE of the simulation in comparison with
stations; d) Spearman correlation coefficient of the simulation in comparison with stations. Hillshade based on SRTM data.

The precipitation fields corrected with different approaches of MeteoLab showed improved values in weather stations in

comparison to raw solution. The corrected ISI-MIP results were similar to those described for PP_M4a, but with slightly

larger error values. Both ISI-MIP and PP_M4a presented a bias lower than 0.5 mm. The gpQM method varied between -2.69

and 0.95 mm (Figure 3). We point out that the PP_M4a method shown the best performance considering MAE and the

RMSE (~0.04 and ~0.23 mm respectively). The Spearman correlation coefficient ranged between 0.90 and 0.98, increasing

the quality of representation of the precipitation fields in comparison to weather stations. 

4.2 Rainfall-Induced Landslide Early warning

The probability of occurrence of RIL at spatial and temporal scale was estimated using the precipitation values corrected on

PP_M4a approach.  The results  of  the Logit  regression  (Table  2)  showed that  the  weight  of  the  intercept  varied  by a

maximum of ~0.36 units for the 4 models, varying between 3.1658 ± 0.0091 and 3.5235 ± 0.0069 (Figure 5). The βk’

estimators corresponding to the daily precipitation fluctuated between -0.8176 ± 0.0089 and -0.8124 ± 0.0066 [1/mm], while
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for the precipitation of the previous 7 days the estimator varied from -0.6413 ± 0.0063 to 0.0020 ± 0.0086 [1/mm]. The

indicator obtained for the monthly precipitation was -0.3518 ± 0.0033 [1/mm] (used exclusively for the M3 model), while

the slope estimator fluctuated between -0.1696 ± 0.0049 and -1289 ± 0.0072 [1/degree] (Figure 5).

Table 2 Values of the estimators for the Logit models. False-positive rate (FPR) and True positive rate (TPR) were evaluated

with a threshold of 95%.

Intercept
Daily

precipitation

Seven-day
accumulated
precipitatio

n

Thirty-day
accumulated
precipitation

Slope FPR TPR

Model 1
3.5235 ±
0.0069

- 0.8176 ±
0.0089

- -
-0.1696 ±

0.0049
0.3788 0.8791

Model 2 3.3582±0.0067 -
0.6413 ±
0.0063

-
0.1365 ±
0.0086

0.2750 0.7141

Model 3 3.1658±0.0091 - -
0.3518 ±
0.0033

-0.1289 ±
0.0072

0.6309 0.8376

Model 4 3.5206±0.0106
- 0.8124 ±

0.0066
0.0020 ±
0.0086

-
-0.1675 ±

0.0080
0.3956 0.8731

Table  3 Values  of  the  estimators  for  the  Probit  models.  False-positive  rate  (FPR)  and  True  positive  rate  (TPR) were

evaluated with a threshold of 95%.

Intercept
Daily

precipitation

Seven-day
accumulated
precipitation

Thirty-day
accumulated
precipitation

Slope FPR TPR

Model 1
1.9113 ±
0.0030

- 0.4166 ±
0.0046

- -
- 0.0741 ±

0.0022
0.3562 0.87136

Model 2 1.8490±0.0031 -
-

0.3545±0.0029
-

-0.0675 ±
0.0038

0.2822 0.7305

Model 3 1.7482±0.0041 - -
-

0.1897±.0020
-

0.0596±0.0033
0.6130 0.8280

Model 4 1.9110±0.0044
-

0.4016±0.0027
-

0.0202±0.0038
-

-
0.0732±0.0040

0.3900 0.8632

12

220

225

230



We point out that estimators related to the precipitation had a higher absolute weight than the slope for all the models

calibrated. The precipitation used in daily (M1), previous 7 days (M2) or previous 30 days (M3) showed a decreasing value

(in absolute terms) as the accumulated precipitation period increased. The results of the PP_M4a model, which considered

the daily precipitation in conjunction with that of the previous 7 days, showed that the latter had an absolute weight of almost

zero compared to the former. In general, the standard deviations (σ k
❑

) obtained from the estimators and intercept were very

low for all the Logit models calibrated. The Probit model (Table 3) showed the same behaviour (as the Logit) of the intercept

for  the  4  models;  its  estimator  fluctuated  between  1.7482  ±  0.0041  and  1.9113  ±  0.0030.  The  βk values  for  daily

precipitation varied from -0.4166 ± 0.0046 to -0.4016 ± 0.0027; 7-day precipitation from -0.3545 ± 0.0029 to -0.0202 ±

0.0038; 30-day precipitation with -0.1897 ± 0.0020 (just used in M3), and the slope from -0.0741 ± 0.0022 to -0.0596 ±

0.0033 (Figure 6). 
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Figure 5 Distribution of estimators for each model with Logit distribution.

