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Abstract. Rainfall-Induced Landslide Early Warning Systems (RILEWS) are critical tools for reducing and
mitigating economic and social damages related to landslides. Despite this utility, the Southern Andes do not have
an operational-scale RILEWS yet. In this contribution, we present a pre-operational RILEWS based on the Weather
and Research Forecast (WRF) model and geomorphological features coupled to logistic models in the Southern
Andes. The models have been forced using simulations of precipitation. We correct the precipitation derived from
WRF using 12 weather stations through a bias correction approach. The models were trained using 57 well-
characterized Rainfall-Induced Landslides (RIL) and validated by ROC analysis. We show that WRF does not
represent the spatial variability of the precipitation. Therefore, accurate precipitation needs a bias correction in the
study zone. Accurate precipitation simulations allow RILEWS with high predicting capacity (area under the curve,
AUC of 0.80) using daily precipitation data and slope. We conclude that our proposal is suitable at an operational
level. The proposed RILEWS will become a support in the mitigation of RIL events related to climate change.

Introduction

Rainfall Induced Landslide Early Warning Systems (RILEWS) become a powerful alternative for mitigating human losses
and reducing infrastructure damages (Guzzetti et al., 2020; Chikalamo et al., 2020; Hermle et al., 2021). The increase of
Rainfall-Induced Landslides (RIL) events showed devastating effects, including loss of human life and destruction of the
natural and urban environment (Marjanovi? et al., 2018). Recent RIL affected critical infrastructure and highways in
populated areas (Chikalamo et al., 2020; Fustos et al., 2020a; Peruccacci et al., 2017; Fustos et al., 2021). In South America,
RIL has caused high social and economic impacts; they require better evaluation in future (Sepulveda & Petley, 2015). The
present work evaluates the design of a RILEWS using a mesoscale atmospheric model coupled to a logistic model to
mitigate the effect of RIL in the Southern Andes.

Due to new extreme rainfall events related to climate change, RIL events are increasing in the Southern Andes and other
parts of the world. To mitigate the impact of extreme precipitation RILEWS have gained interest to mitigate the impact of

RIL using different approaches (Peres & Cancelliere, 2014; Tiranti et al., 2014; Sattele et al., 2015; Segoni et al., 2018;
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Cremonini and Tiranti, 2018; Fan et al., 2019; Tiranti et al., 2019; Thirugnanam et al., 2020; Bernard and Gregoretti, 2021;
Lee et al., 2021). RILEWS based on precipitation thresholds shows good agreement but do not consider the effect of soil
moisture, leading to bias in their predictive capacity (Marra et al., 2017; Zhao et al., 2019; Chikalamo et al., 2020). Some
historical-based RILEWS with long-term observations, climate reanalysis models and atmospheric mesoscale models
experiment issues related to the spatial and temporal resolution reducing the performance due to low precipitation accuracy
(Lazzari & Piccarreta, 2018; Tichavsky et al., 2019).

RILEWS requires accurate precipitation data delivered from local weather stations in dense weather networks, satellite
estimations and atmospheric mesoscale models. However, atmospheric mesoscale models showed incapable of representing
accurate precipitation fields in areas with complex topography like the Southern Andes (Yafiez-Morroni et al., 2018).
Currently, mesoscale models are restricted to the quality of their atmospheric forcings, needing to generate ensembles to
obtain approximate solutions (Wayand et al., 2013). Moreover, the mesoscale models demand intensive computational
efforts that increase the difficulty of coupling to RILEWS (Yafiez-Morroni et al., 2018; Schumacher et al., 2020; Yang et al.,
2021). Recently, mesoscale atmospheric models coupled to local weather stations allow delimitating susceptible to RIL areas
means deterministic numerical models (Fustos et al., 2020a). Nowadays, bias correction approaches contribute to reducing
the time computing of mesoscale models, improving the estimation of precipitation using in-situ stations (Srivastava et al.,
2015; Bannister et al., 2019; Heredia et al., 2018; Jeong & Lee, 2018; Osman et al., 2019; Worku et al., 2020). Therefore, a
correct implementation of mesoscale models could allow accurate precipitation in RILEWS. Nonetheless, the application of
corrected mesoscale models in RILEWS in complex topography has not been evaluated yet.

