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Abstract. Evacuation is the most important and effective method to save human lives during a tsunami. In this respect, 

challenges exist in developing quantitative analyses of the relationships between the evacuation potential and the built 

environment and geographical attributes of coastal locations. This paper proposes a computer-based modelling approach 

(including inundation, evacuation, and built environment metrics), followed by multivariate regressive analysis, to estimate 

how those attributes might influence the expected tsunami death ratios of seven Chilean coastal cities. We obtained, for the 15 

examined variables, their average values to different thresholds of the death ratio. Also, our statistical analysis allowed us to 

compare the relative importance of each metric, showing that the maximum flood, the straightness of the street network, the 

total route length, and the travel time can have a significant impact on the expected death ratios. Moreover, we suggest that 

these results could lead to spatial planning guidelines for developing new urban areas into exposed territories (if this 

expansion cannot be restricted or discouraged) or retrofitting existing ones, with the final aim of enhancing evacuation and 20 

therefore increasing resilience. 

1 Introduction 

Tsunamis are relatively rare phenomena but capable of triggering widespread destruction and causing significant human 

casualties in exposed coastal areas. In the last two decades, devastating events, including those in Indonesia (2004, 2006, 

2010, 2018), Samoa (2009), Chile (2010, 2014, 2015) and Japan (2011), provoked more than 250,000 deaths globally 25 

(WHO, 2021). Authorities and scholars have suggested and developed a range of countermeasures to reduce tsunami risk: 

‘hard’ strategies like structural defences (e.g. sea walls and flood gates) and the construction of elevated ground, and ‘soft’ 

approaches focused on education and policy, like land-use and built-environment planning, plus early warning and 

emergency management systems (Suppasri et al., 2012b; Ting et al., 2015; Tsimopoulou et al., 2012). While ‘hard’ 

countermeasures are uncommon out of Japan, ‘soft’ planning-focused strategies require extended periods and high political 30 
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and community support to be implemented. Typically, this is hard to achieve in developing countries like Indonesia and 

Chile, where hence community-focused emergency management, emphasising evacuation, is the most feasible strategy to 

reduce the vulnerability of populations to tsunamis. Moreover, there is a growing consensus on evacuation as the most 

important and effective method for saving human lives during a tsunami (Shuto, 2005; Suppasri et al., 2012b), which is 

particularly true in areas exposed to near-field events, with peak arrival times as short as 15 min. 35 

In the context of disaster risk reduction policies and studies, ‘risk’ is habitually defined as the combination of ‘hazard’ and 

‘vulnerability’ factors (e.g. Eckert et al., 2012; UNISDR, 2009; Wisner et al., 2012). The former focuses on how existing 

social, economic, infrastructural, and environmental conditions (within a defined spatial context and timespan) can be 

affected by an external threat (natural or man-made). The latter refers to that context’s pre-event characteristics that create 

the potential for harm, including exposure, susceptibility, and coping aspects (Birkmann et al., 2010; Cutter et al., 2008; 40 

Turner et al., 2003). Authors like Birkmann  (2006) and Frazier et al. (2014) stress the need for strengthening and focus risk 

mitigation and adaptation plans through the spatial assessment of hazard and vulnerability factors. In line with this, based on 

thorough analyses of previous tsunamis disasters’ outcomes (including the 2011 Great Tohoku tsunami, the 2010 Chilean 

tsunami, the 2009 Samoan tsunami, and the 2004 Indian Ocean tsunami) or pre-disaster modelling, scholars like Anwar et al. 

(2011), Birkmann et al. (2010), Eckert et al. (2012), González-Riancho et al. (2015), Suppasri et al. (2016), and Zamora et al. 45 

(2021) have underlined a range of characteristics leading to tsunami risk (with a focus on either the population or the built 

environment). These aspects comprise indicators of hazard (e.g. tsunami height, flow depth and arrival time), exposure (e.g. 

elevation, shoreline distance, number of people exposed, population density, housing density, infrastructures, land use) and 

vulnerability (e.g. warning systems, governance and institutional arrangements, evacuation potential, economic resources, 

education, personal awareness/knowledge/decision-making capacity). 50 

Several studies aim at quantitatively examining tsunami vulnerability and its correlation with geographical, built 

environment and socio-psychological features, within a spatially specific area or domain of study, from neighbourhoods to 

whole regions, including blocks, districts, cities, and metropolitan areas. For instance, as shown by Tarbotton et al. (2015), 

most researchers use post-tsunami destruction data to focus on built structures and develop statistically-based empirical 

vulnerability functions that model the damage response to tsunamis. A common type of function is the fragility curve, which 55 

combines the probability of damage (Y-axis) with hydrodynamic characteristics such as flood depth, flow velocity and force 

(X-axis). Typically, researchers develop these curves by integrating satellite remote sensing, numerical modelling of tsunami 

inundation, and post-tsunami survey data (examined in GIS systems) (Koshimura et al., 2009). In line with this,  Suppasri et 

al. (2012a) (using data from the 2011 Great East Japan Earthquake and Tsunami) apply least squares regression to 

demonstrate how building characteristics like the structural material, number of stories and coastal topography can influence 60 

their damage levels. Other tsunami disasters examined through this approach include the 2010 Chilean Tsunami in Dichato 

(Mas et al., 2012) and the 2018 Sulawesi tsunami at Palu Bay in Indonesia (Mas et al., 2020). In the former, the researchers 

estimated the affected houses’ structural fragility through a post-tsunami survey. They combined this with an interpolated 

inundation depth (developed in geographic information systems from measures taken in the field) to deliver a tsunami 
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fragility curve. In the case of the Sulawesi tsunami, the authors created the fragility functions by integrating field survey 65 

data, visual interpretation of satellite images, and machine learning for multi-sensor and multitemporal satellite images. 

