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Abstract. Evacuation is the most important and effective method to save human lives during a tsunami. In this respect, 10 

challenges exist in developing quantitative analyses of the relationships between the evacuation potential and the built 

environment and geographical attributes of coastal locations. This paper proposes a computer-based modelling approach 

(including inundation, evacuation, and built environment metrics), followed by multivariate regressive analysis, to estimate 

how those attributes might influence the expected tsunami death ratios of seven Chilean coastal cities. We obtained, for the 

examined variables, their average values to different thresholds of the death ratio. Also, our statistical analysis allowed us to 15 

compare the relative importance of each metric, showing that the maximum flood, the straightness of the street network, the 

total route length, and the travel time can have a significant impact on the expected death ratios. Moreover, we suggest that 

these results could lead to spatial planning guidelines for developing new urban areas into exposed territories (if this expansion 

cannot be restricted or discouraged) or retrofitting existing ones, with the final aim of enhancing evacuation and therefore 

increasing resilience. 20 

1 Introduction 

Tsunamis are relatively rare phenomena but capable of triggering widespread destruction and causing significant human 

casualties in exposed coastal areas. In the last two decades, devastating events, including those in Indonesia (2004, 2006, 2010, 

2018), Samoa (2009), Chile (2010, 2014, 2015) and Japan (2011), provoked more than 250,000 deaths globally (WHO, 2021). 

Authorities and scholars have suggested and developed a range of integrated countermeasures to reduce tsunami risk: ‘hard’ 25 

strategies like structural defences (e.g. sea walls, breakwaters, flood gates, and control forests) and the construction of elevated 

ground, and ‘soft’ approaches focused on education and policy, like land-use and built-environment planning, plus early 

warning and emergency management systems (Koshimura and Shuto, 2015; Suppasri et al., 2012b, 2013; Ting et al., 2015; 

Tsimopoulou et al., 2012). While ‘hard’ countermeasures are uncommon out of Japan, ‘soft’ planning-focused strategies 

require extended periods and high political and community support to be implemented. Typically, this support (plus its 30 
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necessary technical and monetary resources) is hard to achieve in developing countries like Indonesia and Chile (with other 

urgent everyday needs), where hence community-focused emergency management, emphasising evacuation, is the most 

feasible strategy to reduce the vulnerability of populations to tsunamis. Moreover, there is a growing consensus on evacuation 

as the most important and effective method for saving human lives during a tsunami (Shuto, 2005; Suppasri et al., 2012b), 

which is particularly true in areas exposed to near-field events, with peak arrival times as short as 15 min, as it was shown for 35 

the Chilean 2014 and 2015 events by Catalán et al. (2015) and Aránguiz et al. (2016), respectively. 

In the context of disaster risk reduction policies and studies, we can define ‘risk’ as the potential for adverse consequences for 

human or ecological systems, which results from dynamic interactions between natural or manmade hazards with the exposure 

and vulnerability of the affected human or ecological systems (IPCC, 2020). According to the UNDRR Terminology (UNDRR, 

2022), a hazard is “a process, phenomenon or human activity that may cause loss of life, injury or other health impacts, property 40 

damage, social and economic disruption or environmental degradation”, while vulnerability can be defined as “the conditions 

determined by physical, social, economic and environmental factors or processes which increase the susceptibility of an 

individual, a community, assets or systems to the impacts of hazards”, and exposure identifies “the situation of people, 

infrastructure, housing, production capacities and other tangible human assets located in hazard-prone areas”. Authors like 

Birkmann  (2006) and Frazier et al. (2014) stress the need for strengthening and focus risk mitigation and adaptation plans 45 

through the spatial assessment of hazard, vulnerability, and exposure factors. In line with this, based on thorough analyses of 

previous tsunamis disasters’ outcomes (including the 2011 Great East Japan Earthquake and Tsunami, the 2010 Chilean 

tsunami, the 2009 Samoan tsunami, and the 2004 Indian Ocean tsunami) or pre-disaster modelling, scholars like Anwar et al. 

(2011), Birkmann et al. (2010), Eckert et al. (2012), González-Riancho et al. (2015), Suppasri et al. (2016), and Zamora et al. 

(2021) have underlined a range of characteristics leading to tsunami risk (with a focus on either the population or the built 50 

environment). These aspects comprise determinants of hazard (e.g. tsunami height, flow depth and arrival time), exposure (e.g. 

geomorphological characteristics of the inhabited areas and manmade features, including elevation, shoreline distance, number 

of people exposed, population density, housing density, locations of infrastructures, and types of land use) and vulnerability 

(e.g. warning systems, governance and institutional arrangements, evacuation potential, economic resources, education, 

personal awareness/knowledge/decision-making capacity). 55 

Several studies aim at quantitatively examining tsunami vulnerability and its correlation with geographical, built environment 

and socio-psychological features, within a spatially specific area or domain of study, from neighbourhoods to whole regions, 

including blocks, districts, cities, and metropolitan areas. For instance, as shown by Tarbotton et al. (2015), most researchers 

use post-tsunami destruction data to focus on built structures and develop statistically-based empirical vulnerability functions 

that model the damage response to tsunamis. A common type of function is the fragility function, which combines the 60 

probability of damage (Y-axis) with hydrodynamic characteristics such as flood depth, flow velocity and force (X-axis). 

Typically, researchers develop these curves by integrating satellite remote sensing, numerical modelling of tsunami inundation, 

and post-tsunami survey data (examined in GIS systems) (Koshimura et al., 2009). A large group of these studies focus on the 

losses in the built environment. For instance,  Suppasri et al. (2012a) (using data from the 2011 Great East Japan Earthquake 
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and Tsunami) applied least squares regression to demonstrate how building characteristics like the structural material, number 65 

of stories and coastal topography can influence their damage levels. Other tsunami disasters examined through this approach 

include the 2010 Chilean Tsunami in Dichato (Mas et al., 2012b) and the 2018 Sulawesi tsunami at Palu Bay in Indonesia 

(Mas et al., 2020). In the former, the researchers estimated the affected houses’ structural fragility through a post-tsunami 

survey. They combined this with an interpolated inundation depth (developed in geographic information systems from 

measures taken in the field) to deliver a tsunami fragility curve. In the case of the Sulawesi tsunami, the authors created the 70 

fragility functions by integrating field survey data, visual interpretation of satellite images, and machine learning for multi-

sensor and multitemporal satellite images. 