Figure 6
Distribution of estimators for each model with Probit distribution.
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4.3 Performance assessment

ROC analysis of the Logit and Probit models showed that the M1, M2 and M4 models gave a similar performance ( Figure 7

and Figure 8). The area under the curve for the Logit models varied between 0.8032 and 0.6672, while for the Probit models

it varied between 0.8076 and 0.6672. Our results showed a lack of performance for M3 in comparison to daily precipitation

data for Logit and Probit models (0.6582 and 0.6672, respectively). Models with AUC values equal to 0.5 indicate that do

not  suitable  of  discriminate  the  landslides,  generating  random predictions.  Therefore,  our  results  demonstrate  that  the

calibrated models do not do a random fitting.

The rate of valid positives in the Logit distributions of the M1 and M4 models was higher than 0.97 with tolerances below

50%. For the same range, however, the rate of FP was over 45%. The same occurred with the Probit models. For a tolerance

of 95%, the prediction of FN for both regressions diminished to below 40%, although the accurate predictions (TP) also fell

by ~11%. Similar performance was observed in M2, with slightly higher numbers of FP, but fewer as a proportion of TP. M3

in contrast presented rates of accurate predictions and FN close to 1 for thresholds lower than 85%. In general, we observe

that the Probit models had greater AUC values than the Logit being more suitable for RILEWS.

Figure 7 ROC curve for thresholds of 5 to 99% for Logit models.
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Figure 8 ROC curve for thresholds of 5 to 99% for Probit models.

The Logit and Probit regressions for M1 and M4 presented the highest sensitivity values, of 91.79 ± 1.95% and 91.81 ±

2.00% respectively, for the Logit regressions (Table 1). In the Probit models, M1 and M4 achieved sensitivity values of

91.25 ± 1.96% and 91.16 ± 2.03% respectively. Likewise, M2 had a sensitivity of 87.07 ± 2.93% for Logit and 86.19 ±

2.79% for Probit. The sensitivity of M3 was 83.89 ± 5.46% for Logit and 82.94 ± 5.21 for Probit (Table 1). In general, we

observed that the Logit models were more sensitive than the Probit. The specificity values for the M2 and M3 models were

subtly higher for the Probit regressions than for the Logit, while for the M1 and M4 models the results obtained were almost

equal. 

Table 1: Sensitivity and specificity with validation database (BD2).

Model Distribution Sensitivity (%) Specificity (%)

Model 1
Logit 91.79 ± 1.95 54.36 ± 14.11

Probit 91.25 ± 1.96 54.29 ± 14.11

Model 2
Logit 87.07 ± 2.93 62.43 ± 14.29

Probit 86.19 ± 2.79 64.18 ± 14.03

Model 3
Logit 83.89 ± 5.46 36.11 ± 16.41

Probit 82.94 ± 5.21 38.18 ± 16.44

Model 4 Logit 91.81 ± 2.00 55.65 ± 14.46
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Probit 91.16 ± 2.03 55.71 ± 14.49

According to this, the best model for predicting RIL in the study area was M1 (daily precipitation and slope). The sensitivity

and specificity values with the 95% threshold chosen after ROC analysis were higher than 82%. The results showed that the

indicators were similar for the M1, M3 and M4 models (Table 1). However, a reduction was observed in the rate of TP for

the M2 model (~10%). 

5 Analysis and Discussion

Implementing  RILEWS is  a  challenge  due  to  the  natural  limitations  like  historical  records  and  the  precipitation  data

available. One of the main challenges in RILEWS corresponds to develop a model that generates warning only using limited

meteorological  information.   Therefore,  precipitation  representation  characterized  by  a  low  uncertainty  in  complex

topography environments is a valuable contribution (Table 1). Our study proposes an alternative to landslide forecast into

scarce  data  environments,  allowing to increase  the  resilience  of  the  local  community.  Here,  we demonstrated  that  the

mesoscale models become suitable to reproduce the spatial precipitation distribution with a bias-correct using in-situ weather

stations. The precipitation was integrated into a logistic model subsequently, to establish the spatial probability of occurrence

of a RIL event. 