Other studies focus on quantitatively assessing human vulnerability to tsunamis and its possible explanatory factors. For 

instance, Goto and Nakasu (2018) use data from the 2011 Great East Japan Earthquake and Tsunami to propose a Human 

Vulnerability Index (HVI) that combines each location’s fatality rate and the rate of incidence of washed-out buildings. 

Moreover, they apply multivariate regressive analysis to identify four explanatory variables for this index: (1) Allowance 70 

period (the tsunami arrival time divided by the distance to a safe place; (2) Preparedness (the rate of affected evacuees for 

analysis who had prepared emergency carry-out bags beforehand); (3) Road serviceability (the rate of car-using evacuees × 

car speed); and (4) Warning effect (multiplication of announced tsunami height and cognition rate of warning). Yavuz et al. 

(2020) use probabilistic tsunami modelling (developed from earthquake databases from 1900–2013) to evaluate social, 

economic and environmental risks on the Eastern Mediterranean coast. Specifically, they define social risk as to the number 75 

of people in areas where inundation depth reaches 0.5 m or higher. In turn, working with the case of the 2004 tsunami 

disaster in Banda Aceh, Indonesia, Koshimura et al. (2009) used regressive analysis to develop a fragility function for human 

death ratio through the combination of tsunami modelling and post-tsunami data. This function used the number of dead, 

missing, and saved residents in 88 examined villages, plus the modelled inundation depth. Nateghi et al. (2016) analysed 

municipality-level and sub-municipality-level data from the 1896, 1933, 1960, and 2011 tsunamis that affected the Tohoku 80 

area in Japan. With this information, they worked out a model based on statistical learning methods that allowed them to 

appraise the effectiveness of seawalls and coastal forests in mitigating destruction and death rates provoked by tsunamis.  

In cases where tsunamis have not occurred recently or their data is not available, researchers typically use computer-based 

models to estimate human vulnerability according to simulated scenarios. For instance, Sugimoto et al. (2003) developed a 

tsunami human damage prediction method for Usa town, Tosa City, Shikoku Island, Japan, in the context of a possible 85 

Nankai earthquake to occur during the first half of the 21st century. Their method comprised a GIS-based spatial model 

integrating tsunami numerical modelling, exposed populations, and expected evacuation behaviours (e.g. departure times) 

obtained from questionnaire surveys. This model delivered the predicted loss of human lives in 3 different scenarios, 

depending on the tsunami hazard factors (over 0.5 m inundation depth or more than 2.0 m/s flow velocity) and evacuation 

behaviour (with or without evacuation activities). In line with this, evacuation modelling has been extensively used in recent 90 

years to estimate human casualties during tsunami scenarios, using both ‘dynamic’ and ‘static’ approaches (Imamura et al., 

2012). Models couple expected evacuation performances with discrete or probabilistic tsunami floods to estimate mortality 

rates across evacuees. Examples of ‘dynamic’ evacuation models include, for instance, agent-based (León et al., 2019a; 

Makinoshima et al., 2016; Mostafizi et al., 2017; Taubenböck et al., 2009; Wang et al., 2016; Wang and Jia, 2020) and 

cellular automata (e.g. Kitamura et al., 2020). In turn, GIS-based, least-cost-distance (Wood et al., 2018, 2020) and network 95 

approaches (Dewi, 2012; González-Riancho Calzada et al., 2013) are examples of ‘static’ evacuation models, which allow 

the identification of ‘evacuation landscapes’ (Wood et al., 2014). 
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As Goto and Nakasu (2018) point out, a quantitative analysis of the relationships between fatalities rates and geographical, 

built environment, and socio-psychological features can support the development of effective measures to reduce the loss of 

human lives. Moreover, if place-based models’ findings can be generalised, this “will produce a tool for measuring areal 100 

vulnerability to future tsunamis and enable municipalities to prioritise the order of their countermeasures” (Goto and Nakasu, 

2018, p.2). In the case of evacuation as a method for reducing tsunami vulnerability, Mohareb (2011) points out that three 

main factors determine the evacuees’ behaviour, which in turn relate to a broad number of geographical and socio-

psychological aspects: (1) social behaviour (i.e. how the evacuees will psychologically react in a crowd during an 

emergency); (2) spatial behaviour (i.e. the selection of the escape routes and the required time for evacuation); and (3) the 105 

characteristics of the evacuation phase (i.e. human response time, travel time, and waiting time). While socio-psychological 

aspects can be critical determinants of evacuation (see, for instance, Perry et al. (1981) and Murray-Tuite and Wolshon 

(2013)), we will focus our research on some of the most relevant attributes of the geographical and built environments 

(capable of being quantitatively assessed through computer-based modelling) that could contribute to the success (or failure) 

of evacuation in the case of a tsunami. These characteristics include those related to the tsunami (flood depth), context 110 

(elevation, distance to the shoreline), the evacuation process (travel time, distance to the shelter, route length, pedestrian 

directness ratio), and the street network configuration (betweenness, closeness, straightness). In this respect, authors like 

Allan et al. (2013), Kubisch et al. (2020), Tumini et al. (2017), Villagra et al. (2014), and Villagra and Quintana (2017) 

underline the links between urban morphology/geospatial characteristics and evacuation. They point out how the former 

physically affects the latter and examine how behavioural aspects (e.g. the decision of evacuation, route selection or 115 

evacuation mode) relate to the environmental factors. In line with this, following Goto and Nakasu (2018), we aim at 

quantitatively assessing the relationship between geographical and built environments’ attributes and tsunami vulnerability 

(represented by the expected death ratio) as a first step towards the proposal of evidence-based countermeasures for risk 

reduction. For instance, as most evacuations take place in cities, planners and decision-makers could apply our 

recommendations for built environment changes and standards (aimed at increasing the number of evacuees that can reach 120 

safe areas) to guide the physical development retrofitting of tsunami-prone coastal communities around the world. This, with 

the final aim of enhancing pedestrian evacuation, saving lives, and therefore increasing resilience.  