Other studies focus on quantitatively assessing human vulnerability to tsunamis and its possible explanatory factors. For 

instance, working with the case of the 2004 tsunami disaster in Banda Aceh, Indonesia, Koshimura et al. (2009) used regressive 

analysis to develop a fragility function for human death ratio through the combination of tsunami modelling and post-tsunami 75 

data. This function used the number of dead, missing, and saved residents in 88 examined villages, plus the modelled 

inundation depth. Yun and Hamada (2015) interviewed 1,153 witnesses (and also used data for behaviour of the dead and 

missing) of the 2011 Great East Japan Earthquake and Tsunami to develop a conditional logistic regression model and identify 

the factors that influenced life safety during that catastrophe. They found out that the fatality rate is significantly influenced 

by the tsunami height, aged population, speed, and region of analysis. Suppasri et al. (2016) used spatially-accurate data from 80 

areas less than 3km2 wide (with an inundation ratio greater than 70%) and statistical analysis to examine the fatality ratios and 

the factors that affected human fatalities during that same event. Their findings show that (in different manners depending on 

the region of analysis), fatality ratios are affected by the tsunami characteristics (inundation depth, wave force, arrival time), 

topographical characteristics (slope, elevation, type of coast), regional characteristics (existence or absence of defense 

structures, warning systems and evacuation facilities), and human characteristics (existence or absence of knowledge, 85 

awareness, and decision-making capacity). Nateghi et al. (2016) analysed municipality-level and sub-municipality-level data 

from the 1896, 1933, 1960, and 2011 tsunamis that affected the Tohoku area in Japan. With this information, they worked out 

a model based on statistical learning methods that allowed them to appraise the effectiveness of seawalls and coastal forests in 

mitigating destruction and death rates provoked by tsunamis. Goto and Nakasu (2018) used data from the 2011 Great East 

Japan Earthquake and Tsunami to propose a Human Vulnerability Index (HVI) that combines each location’s fatality rate and 90 

the rate of incidence of washed-out buildings. Moreover, they applied multivariate regressive analysis to identify four 

explanatory variables for this index: (1) Allowance period (the tsunami arrival time divided by the distance to a safe place; (2) 

Preparedness (the rate of affected evacuees for analysis who had prepared emergency carry-out bags beforehand); (3) Road 

serviceability (the rate of car-using evacuees × car speed); and (4) Warning effect (multiplication of announced tsunami height 

and cognition rate of warning). Also working in the context of the 2011 disaster, Latcharote et al. (2018) integrated surveyed 95 

fatality ratios with tsunami arrival times (obtained from flood modelling) into linear and nonlinear regression analyses to find 

out the relationships between them. Moreover, they examined the different findings for two topographically different coastal 

areas (the Sanriku ria-coast and the Sendai plain). Their findings show that the fatality ratios decrease as the tsunami arrival 
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times increase (for all the examined cases), and that (in the case of the Sendai plain) the fatality rates of females and those 

above 65 were higher than those of males and those of all ages, respectively. Lastly, Yavuz et al. (2020) used probabilistic 100 

tsunami modelling (developed from earthquake databases from 1900–2013) to evaluate social, economic and environmental 

risks on the Eastern Mediterranean coast. Specifically, they defined social risk as to the number of people in areas where 

inundation depth reaches 0.5 m or higher. 

In cases where tsunamis have not occurred recently or their data is not available, researchers typically use computer-based 

models to estimate human vulnerability according to simulated scenarios. For instance, Sugimoto et al. (2003) developed a 105 

tsunami human damage prediction method for Usa town, Tosa City, Shikoku Island, Japan, in the context of a possible Nankai 

earthquake to occur during the first half of the 21st century. Their method comprised a GIS-based spatial model integrating 

tsunami numerical modelling, exposed populations, and expected evacuation behaviours (e.g. departure times) obtained from 

questionnaire surveys. This model delivered the predicted loss of human lives in 3 different scenarios, depending on the 

tsunami hazard factors (over 0.5 m inundation depth or more than 2.0 m/s flow velocity) and evacuation behaviour (with or 110 

without evacuation activities). In line with this, evacuation modelling has been extensively used in recent years to estimate 

human casualties during tsunami scenarios, using both ‘dynamic’ and ‘static’ approaches (Imamura et al., 2012). Models 

couple expected evacuation performances with discrete or probabilistic tsunami floods to estimate mortality rates across 

evacuees. Examples of ‘dynamic’ evacuation models comprise, for instance, agent-based (Aguilar and Wijerathne, 2016; León 

et al., 2019; Makinoshima et al., 2016, 2018; Mas et al., 2015; Mostafizi et al., 2017; Taubenböck et al., 2009; Wang et al., 115 

2016; Wang and Jia, 2020), cellular automata (e.g. Kitamura et al., 2020), and the ‘evacuee generation model’ of Dohi et al. 

(2016) (which includes the effect of external information on the evacuation behaviour). In turn, GIS-based, least-cost-distance 

(e.g. Fraser et al., 2014; Priest et al., 2016; Wood et al., 2018, 2020) and network approaches (Dewi, 2012; González-Riancho 

Calzada et al., 2013) are examples of ‘static’ evacuation models (whilst sometimes including variability in wave arrival times, 

population exposure scenarios, evacuation departure times, and travel speeds), which allow the identification of ‘evacuation 120 

landscapes’ (Wood et al., 2014). 

As Goto and Nakasu (2018) point out, a quantitative analysis of the relationships between fatalities rates and geographical, 

built environment, and socio-psychological features can support the development of effective measures to reduce the loss of 

human lives. Moreover, if place-based models’ findings can be generalised, this “will produce a tool for measuring areal 

vulnerability to future tsunamis and enable municipalities to prioritise the order of their countermeasures” (Goto and Nakasu, 125 

2018, p.2). In the case of evacuation as a method for reducing disaster vulnerability, authors like Perry et al. (1981), Mohareb 

(2011), and Murray-Tuite and Wolshon (2013) provide analyses of geomorphological and socio-psychological aspects that 

determine the evacuees’ behaviour during an emergency (e.g. selection of the escape routes, the required times for evacuation, 

human response, travel and waiting, and the role of the crowd influence). In this respect, for the case of tsunamis Makinoshima 

et al. (2020) deliver a comprehensive review of evacuation behaviours during 22 events since the Chilean tsunami of 1960, 130 

built around a framework with 3 stages of notifications: early, mid and late. They found out a range of possible evacuation 

notifications across these stages, including ground shaking, official warnings, informal communications, and natural signs (e.g. 
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unusual sea level changes, sighting the landing tsunami, hearing unusual sounds). In turn, these notifications can motivate a 

range of risk cognition and response activities, with sharp variations among different individuals and groups (determined by 

factors like previous knowledge or experience, culture, mental biases, and geographical location. These response activities 135 

include, for instance, collecting information, confirming the safety and gathering of family members, preparatory actions (e.g. 