The object of the present work was to evaluate the implementation of a RILEWS based on mesoscale atmospheric model
coupled to logistic model. We corrected mesoscale models (models that allow represent atmospheric process to synoptic-
scale) using weather stations, generating RIL-prone probability zones for the first time in the Southern Andes. The paper is
structured as follows: after the introduction, the second section describes the study site and its pertinence to implement
RILEWS. In the third section, we describe the data and methods, including the calibration and validation procedures. In the
fourth section, we outline the main results of the proposed RILEWS, focusing on the quality of predictors and model outputs.
The fifth and final section comprises the discussion and conclusions, presenting the implications of this proposal and their

general applicability to the southern Andes.

2 Study area

We evaluated the implementation of RILEWS in the Southern Andes and the northern part of the Patagonian Andes (~40.0°
—42.5°S, ~72.0° — 73.5° W, Figure 1). A prolonged increase of RIL events in this area took place during the period 2012-
2019, generated by extreme precipitation events. The area presents three principal morphological units in bands oriented
north-south. From west to east, they are the Coastal Range, the Central Valley and the Andes Range (Figure 1). In the

western area, altitudes range from 100-1,000 m a.s.l., with slopes between 0 and 25°. In the central valley, the maximum
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altitude is 150 masl, with slopes between 0 and 15° in the central part and between 25 and 45° towards the Andes. Finally,
the highest altitudes (400 to 2,700 masl) and the steepest slopes (25 — 70°) are found in the eastern zone (Gomez-Cardenas &
Garrido-Urzua, 2018).

Average annual precipitation is strongly correlated with topography and latitude. In the north segment (~40°33’ — ~41°10’ S)
it is over 1,200 mm per year, while in the south (~41°10° — ~42°10’ S) it rises to over 1,400 mm per year. In the Central
Valley, the precipitation exceeds 1,910 mm per year. The highest precipitations are recorded in the Andes Range, of over
4,000 mm (Alvarez-Garreton et al., 2018). The climate in the area is classified as oceanic climate (Beck et al., 2018) with a
dry summer in the north portion, but no dry months in the south (Alvarez-Garreton et al., 2018).

The oldest geological units in the area correspond to cretaceous intrusive bodies which emerge in the Rupanco lake
peninsula and further south. In the Coastal Range, there are outcrops of metamorphic rocks from the Paleozoic Triassic (300-
250 Ma). These rocks are largely covered by sedimentary deposits of various origins: marine from the Oligocene-Miocene
(eastern flank of the Coastal Range), volcanic from the Oligocene-Miocene (40 to 5 Ma; south of Rupanco lake), and glacial
from the Pleistocene-Holocene. In the SE of the region is the North Patagonian Batholith (132-77 Ma), consisting of
granites, granodiorites, tonalites and leucogranites (Gomez-Cardenas & Garrido-Urzua, 2018). Elsewhere in the region, there
are clayey soils called trumaos and fiadis, which have developed from glacial-fluvial-volcanic sediments. These soils present

a high organic content, poor drainage and low development (Blanco & de la Balze, 2004).
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Figure 1 Study area in the Southern Andes Zone and the northern part of the Patagonian Andes. RIL events in the area are
highlighted in yellow dots and red stars mark the meteorological stations available. Hillshade based on SRTM data.
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3 Methodology

We assessed the feasibility of a RILEWS applied to RIL using geomorphological and precipitation forcings for the Southern
Andes. We consider an approximation of the probability of occurrence of RIL through logistic distributions. The probability
allows a spatialization of "prone-landslide" or "not prone-landslide” conditions under established precipitation and
topographical conditions. Precipitation data and local geomorphological features were integrated into a logistic model as
predictors to evaluate the occurrence of RIL. These variables were taken into account because both the precipitation and the
topography predispose the study area to RIL (Fustos et al., 2017; 2020a). We do not use additional data, such as soil
moisture or climatic index, to avoid complex models allowing fast estimations into an operational stage. We used a RIL
database (Gomez-Cardenas & Garrido-Urzua, 2018) being separated into calibration sub-database and validation sub-
database to evaluate the models' performance.The bias associated with the precipitation obtained from the mesoscale model
was corrected using in-situ stations (Figure 2). To establish the reliability of the model for the correct prediction of RIL, its
sensitivity was calculated using the validation subset. This allowed the RIL prediction sensitivity to be characterised for

operational implementation in future LEWS.
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Figure 2 Short methodological description. The first phase explained in detail in section 3.1 and the second stage explained in
sections 3.2 and 3.3.
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3.1  Atmospheric modelling