León et al. (2021) deliver a modelling framework (including flood and agent-based evacuation) to examine the relationship 

between the evacuation potential and urban form characteristics of 67 urban samples from 12 case studies in Chile. In turn, 

they use the model’s outcomes to develop a multivariate regressive analysis, which allows them to ‘weight’ the relative 125 

importance of each of the independent variables (i.e. the urban form characteristics) on the evacuation times. In this paper, 

we propose to enhance their approach with a greater emphasis on the description of real-world geographical and built 

environment conditions that might influence tsunami evacuation. Therefore, while León et al. (2021) set up a generic 

tsunami scenario where they test selected urban samples for flood and evacuation, we aim at developing a multi-case study 

approach that encompasses real-world-based large flood and evacuation models for seven coastal cities in Chile: Arica, 130 

Iquique, Coquimbo, La Serena, Viña del Mar, Valparaíso, and Talcahuano (see Fig. 1). Moreover, we focus our descriptive 
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and multivariate regressive analyses on the expected death ratios of these cities’ exposed areas (as an indicator of human 

vulnerability to tsunamis) and how they can be affected by the geographical and built environment characteristics. 

The rest of this paper is as follows. Section 2 describes the methodology, which comprises the selection of the seven 

examined Chilean cities and a description of two scaffolding cross-case research phases: a descriptive statistical analysis and 135 

a multivariate regressive analysis. Section 3 presents the results of our research, which we discuss in section 4. Lastly, 

section 5 delivers the study’s main findings and proposes paths for future investigation. 

 

Fig. 1: Location and evacuation-related features of the examined case studies in Chile. 
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2 Methodology 140 

2.1 Case studies 

Chile is one of the most tsunami-prone countries globally, with more than 100 tsunamis recorded since the 16th century, 

including 35 destructive events (Lagos and Gutiérrez, 2005) and recent disasters in 2010, 2014 and 2015. Moreover, 

researchers including Drápela et al. (2021), Klein et al. (2017), and Medina et al. (2021) have underlined the existence of 

extensive submarine areas in seismic locking along the central and northern coasts of Chile, capable of triggering large 145 

destructive tsunamis if major rupture earthquakes occur. Among the Chilean coastal cities, we selected seven case studies, 

distributed from north to south: Arica, Iquique, Coquimbo, La Serena, Viña del Mar, Valparaíso, and Talcahuano (see Fig. 

1). According to the Chilean Bureau of Statistics (INE), these cities are among the top-20 in Chile with the most significant 

ratios of exposed populations to tsunamis (INE, 2021). This information is based on census data and the official tsunami 

flood charts by SHOA (the Chilean Navy’s agency aimed to provide technical elements, information and technical assistance 150 

to offer navigational safety in Chilean waters) (SHOA, 2012). Talcahuano, Iquique, and Arica occupy the first three places in 

the list, with 43.01%, 29.77%, and 23.44% of their populations living in floodable areas, respectively. In each of these cities 

we focused our analysis only on inhabited areas. Overall, the seven case studies gather roughly 240,000 exposed residents. 

As seen in Table 1, historical records (since the 16th century) show that destructive tsunamis have systematically affected 

these cities. 155 

 

Case study Location Total 

population 

(census 

2017) 

Exposed 

resident 

population 

(CITSU) 

Ratio of 

exposed 

resident 

population 

(%) 

Years of 

recorded 

destructive 

tsunamis 

Modelled 

population for 

evacuation 

(daytime 

scenario, 

departure time = 

8 min) 

Source of 

daytime 

population 

Total 

number 

of 4x4 m. 

cells 

Number 

of ‘lethal’ 

4x4 m. 

cells 

Arica Northern 

Chile 

221,364 51,888 23.44 1604, 1868, 

1877 

81,420 Call Detail 

Records 

(CDR) 

provided by 

Movistar 

(May 8, 

2019, 

between 

10:00 and 

11:00) 

52,358 11,159 

Iquique Northern 

Chile 

191,468 57,000 29.77 1604, 1868, 

1877, 2014 

109,891 Origin-

destination 

study by 

108,689 32,296 
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SECTRA 

(2014) 

La Serena Northern 

Chile 

221,054 19,939 9.02 1849, 1922, 

2015 

 

172,631 Call Detail 

Records 

(CDR) 

provided by 

Movistar 

(January 19, 

2019, 

between 

22:00 and 

24:00) 

211,451 20,844 

Coquimbo Northern 

Chile 

227,730 6,240 2.74 

Viña del 

Mar 

Central 

Chile 

334,248 35,096 10.5 1730, 1822 62,519 Origin-

destination 

study by 

SECTRA 

(2016) 

37,859 20,592 

Valparaíso Central 

Chile 

296,655 4,450 1.5 1730, 1822 32,492 Origin-

destination 

study by 

SECTRA 

(2016) 

16,063 7,038 

Talcahuano Southern 

Chile 

151,749 65,267 43.01 1570, 1657, 

1751, 1835, 

1868, 2010 

34,996 Call Detail 

Records 

(CDR) 

provided by 

Movistar 

(May 8, 

2019, 

between 

10:00 and 

11:00) 

103,671 774 

Table 1: Attributes of the examined case studies in Chile. 