5.1 Atmospheric modelling

Implementation of a LEWS applied to RIL requires accurate estimation of the spatial distribution of precipitation. Zones

with a low density of meteorological stations generate uncertainties in the RILEWS implementation (Marra, 2018; Peres et

al.,  2018).  Previous works  have  shown the  sensitivity  of  mesoscale  models  to  abrupt  changes  of  complex  topography

(Srivastava et al., 2015; Osman et al., 2018; Heredia et al., 2018; Jeong & Lee, 2018; Buchici et al., 2019; Bannister et al.,

2019; Worku et al., 2020); being consistent with the abrupt topography of the eastern part of the study area (Figure 4), where

the MAE (6.6) and RMSE (17.9) values were concentrated. We avoided the precipitation constrain using a bias-corrected

version of the WRF model to reduce the spatial error estimation in the precipitations. The use of bias-corrected precipitation

of the WRF model improved the spatial representation in this study. The uncorrected model had bias values higher than 16

mm, becoming critical during the incorrect early warning generation. Therefore, an incorrect precipitation estimation could

becomes a human loss. Following, our results deliver precipitation data with a low uncertainty level. That becomes suitable

to operative RILEWS with a low false-positive rate (FP).

In many areas  of  the world,  the prediction of  rainfall-induced landslides  is  usually  carried  out using empirical  rainfall

thresholds [Gariano et al., 2020]. Previous contributions showed that dense weather stations allow representing the complex
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precipitation distribution giving well  threshold estimation [Nikolopoulos et  al.,  2014].  However,  debris  flow thresholds

developed  from sparse  in-situ  weather  stations  generated  low performance  [Nikolopoulos  et  al.,  2015].  The  complex

topography and the sparse weather stations availability underestimate rainfall thresholds for landslides in Southern Andes.

Following, a RILEWS based only on weather stations is not suitable. Previous studies showed a systematic underestimation

in debris flow early warning thresholds related to the use of sparse rain gauge networks [Marra et al., 2016; Destro et al.,

2017;  Marra  et  al.,  2017].   Moreover,  the  topography  has  a  strong influence  on  modifying  the  spatial  distribution  of

precipitation that leads to debris flows [Marra et al., 2016; Fustos et al., 2021] and landslides [Fustos et al., 2017]. Hence,

our  contribution  allows  reducing  the  precipitation  estimation  uncertainty  increasing  the  reliability  of  RILEWS  in  the

Southern Andes.

 From our results,  the bias-correction improved the precipitation representation when we compared against  the weather

stations  (Figure  4).  The  data  from  12  spatially  distributed  meteorological  stations  were  sufficient  to  represent  the

precipitation fields with low RMSE values (max. 0.36 mm). Thus, the corrected results represent the precipitation fields in

Andean areas with lower bias values than previous studies (Yáñez-Morroni et al., 2018; Schumacher et al., 2020). PP_M4a

approach  was found to reduce  the bias  efficiently  for  the study area.  We propose that  perfect  prog approach  allow to

represent accurately the topographic influence in the precipitation if the distribution of the weather stations is available. We

note that 30% of all the RIL occurred on days with low precipitation on the day and during the preceding days (7 and 30

days previous). Therefore, we propose that future developments should progress to analysis on a sub-daily scale. In this

context, future developments should aim to use corrected WRF at an hourly scale; or else use lower-resolution satellite

estimates of precipitation as a tool to complement WRF simulations.

5.2 Rainfall-Induced Landslide Early Warning

 The Southern Andes has  a  complex topography that  influences precipitation events with different  intensities in a few

kilometres of separation (examples in Figure  9 and Figure  10). Hence, a correct precipitation representation along the space

allows  increasing  the  sensibility.  The  sensitivity  of  RILEWS depends  heavily  on  the  input  variables,  specifically  the

precipitation in this case. The RILEWS achieved high predictive ability with AUC values between 0.65 (M3) and 0.80 (M1),

suggesting high sensitivity to intense precipitations in short periods. The performance of the model diminished when data at

monthly scale were used (M3) in comparison with daily resolution (M1 and M2), where M2 model (AUC=0.77) had similar

performance to M1. This similarity may be associated with the soil moisture content, reflecting the previous precipitation;

this means that it functions as a memory of the soil moisture in the slope before a RIL (related to the different soil types).

The memory effect in the slope in M3 will reflect in part its predisposition to suffer a RIL based on the soil moisture content

in the first few centimetres. Numerous works have related satellite information on precipitation and soil moisture to establish

links between them (Brocca et al., 2020; Camici et al., 2020; Pellarin et al., 2020).  In future, the soil moisture memory

approach could be the best way to obtain a proxy of the soil moisture content and the slope response to landslides in zones

without a network of moisture sensors.  This is consistent when we compare M1 (AUC=0.80) and M4 (AUC=0.79); they
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present similar sensitivity values (~91% in both cases), suggesting that either model could be used. Model 1 and Model 4

showed similar performance because one being contained in the second. Hence, we interpret that an overrepresentation could

exist. Therefore, model 4 does not support additional information. At an operational level, the discard of model 4 reduces the

computing loading, simplifying the alert processes.