packing emergency kits, collecting important goods). Following these activities, the actual evacuation begins, determined by 

a destination, a route of travel, and a means of evacuation (e.g. pedestrian or vehicular). Lastly, post-evacuation activities 

might include gathering additional information, contacting family or friends, or returning home (e.g. to pick up valuables or 

get the car). 140 

While socio-psychological aspects can be critical determinants of evacuation, we will focus our research on some of the most 

relevant attributes of the geographical and built environments (capable of being quantitatively assessed through computer-

based modelling) that could contribute to the success (or failure) of evacuation in the case of a tsunami. These characteristics 

include those related to the tsunami (maximum flood depth, and the estimated arrival time of this maximum depth), context 

(elevation, distance to the shoreline), the evacuation process (travel time, distance to the shelter, route length, pedestrian 145 

directness ratio), and the street network configuration (betweenness, closeness, straightness). In this respect, authors like Allan 

et al. (2013), Kubisch et al. (2020), Tumini et al. (2017), Villagra et al. (2014), and Villagra and Quintana (2017) underline 

the links between urban morphology/geospatial characteristics and evacuation. They point out how the former physically 

affects the latter and examine how behavioural aspects (e.g. the decision of evacuation, route selection or evacuation mode) 

relate to the environmental factors. In line with this, following Goto and Nakasu (2018), we aim at quantitatively assessing the 150 

relationship between the geographical and built environments’ attributes and tsunami vulnerability (represented by the 

expected death ratio) as a first step towards the proposal of evidence-based countermeasures for risk reduction. For instance, 

as most evacuations take place in cities, planners and decision-makers could apply our recommendations for built environment 

changes and standards (aimed at increasing the number of evacuees that can reach safe areas) to guide the physical development 

retrofitting of tsunami-prone coastal communities around the world. This, with the final aim of enhancing pedestrian 155 

evacuation, saving lives, and therefore increasing resilience.  

León et al. (2021b) deliver a modelling framework (including flood and agent-based evacuation) to examine the relationship 

between the evacuation potential and urban form characteristics of 67 urban samples from 12 case studies in Chile. In turn, 

they use the model’s outcomes to develop a multivariate regressive analysis, which allows them to ‘weight’ the relative 

importance of each of the independent variables (i.e. the urban form characteristics) on the evacuation times. In this paper, we 160 

propose to enhance their approach with a greater emphasis on the description of real-world geographical and built 

environment’s conditions that might influence tsunami evacuation. Therefore, while León et al. (2021b) set up a generic 

tsunami scenario where they test selected urban samples for flood and evacuation, we aim at developing a multi-case study 

approach that encompasses real-world-based large flood and evacuation models for seven coastal cities in Chile: Arica, 

Iquique, Coquimbo, La Serena, Viña del Mar, Valparaíso, and Talcahuano. Moreover, we focus our descriptive and 165 
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multivariate regressive analyses on the expected death ratios of these cities’ exposed areas (as an indicator of human 

vulnerability to tsunamis) and how they can be affected by the geographical and built environment characteristics. 

The rest of this paper is as follows. Section 2 describes the methodology, which comprises the selection of the seven examined 

Chilean cities and a description of two scaffolding cross-case research phases: a descriptive statistical analysis and a 

multivariate regressive analysis. Section 3 presents the results of our research, which we discuss in section 4. Lastly, section 5 170 

delivers the study’s main findings and proposes paths for future investigation. 

2 Methodology 

2.1 Case studies 

Chile is one of the most tsunami-prone countries globally, with more than 100 tsunamis recorded since the 16th century, 

including 35 destructive events up to 2005 (Lagos and Gutiérrez, 2005), and recent disasters in 2010, 2014 and 2015. Moreover, 175 

researchers including Drápela et al. (2021), Klein et al. (2017), and Medina et al. (2021) have underlined the existence of 

extensive submarine areas in seismic locking along the central and northern coasts of Chile, capable of triggering large 

destructive tsunamis if major rupture earthquakes occur. Among the Chilean coastal cities, we selected seven case studies, 

distributed from north to south: Arica, Iquique, Coquimbo, La Serena, Viña del Mar, Valparaíso, and Talcahuano (see Fig. 1).  
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 180 

Fig. 1: Location, topo-bathymetry and tsunami-related features of the examined case studies in Chile. 
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According to the Chilean Bureau of Statistics (INE), these cities are among the top-20 in Chile with the most significant ratios 

of exposed populations to tsunamis (INE, 2021). This information is based on census data and the official tsunami flood charts 

by SHOA (the Chilean Navy’s agency aimed to provide technical elements, information and technical assistance to offer 

navigational safety in Chilean waters) (SHOA, 2012). Talcahuano, Iquique, and Arica occupy the first three places in the list, 185 

with 43.01%, 29.77%, and 23.44% of their populations living in floodable areas, respectively. In each of these cities we focused 

our analysis only on inhabited areas. Overall, the seven case studies gather roughly 240,000 exposed residents. As seen in 

Table 1, historical records (since the 16th century) show that destructive tsunamis have repeatedly affected these cities. 

Table 1: Attributes of the examined case studies in Chile. 

Case study Location Total 

population 

(census 

2017) 

Exposed 

resident 

population 

(CITSU) 

Ratio of 

exposed 

resident 

population 

(%) 

Years of 

recorded 

destructive 

tsunamis 

Modelled 

population for 

evacuation 

(daytime 

scenario, 

departure time 

= 8 min) 

Source of 

daytime 

population 

Total 

number 

of 4x4 m 

cells 

Number 

of ‘lethal’ 

4x4 m 

cells 

Arica Northern 

Chile 

221,364 51,888 23.44 1604, 1868, 

1877 

(Lomnitz, 

2004) 

81,420 Call Detail 

Records 

(CDR) 

provided by 

Movistar 

(May 8, 

2019, 

between 

10:00 and 

11:00) 

52,358 11,159 

Iquique Northern 

Chile 

191,468 57,000 29.77 1604, 1868, 

1877, 2014 

(Catalán et 

al., 2015; 

Lomnitz, 

2004) 

109,891 Origin-

destination 

study by 

SECTRA 

(2014) 

108,689 32,296 

La Serena Northern 

Chile 

221,054 19,939 9.02 1849, 1922, 

2015 

(Aránguiz 

et al., 2016; 

Lomnitz, 

2004) 

 

172,631 Call Detail 

Records 

(CDR) 

provided by 

Movistar 

(January 19, 

2019, 

between 

211,451 20,844 

Coquimbo Northern 

Chile 

227,730 6,240 2.74 
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22:00 and 

24:00) 

Viña del 

Mar 

Central 

Chile 

334,248 35,096 10.5 1730, 1822 

(Carvajal et 

al., 2017; 

Lomnitz, 

2004) 

62,519 Origin-

destination 

study by 

SECTRA 

(2016) 

37,859 20,592 

Valparaíso Central 

Chile 

296,655 4,450 1.5 1730, 1822 

(Carvajal et 

al., 2017; 

Lomnitz, 

2004) 

32,492 Origin-

destination 

study by 

SECTRA 

(2016) 

16,063 7,038 

Talcahuano Southern 

Chile 

151,749 65,267 43.01 1570, 1657, 

1751, 1835, 

1868, 2010 

(Fritz et al., 

2011; 

Lomnitz, 

2004) 

34,996 Call Detail 

Records 

(CDR) 

provided by 

Movistar 

(May 8, 

2019, 

between 

10:00 and 

11:00) 

103,671 774 

2.2 Descriptive analysis 190 

This phase aimed to develop a thorough description of the current geographical and built environment conditions that might 

influence the outcome of tsunami evacuations in each of the case studies and, second, to integrate those results through GIS 

spatial post-processing based on 4x4 m cells as the basic units of study.  