2.2 Descriptive analysis 

This phase aimed to develop a thorough description of the current geographical and built environment conditions that might 

influence the outcome of tsunami evacuations in each of the case studies and, second, to integrate those results through GIS 160 

spatial post-processing based on 4x4m. cells as the basic units of study.  
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2.2.1 Tsunami inundation and evacuation models 

We developed coupled tsunami inundation and evacuation models for each case study, using the methodologies extensively 

described in León et al. (2019b) and León et al. (2020). First, we worked out flood simulations according to the worst-case 

feasible seismic scenario (i.e. a high consequence event of a relatively small likelihood (Løvholt et al., 2014)) for each city. 165 

To do this, we used the Storm Surge and Tsunami Simulator in Oceans and Coastal Areas (STOC), specifically the Multi-

layered Static Dynamics Model (STOC-ML) (Tomita et al., 2006). We used seismic models by Carvajal et al. (2017) and 

Fujii and Satake (2012), and for the Iquique scenario we calculated the seismic parameters, including length, width, and slip, 

according to the scaling law by Papazachos et al. (2004) (see Table 2). The input data for the simulations included 

bathymetry, coastline, topography, and elevation data, compiled from various sources including SHOA, local governments 170 

and GEBCO (www.gebco.net). Each case study’s simulation used five nested grids for numerical analysis, with spatial 

resolutions of 1,536, 256, 32, 8 and 4 m, respectively. Tsunamis were simulated for 45 minutes (comprising its development 

from the occurrence of the earthquake to the maximum inland penetration, i.e. the inundation line or run-up). The model 

used a time step of 0.1 s, also recording time series, the inundation depth (every 10 min), and the maximum inundation 

depth. 175 

 

Case study Mw Total length 

[km] 

Total width 

[km] 

Slip [m] Source  Description 

Arica 9.0 600 150 Uniform slip 

17.0 [m] 

Own Large earthquake and 

tsunami 

Iquique 8.5-8.7 500 160 Variable slip 

with peak of 10.0 

[m] 

Matías Carvajal As a result of the 

accumulated slip since 

1877 

Coquimbo, La 

Serena, 

Valparaíso and 

Viña del Mar 

9.1-9.3 600 180 Variable slip 

with peak of 19.7 

[m] 

Carvajal et al. 

(2017) 

The 1730 Valparaíso 

Earthquake 

Talcahuano 8.8 See the Fujii and Satake (2012) model for the Maule 2010 earthquake, developed from tsunami and 

coastal geodetic data 

Table 2: Seismic parameters of the examined case studies. 

We also developed agent-based evacuation simulations for each case study, using an enhanced version of the PARI-AGENT 

model (Arikawa, 2015). Agent-based models are bottom-up computer simulations where individual disaggregated elements 

(the agents, which in our model correspond to evacuees) are modelled as autonomous decision-making entities that follow 180 

simple rules, which are iteratively performed within a set time threshold, usually including stochastic features. The agents’ 

interactions (also with their environment) lead to emergent phenomena, which is helpful for the examination of complex, 
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real-life events like mass evacuation (Mas et al., 2015; Mostafizi et al., 2017). To develop the agent-based models for each 

case study, we had to follow these steps.  

First, we included the inundation parameters obtained from the STOC-ML analyses. Second, we determined the evacuation 185 

territories of each case study (henceforth denominated ‘move boundary’, see Fig. 1), comprising the streets and open spaces 

connecting the coastline with the safe assembly areas (shelters) as defined by the evacuation plans from ONEMI, the Chilean 

Emergency Management Agency (available at 

https://geoportalonemi.maps.arcgis.com/apps/webappviewer/index.html?id=5062b40cc3e347c8b11fd8b20a639a88). For 

their spatial definition, these move boundaries used the smallest nested grid from the inundation model (with 4x4m. cells). 190 

We obtained their specific configuration through its intersection with the street network obtained from OpenStreetMap 

(https://www.openstreetmap.org/) and post-processed in ArcMap 10.4.1 (see Fig. 1). Third, we had to establish worst-case 

daytime population distributions (different from census data), reflecting that most of the examined zones comprise 

downtown, CBD, or touristic areas that significantly increase their populations during daytime due to commuting and 

visiting (see Table 1). In the case of Iquique, Viña del Mar, and Valparaíso, we obtained daytime populations from previous 195 

origin-destination studies conducted by the Chilean Ministry of Transportation (SECTRA, 2014, 2016). For Arica, 

Coquimbo, La Serena, and Talcahuano, in turn, we used extrapolations of mobile CDR (call detail records) databases 

provided by one of the largest telecom companies in Chile (with a market share of roughly 28%). In the case of Arica and 

Talcahuano, we used the morning peak time (10:00 to 11:00) of a random weekday (May 8, 2019) as the worst-case daytime 

scenario. For Coquimbo and La Serena, popular summer touristic destinations with vibrant nightlife along their coastlines, 200 

we used Saturday, January 19, 2019, between 22:00 and 24:00. The PARI-AGENT code randomly distributed these 

populations across the move boundaries within each case study (locating one or more agents on each 4x4 m. cell). Fourth, 

we established the agents’ performance parameters, including: (1) the impact of the slope on the evacuees’ speed, according 

to Tobler’s exponential hiking function (Tobler, 1993); (2) a Rayleigh probabilistic distribution of departure times for 

evacuees (with a mean time = 8 min, which corresponds to the average time that ONEMI takes to release an evacuation 205 

warning); (3) an evacuation speed for each agent, according to its age (Buchmueller and Weidmann, 2006), probabilistically 

defined based the case studies’ population pyramids from the 2017 Census (INE, 2018); (4) a random-walk parameter that 

introduces an aleatory fluctuation up to 10º on the evacuation direction; and (5) a crowd potential parameter that makes the 

agent tend to follow the direction in which other evacuees are moving, stochastically assigned (with a probability of 0.5). 

