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Abstract. Rainfall-Induced Landslide Early Warning Systems (RILEWS) are critical tools for reducing and
mitigating economic and social damages related to landslides. Despite this critical need, the Southern Andes
does not yet possess an operational-scale system to support decision-makers. We propose RILEWS using a
logistic regression system approach in the Southern Andes. The models were forced by corrected simulations
of  precipitation  and  geomorphological  features.  We  evaluated  the  precipitation  using  the  Weather  and
Research  Forecast  (WRF)  model  on  an  hourly  scale.  The  precipitation  was  corrected  by  means  bias
correctionusing bias correction approaches with daily data from 12 meteorological stations. Four logistic and
probabilistic models were then calibrated using Logit and Probit distributions. The predictor variables used
were combinations of the slope, corrected daily precipitation and data preceding the events (7 and 30 days
previous) for 57 Rainfall-Induced Landslides (RIL); validation was carried out by ROC analysis. Our results
showed that WRF does not represent the spatial variability of the precipitation. This situation was resolved by
means of bias correctionbias correcting. Specifically, the PP_M4a method with Bernoulli distribution for the
occurrence  and Gamma for  the  intensity  produced  lower  MAE and RMSE values  and higher  correlation
values. Finally, our RILEWS had a high predicting capacity with an AUC of 0.80 using daily precipitation
data and slope. We conclude that our methodology is suitable at an operational level in the Southern Andes.
Our contribution could become a useful tool in the mitigation of impacts related to climate change.  Rainfall-
Induced Landslide Early Warning Systems (RILEWS) are critical tools for reducing and mitigating economic and
social  damages  related  to  landslides.  Despite  this  utility,  the  Southern Andes  do not  have an operational-scale
RILEWS yet.  In  this  contribution,  we present  a  pre-operational  RILEWS  based  on  the  Weather  and  Research
Forecast  (WRF)  model  and  geomorphological  features  coupled  to  logistic  models  in  the  Southern  Andes.  The
models have been forced using simulations of precipitation. We correct the precipitation derived from WRF using 12
weather stations through a bias correction approach. The models were trained using 57 well-characterized Rainfall-
Induced  Landslides  (RIL)  and  validated  by  ROC analysis.  We show that  WRF does  not  represent  the  spatial
variability of the precipitation. Therefore, accurate precipitation needs a bias correction in the study zone. Accurate
precipitation simulations allow RILEWS with high predicting capacity (area under the curve, AUC of 0.80) using
daily precipitation data and slope. We conclude that our proposal is suitable at an operational level. The proposed
RILEWS will become a support in the mitigation of RIL events related to climate change. 
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1 Introduction

Rainfall Induced Landslide Early Warning Systems (RILEWS) become a powerful alternative for mitigating human losses

and reduced infrastructure damages (Guzzetti et al., 2020; Chikalamo et al., 2020; Hermle et al., 2021).  In recent years,

Rainfall-Induced Landslides (RIL) arebecomes one of the most frequent and dangerous natural hazards worldwide. They can

affect critical infrastructure and highways in populated areas (Chikalamo et al., 2020; Fustos et al., 2020a; Peruccacci et al.,

2017). In recent decades, the occurrence of RIL events has increased with devastating effects, including loss of human life

and destruction of the natural and urban environment (Marjanović et al., 2018).  They can affect critical infrastructure and

highways in populated areas (Chikalamo et al., 2020; Fustos et al., 2020a; Peruccacci et al., 2017). In South America, RIL

has  caused  high  social  and  economic  impacts;  they  require  better  evaluation  in  future  (Sepulveda  &  Petley,  2015).

Nowadays, Rainfall Induced Landslide Early Warning Systems (RILEWS) become a powerful  alternative for mitigating

human losses and reduced infrastructure damages (Guzzetti et al., 2020; Chikalamo et al., 2020; Hermle et al., 2021). The

present work evaluates the design of a RILEWS using a mesoscale atmospheric model coupled to a logistic discriminator in

the Southern Andes.

Due to new extreme rainfall  scenarios related to climate change, RIL events are increasing in the South Andes and other

parts of the world.  Therefore,  RILEWS have become increasingly used in recent years,gained interest  and reduceding the

vulnerability of populations using different approaches (Peres & Cancelliere, 2014; Tiranti et al., 2014; Sättele et al., 2015;

Segoni et al., 2018; Cremonini and Tiranti, 2018; Fan et al., 2019; Tiranti et al., 2019; Thirugnanam et al., 2020; Bernard and

Gregoretti, 2021; Lee et al., 2021). RILEWS based on intensity/duration curvesprecipitation thresholds that do not consider

the effect of soil moisture, leading to bias in their predictive capacity (Marra et al., 2017; Zhao et al., 2019; Chikalamo et al.,

2020).  Some  RILEWS  use  historical  precipitation  data  with  long-term  observations,  climate  reanalysis  models  and

atmospheric  mesoscale  models (Lazzari  & Piccarreta,  2018;  Tichavský et  al.,  2019).  Moreover,  atmospheric mesoscale

models have shown a high uncertainty in areas with scarce meteorological stations and complex topography. Recently, the

integration of mesoscale atmospheric models with local weather stations allowed areas susceptible to RIL to be defined by

deterministic numerical models (Fustos et al., 2020a). Therefore, a correct implementation of mesoscale models could allow

the implementation of this source of information in RILEWS.