The study area contains a limited number of meteorological stations, becoming a challenge to represent the spatial
distribution of precipitation. To overcome the limitation imposed by the meteorological data, precipitation fields were
estimated using the Weather and Research Forecast model 4.0 (WRF, Skamarock et al., 2019). Atmospheric conditions were
simulated for the period 2014 to 2018 at hourly time resolution. We used a spatial resolution of 4 km that allows representing
the complex topography of the Andes. WRF parametrisation followed the WSM 3-Class Simple Ice Scheme microphysical
model (Hong et al., 2004), while the soil-atmosphere interaction was parametrised by the Unified Noah Land-Surface Model
(Tewari et al., 2004). Final Operational Global Analysis product from the US—National Centers for Environmental Prediction
NCEP, also known as FNL (NCEP, 2000), was used as the global forcing to obtain the solutions of precipitation at 4-km or
mesoscale (resolution to an order of kilometres).

The precipitation fields of the WRF model were compared with 12 meteorological stations available in the area to evaluate
the bias of the numerical model (Figure 1). Biases associated with local effects of the parametrisation selected in WRF were

corrected by MeteoLab (Wilcke, 2013) using three different methods (Table 1). We compared the methods with different
6
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statistics functions such as bias, MAE, RMSE, and Pearson and Spearman correlations. Subsequently, the model corrected
with the lowest RMSE in precipitation was used in a RILEWS implementation.

Table 1: Correction methods applied, with references.

CORRECTIO REFERENCE
N

PP_M4A

Perfect prog approach. Reassessing model uncertainty for regional projections of
precipitation with an ensemble of statistical downscaling methods (San-Martin et al.,

2017).
ISI-MIP . . .
A trend-preserving bias correction & ndash; The ISI-MIP approach (Hempel et al.,
2013).
BC_QPQM

Bias correction approach. Precipitation bias correction methods for high-resolution
regional climate simulations using COSMO-CLM: Effects on extreme values and
climate change signal (Gutjahr and Heinemann, 2013).

3.2  Rainfall-Induced Landslide Early Warming

We propose a model for RILEWS based on the probability of occurrence of RIL in space and time. The probability was
determined using Logit and Probit logistic distribution functions, which have been implemented previously in the Southern
Andes (Fustos et al., 2017; 2020b). The advantage of logistic regressions is that they establish statistical relations between
physical processes at different scales with a limited quantity of information (Fustos et al., 2020b). The logistic regressions
were trained based on the local geomorphological conditions (slope) and previously modelled and corrected precipitation
simulations.. We used slope values derived from SRTM data. A limited number of 4,987 RIL have been reported for the
south of Chile (Gomez-Cardenas & Garrido-Urzua, 2018). However, 2.035 RIL exist in the zone, and only 57 RIL events
have an exact date. The final database considers mudflow, debris flow and mass wasting. The actual database is not suitable
to establish RILEWS using thresholds due to the scarce amount (Peres and Cancelliere, 2021). The current dataset is the
most comprehensive landslide catalogue for the zone in comparison to well-validated global datasets such as Global
Landslide Catalog (GLC) (Kirschbaum et al., 2010) and the Global Fatal Landslide Database (GFLD) (Froude and Petley,
2018) developed into other studies (Destro et al., 2017; Rossi et al., 2017; Wang et al., 2021).

The Logit distribution model fit the probability of occurrence of an event using a logistic curve (Li et al., 2011). The Logit

distribution model (L) is given by:

N
exp Bo"'z Bi X,
Lly=1)= — k‘lu - (Eq. 1).
ﬁo"'; I oy N oy

1+exp
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where L (y,: 1) is the probability of occurrence of a RIL, N is the number of predictors used (X k), B k are the coefficients

of the function and Bo is the intercept. A Probit distribution also uses binary dependent variables and its main difference

from the Logit distribution is the use of the inverse standard normal distribution. The Probit distribution ( P) (McCullagh &

Nelder, 1989; Javier & Velazquez, 1990) is given by:

Ply=1|=0"' (Eq. 2).