Fifth, we executed the simulation, in which the code initially computes the optimal route for each agent, according to its 210 

initial position and closest shelter, using the A* algorithm (Yao et al., 2010). Then, it calculates every agent’s position at 

each time step (1 s), based on its departure time and velocity (which could be modified by the slope, random-walk and crowd 

parameters). The code compares this new position with the water height at that moment (obtained from the inundation file) 

and updates the agent’s status: (1) moving (i.e., alive), (2) dead (i.e., reached by the water), or (3) escaped (i.e., alive in the 

shelter). This process continues for 45 min. and then the computation stops. 215 
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As the model included stochastic parameters (the initial positions of the agents, their walking speeds and departure times, 

and the random-walk factor), we carried out at least ten simulation rounds for each case study, intending to achieve a 95% 

confidence interval with a margin of error <1% in the average values of the number of escaped, moving and dead evacuees 

after 45 min. The model also recorded each agent’s travel time and evacuation route (for every iteration). 

2.2.2 Street network configuration model 220 

According to Fakhrurrazi and Van Nes (2012), an appropriate street network configuration can increase the evacuees’ 

chances of successfully evacuating in case of a tsunami. The suitability of a street network for evacuation depends on factors 

like its accessibility, variety of route options and the possibility of short, direct trips (Dill, 2004; Handy et al., 2003). While a 

range of metrics has been proposed to examine these characteristics (Sharifi, 2019), we will focus our analysis on centrality 

indicators, which can be used “to measure the degree of importance of specific nodes/links in a street network” (Sharifi, 225 

2019, p.174), based on how central the locations are compared to the rest of the urban layout (Porta et al., 2006). Moreover, 

centrality is a good predictor of everyday human movement (Sasabe et al., 2020; Turner, 2007), and authors like Mohareb 

(2011) and Marín Maureira and Karimi (2017) point out that evacuees tend to choose well-known paths instead of the 

designated ones. 

We examined the move boundaries (described in section 2.2.1 above) from each case study with the Urban Network 230 

Analysis Toolkit for ArcMap (UNA) (Sevtsuk et al., 2013). For each street segment belonging to the input network, we 

analysed three centrality metrics: (1) betweenness, (2) straightness, and (3) closeness. These can be defined, respectively, as 

(Sevtsuk et al., 2013; Sharifi, 2019): (1) the fraction of shortest paths between all pairs of destinations in the street network 

that pass through an examined street segment; (2) the extent to which the shortest paths from a segment of interest to all the 

other segments in the street network resemble straight Euclidean paths; and (3) an indication of how close a street segment is 235 

to all other street segments in the network. To compare the street network’s components, the toolkit normalises the outcomes 

according to the total number of segments in the network. The Urban Network Analysis Toolkit delivers its outputs as a new 

GIS vector shapefile, with the input street network including these metrics. 

2.2.3 Context-determined evacuation metrics 

Each discrete location belonging to the examined areas of each case study (represented in our model by a 4x4 m. cell) has a 240 

set of evacuation metrics determined by its existing spatial relationships to the geographical and built contexts. We examined 

these metrics using ArcMap 10.4.1 and the same data sources mentioned in sections 2.2.3 and 2.2.4 above. These indicators 

include (1) elevation; (2) sea distance, i.e. the straight-line distance between the cell’s centre and its closest shoreline point; 

(3) distance to shelter, i.e. the straight-line distance between the cell’s centre and the closest safe assembly area; and (4) 

pedestrian directness ratio (PDR) (also termed “Pedestrian Route Directness, (PRD)” by Dill (2004)), which is the ratio of 245 

the ‘real-world’ route distance (as determined by the street network) and the straight-line distance connecting the cell’s 

centre and its closest safe assembly area. In this respect, Hillier and Iida (2005) and Hillier (2009) underline that the 
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strongest movement predictor is the least angle change along the routes. Therefore, networks including fewer direction 

changes (i.e., lower PDR values) might improve the evacuees’ wayfinding performance. Wayfinding is “the process of 

determining and following a path or route between an origin and a destination” (Allen, 1999, p.6). 250 

2.2.4 Spatial post-processing 

In this research phase, we aimed to integrate the previous sections' outcomes into a descriptive spatial analysis that could 

also serve as the basis for the subsequent multivariate regressive study. We carried out this integration with the aid of the 

ArcMap 10.4.1 software. Our canvas included the move boundaries described in section 2.2.1 above for each case study, 

which comprised a network of streets and open spaces represented by raster files with 4x4 m. cells. Each of these cells 255 

corresponded to a specific location in the evacuation landscape, for which all the calculated metrics had to be spatialised. 