2.2.1 Tsunami inundation and evacuation models 

We developed coupled tsunami inundation and evacuation models for each case study, using the methodologies extensively 195 

described in León et al. (2019) and León et al. (2020). First, we worked out flood simulations according to the worst-case 

feasible seismic scenario (i.e. a high consequence event of a relatively small likelihood (Løvholt et al., 2014)) for each city. 

To do this, we used the Storm Surge and Tsunami Simulator in Oceans and Coastal Areas (STOC), specifically the Multi-

layered Static Dynamics Model (STOC-ML) (Tomita et al., 2006). We used seismic models by Carvajal et al. (2017) and Fujii 

and Satake (2012), and for the Iquique scenario we calculated the seismic parameters, including length, width, and slip, 200 

according to the scaling law by Papazachos et al. (2004) (see Table 2 and Fig. 2). The input data for the simulations included 

bathymetry, coastline, topography, and elevation data, compiled from various sources including SHOA, local governments 

and GEBCO (www.gebco.net). Each case study’s simulation used five nested grids for numerical analysis, with spatial 
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resolutions of 1,536, 256, 32, 8 and 4 m, respectively. Tsunamis were simulated for 60 minutes (capable of comprising their 

development from the occurrence of the earthquake to the maximum inland penetration, i.e. the inundation line or run-up). 205 

The model used a time step of 0.1 s, also recording time series, the inundation depth (every 10 min), the maximum inundation 

depth, and the estimated arrival time (ETA) of this maximum depth. 

 

Fig. 2: Seismic scenarios used for the examined case studies. 
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 210 

Table 2: Seismic parameters of the examined case studies. 

Case study Mw Total length 

[km] 

Total width 

[km] 

Slip [m] Source  Description 

Arica 9.0 600 150 Uniform slip 17.0 

[m] 

Own Large earthquake and 

tsunami 

Iquique 8.5-8.7 500 160 Variable slip 

with peak of 10.0 

[m] 

Matías Carvajal As a result of the 

accumulated slip since 

1877 

Coquimbo, La 

Serena, 

Valparaíso and 

Viña del Mar 

9.1-9.3 600 180 Variable slip 

with peak of 19.7 

[m] 

Carvajal et al. 

(2017) 

The 1730 Valparaíso 

Earthquake 

Talcahuano 8.8 See the Fujii and Satake (2012) model for the Maule 2010 earthquake, developed from tsunami and 

coastal geodetic data 
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Fig. 3: Tsunami time series for the examined case studies, as measured by virtual gauges (see their locations in Fig. 1). 

We also developed agent-based evacuation simulations (see section 1) for each case study, using an evacuation threshold of 215 

45 minutes. While we had the 60-minute-long tsunami simulations from the STOC-ML model (and the sea level anomalies 

may last for several hours after the earthquake), preliminary tests showed that a 45 min. threshold was sufficient to encompass 

the total evacuation time of every examined city, therefore allowing us to reduce computing time. To carry out the evacuation 

analyses we used an enhanced version of the PARI-AGENT model (Arikawa, 2015). We modified this source code to assess 

the impact of the slope on the evacuees’ speed, to include a Rayleigh probabilistic distribution of departure times for evacuees, 220 

and to assign a range of age-based evacuation speeds across the agents (see León et al. (2020)). Recently, this model was 

validated using real-world data of 1,966 pupils from four K-12 schools in Valparaíso and Viña del Mar, Chile, collected during 

an evacuation drill held in September 2019 (León et al., 2021a). 

Agent-based models are bottom-up computer simulations where individual disaggregated elements (the agents, which in our 

model correspond to evacuees) are modelled as autonomous decision-making entities that follow simple rules, which are 225 



13 

 

iteratively performed within a set time threshold, usually including stochastic features. The agents’ interactions (also with their 

environment) lead to emergent phenomena, which is helpful for the examination of complex, real-life events like mass 

evacuation. As we adopted a cross-case study perspective to examine extensive urban areas (534,881 agents overall), with a 

focus on the geomorphological conditions affecting the evacuation, we formulated our agent-based model under a macroscopic 

perspective, disregarding microscopic interactions among agents (Makinoshima et al., 2018). Rather, we examined the overall 230 

outcomes of the evacuation processes (i.e. number of saved, moving and dead evacuees, for each time step), determined by 

the environmental conditions and the moving crowd (see below). To develop the agent-based models for each case study, we 

had to follow these steps. First, we included the inundation parameters obtained from the STOC-ML analyses. Second, we 

determined the evacuation territories of each case study (henceforth denominated ‘move boundary’, see Fig. 1), comprising 

the streets and open spaces connecting the coastline with the safe assembly areas (shelters) as defined by the evacuation plans 235 

from ONEMI, the Chilean Emergency Management Agency (available at 

https://geoportalonemi.maps.arcgis.com/apps/webappviewer/index.html?id=5062b40cc3e347c8b11fd8b20a639a88). For 

their spatial definition, these move boundaries used the smallest nested grid from the inundation model (with 4x4 m cells). We 

obtained their specific configuration through its intersection with the street network obtained from OpenStreetMap 

(https://www.openstreetmap.org/) and post-processed in ArcMap 10.4.1 (see Fig. 1). Third, we had to establish worst-case 240 

daytime population distributions (different from census data), reflecting that most of the examined zones comprise downtown, 

CBD, or touristic areas that significantly increase their populations during daytime due to commuting and visiting (see Table 

1). In the case of Iquique, Viña del Mar, and Valparaíso, we obtained daytime populations from previous origin-destination 

studies conducted by the Chilean Ministry of Transportation (SECTRA, 2014, 2016). For Arica, Coquimbo, La Serena, and 

Talcahuano, in turn, we used extrapolations of mobile CDR (call detail records) databases provided by one of the largest 245 

telecom companies in Chile (with a market share of roughly 28%). In the case of Arica and Talcahuano, we used the morning 

peak time (10:00 to 11:00) of a random weekday (May 8, 2019) as the worst-case daytime scenario. For Coquimbo and La 