Figure  9 Zones susceptible to RIL for January 08, 2017. Results using Model 1 (logit). Hillshade based on SRTM data.

Figure  10 Zones susceptible to RIL for January 08, 2017. Results using Model 1 (probit).
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5.3 Future developments

 The Andes in one of the most susceptible zones to be affected by intense precipitation changes product of climate change.

To reproduce and understand intense precipitation changes and their impact on landslides, a high Spatio-temporal resolution

is needed. The present contribution support reproducing accurate precipitation, contributing to robust RILEWS. Potential

improvements  should be directed  towards  increasing  the predictive  ability by increasing  the temporal  resolution of  the

precipitation products. Our models do not consider the soil hydraulic variability like tephra fall or intensely weathered soft

rocks. Recently, rainfall-induced landslides affected actives (Fustos et al., 2021) and older volcanic environments (Somos et

al., 2020). The new generation of RILEWS will need a parametrization of these environments from a geotechnical point of

view.  Moreover,  all  RILEWS must be able to be automated, which involves  computing capacities  of  various kinds;  to

mitigate the calculation costs we suggest incorporating the available satellite precipitation products,  but at lower spatial

resolution (~10 km). Satellite estimations require validation of these outputs in areas with complex topography, like southern

Chile (Zambrano-Bigiarini et al., 2017). Likewise, new geoscientific data interfaces like GSMaP will allow better integration

with precipitation, complementing WRF products. One limitation of the present study is the quality of the RIL inventory

used. South America presents a low density of recorded events, despite the high density of their occurrence. Future efforts

should be directed towards generating RIL identification records using remote sensor techniques (Guzzetti  et  al.,  2020;

Fustos et al., 2017; Jia et al., 2019) or numerical identification (Chikalamo et al., 2020; Guzzetti et al., 2020; Fustos et al.,

2020a). To date, our database is the best available for the spatial location and date of generation in the study area.  We

suggest that alternatives should be considered in future to strengthen the generation of RIL databases in the Southern Andes

with a larger number of events. This could help to strengthen future RILEWS in this area, improving their performance in

terms of sensitivity and specificity. 

6 Conclusions

This work evaluated the implementation of a RILEWS based on a logistic model and forced by geomorphological and

atmospheric conditions in the Southern Andes. For the first time in the Southern Andes, we showed how the WRF model can

be integrated into RILEWS operating systems without the need to use ensembles, by use of bias correction processes. Our

findings suggest that the bias correction is a useful alternative to numerical ensembles that increases the computational cost

at  operative  scale.  This  opens  the  door  to  the  implementation  of  precipitation-based  prediction  models  without  costly

computer iterations by ensembles of models (Yáñez-Morroni et al., 2018; Schumacher et al., 2020). A WRF-corrected model

could be used at operational scale in different countries in the measure that a weather network exists.

The logistic approach proposed in this study allow to implement rapidly a RILEWS using a limited landslide catalogue in

different countries into the future. Our results and previous studies indicate that RILEWS in the Southern Andes should be

directed towards increasing the RIL database currently available. In future we suggest evaluating alternatives to strengthen
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better quality RIL database generation in this segment of South America, completing the existing database from the records

of the Chilean National Geological and Mining Service (Sernageomin). This could help to strengthen future RILEWS in the

Southern Andes, improving their performance in terms of sensitivity and specificity. Logistic models proved their capacity to

predict RIL events with AUC varying between 0.65 and 0.80, indicating their ability to represent RIL occurrence correctly.

Despite the high relative sensitivity of M3, the models which presented high sensitivity and specificity were those which

included precipitations on a daily scale (models 1, 2 and 4). Using the precipitation of the previous 7 days could improve this

approach  to  representing  soil  moisture.  There  is  no  network  of  moisture  sensors  in  the  area,  so  Model  4  should  be

incorporated as it allows this factor to be represented. Finally, we propose to use models M1 and M4 in conjunction. 

Our proposed RILEWS was developed under  limited and scarce  atmospheric  data.  We expect  that  national  emergency

authorities  integrate  this  proposal  into their  routinary  activities  disseminating the  landslide  warning  information  to  the

stakeholders.  The  continual  improvement  will  allow  increasing  the  performance  and  correct  alert  under  different

precipitation  scenarios.  The  real-time  implementation  will allow  testing  the  precipitation  representation,  assessing  the

accurate  precipitation  estimation.  We  conclude  that  our  RILEWS  could  become  a  promising  methodology  for

implementation in similar climatic zones in different countries/latitudes. In future, worldwide scale products such as the

Global Landslide database could support future implementation of RILEWS at a regional scale using corrected precipitation

products such as the WRF model or satellite precipitation products.
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