First, as the inundation and agent-based models used the same base raster, the former’s results did not need to be post-

processed. Second, the data from each case study’s evacuation model included a range of at least ten different groups of 

agents’ initial locations (each with an associated final status: moving, dead, or escaped). Due to our purpose of examining 

vulnerability, we aimed at quantifying, for each cell, its death ratio (i.e. the percentage of dead agents that began their 260 

journey from it, comprising all the model’s iterations). To do this, we used the ArcMap’s Spatial Join Tool, which joined the 

attributes from the source feature (i.e. the initial locations of agents, all merged in a single shapefile) to the target feature (i.e. 

the raster-based street network). Third, for the case of the street configuration model, we applied the same Spatial Join tool 

to cast the properties from the outcoming street network into the base raster. Lastly, as we also calculated the context-

determined evacuation metrics on the base raster, their results did not need to be post-processed, either. 265 

Our analysis, comprising all the case studies, included 530,091 cells, each of them containing 12 data fields: death ratio, 

mean travel time, sea distance, shelter distance, elevation, total route length, estimated arrival time (ETA) of the maximum 

flood, maximum flood, betweenness, closeness, straightness, and pedestrian directness ratio (PDR)). Table 1 shows the 

number of examined cells for each case study. 

2.3 Multivariate regressive analysis 270 

For each case study, the result from the spatial post-processing was a raster shapefile representing the evacuation territory, 

where each cell included the 12 data fields mentioned in section 2.2.4. The objective of our regressive analysis was to test, 

for each of the 530,091 cells, the death ratio (the dependent variable) against the other 11 independent variables, which 

represent characteristics of the geography and built environment. In this way, we could examine how much each of these 

characteristics contributes to the expected death ratios. To do this, we developed a multivariate regressive analysis using a 275 

random forest methodology, which combines a multitude of simp decision trees or tree predictors at training time. Random 

forest models segment independent variables in random regions to adjust prediction (Breiman, 2001).  

We applied a K-Fold cross-validation method to assess this model’s outcomes (Mosteller and Tukey, 1968). Following this 

method, we randomly split all the input data (comprising the 12 variables) into five equal-size packages (folds). In four of 
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them (the training packages), we applied our regressive random forest model to internally predict the values of the death 280 

ratio, according to the independent variables; this was the ‘training’ test. We repeat this process for the ‘external’ fifth 

package (the testing one) on the ‘testing’ test. Then, we calculated the coefficient of determination (R2) to assess the strength 

of the relationship between the predicted and actual dependent in the ‘training’ and ‘testing’ packages. After that, we tried 

the other four combinations of training and testing packages to obtain further R2 scores. Then, we executed other five 

random splits of the input data, leading to overall 30 repetitions of the procedure. Overall, our mean R2 scores were 0.9101 285 

(SD=0.0021) and 0.8607 (SD=0.0022) for the ‘training’ and ‘testing’ analyses, respectively, which underline our model’s 

goodness-of-fit. Lastly, to enhance the interpretation of the model’s results, we used SHAP values. These aim at assessing 

(for every cell) how much has each independent variable contributed to the prediction of the death ratio, compared to the 

average prediction of this dependent variable across all the cells (Lundberg and Lee, 2017).  

To develop our statistical analysis, we used an ad-hoc Python model, comprising the data analysis libraries NumPy (Berg et 290 

al., 2020) (https://numpy.org/), pandas (McKinney et al., 2020) (https://pandas.pydata.org/), and SHAP (Lundberg, 2020) 

(https://github.com/slundberg/shap). 

3 Results  

3.1 Death ratios and the natural and built environment’s characteristics 

Table 3 summarises our descriptive analysis comprising 530,091 cells belonging to the case studies’ move boundaries. This 295 

table arranges the data in 11 intervals according to growing (in 10% steps) death ratio thresholds. For each of these intervals, 

we include the mean values of 11 data fields (mean travel time, sea distance, shelter distance, elevation, total route length, 

estimated arrival time (ETA) of the maximum flood, maximum flood, betweenness, closeness, straightness, and pedestrian 

directness ratio (PDR)). Figure 2, in turn, compares these results between the case studies, using normalised values for the 

independent variables (based on the highest record for each of them), for three death ratio thresholds: 0, greater than 0, and 300 

1. 

 

Death 

ratio 

thresholds 

Mean 

travel_time 

(sec.) 

Sea 

distance 

(m.) 

Shelter 

distance 

(m.) 

Elevation 

(m.a.s.l.) 

Total 

route 

length 

(m.) 

Estimated 

arrival 

time 

(ETA) of 

the 

maximum 

flood 

(sec.) 

Maximum 

flood 

depth (m.) 

Betweenness Closeness Straightness 

Pedestrian 

directness 

ratio 

Number 

of 

examined 

cells 

0 922.60 1185.38 675.08 13.82 910.11 49.16 0.61 1358067.32 
9.88632E-

07 
36494.23 1.40 437,388 

>0.0 858.13 296.57 1107.70 5.39 1419.89 364.76 4.67 602292.98 
1.53525E-

06 
20874.97 1.36 92,703 

>0.1 839.00 295.93 1123.30 5.61 1452.12 354.02 5.13 415711.57 
1.42721E-

06 
15255.32 1.37 65,353 

>0.2 832.36 307.76 1133.97 5.89 1464.85 316.78 5.34 282384.39 1.2593E-06 11463.28 1.36 50,383 

>0.3 827.92 312.69 1147.21 5.99 1478.09 296.55 5.50 200697.99 
1.15586E-

06 
9444.16 1.35 42,245 
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>0.4 820.13 310.76 1161.72 5.99 1492.13 281.72 5.59 150408.25 
1.10805E-