N
Bo"'z B X, +e
k=1

where k, B and X « refer to the same variables as the Logit distribution, € is the error of the fit with standard normal

distribution € ~ N (0,2 ) and @ ! denotes an inverse normal probability function (McCullagh & Nelder, 1989). Four

predictors were used for both the Logit and Probit functions, daily precipitation, precipitation over the previous 7 and 30
days, and slope (Table 2).
The complete RIL database was split into a calibration sub-base (DB1) and an independent calibration validation sub-base

(DB2) for subsequent evaluation (Figure 2). The database was split by taking from 20 to 30% of the data, chosen at random,

for calibration. A calibration set was selected 100 times to obtain [3, and B ,;, and their standard deviations denoted by 0’

and o ;(respectively, calculated according to the methodology presented by Fustos et al. (2020b).

Table 2: Models and predictors incorporated.

Thirty-day

Seven-day lated
Daily precipitation accumulated accumulate Slope
s e precipitation
precipitation

Model 1 Considered - - Considered
Model 2 - Considered - Considered
Model 3 - - Considered Considered
Model 4 Considered Considered - Considered

3.3 Performance assessment

The quality of each regression was evaluated by ROC analysis (Fawcett, 2006) using the independent database BD2 (Figure
2). The DB2 has georeferenced the initial failure zone. We compared the initial failure zone to the pixel of our models (pixel
that includes the point). This allowed us to understand the degree of accuracy in identifying a RIL event under determined

conditions of slope and precipitation. A probability threshold (tolerance) was established to define the instant when the
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models identify a RIL event correctly. The tolerance was defined from the results of the ROC curve for probability
thresholds between 50 and 95%. In this way, the sensitivity of each iteration was estimated (Eq. 3), representing the capacity
of the set of estimators to detect RIL events correctly (Fawcett, 2006; Hand & Till, 2001). The sensitivity (S) was defined as
the ratio of true positive predictions of events (TP), over the total of positive events (including false-negative predictions —
FN). The specificity (E) was also calculated (Eq. 4) to evaluate the capacity of detection of non-RIL events or true negative
(TN), to avoid false positives (FP) (Fawcett, 2006). Therefore, this methodology made it possible to evaluate the capacity of
each model to detect RIL events (Fustos et al., 2020b). We propose that the threshold must be suitable to separate a prone-
landslide event from a non-prone-landslide event. The threshold maximizes the sensibility in the four models with different
degrees of performance of RILEWS.
S=TP/(TP+FN) (Eq. 3).

E=TN/(TN+FP) (Eq. 4).

4 Results

This work evaluated a new RILEWS based on two logistic models and forced by geomorphological and atmospheric
conditions on a mesoscale in the Southern Andes. We analysed the quality of the representation of atmospheric conditions of

our RILEWS based on logistic identifiers and the performance in identifying RIL correctly in areas with complex

topography.
4.1  Atmospheric modelling

The uncertainty of precipitations is a critical factor for RILEWS (Guzzetti et al., 2019; Chikalamo et al., 2020). The
uncorrected precipitation simulation showed (~0.26-0.49) to medium (~0.32-0.67) correlation values (Pearson and
Spearman) in comparison to in-situ weather stations. Our results showed a spatial dependence of the precipitation error
between the mesoscale model and weather station. Stations located in the SW and NW extremes of the domain presented low
correlations in comparison to the WRF model (Figure 3). Moreover, the meteorological stations in the eastern zone had
RMSE between 16.33 up to 18.00 mm respectively. The RMSE for the rest of the stations ranged between 8.79 and 12.24
mm. Meanwhile, MAE showed similar values for all the stations (3.44-6.67 mm), while the bias varies between -4.0 up to
5.2 mm, except in the stations on the W and SE borders (Figure 4). Therefore, our results showed that the atmospheric model
did not represent the distribution spatial and temporal of the precipitation.

The corrected precipitation model showed higher performance in RMSE, correlation and bias than in the original simulations
(Figure 3). The methods of the perfect prog (PP) family gave better performance than bias correction (BC) methods. The
PP_M4a method generated smaller errors in the corrected fields compared to meteorological stations. The best-performing

BC method, gpQM, did not diminish the MAE, which increased by 0.05 mm on average over the uncorrected model, but it



180 did improve the RMSE by 2.47 mm on average (Figure 3). Finally, the Spearman correlation produced a lower
correspondence with the observations than did the uncorrected simulation. Therefore, our results showed that the mesoscale
correction allows improving the rainfall representation quality.