In recent years, mesoscale models showed incapable of representing precipitation fields suitable for RILEWS in areas with

complex topography like the Southern Andes (Yáñez-Morroni et al., 2018). Currently, mesoscale models are restricted to the

quality of their atmospheric forcings, needing to generate ensembles to obtain approximate solutions (Wayand et al., 2013).

Moreover, the mesoscale models demand intensive computational computing efforts that increase the difficulty of increasing

the difficultness coupling to RILEWS (Yáñez-Morroni et al., 2018; Schumacher et al., 2020; Yang et al., 2021). Nowadays,
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bias correction approaches contribute to reducing the time computing of mesoscale models, improving the estimation of

precipitation using in-situ stations (Srivastava et al., 2015; Bannister et al., 2019; Heredia et al., 2018; Jeong & Lee, 2018;

Osman et al., 2019; Worku et al., 2020). Nonetheless, the application of corrected mesoscale models in RILEWS in complex

topography has not been evaluated. 

The  object  of  the  present  work  was  to  evaluate  the  implementation  of  a  mesoscale  logistic  model  forced  by

geomorphological and precipitation constraints. We corrected mesoscale models (models that allow represent atmospheric

process to synoptic-scale) using weather stations, generating RIL-prone probability zones for the first time in the Southern

Andes.  The  paper  is  structured  as  follows:  after  the  introduction,  the  second  section  describes  the  study  site  and  its

pertinence to implement RILEWS. In the third section, we describe the data and methods, including the calibration and

validation procedures. In the fourth section, we outline the main results of the proposed RILEWS, focusing on the quality of

predictors  and  model  outputs.  The  fifth  and  final  section  comprises  the  discussion  and  conclusions,  presenting  the

implications of this proposal and their general applicability to the southern Andes.Rainfall Induced Landslide Early Warning

Systems  (RILEWS)  become  a  powerful  alternative  for  mitigating  human  losses  and  reducing  infrastructure  damages

(Guzzetti et  al.,  2020; Chikalamo et al.,  2020; Hermle et al.,  2021). The increase of Rainfall-Induced Landslides (RIL)

events  showed devastating  effects,  including  loss  of  human life  and  destruction  of  the  natural  and  urban  environment

(Marjanovi? et al., 2018). Recent RIL affected critical infrastructure and highways in populated areas (Chikalamo et al.,

2020; Fustos et al., 2020a; Peruccacci et al., 2017; Fustos et al., 2021). In South America, RIL has caused high social and

economic impacts; they require better evaluation in future (Sepulveda & Petley, 2015). The present work evaluates the

design of a RILEWS using a mesoscale atmospheric model coupled to a logistic model to mitigate the effect of RIL in the

Southern Andes. 

Due to new extreme rainfall events related to climate change, RIL events are increasing in the Southern Andes and other

parts of the world. To mitigate the impact of extreme precipitation RILEWS have gained interest to mitigate the impact of

RIL using different approaches (Peres & Cancelliere, 2014; Tiranti et al., 2014; Sättele et al., 2015; Segoni et al., 2018;

Cremonini and Tiranti, 2018; Fan et al., 2019; Tiranti et al., 2019; Thirugnanam et al., 2020; Bernard and Gregoretti, 2021;

Lee et al., 2021). RILEWS based on precipitation thresholds shows good agreement but do not consider the effect of soil

moisture, leading to bias in their predictive capacity (Marra et al., 2017; Zhao et al., 2019; Chikalamo et al., 2020). Some

historical-based  RILEWS  with  long-term  observations,  climate  reanalysis  models  and  atmospheric  mesoscale  models

experiment issues related to the spatial and temporal resolution reducing the performance due to low precipitation accuracy

(Lazzari & Piccarreta, 2018; Tichavský et al., 2019).  

RILEWS requires  accurate  precipitation data delivered from local  weather  stations in dense weather  networks,  satellite

estimations and atmospheric mesoscale models. However, atmospheric mesoscale models showed incapable of representing

accurate  precipitation  fields  in  areas  with  complex  topography like  the  Southern  Andes  (Yáñez-Morroni  et  al.,  2018).

Currently, mesoscale models are restricted to the quality of their atmospheric forcings, needing to generate ensembles to

obtain approximate  solutions (Wayand et  al.,  2013).  Moreover,  the mesoscale  models  demand intensive computational
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efforts that increase the difficulty of coupling to RILEWS (Yáñez-Morroni et al., 2018; Schumacher et al., 2020; Yang et al.,

2021). Recently, mesoscale atmospheric models coupled to local weather stations allow delimitating susceptible to RIL areas

means deterministic numerical models (Fustos et al., 2020a). Nowadays, bias correction approaches contribute to reducing

the time computing of mesoscale models, improving the estimation of precipitation using in-situ stations (Srivastava et al.,

2015; Bannister et al., 2019; Heredia et al., 2018; Jeong & Lee, 2018; Osman et al., 2019; Worku et al., 2020). Therefore, a

correct implementation of mesoscale models could allow accurate precipitation in RILEWS. Nonetheless, the application of

corrected mesoscale models in RILEWS in complex topography has not been evaluated yet.  

The object of the present work was to evaluate the implementation of a RILEWS based on mesoscale atmospheric model

coupled to logistic model. We corrected mesoscale models (models that allow represent atmospheric process to synoptic-

scale) using weather stations, generating RIL-prone probability zones for the first time in the Southern Andes. The paper is

structured as follows: after the introduction, the second section describes the study site and its pertinence to implement

RILEWS. In the third section, we describe the data and methods, including the calibration and validation procedures. In the

fourth section, we outline the main results of the proposed RILEWS, focusing on the quality of predictors and model outputs.