06 
8388.61 1.35 35,542 

>0.5 799.21 295.33 1177.81 5.87 1508.79 282.44 5.66 114267.89 
1.08333E-

06 
7668.96 1.34 28,329 

>0.6 786.67 299.90 1189.45 5.88 1526.85 282.08 5.81 102126.81 
1.03059E-

06 
7337.72 1.34 23,536 

>0.7 776.61 300.71 1195.04 5.87 1530.47 268.94 5.82 94337.01 
1.00919E-

06 
7332.52 1.33 19,888 

>0.8 774.60 310.38 1193.33 5.91 1526.73 247.92 5.80 93960.46 
9.83519E-

07 
7420.44 1.33 16,754 

>0.9 785.42 326.40 1171.41 6.02 1499.34 216.67 5.70 96782.60 
9.28422E-

07 
7686.08 1.3 14,753 

1 797.02 337.88 1150.73 6.09 1476.24 191.53 5.58 99491.43 
8.93807E-

07 
7945.43 1.3 13,825 

Table 3: Death ratio thresholds and average values of the independent variables. 

 

Fig. 2: Case studies comparison of the normalised average values of the 11 independent variables for three different death ratio 305 
thresholds: 0,  >0 and 1. 
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3.2 Multivariate regressive analysis 

Figures 3 and 4 show the results of the SHAP values analysis for the Random Forest model’s outcomes. Figure 3 shows, for 

every independent variable and all the examined cells, the amount of the former’s contribution (either positive or negative) 

to the predicted death ratio (compared to the average prediction across all the cells). Red dots mean higher values of the 310 

independent variable, while blue ones imply the opposite. Figure 4 processes this data to display, for each independent 

variable, the average absolute contribution to the predicted death ratio. 

 

Fig. 3: SHAP values of the independent variables  Fig. 4: Average absolute SHAP values of the independent 

variables 315 

4 Discussion 

Our descriptive analysis included 530,091 cells. Of these, 92,703 (17.49%) have a death ratio > 0 (i.e. at least one agent from 

any of the model’s run, who started its evacuation from one of them, was caught by the tsunami). In turn, 13,825 cells 

(2.61%) have a death ratio = 1, which means that the waters reach every agent departing from them before arriving at a safe 

assembly area. As shown by Table 1 and Fig. 2, the rate of cells with elevated death ratios is unevenly distributed across the 320 

case studies. Cities like Viña del Mar, Valparaíso, and Iquique show large percentages of cells susceptible to having dead 

evacuees (54.78%, 43.81%, and 29.71%, respectively). On the contrary, Talcahuano has barely 0.74% of its cells on this 

condition. As we can see in the maps include in Fig. 1, while the first three cities gather considerable urban development and 

residential populations on exposed locations right next to the coastline, most of the last one’s territory is roughly 1.0 to 1.5 

km from the coast, from whom large, marshy areas separate it. 325 

The death ratio thresholds included in Table 3 allow appraising, for the examined case studies, how each independent 

variable relates to the possibility of death in case of a tsunami. On the one hand, 8 of the 11 examined variables exhibit an 

expected behaviour: the differences between the average values of the ‘safe’ (death ratio = 0) and ‘lethal’ (death ratio > 0) 

cells are significant in the case of the shelter distance, maximum flood, total route length, sea distance, elevation, 
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betweenness, straightness, and pedestrian directness ratio (PDR). In the first three of them, the death ratio increases when 330 

they augment; in the other five, their decreases imply higher death ratios.  

On the other hand, three variables show somewhat counterintuitive results: the death ratio increases when the mean travel 

time reduces, and when the estimated arrival time (ETA) of the maximum flood, and the closeness, grow. In the case of the 

first of these independent variables, the results are likely influenced by the fact that the evacuees departed from ‘lethal’ cells 

have comparatively shorter evacuation times, as the tsunami soon reaches them and cannot complete their evacuation paths. 335 

In the case of the street network’s closeness (which is a measure of how close a cell is to all other cells in the ‘evacuation 

territory’), one may expect that more compact street networks should lead to shorter evacuation routes (and times) and, 

therefore, less ‘dead’ evacuees. Nevertheless, according to our results, it would be possible that these smaller networks are 

faster to flood by the incoming tsunami. Lastly, in the case of the ETA, it is essential to underline that the estimated arrival 

time of the maximum flood is not necessarily the same as the onset time of the first tsunami front. In our model, the latter 340 

can have much more impact on the evacuees’ survival rates.  

While tsunamis and their related evacuation potentials are highly context-dependent, our cross-case results could serve to 

identify and appraise other tsunami-vulnerable areas in Chile. Moreover, they highlight possible spatial planning guidelines 

that could be applied to develop new urban regions into exposed territories (if this expansion cannot be restricted or 

discouraged). For instance, our results show that the average number of tsunami-caused deaths would occur across those 345 

evacuees initially located within an approximately 300-meters-wide buffer zone from the coastline. In line with this, Løvholt 

et al. (2014, p.133) point out that studies of the impact of the 2004 Indian Ocean Tsunami show that “in Sri Lanka, people 

within the 100-m zone from the shoreline were more likely to die and to be seriously injured than people living outside this 

zone”. In turn, González-Riancho et al. (2015) underline that 72% of the housing units within the 200-m line from the 

shoreline in Sri Lanka were completely or partially damaged, leading to a higher number of victims. Eckert et al. (2012) also 350 