Figure 3 Precision and Reliability Indicators. Bias (mm), MAE (mm), RMSE (mm) and Spearman. WRF is the
uncorrected model, while the other models are the different methodologies used for correction by Meteolab.
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Figure 4 Spatial distribution of model corrected at weather stations using best results (PP_M4a). a) BIAS of the simulation in
comparison with stations; b) MAE of the simulation in comparison with stations; ¢) RMSE of the simulation in comparison with
stations; d) Spearman of the simulation in comparison with stations. Hillshade based on SRTM data.
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The precipitation fields corrected with different approaches of MeteoLab (Table 2) showed improved values in weather
stations in comparison to raw solution. The corrected ISI-MIP results were similar to those described for PP_M4a, but with
slightly larger error values. Both ISI-MIP and PP_M4a presented a bias lower than 0.5 mm. The gpQM method varied
between -2.69 and 0.95 mm (Figure 3). We point out that the PP_M4a method shown the best performance considering
MAE and the RMSE (~0.04 and ~0.23 mm respectively). The Spearman coefficient ranged between 0.90 and 0.98,

increasing the quality of representation of the precipitation fields in comparison to weather stations.

4.2  Rainfall-Induced Landslide Early warning

The probability of occurrence of RIL at spatial and temporal scale was estimated using the precipitation values corrected on
PP_M4a approach (Table 2). The results of the Logit regression (Table XXX1) showed that the weight of the intercept
varied by a maximum of ~0.36 units for the 4 models, varying between 3.1658 + 0.0091 and 3.5235 + 0.0069 (Figure 5). The
B’ estimators corresponding to the daily precipitation fluctuated between -0.8176 + 0.0089 and -0.8124 + 0.0066 [1/mm],

11
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while for the precipitation of the previous 7 days the estimator varied from -0.6413 + 0.0063 to 0.0020 + 0.0086 [1/mm]. The
indicator obtained for the monthly precipitation was -0.3518 + 0.0033 [1/mm] (used exclusively for the M3 model), while
the slope estimator fluctuated between -0.1696 + 0.0049 and -1289 + 0.0072 [1/degree] (Figure 5).

TABLE XXX1: Values of the estimators for the Logit models

Thirty-day
Intercept Daily Seven-day accumulated Slope
precipitation accumulated precipitation
precipitation
Model 1 3.5235+ 0.0069 -0.8176 + 0.0089 - - -0.1696 + 0.0049
Model 2 3.3582+0.0067 - 0.6413 + 0.0063 - 0.1365 + 0.0086
0.3518 +
Model 3 3.1658+0.0091 - - 0.0033 -0.1289 + 0.0072
Model 4 3.5206+0.0106 - 0.8124 £ 0.0066  0.0020 + 0.0086 - -0.1675 + 0.0080
TABLE XXX2: Values of the estimators for the Probit models
Thirty-day
Intercept Daily Seven-day accumulated Slope
precipitation accumulated precipitation
precipitation
Model 1 1.9113 £0.0030 - 0.4166 £ 0.0046 - - -0.0741 £ 0.0022
Model 2 1.8490+0.0031 - -0.3545+0.0029 - -0.0675 + 0.0038
Model 3 1.7482+0.0041 - - -0.1897+.0020 - 0.0596+0.0033
Model 4 1.9110+0.0044 - 0.4016+0.0027 - 0.0202+0.0038 - - 0.0732+0.0040

We point out that estimators related to the precipitation had a higher absolute weight than the slope for all the models
calibrated. The precipitation used in daily (M1), previous 7 days (M2) or previous 30 days (M3) showed a decreasing value
(in absolute terms) as the accumulated precipitation period increased. The results of the PP_M4a model, which considered

the daily precipitation in conjunction with that of the previous 7 days, showed that the latter had an absolute weight of almost

]
zero compared to the former. In general, the standard deviations (0, ) obtained from the estimators and intercept were very
low for all the Logit models calibrated. The Probit model (Table XXX2) showed the same behaviour (as the Logit) of the

intercept for the 4 models; its estimator fluctuated between 1.7482 + 0.0041 and 1.9113 + 0.0030. The S « values for daily