The fifth and final section comprises the discussion and conclusions, presenting the implications of this proposal and their

general applicability to the southern Andes. 

2 Study area

We evaluated the implementation of RILEWS in the Southern Andes and the northern part of the Patagonian Andes (~40.0°

– 42.5°S, ~72.0° – 73.5° W, Figure 1). A prolonged increase of RIL events in this area took place during the period 2012-

2019, generated by extreme precipitation events. The area presents three principal morphological units in bands oriented

north-south. From west to east, they are the Coastal Range, the Central Valley and the Andes Range (Figure 1). In the

western area, altitudes range from 100-1,000 m a.s.l., with slopes between 0 and 25°. In the central valley, the maximum

altitude is 150 masl, with slopes between 0 and 15° in the central part and between 25 and 45° towards the Andes. Finally,

the highest altitudes (400 to 2,700 masl) and the steepest slopes (25 – 70°) are found in the eastern zone (Gomez-Cardenas &

Garrido-Urzua, 2018).

Average  Aannual precipitation is strongly correlated with  the  topography and latitude. In the north segment (~40°33’ –

~41°10’ S) it is over 1,200 mm per year, while in the south (~41°10’ – ~42°10’ S) it rises to over 1,400 mm per year. In the

Central Valley, the precipitation exceeds 1,910 mm per year. The highest precipitations are recorded in the Andes Range, of

over 4,000 mm (Alvarez-Garreton et al., 2018). The climate in the area is classified as oceanic climate (Beck et al., 2018)

with a dry summer in the north portion, but no dry months in the south (Alvarez-Garreton et al., 2018).

The  oldest  geological  units  in  the  area  correspond  to  cretaceous  intrusive  bodies  which  emerge  in  the  Rupanco  lake

peninsula and further south. In the Coastal Range, there are outcrops of metamorphic rocks from the Paleozoic Triassic (300-

250 Ma). These rocks are largely covered by sedimentary deposits of various origins: marine from the Oligocene-Miocene
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(eastern flank of the Coastal Range), volcanic from the Oligocene-Miocene (40 to 5 Ma; south of Rupanco lake), and glacial

from the  Pleistocene-Holocene.  In  the  SE of  the  region  is  the  North  Patagonian  Batholith  (132-77  Ma),  consisting  of

granites, granodiorites, tonalites and leucogranites (Gomez-Cardenas & Garrido-Urzua, 2018). Elsewhere in the region, there

are clayey soils called trumaos and ñadis, which have developed from glacial-fluvial-volcanic sediments. These soils present

a high organic content, poor drainage and low development (Blanco & de la Balze, 2004).

Figure  1 Study area in the Southern Andes Zone and the northern part of the Patagonian Andes. RIL events in the area are
highlighted in yellow dots and red stars mark the meteorological stations available. Hillshade based on SRTM data.
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3 Methodology

We  assessed  the  feasibility  of  a  RILEWS  applied  to  Rainfall-Induced  Landslides  (already  definedRIL)RIL using

geomorphological and precipitation forcings for the Southern Andes.  We consider an approximation of the probability of

occurrence of RIL through logistic distributions. The probability allows a spatialization of "prone-landslide" or "not prone-

landslide"  conditions  under  established  precipitation  and  topographical  conditions.  Precipitation  data  and  local

geomorphological  features were integrated into a logistic model  as predictors  to evaluate the occurrence of RIL. These

variables were taken into account because both the precipitation and the topography predispose the study area to RIL (Fustos

et al.,  2017; 2020a).  We do not use additional data, such as soil moisture or climatic index, to avoid complex models

allowing fast estimations into an operational  stage.  We used a RIL database (Gomez-Cardenas & Garrido-Urzua, 2018)

being separated into calibration sub-database and validation sub-database to evaluate the models' performance.A database of

previous  RIL was studied  (Gomez-Cardenas  & Garrido-Urzua,  2018),  divided  into calibration  subsets  with subsequent

validation of the method. The bias associated with the precipitation obtained from the mesoscale model was corrected using

in-situ stations (Figure 2). To establish the reliability of the model for the correct  prediction of RIL, its sensitivity was

calculated  using  the  validation  subset.  This  allowed  the  RIL  prediction  sensitivity  to  be  characterised  for  operational

implementation in future LEWS.
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Figure  2 Short methodological description. The first phase explained in detail in section 3.1 and the second stage explained in
sections 3.2 and 3.3.

3.1 Atmospheric modelling

The  study  area  contains  a  limited  number  of  meteorological  stations,  becoming  a  challenge  to  represent  the  spatial

distribution  of  precipitation.  To overcome the  limitation  imposed  by  the  meteorological  data,  precipitation fields  were

estimated using the Weather and Research Forecast model 4.0 (WRF, Skamarock et al., 2019). Atmospheric conditions were

simulated for the period 2014 to 2018 at hourly time resolution. We used a spatial resolution of 4 km that allows representing

the complex topography of  the Andes.  We used a spatial  resolution of 4 km, which allowed to represent  the complex

topography of the Andes. WRF parametrisation followed the WSM 3-Class Simple Ice Scheme microphysical model (Hong

et al., 2004), while the soil-atmosphere interaction was parametrised by the Unified Noah Land-Surface Model (Tewari et