point out that buildings within that area are highly vulnerable. In the case of the tsunami flood, while inundation depths can 

be above 10 meters at several of our case studies’ coastlines, our model shows that the average flood depth at the ‘lethal’ 

departure cells is roughly 4.67 m. In turn, ‘safe’ cells have a comparatively low mean value of 0.61 m, implying that some 

evacuees can avoid being caught by the advancing tsunami front if they rapidly leave the floodable areas. These results are in 

line with the literature on human casualties during past tsunamis. For instance, Suppasri et al. (2016) point out that the 355 

inundation depths that increased fatality ratios during the 2011 Great East Japan Tsunami are primarily around 10 or 5 m., 

depending on the specific geographical characteristics of different examined areas. In line with this, Murakami et al. (2012) 

examined the human loss distribution during the 2011 disaster in Yuriage District, Natori City, showing that inundation 

depths between 1.87 m. and 8.50 m. triggered death ratios up to 22.3%. In turn, in the case of the ground elevation, the 

average value of the ‘safe’ cells is 13.82 m. When we include ‘lethal’ cells in the analysis, we can see that fatalities 360 

concentrate around elevations of six meters and below. In this respect, Eckert et al. (2012) argue that buildings located at a 

height of 5-10 m. can be considered of medium vulnerability to tsunamis, while those with an elevation above ten m. have 

low vulnerability. For the previously mentioned case of the Yuriage District, Murakami et al. (2012) report elevations less 
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than five m. in the deadly areas. It is also noticeable that cells belonging to street networks with good integration levels, that 

also allow short walks to the safe assembly areas, and have few direction changes (i.e. with high betweenness, straightness 365 

and PDR values, respectively), have lower death ratios. In this respect, as Sharifi (2019) underlines, locations with high 

betweenness centrality values can easily lead to many other sites within the network. Therefore, it is critical to maintaining 

their functionality during disasters. 

To focus on possible paths to improvement for these case studies is helpful to examine the outcomes from our multivariate 

regressive analysis. In this respect, as shown by Fig. 3 and 4, some independent variables have comparatively higher impacts 370 

on the death ratios as predicted by our regressive model. The most significant one is the maximum flood, followed by the 

straightness, the total route length, and the travel time. The maximum flood levels on ‘lethal’ cells are difficult to mitigate 

unless hardware-type defences are built (which, as mentioned above, is unlikely in developing countries like Chile). 

Moreover, we already pointed out that the tsunami flood also conditions the travel time in our regressive analysis. 

Nevertheless, the straightness and total route length depend on real-world urban configurations, resulting from the case 375 

studies’ historical development process. They hence can be subject to strategic interventions to modify their values to reduce 

the cells’ death ratios. In this respect, more direct routes are not only faster to walk (thus reducing escape distances and 

evacuation times) but also help to improve wayfinding as they reduce the changes of directions that evacuees must undertake 

between their origins and destinations (Fakhrurrazi and Van Nes, 2012; Mohareb, 2011). The importance of wayfinding 

cannot be underestimated, especially in the case of tourists and non-locals, who may constitute a large percentage of 380 

casualties during a tsunami (as shown by the Chilean disaster of 2010) (Kubisch et al., 2020). Also, the total route length 

(and the shelter distance) could also be reduced by incorporating vertical evacuation across the urban fabric, which has been 

proven to reduce the evacuation times significantly (León et al., 2019a; Mostafizi et al., 2019). Currently, vertical evacuation 

in Chile is recommended as only a second choice of escape if horizontal evacuation is not feasible (ONEMI, 2014). 

Thorough evacuation analyses are context-dependent and must take care of geographical and socio-psychological aspects 385 

(Mohareb, 2011; Murray-Tuite and Wolshon, 2013; Perry et al., 1981). In this respect, one limitation of our study is that the 

latter are not analysed. Moreover, research on socio-psychological determinants of tsunami evacuation could help to 

critically review some of our model’s central assumptions (e.g. a ‘full compliance’ evacuation, the probabilistically 

distributed departure times, or the routing process). Nevertheless, our analysis provides a significant step into identifying and 

examining geographical and built environment’s attributes that might influence the evacuation potential of coastal 390 

communities, as a spatial framework for the subsequent analysis of their specific socio-psychological characteristics. 

5 Conclusion 

• We proposed a modelling-based approach (including inundation, evacuation, and urban form metrics) to 

quantitatively appraise, through statistical regressive analysis, some of the most relevant aspects of the geographical 
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and built environments that could contribute to the success (or failure) of evacuation in the case of a tsunami, using 395 

a cross-case study of seven Chilean coastal cities. 

• According to our results, some of these cities can have up to roughly 55% of their move boundaries (i.e. the 

evacuation area between the coastline and the safe inland assembly areas) susceptible to having dead evacuees. 

• We also demonstrated that geographical, urban form and evacuation variables, including the maximum flood, 

straightness, total route length, and travel time, could significantly impact the expected death ratios in each case 400 

study. Moreover, we describe the average values of these metrics related to different thresholds of death ratio. 

• We argued that, while engineered countermeasures to control flood levels are unlikely in developing countries like 

Chile, urban form metrics like the street network’s straightness could be the subject of improvements through 

planning processes. Moreover, this would allow other enhancements in other evacuation dimensions like the travel 

time and evacuees’ wayfinding. 405 

• Future research could enhance our approach with the incorporation of socio-psychological aspects and probabilistic 

tsunami flood modelling. Also, more case studies (at both the national and global levels) could help test our 

findings' robustness and generalizability. 
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