Serena, popular summer touristic destinations with vibrant nightlife along their coastlines, we used Saturday, January 19, 2019, 

between 22:00 and 24:00. The PARI-AGENT code randomly distributed these populations across the move boundaries within 

each case study (locating one or more agents on each 4x4 m cell). Fourth, we established the agents’ performance parameters, 250 

including: (1) the impact of the slope on the evacuees’ speed, according to Tobler’s exponential hiking function (Tobler, 1993); 

(2) a Rayleigh probabilistic distribution of departure times for evacuees (see Mas et al., 2012a), with a mean of the distribution 

(the µ factor) equal to 8 min, which corresponds to the average time that ONEMI takes to release an evacuation warning); (3) 

an evacuation speed for each agent, according to its age (Buchmueller and Weidmann, 2006), probabilistically defined based 

the case studies’ population pyramids from the 2017 Census (INE, 2018); (4) a random-walk parameter that introduces an 255 

aleatory fluctuation up to 10º on the evacuation direction; and (5) a crowd potential parameter that makes the agent tend to 

follow the direction in which other evacuees are moving, stochastically assigned (with a probability of 0.5). Fifth, we executed 

the simulation, in which the code initially computes the optimal route for each agent, according to its initial position and closest 

shelter, using the A* algorithm, frequently applied in evacuation studies (e.g. Mas et al., 2012a; Takabatake et al., 2020; Wang 
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and Jia, 2021). Then, it calculates every agent’s position at each time step (1 s), based on its departure time and velocity (which 260 

could be modified by the slope, random-walk and crowd parameters). The code compares this new position with the water 

height at that moment (obtained from the inundation file) and updates the agent’s status: (1) moving (i.e., alive), (2) dead (i.e., 

reached by the water), or (3) escaped (i.e., alive in the shelter). This process continues for 45 min. and then the computation 

stops. 

As the model included stochastic parameters (the initial positions of the agents, their walking speeds and departure times, and 265 

the random-walk factor), we carried out ten simulation rounds for each case study, intending to achieve a 95% confidence 

interval with a margin of error <1% in the average values of the number of escaped, moving and dead evacuees after 45 min. 

The model also recorded each agent’s travel time and evacuation route (for every iteration). 

2.2.2 Street network configuration model 

According to Fakhrurrazi and Van Nes (2012), an appropriate street network configuration can increase the evacuees’ chances 270 

of successfully evacuating in case of a tsunami. The suitability of a street network for evacuation depends on factors like its 

accessibility, variety of route options and the possibility of short, direct trips (Dill, 2004; Handy et al., 2003). While a range 

of metrics has been proposed to examine these characteristics (Sharifi, 2019), we will focus our analysis on centrality 

indicators, which can be used “to measure the degree of importance of specific nodes/links in a street network” (Sharifi, 2019, 

p.174), based on how central the locations are compared to the rest of the urban layout (Porta et al., 2006). Moreover, centrality 275 

is a good predictor of everyday human movement (Sasabe et al., 2020; Turner, 2007), and authors like Mohareb (2011) and 

Marín Maureira and Karimi (2017) point out that evacuees tend to choose well-known paths instead of the designated ones. 

We examined the move boundaries (described in section 2.2.1 above) from each case study with the Urban Network Analysis 

Toolkit for ArcMap (UNA) (Sevtsuk et al., 2013). For each street segment belonging to the input network, we analysed three 

centrality metrics: (1) betweenness, (2) straightness, and (3) closeness. These can be defined, respectively, as (Sevtsuk et al., 280 

2013; Sharifi, 2019): (1) the fraction of shortest paths between all pairs of destinations in the street network that pass through 

an examined street segment; (2) the extent to which the shortest paths from a segment of interest to all the other segments in 

the street network resemble straight Euclidean paths; and (3) an indication of how close a street segment is to all other street 

segments in the network. To compare the street network’s components, the toolkit normalises the outcomes according to the 

total number of segments in the network. The Urban Network Analysis Toolkit delivers its outputs as a new GIS vector 285 

shapefile, with the input street network including these metrics. 

2.2.3 Context-determined evacuation metrics 

Each discrete location belonging to the examined areas of each case study (represented in our model by a 4x4 m cell) has a set 

of evacuation metrics determined by its existing spatial relationships to the geographical and built contexts. We examined 

these metrics using ArcMap 10.4.1 and the same data sources mentioned in sections 2.2.3 and 2.2.4 above. These indicators 290 

include (1) elevation; (2) sea distance, i.e. the straight-line distance between the cell’s centre and its closest shoreline point; 
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(3) distance to shelter, i.e. the straight-line distance between the cell’s centre and the closest safe assembly area; and (4) 

pedestrian directness ratio (PDR) (also termed “Pedestrian Route Directness, (PRD)” by Dill (2004)), which is the ratio of the 

‘real-world’ route distance (as determined by the street network) and the straight-line distance connecting the cell’s centre and 

its closest safe assembly area. In this respect, Hillier and Iida (2005) and Hillier (2009) underline that the strongest movement 295 

predictor is the least angle change along the routes. Therefore, networks including fewer direction changes (i.e., lower PDR 

values) might improve the evacuees’ wayfinding performance. Wayfinding is “the process of determining and following a path 

or route between an origin and a destination” (Allen, 1999, p.6). 

2.2.4 Spatial post-processing 

In this research phase, we aimed to integrate the previous sections' outcomes into a descriptive spatial analysis that could also 300 

serve as the basis for the subsequent multivariate regressive study. We carried out this integration with the aid of the ArcMap 

10.4.1 software. Our canvas included the move boundaries described in section 2.2.1 above for each case study, which 

comprised a network of streets and open spaces represented by raster files with 4x4 m cells. Each of these cells corresponded 

to a specific location in the evacuation landscape, for which all the calculated metrics had to be spatialised. First, as the 

inundation and agent-based models used the same base raster, the former’s results did not need to be post-processed. Second, 305 

the data from each case study’s evacuation model included a range of at least ten different groups of agents’ initial locations 

(each with an associated final status: moving, dead, or escaped). Due to our purpose of examining vulnerability, we aimed at 

quantifying, for each cell, its death ratio (i.e. the percentage of dead agents that began their journey from it, comprising all the 

model’s iterations). To do this, we used the ArcMap’s Spatial Join Tool, which joined the attributes from the source feature 

(i.e. the initial locations of agents, all merged in a single shapefile) to the target feature (i.e. the raster-based street network). 310 

Third, for the case of the street configuration model, we applied the same Spatial Join tool to cast the properties from the 

outcoming street network into the base raster. Lastly, as we also calculated the context-determined evacuation metrics on the 

base raster, their results did not need to be post-processed, either. 