al., 2004).  Final Operational Global Analysis product from the US–National Centers for Environmental Prediction NCEP,

also known as FNL (NCEP, 2000),  was used as  the global  forcing to  obtain the solutions of  precipitation at  4-km or

mesoscale (resolution to an order of kilometres).Final Operational Global Analysis product from the US–National Centers

for  Environmental  Prediction NCEP, also known as  FNL (NCEP, 2000),  was used as the global forcing  to obtain the

solutions of precipitation at mesoscale.
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The precipitation fields of the WRF model were compared with 12 meteorological stations available in the area to evaluate

the bias of the numerical model (Figure 1). Biases associated with local effects of the parametrisation selected in WRF were

corrected by MeteoLab (Wilcke, 2013) using three different methods (Table 1). We compared the methods with different

statistics functions such as bias, MAE, RMSE, and Pearson and Spearman correlations. FollowingSubsequently, the model

corrected with the lowest RMSE in precipitation was used in a RILEWS implementation.

Table 1: Correction methods applied, with references.

CORRECTIO
N

REFERENCE

PP_M4A
Perfect  prog  approach.  Reassessing  model  uncertainty  for  regional  projections  of
precipitation with an ensemble of statistical  downscaling methods  (San-Martín et al.,
2017).

ISI-MIP
A trend-preserving  bias  correction  & ndash;  The  ISI-MIP approach  (Hempel  et  al.,
2013).

BC_QPQM
Bias  correction  approach.  Precipitation  bias  correction  methods  for  high-resolution
regional  climate  simulations  using  COSMO-CLM:  Effects  on  extreme  values  and
climate change signal (Gutjahr and Heinemann, 2013).

3.2 Rainfall-Induced Landslide Early Warming

We propose a model for RILEWS based on the probability of occurrence of RIL in space and time. The probability was

determined using Logit and Probit logistic distribution functions, which have been implemented previously in the Southern

Andes (Fustos et al., 2017; 2020b). The advantage of logistic regressions is that they establish statistical relations between

physical processes at different scales with a limited quantity of information (Fustos et al., 2020b). The logistic regressions

were trained based on the local geomorphological conditions (slope) and previously modelled and corrected precipitation

simulations.The logistic regressions were trained based on the local geomorphological conditions (slope) and previously

corrected simulations of precipitation. We used slope values derived from SRTM data. A limited number of 4,987 RIL have

been reported for the south of Chile (Gomez-Cardenas & Garrido-Urzua, 2018). However, we had detailed information only

for 2,035 of these, including the exact date. We used as database 57 RIL events, considering mudflow, debris flow and mass

wasting. However, 2.035 RIL exist in the zone, and only 57 RIL events have an exact date. The final database considers

mudflow, debris flow and mass wasting. The actual database is not suitable to establish RILEWS using thresholds due to the

scarce amount (Peres and Cancelliere, 2021). The current dataset is the most comprehensive landslide catalogue for the zone

in comparison to well-validated global datasets such as Global Landslide Catalog (GLC) (Kirschbaum et al., 2010) and the

Global Fatal Landslide Database (GFLD) (Froude and Petley, 2018) developed into other studies (Destro et al., 2017; Rossi

et al., 2017; Wang et al., 2021).    
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The Logit distribution model fit the probability of occurrence of an event using a logistic curve (Li et al., 2011). The Logit

distribution model (L) is given by:

L ( y i=1 )=

exp(β0
'
+∑

k=1

N

βk
' Xk)

1+exp (β0
'
+∑

❑

❑

❑❑

❑
❑❑|❑❑

❑
❑❑)

(Eq. 1).

where L ( y i=1 ) is the probability of occurrence of a RIL, N  is the number of predictors used ( X k ), βk
'  are the coefficients

of the function and β0
'  is the intercept. A Probit distribution also uses binary dependent variables and its main difference

from the Logit distribution is the use of the inverse standard normal distribution. The Probit distribution ( P) (McCullagh &

Nelder, 1989; Javier & Velazquez, 1990) is given by: 

P ( y i=1 )=Φ− 1( β0+∑
k=1

N

βk X k+ε ) (Eq. 2).

where  k ,  β and  X k refer to the same variables as the Logit distribution,  ε  is the error of the fit with standard normal

distribution  ε∼N (0 ,Σ ) and  Φ−1 denotes  an inverse  normal  probability function (McCullagh & Nelder,  1989).  Four

predictors were used for both the Logit and Probit functions, daily precipitation, precipitation over the previous 7 and 30

days, and slope (Table 2).  

The complete RIL database was split into a calibration sub-base (DB1) and an independent calibration validation sub-base

(DB2) for subsequent evaluation (Figure 2). The database was split by taking from 20 to 30% of the data, chosen at random,

for calibration. A calibration set was selected 100 times to obtain βk and βk
' , and their standard deviations denoted by σ k

and σ k
' respectively, calculated according to the methodology presented by Fustos et al. (2020b).

Table 2: Models and predictors incorporated.