12



precipitation varied from -0.4166 + 0.0046 to -0.4016 + 0.0027; 7-day precipitation from -0.3545 + 0.0029 to -0.0202 +
0.0038; 30-day precipitation with -0.1897 + 0.0020 (just used in M3), and the slope from -0.0741 + 0.0022 to -0.0596 +

0.0033 (Figure 6).
225
Figure 5 Distribution of estimators for each model with Logit distribution.
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Figure 6 Distribution of estimators for each model with Probit distribution.
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4.3 Performance assessment

ROC analysis of the Logit and Probit models showed that the M1, M2 and M4 models gave a similar performance ( Figure 7
and Figure 8). The area under the curve for the Logit models varied between 0.8032 and 0.6672, while for the Probit models
it varied between 0.8076 and 0.6672. Our results showed a lack of performance for M3 in comparison to daily precipitation
data for Logit and Probit models (0.6582 and 0.6672, respectively). Models with AUC values equal to 0.5 indicate that do
not suitable of discriminate the landslides, generating random predictions. Therefore, our results demonstrate that the
calibrated models do not do a random fitting.

The rate of valid positives in the Logit distributions of the M1 and M4 models was higher than 0.97 with tolerances below
50%. For the same range, however, the rate of FP was over 45%. The same occurred with the Probit models. For a tolerance
of 95%, the prediction of FN for both regressions diminished to below 40%, although the accurate predictions (TP) also fell
by ~11%. Similar performance was observed in M2, with slightly higher numbers of FP, but fewer as a proportion of TP. M3
in contrast presented rates of accurate predictions and FN close to 1 for thresholds lower than 85%. In general, we observe

that the Probit models had greater AUC values than the Logit being more suitable for RILEWS.

14
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Figure 7 ROC curve for thresholds of 5 to 99% for Logit models.
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Figure 8 ROC curve for thresholds of 5 to 99% for Probit models.
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The Logit and Probit regressions for M1 and M4 presented the highest sensitivity values, of 91.79 + 1.95% and 91.81 +

2.00% respectively, for the Logit regressions (Table 3). In the Probit models, M1 and M4 achieved sensitivity values of

250 91.25 + 1.96% and 91.16 + 2.03% respectively. Likewise, M2 had a sensitivity of 87.07 + 2.93% for Logit and 86.19 +

15
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2.79% for Probit. The sensitivity of M3 was 83.89 + 5.46% for Logit and 82.94 + 5.21 for Probit (Table 3). In general, we
observed that the Logit models were more sensitive than the Probit. The specificity values for the M2 and M3 models were
subtly higher for the Probit regressions than for the Logit, while for the M1 and M4 models the results obtained were almost
equal.

Table 3: Sensitivity and specificity with validation database (BD2).

Model Distribution Sensitivity (%) Specificity (%)
Logit 91.79 £ 1.95 54.36 + 14.11
Model 1
Probit 91.25 £ 1.96 54.29 + 14.11
Logit 87.07 £2.93 62.43 £ 14.29
Model 2
Probit 86.19 £ 2.79 64.18 £ 14.03
Logit 83.89 £ 5.46 36.11 £ 16.41
Model 3
Probit 82.94 +5.21 38.18 £+ 16.44
Logit 91.81 £ 2.00 55.65 + 14.46
Model 4
Probit 91.16 £ 2.03 55.71 + 14.49

According to this, the best model for predicting RIL in the study area was M1 (daily precipitation and slope). The sensitivity
and specificity values with the 95% threshold chosen after ROC analysis were higher than 82%. The results showed that the
indicators were similar for the M1, M3 and M4 models (Table 3). However, a reduction was observed in the rate of TP for

the M2 model (~10%).