Our analysis, comprising all the case studies, included 530,091 cells, each of them containing the following data fields: (1) 

death ratio, (2) maximum, (3) minimum and (4) mean travel time, (5) sea distance, (6) elevation, (7) total route length, (8) 315 

shelter distance, (9) estimated arrival time (ETA) of the maximum flood, (10) maximum flood, (11) closeness, (12) 

betweenness and (13) straightness (and their three normalised values), (17) pedestrian directness ratio (PDR), and the UTM 

latitude and longitude coordinates (18 and 19). Assuming that the death ratio was our dependent variable, we ran a correlation 

test to prevent the correlation between the other predictor (independent) variables and therefore avoid collinearity problems in 

the regressive model (see Fig. 4). This test demonstrated that seven of these variables (numbers 2, 3, 8, 12, 14, 15 and 16 320 

above) should not be included in the analysis, as they were correlated at  |r| > 0.7 (Dormann et al., 2013). Neither we included 

the UTM coordinates, as they are defined according to global reference systems and no to local conditions. 

Table 1 shows the number of examined cells for each case study. 
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Fig. 4: Correlations between the examined variables. 325 

2.3 Multivariate regressive analysis 

For each case study, the result from the spatial post-processing was a raster shapefile representing the evacuation territory, 

where each cell included the 19 data fields mentioned in section 2.2.4. The objective of our regressive analysis was to test, for 

each of the 530,091 cells, the death ratio (the dependent variable) against the other 9 selected independent variables, which 

represent characteristics of the geography and built environment. In this way, we could examine how much each of these 330 

characteristics contributes to the expected death ratios. To do this, we developed a multivariate regressive analysis using a 

random forest methodology, which combines a multitude of simple decision trees (Breiman, 2001). Tree-based methods for 

regression and classification stratify or segment the predictor space into several simple regions. To predict a given observation, 

we typically use the mean or the mode response value for the training observations in the region it belongs. Since the splitting 

rules used to segment the predictor space can be summarised in a tree, these approaches are known as decision tree methods 335 
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(James et al., 2013). Random forest is an ensemble method that combines many simple decision trees models to obtain a single 

and potentially powerful model.  Each tree takes random samples of the observations and performs split steps using a subset 

of features, thereby decorrelating the trees and leading to a more thorough exploration of model space. 

We applied a K-Fold cross-validation method to assess this model’s outcomes (Mosteller and Tukey, 1968). Following this 

method, we randomly split all the input data (comprising the 9 independent and 1 dependent variables) into five equal-size 340 

packages (folds). In four of them (the training packages), we applied our regressive random forest model to internally predict 

the values of the death ratio, according to the independent variables; this was the ‘training’ test. We repeat this process for the 

‘external’ fifth package (the testing one) on the ‘testing’ test. Then, we calculated the coefficient of determination (R2) to 

assess the strength of the relationship between the predicted and actual dependent in the ‘training’ and ‘testing’ packages. After 

that, we tried the other four combinations of training and testing packages to obtain further R2 scores. Then, we executed other 345 

five random splits of the input data, leading to overall 30 repetitions of the procedure. Overall, our mean R2 scores were 0.9101 

(SD=0.0021) and 0.8607 (SD=0.0022) for the ‘training’ and ‘testing’ analyses, respectively, which underline our model’s 

goodness-of-fit.  

To enhance the interpretation of the model’s results, we used SHAP values (Lundberg and Lee, 2017).SHAP (SHapley 

Additive exPlanations) values is a unified framework for explaining model predictions, motivated by the idea that model 350 

interpretability is as important as model accuracy, since some modern models act as black boxes due to their complexity. It 

has three significant advantages over other explanatory approaches: (1) it considers that interpreting a prediction model is a 

model itself, commonly named as an explanation model; (2) game theory results guarantee a unique solution; and (3) the 

method is better aligned with human intuition. SHAP values is a unique unified measure of feature importance since it meets 

three desired properties: (i) local accuracy (approximating the original model); (ii) missingness (a missing feature in the 355 

original input have no impact); and (iii) consistency (if a model changes, then the attributes of the inputs should be updated as 

well). Classic Shapley regression values examine feature importance for linear models in the presence of multicollinearity. To 

do this, SHAP retrains the model on all feature subsets, assigning an importance value to each feature that represents the effect 

of including that feature on the model prediction: a model is trained with a particular feature present, and another model is 

trained with the feature withheld, and then predictions from the two models are compared (Lundberg and Lee, 2017). SHAP 360 

values are the Shapley values of a conditional expectation function of the original model. The exact computation of SHAP 

values is challenging. However, combining insights from current additive feature attribution methods makes it possible to 

approximate them, leading to good computational efficiency. Since this method is, essentially, a sum of the contributions of 

each feature, which is consistent with human intuition. 

To develop our statistical analysis, we used an ad-hoc Python model, comprising the data analysis libraries NumPy (Berg et 365 

al., 2020) (https://numpy.org/), pandas (McKinney et al., 2020) (https://pandas.pydata.org/), and SHAP (Lundberg, 2020) 

(https://github.com/slundberg/shap). 

Lastly, to ensure the validity of our results and to assess the potential effect of the resolution of the data generated by our flood 

and evacuation model, we carried out an integrated SHAP values analysis including the same source information but combined 
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in different resolutions, according to a geometric sequence with a factor of 2 between the size of each examined unit. To do 370 

this, we developed an algorithm that, starting from the 4x4 m cell (resolution x1) with the largest southern latitude and western 

longitude in each case study (i.e. located at the bottom left corner of the study area), grouped these basic units into five 

successive spatial partitions, each of them covering the complete evacuation move boundary. These partitions comprised cells 

8x8 (resolution x2), 16x16 (resolution x4), 32x32 (resolution x8), 64x64 (resolution x16), and 128x128 m (resolution x32) 

wide, respectively. For each of these larger cells, the algorithm calculated the value of every independent variable as the 375 

average of the combined 4x4 m units. Then, we ran again the SHAP values analysis at these coarser resolutions. 

3 Results  

3.1 Death ratios and the natural and built environment’s characteristics 

Table 3 summarises our descriptive analysis comprising 530,091 cells belonging to the case studies’ move boundaries. This 

table arranges the data in 11 intervals according to growing (in 10% steps) death ratio thresholds. For each of these intervals, 380 

we include the mean and standard deviation values of 9 independent variables (mean travel time, sea distance, elevation, total 

route length, estimated arrival time (ETA) of the maximum flood depth, maximum flood depth, closeness, straightness, and 

pedestrian directness ratio (PDR)). Figure 5, in turn, shows scatterplots (summarizing all the examined cells with positive 

death ratios) of the death ratio compared with each of the nine independent variables, plus one extra chart that shows the death 

ratio distribution across the case studies. To enhance readability, we post-processed the 530,091 scattered records into a 10 x 385 

10 grid, where each square’s colour depth represents the percentage of all the data comprised by it. 