Daily precipitation
Seven-day

accumulated
precipitation

Thirty-day
accumulated
precipitation

Slope

Model 1 Considered - - Considered

Model 2 - Considered - Considered

Model 3 - - Considered Considered

Model 4 Considered Considered - Considered
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3.3 Performance assessment

The quality of each regression was evaluated by ROC analysis (Fawcett, 2006) using the independent database BD2 (Figure

2). The DB2 has georeferenced the initial failure zone. We compared the initial failure zone to the pixel of our models (pixel

that includes the point). This allowed us to understand the degree of accuracy in identifying a RIL event under determined

conditions of slope and precipitation. A probability threshold (tolerance) was established to define the instant when the

models  identify  a  RIL event  correctly.  The  tolerance  was  defined  from the  results  of  the  ROC curve  for  probability

thresholds between 50 and 95%. In this way, the sensitivity of each iteration was estimated (Eq. 3), representing the capacity

of the set of estimators to detect RIL events correctly (Fawcett, 2006; Hand & Till, 2001). The sensitivity (S) was defined as

the ratio of true positive predictions of events (TP), over the total of positive events (including false-negative predictions –

FN). The specificity (E) was also calculated (Eq. 4) to evaluate the capacity of detection of non-RIL events or true negative

(TN), to avoid false positives (FP) (Fawcett, 2006).  FinallyTherefore, this methodology made it possible to evaluate the

capacity of each model to detect RIL events (Fustos et al., 2020b). We propose that the threshold must be suitable to separate

a prone-landslide event from a non-prone-landslide event. The threshold maximizes the sensibility in the four models with

different degrees of performance of RILEWS.

S=TP/(TP+FN) (Eq. 3).

E=TN/(TN+FP) (Eq. 4).

4 Results

This  work  evaluated  a  new RILEWS based  on  two logistic  models  and  forced  by  geomorphological  and  atmospheric

conditions on a mesoscale in the Southern Andes. We analysed the quality of the representation of atmospheric conditions of

our  RILEWS  based  on  logistic  identifiers  and  the  performance  in  identifying  RIL  correctly  in  areas  with  complex

topography.

4.1 Atmospheric modelling

The uncertainty of precipitations is a critical factor for RILEWS (Guzzetti et al., 2019; Chikalamo et al., 2020). The stations

were compared in the uncorrected simulation showing (~0.26-0.49) to medium (~0.32-0.67) correlation values by Pearson

and  Spearman  coefficients. The  uncorrected  precipitation  simulation  showed  (~0.26-0.49)  to  medium  (~0.32-0.67)

correlation  values  (Pearson  and  Spearman)  in  comparison  to  in-situ  weather  stations. Our  results  showed  a  spatial

dependence of the precipitation error between the mesoscale model and weather station. Stations located in the SW and NW

extremes  of  the  domain  presented  low  correlations  in  comparison  to  the  WRF  model  (Figure  3).  Moreover,  the

meteorological stations in the eastern zone had RMSE between 16.33 up to 18.00 mm respectively. The RMSE for the rest of

the stations ranged between 8.79 and 12.24 mm. Meanwhile, MAE showed similar values for all the stations (3.44-6.67
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mm), while the bias varies between -4.0 up to 5.2 mm, except in the stations on the W and SE borders ( Figure 4). Therefore,

our results showed that the atmospheric model did not represent the distribution spatial and temporal of the precipitation.

The corrected precipitation model showed higher performance in RMSE, correlation and bias than in the original simulations

(Figure 3). The methods of the perfect prog (PP) family gave better performance than bias correction (BC) methods. The

PP_M4a method generated smaller errors in the corrected fields compared to meteorological stations. The best-performing

BC method, gpQM, did not diminish the MAE, which increased by 0.05 mm on average over the uncorrected model, but it

did  improve  the  RMSE  by  2.47  mm  on  average  (Figure  3).  Finally,  the  Spearman  correlation  produced  a  lower

correspondence with the observations than did the uncorrected simulation. Therefore, our results showed that the mesoscale

correction allows improving the rainfall representation quality.

Figure  3 Precision and Reliability  Indicators.  Bias (mm),  MAE (mm),  RMSE (mm) and Spearman.  WRF is  the

uncorrected model, while the other models are the different methodologies used for correction by Meteolab.
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Figure  4 Spatial distribution of model corrected at weather stations using best results (PP_M4a). a) BIAS of the simulation in
comparison with stations; b) MAE of the simulation in comparison with stations; c) RMSE of the simulation in comparison with
stations; d) Spearman of the simulation in comparison with stations. Hillshade based on SRTM data.

The precipitation fields corrected with different approaches of MmeteoLlab (Table 2) showed improved values in weather

stations in comparison to raw solution. The corrected ISI-MIP results were similar to those described for PP_M4a, but with

slightly larger error values. Both ISI-MIP and PP_M4a presented a bias lower than 0.5 mm. The gpQM method varied

between -2.69 and 0.95 mm (Figure 3). We point out that the PP_M4a method shown the best performance considering

MAE  and  the  RMSE (~0.04  and  ~0.23  mm  respectively).  The  Spearman  coefficient  ranged  between  0.90  and  0.98,

increasing the quality of representation of the precipitation fields in comparison to weather stations. 

4.2 Rainfall-Induced Landslide Early warning

The probability of occurrence of RIL at spatial and temporal scale was estimated using the precipitation values corrected on

PP_M4a approach (Table 2). The results of the Logit regression  (Table XXX1)  showed that the weight of the intercept

varied by a maximum of ~0.36 units for the 4 models, varying between 3.1658 ± 0.0091 and 3.5235 ± 0.0069 (Figure 5). The

βk’ estimators corresponding to the daily precipitation fluctuated between -0.8176 ± 0.0089 and -0.8124 ± 0.0066 [1/mm],
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while for the precipitation of the previous 7 days the estimator varied from -0.6413 ± 0.0063 to 0.0020 ± 0.0086 [1/mm]. The

indicator obtained for the monthly precipitation was -0.3518 ± 0.0033 [1/mm] (used exclusively for the M3 model), while

the slope estimator fluctuated between -0.1696 ± 0.0049 and -1289 ± 0.0072 [1/degree] (Figure 5).