5  Analysis and Discussion

Implementing RILEWS is a challenge due to the natural limitations like historical records and the precipitation data
available. One of the main challenges in RILEWS corresponds to develop a model that generates warning only using limited
meteorological information. Therefore, precipitation representation characterized by a low uncertainty in complex
topography environments is a valuable contribution (Table 3). Our study proposes an alternative to landslide forecast into
scarce data environments, allowing to increase the resilience of the local community. Here, we demonstrated that the
mesoscale models become suitable to reproduce the spatial precipitation distribution with a bias-correct using in-situ weather
stations. The precipitation was integrated into a logistic model subsequently, to establish the spatial probability of occurrence

of a RIL event.
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5.1  Atmospheric modelling

Implementation of a LEWS applied to RIL requires accurate estimation of the spatial distribution of precipitation. Zones
with a low density of meteorological stations generate uncertainties in the RILEWS implementation (Marra, 2018; Peres et
al., 2018). Previous works have shown the sensitivity of mesoscale models to abrupt changes of complex topography
(Srivastava et al., 2015; Osman et al., 2018; Heredia et al., 2018; Jeong & Lee, 2018; Buchici et al., 2019; Bannister et al.,
2019; Worku et al., 2020); being consistent with the abrupt topography of the eastern part of the study area (Figure 4), where
the MAE (6.6) and RMSE (17.9) values were concentrated. We avoided the precipitation constrain using a bias-corrected
version of the WRF model to reduce the spatial error estimation in the precipitations. The use of bias-corrected precipitation
of the WRF model improved the spatial representation in this study. The uncorrected model had bias values higher than 16
mm, becoming critical during the incorrect early warning generation. Therefore, an incorrect precipitation estimation could
becomes a human loss. Following, our results deliver precipitation data with a low uncertainty level. That becomes suitable

to operative RILEWS with a low false-positive rate (FP).

In many areas of the world, the prediction of rainfall-induced landslides is usually carried out using empirical rainfall
thresholds [Gariano et al., 2020]. Previous contributions showed that dense weather stations allow representing the complex
precipitation distribution giving well threshold estimation [Nikolopoulos et al., 2014]. However, debris flow thresholds
developed from sparse in-situ weather stations generated low performance [Nikolopoulos et al., 2015]. The complex
topography and the sparse weather stations availability underestimate rainfall thresholds for landslides in Southern Andes.
Following, a RILEWS based only on weather stations is not suitable. Previous studies showed a systematic underestimation
in debris flow early warning thresholds related to the use of sparse rain gauge networks [Marra et al., 2016; Destro et al.,
2017; Marra et al., 2017]. Moreover, the topography has a strong influence on modifying the spatial distribution of
precipitation that leads to debris flows [Marra et al., 2016; Fustos et al., 2021] and landslides [Fustos et al., 2017]. Hence,
our contribution allows reducing the precipitation estimation uncertainty increasing the reliability of RILEWS in the
Southern Andes.

From our results, the bias-correction improved the precipitation representation when we compared against the weather
stations (Figure 4). The data from 12 spatially distributed meteorological stations were sufficient to represent the
precipitation fields with low RMSE values (max. 0.36 mm). Thus, the corrected results represent the precipitation fields in
Andean areas with lower bias values than previous studies (Yafiez-Morroni et al., 2018; Schumacher et al., 2020). PP_M4a
approach was found to reduce the bias efficiently for the study area. We propose that perfect prog approach allow to
represent accurately the topographic influence in the precipitation if the distribution of the weather stations is available. We
note that 30% of all the RIL occurred on days with low precipitation on the day and during the preceding days (7 and 30

days previous). Therefore, we propose that future developments should progress to analysis on a sub-daily scale. In this
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context, future developments should aim to use corrected WRF at an hourly scale; or else use lower-resolution satellite

estimates of precipitation as a tool to complement WRF simulations.

5.2  Rainfall-Induced Landslide Early Warning

The Southern Andes has a complex topography that influences precipitation events with different intensities in a few
kilometres of separation (examples in Figure 9 and Figure 10). Hence, a correct precipitation representation along the space
allows increasing the sensibility. The sensitivity of RILEWS depends heavily on the input variables, specifically the
precipitation in this case. The RILEWS achieved high predictive ability with AUC values between 0.65 (M3) and 0.80 (M1),
suggesting high sensitivity to intense precipitations in short periods. The performance of the model diminished when data at
monthly scale were used (M3) in comparison with daily resolution (M1 and M2), where M2 model (AUC=0.77) had similar
performance to M1. This similarity may be associated with the soil moisture content, reflecting the previous precipitation;
this means that it functions as a memory of the soil moisture in the slope before a RIL (related to the different soil types).
The memory effect in the slope in M3 will reflect in part its predisposition to suffer a RIL based on the soil moisture content
in the first few centimetres. Numerous works have related satellite information on precipitation and soil moisture to establish
links between them (Brocca et al., 2020; Camici et al., 2020; Pellarin et al., 2020). In future, the soil moisture memory
approach could be the best way to obtain a proxy of the soil moisture content and the slope response to landslides in zones
without a network of moisture sensors. This is consistent when we compare M1 (AUC=0.80) and M4 (AUC=0.79); they
present similar sensitivity values (~91% in both cases), suggesting that either model could be used. Model 1 and Model 4
showed similar performance because one being contained in the second. Hence, we interpret that an overrepresentation could
exist. Therefore, model 4 does not support additional information. At an operational level, the discard of model 4 reduces the