Our analysis shows that 92,703 of 530,091 cells (17.49%) have at least one ‘dead’ agent (evacuee) across the simulations. 

Moreover, Fig. 5 shows that Arica, Iquique, Valparaíso, and Viña del Mar have cells where the death ratio reaches up to 1, i.e. 

every agent departing from them is caught by the modelled tsunamis. The analysis also shows that some of the geographical 

and built environment’s attributes have clear spatial relationships with death ratios. In this respect, it is useful to compare their 390 

average values for two different death ratio thresholds: 0 and >0.0 (i.e. without and with ‘dead’ agents in the cells), to highlight 

their differences. For instance, cells with positive death ratios have an average elevation of 5.39 m.a.s.l., i.e. 39.03% of the 

average value of the ‘safe’ cells (13.82 m.a.s.l.). In line with this, Fig.5 shows that the maximum values of elevation for 

‘deadly’ cells stay below 20 m.a.s.l.. In the case of the distance to the sea, the ratio between the average values of ‘deadly’ and 

‘safe’ cells is 0.25 (296.57 and 1,185.38 meters, respectively), with maximum levels smaller than 1,750 metres (according to 395 

Fig. 5). For the maximum flood depth attribute, the ratio is 0.13 (average values of 0.611 and 4.67 meters for the ‘safe’ and 

‘deadly’ cells, respectively), with no cells above 15 metres. A similarly steep difference occurs in the case of the ETA of the 

maximum flood, with a ratio of 0.13 due to an average value of 49.16 seconds for those cells with a death ratio = 0, and of 

364.76 seconds for cells with a death ratio >0.0. In the case of the variables related to evacuation and urban form parameters 

(mean travel time, total route length, closeness, straightness, and pedestrian directness ratio (PDR)), the differences between 400 



19 

 

the average values of ‘safe’ and ‘deadly’ cells are also pronounced in some cases (0.57 for straightness and 0.64 for both total 

route length and closeness), while mild in others (0.97 and 0.93 for PDR and mean travel time, respectively).  

To assess the dispersion of results shown by Fig.5, it is useful to compare the coefficients of variation of each data field, in the 

case of the average values of two different death ratio thresholds (0 and >0.0). According to Abdi (2010), the coefficient of 

variation allows the comparison of data distributions with different units. It is defined as the standard deviation of a series of 405 

numbers, divided by the mean of this series of numbers. Along these lines, in the case of the ‘safe’ cells (death ratio = 0), the 

examined data fields (mean travel time, sea distance, elevation, total route length, estimated arrival time (ETA) of the 

maximum flood, maximum flood depth, closeness, straightness, and pedestrian directness ratio (PDR)) show coefficients of 

variation of 0.96, 0.74, 0.89, 0.74, 4.95, 2.98, 1.26, 1.22, and 0.41, respectively. On the other hand, for the ‘deadly’ cells (death 

ratio >0.0) and the same variables, the coefficients of variation are 0.54, 0.95, 0.55, 0.47, 1.47, 0.67, 1.41, 1.62, and 0.35, 410 

respectively. These values show that, in the case of cells with a death ratio = 0, the dispersion of results is in a similar range, 

except for two variables: ETA of the maximum flood, and maximum flood depth. In the case of death ratio >0.0, variation 

among results is more limited, with three highlighted variables: estimated arrival time (ETA), closeness, and straightness. 

 

 415 
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Table 3: Death ratio thresholds and mean and standard deviation of the independent variables. 420 

Death 

ratio 

thresholds 

Mean 

travel_time 

(sec.) 

Sea distance (m.) 
Elevation 

(m.a.s.l.) 

Total route length 

(m.) 

Estimated 

arrival time 

(ETA) of the 

maximum flood 

(sec.) 

Maximum 

flood depth 

(m.) 

Closeness Straightness 

Pedestrian 

directness 

ratio 

Number 

of 

examined 

cells 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean  S.D. Mean S.D. Mean S.D. 

0 922.60 885.47 1185.38 879.00 13.82 12.34 910.11 672.28 49.16 243.40 0.61 1.82 
9.88632E-

07 

1.24947E-

06 
36494.23 44508.04 1.40 0.580 437,388 

>0.0 858.13 460.51 296.57 282.07 5.39 2.98 1419.89 670.28 364.76 537.59 4.67 3.14 
1.53525E-

06 

2.17001E-

06 
20874.97 33857.30 1.36 0.48 92,703 

>0.1 839.00 408.59 295.93 303.76 5.61 3.22 1452.12 643.17 354.02 524.79 5.13 3.34 
1.42721E-

06 

2.16893E-

06 
15255.32 27795.81 1.37 0.49 65,353 

>0.2 832.36 366.71 307.76 324.29 5.89 3.40 1464.85 616.99 316.78 502.94 5.34 3.54 
1.2593E-

06 

1.96081E-

06 
11463.28 21170.88 1.36 0.46 50,383 

>0.3 827.92 345.75 312.69 338.20 5.99 3.49 1478.09 608.92 296.55 490.50 5.50 3.67 
1.15586E-

06 

1.80679E-

06 
9444.16 15931.57 1.35 0.45 42,245 

>0.4 820.13 332.13 310.76 343.27 5.99 3.50 1492.13 607.07 281.72 480.41 5.59 3.77 
1.10805E-

06 

1.70410E-

06 
8388.61 12161.42 1.35 0.45 35,542 

>0.5 799.21 315.14 295.33 336.20 5.87 3.43 1508.79 610.24 282.44 481.27 5.66 3.82 
1.08333E-

06 

1.63073E-

06 
7668.96 9223.47 1.34 0.45 28,329 

>0.6 786.67 313.91 299.90 352.55 5.88 3.53 1526.85 622.89 282.08 481.19 5.81 3.90 
1.03059E-

06 

1.59139E-

06 
7337.72 8624.27 1.34 0.45 23,536 

>0.7 776.61 312.97 300.71 361.24 5.87 3.56 1530.47 627.62 268.94 474.22 5.82 3.97 
1.00919E-

06 

1.50761E-

06 
7332.52 8225.81 1.33 0.42 19,888 

>0.8 774.60 318.28 310.38 376.05 5.91 3.63 1526.73 624.86 247.92 461.77 5.80 4.07 
9.83519E-

07 

1.36354E-

06 
7420.44 7888.60 1.33 0.40 16,754 

>0.9 785.42 324.63 326.40 390.21 6.02 3.75 1499.34 624.41 216.67 440.36 5.70 4.15 
9.28422E-

07 

1.04837E-

06 
7686.08 7969.91 1.3 0.38 14,753 

1 797.02 325.87 337.88 398.07 6.09 3.83 1476.24 623.87 191.53 420.78 5.58 4.16 
8.93807E-

07 

7.53117E-

07 
7945.43 8116.71 1.3 0.39 13,825 
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Fig. 5: Data scatterplots showing the distribution of the death ratios, in comparison to the nine examined independent variables. The 

prevalence of different death ratios across the case studies is also included (top left image). 425 
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3.2 Multivariate regressive analysis 