TABLE XXX1: Values of the estimators for the Logit models

Intercept
Daily

precipitation

Seven-day
accumulated
precipitation

Thirty-day
accumulated
precipitation

Slope

Model 1 3.5235 ± 0.0069 - 0.8176 ± 0.0089 - - -0.1696 ± 0.0049

Model 2 3.3582±0.0067 - 0.6413 ± 0.0063 - 0.1365 ± 0.0086

Model 3 3.1658±0.0091 - -
0.3518 ±
0.0033

-0.1289 ± 0.0072

Model 4 3.5206±0.0106 - 0.8124 ± 0.0066 0.0020 ± 0.0086 - -0.1675 ± 0.0080

TABLE XXX2: Values of the estimators for the Probit models

Intercept
Daily

precipitation

Seven-day
accumulated
precipitation

Thirty-day
accumulated
precipitation

Slope

Model 1 1.9113 ± 0.0030 - 0.4166 ± 0.0046 - - - 0.0741 ± 0.0022

Model 2 1.8490±0.0031 - -0.3545±0.0029 - -0.0675 ± 0.0038

Model 3 1.7482±0.0041 - - -0.1897±.0020 - 0.0596±0.0033

Model 4 1.9110±0.0044 - 0.4016±0.0027 - 0.0202±0.0038 - - 0.0732±0.0040

We point out that estimators related to the precipitation had a higher absolute weight than the slope for all the models

calibrated. The precipitation used in daily (M1), previous 7 days (M2) or previous 30 days (M3) showed a decreasing value

(in absolute terms) as the accumulated precipitation period increased. The results of the PP_M4a model, which considered

the daily precipitation in conjunction with that of the previous 7 days, showed that the latter had an absolute weight of almost

zero compared to the former. In general, the standard deviations (σ k
❑

) obtained from the estimators and intercept were very

low for all the Logit models calibrated. The Probit model (Table XXX2) showed the same behaviour (as the Logit) of the

intercept for the 4 models; its estimator fluctuated between 1.7482 ± 0.0041 and 1.9113 ± 0.0030. The βk values for daily
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precipitation varied from -0.4166 ± 0.0046 to -0.4016 ± 0.0027; 7-day precipitation from -0.3545 ± 0.0029 to -0.0202 ±

0.0038; 30-day precipitation with -0.1897 ± 0.0020 (just used in M3), and the slope from -0.0741 ± 0.0022 to -0.0596 ±

0.0033 (Figure 6). 

Figure 5 Distribution of estimators for each model with Logit distribution.
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Figure 6 Distribution of estimators for each model with Probit distribution.

4.3 Performance assessment

ROC analysis of the Logit and Probit models showed that the M1, M2 and M4 models gave a similar performance ( Figure 7

and Figure 8). The area under the curve for the Logit models varied between 0.8032 and 0.6672, while for the Probit models

it varied between 0.8076 and 0.6672. Our results showed a lack of performance for M3 in comparison to daily precipitation

data for Logit and Probit models (0.6582 and 0.6672, respectively). Models with AUC values equal to 0.5 indicate that do

not  suitable  of  discriminate  the  landslides,  generating  random predictions.  Therefore,  our  results  demonstrate  that  the

calibrated models do not do a random fitting.

The rate of valid positives in the Logit distributions of the M1 and M4 models was higher than 0.97 with tolerances below

50%. For the same range, however, the rate of FP was over 45%. The same occurred with the Probit models. For a tolerance

of 95%, the prediction of FN for both regressions diminished to below 40%, although the accurate predictions (TP) also fell

by ~11%. Similar performance was observed in M2, with slightly higher numbers of FP, but fewer as a proportion of TP. M3

in contrast presented rates of accurate predictions and FN close to 1 for thresholds lower than 85%. In general, we observe

that the Probit models had greater AUC values than the Logit being more suitable for RILEWS.
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Figure 7 ROC curve for thresholds of 5 to 99% for Logit models.

Figure 8 ROC curve for thresholds of 5 to 99% for Probit models.

The Logit and Probit regressions for M1 and M4 presented the highest sensitivity values, of 91.79 ± 1.95% and 91.81 ±

2.00% respectively, for the Logit regressions (Table 3). In the Probit models, M1 and M4 achieved sensitivity values of

91.25 ± 1.96% and 91.16 ± 2.03% respectively. Likewise, M2 had a sensitivity of 87.07 ± 2.93% for Logit and 86.19 ±
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2.79% for Probit. The sensitivity of M3 was 83.89 ± 5.46% for Logit and 82.94 ± 5.21 for Probit (Table 3). In general, we

observed that the Logit models were more sensitive than the Probit. The specificity values for the M2 and M3 models were

subtly higher for the Probit regressions than for the Logit, while for the M1 and M4 models the results obtained were almost

equal. 

Table 3: Sensitivity and specificity with validation database (BD2).