computing loading, simplifying the alert processes.
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Figure 9 Zones susceptible to RIL for January 08, 2017. Results using Model 1 (logit). Hillshade based on SRTM data.
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325 Figure 10 Zones susceptible to RIL for January 08, 2017. Results using Model 1 (probit).
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5.3  Future developments

The Andes in one of the most susceptible zones to be affected by intense precipitation changes product of climate change.
330 To reproduce and understand intense precipitation changes and their impact on landslides, a high Spatio-temporal resolution
is needed. The present contribution support reproducing accurate precipitation, contributing to robust RILEWS. Potential

improvements should be directed towards increasing the predictive ability by increasing the temporal resolution of the
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precipitation products. Our models do not consider the soil hydraulic variability like tephra fall or intensely weathered soft
rocks. Recently, rainfall-induced landslides affected actives (Fustos et al., 2021) and older volcanic environments (Somos et
al., 2020). The new generation of RILEWS will need a parametrization of these environments from a geotechnical point of
view. Moreover, all RILEWS must be able to be automated, which involves computing capacities of various kinds; to
mitigate the calculation costs we suggest incorporating the available satellite precipitation products, but at lower spatial
resolution (~10 km). Satellite estimations require validation of these outputs in areas with complex topography, like southern
Chile (Zambrano-Bigiarini et al., 2017). Likewise, new geoscientific data interfaces like GSMaP will allow better integration
with precipitation, complementing WRF products. One limitation of the present study is the quality of the RIL inventory
used. South America presents a low density of recorded events, despite the high density of their occurrence. Future efforts
should be directed towards generating RIL identification records using remote sensor techniques (Guzzetti et al., 2020;
Fustos et al., 2017; Jia et al., 2019) or numerical identification (Chikalamo et al., 2020; Guzzetti et al., 2020; Fustos et al.,
2020a). To date, our database is the best available for the spatial location and date of generation in the study area. We
suggest that alternatives should be considered in future to strengthen the generation of RIL databases in the Southern Andes
with a larger number of events. This could help to strengthen future RILEWS in this area, improving their performance in

terms of sensitivity and specificity.

6 Conclusions

This work evaluated the implementation of a RILEWS based on a logistic model and forced by geomorphological and
atmospheric conditions in the Southern Andes. For the first time in the Southern Andes, we showed how the WRF model can
be integrated into RILEWS operating systems without the need to use ensembles, by use of bias correction processes. This
opens the door to the implementation of precipitation-based prediction models without costly computer iterations by
ensembles of models (Yéafiez-Morroni et al., 2018; Schumacher et al., 2020). New studies of LEWS in the Southern Andes
should be directed towards increasing the RIL database currently available. In future we suggest evaluating alternatives to
strengthen better quality RIL database generation in this segment of South America, completing the existing database from
the records of the Chilean National Geological and Mining Service (Sernageomin). This could help to strengthen future
RILEWS in the Southern Andes, improving their performance in terms of sensitivity and specificity.

Logistic models proved their capacity to predict RIL events with AUC varying between 0.65 and 0.80, indicating their
ability to represent RIL occurrence correctly. Despite the high relative sensitivity of M3, the models which presented high
sensitivity and specificity were those which included precipitations on a daily scale (models 1, 2 and 4). Using the
precipitation of the previous 7 days could improve this approach to representing soil moisture. There is no network of
moisture sensors in the area, so Model 4 should be incorporated as it allows this factor to be represented. Finally, we propose

to use models M1 and M4 in conjunction.
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