Model Distribution Sensitivity (%) Specificity (%)

Model 1
Logit 91.79 ± 1.95 54.36 ± 14.11

Probit 91.25 ± 1.96 54.29 ± 14.11

Model 2
Logit 87.07 ± 2.93 62.43 ± 14.29

Probit 86.19 ± 2.79 64.18 ± 14.03

Model 3
Logit 83.89 ± 5.46 36.11 ± 16.41

Probit 82.94 ± 5.21 38.18 ± 16.44

Model 4
Logit 91.81 ± 2.00 55.65 ± 14.46

Probit 91.16 ± 2.03 55.71 ± 14.49

According to this, the best model for predicting RIL in the study area was M1 (daily precipitation and slope). The sensitivity

and specificity values with the 95% threshold chosen after ROC analysis were higher than 82%. The results showed that the

indicators were similar for the M1, M3 and M4 models (Table 3). However, a reduction was observed in the rate of TP for

the M2 model (~10%). 

5 Analysis and Discussion

Implementing  RILEWS is  a  challenge  due  to  the  natural  limitations  like  historical  records  and  the  precipitation  data

available. One of the main challenges in RILEWS corresponds to develop a model that generates warning only using limited

meteorological information. Therefore, a low uncertainty precipitation representation is a valuable contribution in complex

topography environments  Therefore, precipitation representation characterized by a low uncertainty in complex topography

environments is a valuable contribution (Table 3). Our study proposes an alternative to landslide forecast into scarce data

environments, allowing to increase the resilience of the local community. Here, we demonstrated that the mesoscale models

become suitable to reproduce the spatial precipitation distribution with a bias-correct  using in-situ weather stations. The

precipitation was integrated into a logistic model subsequently, to establish the spatial probability of occurrence of a RIL

event. 
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5.1 Precipitation accuracyAtmospheric modelling

Implementation of a LEWS applied to RIL requires  precise  accurate  estimation of the spatial distribution of precipitation.

Zones with a low density of meteorological stations generate uncertainties in the RILEWS implementation (Marra, 2018;

Peres  et  al.,  2018).  Previous  works  have  shown  the  sensitivity  of  mesoscale  models  to  abrupt  changes  of  complex

topography (Srivastava et al.,  2015; Osman et al., 2018; Heredia et al.,  2018; Jeong & Lee, 2018; Buchici et al., 2019;

Bannister et al., 2019; Worku et al., 2020); being consistent with the abrupt topography of the eastern part of the study area

(Figure 4), where the MAE (6.6) and RMSE (17.9) values were concentrated. We avoided the precipitation constrain using a

bias-corrected  version of  the  WRF model  to  reduce  the  spatial  error  estimation in  the  precipitations.  The use  of  bias-

corrected precipitation of the WRF model improved the spatial representation in this study. The uncorrected model had bias

values  higher  than  16  mm,  becoming  critical  during  the  incorrect  early  warning  generation.  Therefore,  an  incorrect

precipitation estimation could becomes a human loss. Following, our results deliver precipitation data with a low uncertainty

level. That becomes suitable to operative RILEWS with a low false-positive rate (FP).

In many areas  of  the world,  the prediction of  rainfall-induced landslides  is  usually  carried  out using empirical  rainfall

thresholds [Gariano et al., 2020]. Previous contributions showed that dense weather stations allow representing the complex

precipitation distribution giving well threshold estimation [Nikolopoulos et al., 2014; Nikolopoulos et al., 2015]. However,

debris flow thresholds developed from sparse in-situ weather  stations generated low performance  [Nikolopoulos et al.,

2015].  However, the complex topography and the sparse weather stations availability underestimate rainfall thresholds for

landslides in Southern Andes.  The complex topography and the sparse weather stations availability underestimate rainfall

thresholds for landslides in Southern Andes. Following, a RILEWS based only on weather stations is not suitable.  Previous

studies showed a systematic underestimation in debris flow early warning thresholds related to the use of sparse rain gauge

networks [Marra et al., 2016; Destro et al., 2017; Marra et al., 2017].  Moreover, the topography has a strong influence on

modifying the spatial distribution of precipitation that leads to debris flows [Marra et al., 2016; Fustos et al., 2021] and

landslides [Fustos et al., 2017]. Hence, our contribution allows reducing the precipitation estimation uncertainty increasing

the reliability of RILEWS in the Southern Andes.

The bias-correction using meteolab improved the precipitation representation to compared with weather stations From our

results, the bias-correction improved the precipitation representation when we compared against the weather stations (Figure

4). The data from 12 spatially distributed meteorological stations were sufficient to represent the precipitation fields with low

RMSE values (max. 0.36 mm). Thus, the corrected results represent the precipitation fields in Andean areas with lower bias

values than previous studies (Yáñez-Morroni et al., 2018; Schumacher et al., 2020). PP_M4a approach was found to reduce

the bias efficiently for the study area. We propose that perfect prog approach allow to represent accurately the topographic

influence in the precipitation if the distribution of the weather stations is available. We note that 30% of all the RIL occurred

on days with low precipitation on the day and during the preceding days (7 and 30 days previous). Therefore, we propose
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that future developments should progress to analysis on a sub-daily scale. In this context, future developments should aim to

use corrected WRF at an hourly scale; or else use lower-resolution satellite estimates of precipitation as a tool to complement

WRF simulations.

5.2 Rainfall-Induced Landslide Early Warning

The Southern Andes has a complex topography that triggers precipitation events with different intensities in a few kilometres

of separation The Southern Andes has a complex topography that influences precipitation events with different intensities in

a few kilometres of separation (examples in Figure  9 and Figure  10). Hence, a correct precipitation representation along the

space allows increasing the sensibility. The sensitivity of a RILEWS depends heavily on the input variables, specifically the

precipitation in this case. The RILEWS achieved high predictive ability with AUC values between 0.65 (M3) and 0.80 (M1),

suggesting high sensitivity to intense precipitations in short periods. The performance of the model diminished when data at

monthly scale were used (M3) in comparison with daily resolution (M1 and M2), where M2 model (AUC=0.77) had similar

performance to M1. This similarity may be associated with the soil moisture content, reflecting the previous precipitation;

this means that it functions as a memory of the soil moisture in the slope before a RIL (related to the different soil types).

The memory effect in the slope in M3 will reflect in part its predisposition to suffer a RIL based on the soil moisture content

in the first few centimetres. Numerous works have related satellite information on precipitation and soil moisture to establish

links between them (Brocca et al., 2020; Camici et al., 2020; Pellarin et al., 2020). The slope memory approach could be the

best way to obtain a proxy of the soil moisture content, as there is no network of moisture sensors in the study area. In future,

the soil moisture memory approach could be the best way to obtain a proxy of the soil moisture content and the slope

response to landslides in zones without a network of moisture sensors.  This is consistent when we compare M1 (AUC=0.80)

and M4 (AUC=0.79); they present similar sensitivity values (~91% in both cases), suggesting that either model could be

used.  Model 1 and Model 4 showed similar performance because one being contained in the second. Hence, we interpret

that an overrepresentation could exist. Therefore, model 4 does not support additional information. At an operational level,

the discard of model 4 reduces the computing loading, simplifying the alert processes.
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Figure  9 Zones susceptible to RIL for January 08, 2017. Results using Model 1 (logit). Hillshade based on SRTM data.

Figure  10 Zones susceptible to RIL for January 08, 2017. Results using Model 1 (probit).

5.3 Future developments

The Andes in one of the most propensity zones to be affected by intense precipitation product of climate change. Moreover,

the complex topography needs a high temporal resolution to reproduce the precipitation variability of the Southern Andes.

The Andes in one of the most susceptible zones to be affected by intense precipitation changes product of climate change. To

reproduce and understand intense precipitation changes and their impact on landslides, a high Spatio-temporal resolution is

21

400

405



needed.  The present  contribution  support  reproducing  accurate  precipitation,  contributing  to  robust  RILEWS. Potential

improvements  should be directed  towards  increasing  the predictive  ability by increasing  the temporal  resolution of  the

precipitation products. Our models do not consider the soil hydraulic variability like tephra fall or intensely weathered soft

rocks. Recently, rainfall-induced landslides affected actives (Fustos et al., 2021) and older volcanic environments (Somos et

al., 2020). The new generation of RILEWS will need a parametrization of these environments from a geotechnical point of

view.  Moreover,  all  RILEWS must be able to be automated, which involves  computing capacities  of  various kinds;  to

mitigate the calculation costs we suggest incorporating the available satellite precipitation products,  but at lower spatial

resolution (~10 km). Satellite estimations require validation of these outputs in areas with complex topography, like southern

Chile (Zambrano-Bigiarini et al., 2017). Likewise, new geoscientific data interfaces like GSMaP will allow better integration

with precipitation, complementing WRF products. One limitation of the present study is the quality of the RIL inventory

used. South America presents a low density of recorded events, despite the high density of their occurrence. Future efforts

should be directed towards generating RIL identification records using remote sensor techniques (Guzzetti  et  al.,  2020;

Fustos et al., 2017; Jia et al., 2019) or numerical identification (Chikalamo et al., 2020; Guzzetti et al., 2020; Fustos et al.,

2020a). To date, our database is the best available for the spatial location and date of generation in the study area.  We

suggest that alternatives should be considered in future to strengthen the generation of RIL databases in the Southern Andes

with a larger number of events. This could help to strengthen future RILEWS in this area, improving their performance in

terms of sensitivity and specificity. 

6 Conclusions

This work evaluated the implementation of a RILEWS based on a logistic model and forced by geomorphological and

atmospheric conditions in the Southern Andes. For the first time in the Southern Andes, we showed how the WRF model can

be integrated into RILEWS operating systems without the need to use ensembles, by use of bias correction processes. This

opens  the  door  to  the  implementation  of  precipitation-based  prediction  models  without  costly  computer  iterations  by

ensembles of models (Yáñez-Morroni et al., 2018; Schumacher et al., 2020). New studies of LEWS in the Southern Andes

should be directed towards increasing the RIL database currently available. In future we suggest evaluating alternatives to

strengthen better quality RIL database generation in this segment of South America, completing the existing database from

the records of the Chilean National Geological and Mining Service (Sernageomin).  This could help to strengthen future

RILEWS in the Southern Andes, improving their performance in terms of sensitivity and specificity. 

Logistic models proved their capacity to predict RIL events with AUC varying between 0.65 and 0.80, indicating their

ability to represent RIL occurrence correctly. Despite the high relative sensitivity of M3, the models which presented high

sensitivity  and  specificity  were  those  which  included  precipitations  on  a  daily  scale  (models  1,  2  and  4).  Using  the

precipitation of the previous 7 days could improve this approach to representing soil moisture.  There is no network of
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moisture sensors in the area, so Model 4 should be incorporated as it allows this factor to be represented. Finally, we propose

to use models M1 and M4 in conjunction. 
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