Figures 6 and 7 show the results of the SHAP values analysis for the Random Forest model’s outcomes. Figure 6 shows, for 

every independent variable and all the examined cells, the amount of the former’s contribution (either positive or negative) to 

the predicted death ratio (compared to the average prediction across all the cells). Red dots mean higher values of the 

independent variable, while blue ones imply the opposite. Figure 7 processes this data to display, for each independent variable, 430 

the average absolute contribution to the predicted death ratio. These results show that the most important feature in predicting 

death ratios is the maximum flood depth, followed by the straightness, the total route length, and the mean travel time. On 

average, the maximum flood depth can vary the death ratio up to 0.08 points, more than twice the impact of the straightness 

(0.037). In turn, this value is higher than those of the total route length (0.032) and the mean travel time (0.024). 

 435 

Fig. 6: SHAP values of the independent variables  Fig. 7: Average absolute SHAP values of the independent 

variables 

Fig 8, in turn, summarizes the results of the SHAP values analysis including different resolutions (x1, x2, x4, x8, x16, and 

x32) developed from the basic 4x4 m unit (i.e. with cells 8x8, 16x16, 32x32, 64x64 and 128x128 m, respectively). According 

to these results, the overall importance hierarchy of the independent variables remains unchanged through the different 440 

resolutions of analysis. Complementarily, noticeable and disparate changes can be seen in the amount of their impacts on the 

predicted death ratio, if we compare the more and less accurate resolutions. For instance, while the maximum flood depth 

increases its impact value by 35.44% between the x1 and x32 resolutions, the straightness and the total length of the street 

network reduce their impacts by 2.78% and 12.5%, respectively. Moreover, reduction reaches 45.83% in the case of the mean 

travel time. In turn, the ETA of the maximum flood exhibits shifting results: its impact on the death ratio grows by 33.33% 445 

until the x16 resolution, and then decreases to 0.015 points at the x32 resolution, i.e. 16.66% less than in its original value at 

x1. 
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Fig. 8: Mean SHAP values of the independent variables, for different spatial resolutions 

4 Discussion 450 

Our descriptive analysis included 530,091 cells. Of these, 92,703 (17.49%) have a death ratio >0.0 (i.e. at least one agent from 

any of the model’s run, who started its evacuation from one of them, was caught by the tsunami). In turn, 13,825 cells (2.61%) 

have a death ratio=1, which means that the waters reach every agent departing from them before they arrive at a safe assembly 

area. As shown by Table 1 and Fig. 5, the rate of cells with elevated death ratios is unevenly distributed across the case studies. 

Cities like Viña del Mar, Valparaíso, and Iquique show large percentages of cells susceptible to having dead evacuees (54.78%, 455 

43.81%, and 29.71%, respectively). On the contrary, Talcahuano has only 0.74% of its cells on this condition. As we can see 

in the maps include in Fig. 1, while the first three cities gather considerable urban development and residential populations on 

exposed locations right next to the coastline, most of the last one’s territory is roughly 1.0 to 1.5 km from the coast, from 

whom large, marshy areas separate it. 

The death ratio thresholds included in Table 3 and the results in Fig. 6 and Fig. 7 allow appraising, for the examined case 460 

studies, how each independent variable relates to the possibility of death in case of a tsunami, and how these variables change 

between ‘deadly’ and ‘safe’ locations. First, the data shows that three of the four of most important predictor variables (the 

maximum flood depth, straightness, and total route length, whose impacts are on average 5.1 times larger than the other eight 

examined variables) have significant differences between their average values for the ‘deadly’ and ‘safe’ cells (ratios of 0.13, 

0.57, 0.64, respectively). Second, some of the variables exhibit what we might call an expected behaviour: the probability (for 465 
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an agent) of ‘dying’ because of a tsunami increases if the departing cell has comparatively lower elevation or shorter distance 

to the sea. In a similar manner, a higher maximum flood depth also increases the cells’ death ratios. Third, three variables show 

somewhat counterintuitive results: the death ratio increases when the mean travel time reduces, and when the estimated arrival 

time (ETA) of the maximum flood, and the closeness, grow. In the case of the first of these independent variables, the results 

are likely influenced by the fact that the evacuees departed from ‘lethal’ cells have comparatively shorter (actual) evacuation 470 

times, as the tsunami soon reaches them and cannot complete their evacuation paths. In the case of the street network’s 

closeness (which is a measure of how close a cell is to all other cells within the ‘evacuation territory’), one may expect that 

more compact street networks should lead to shorter evacuation routes (and times) and, therefore, less ‘dead’ evacuees. 

Nevertheless, according to our results, it would be possible that these smaller networks are faster to flood by the incoming 

tsunami. Lastly, in the case of the ETA, it is essential to underline that the estimated arrival time of the maximum flood is not 475 

necessarily the same as the onset time of the first tsunami front. In our model, the latter can have much more impact on the 

evacuees’ survival rates.  

While tsunamis and their related evacuation potentials are highly context-dependent, our cross-case results could serve to 

identify and appraise other tsunami-vulnerable areas in Chile. Moreover, they highlight possible spatial planning guidelines 

that could be applied to develop new urban regions into exposed territories (if this expansion cannot be restricted or 480 

discouraged). For instance, our results show that the average number of tsunami-caused deaths would occur across those 

evacuees initially located within an approximately 300-meters-wide buffer zone from the coastline. In line with this, Løvholt 

et al. (2014, p.133) point out that studies of the impact of the 2004 Indian Ocean Tsunami show that “in Sri Lanka, people 

within the 100-m zone from the shoreline were more likely to die and to be seriously injured than people living outside this 

zone”. In turn, González-Riancho et al. (2015) underline that 72% of the housing units within the 200-m line from the shoreline 485 

in Sri Lanka were completely or partially damaged, leading to a higher number of victims. Eckert et al. (2012) also point out 

that buildings within that area are highly vulnerable. In the case of the tsunami flood, while inundation depths can be above 

10 meters at several of our case studies’ coastlines, our model shows that the average flood depth at the ‘lethal’ departure cells 

is roughly 4.67 m. In turn, ‘safe’ cells have a comparatively low mean value of 0.61 m, implying that some evacuees can avoid 

being caught by the advancing tsunami front if they rapidly leave the low floodable areas. These results are in line with the 490 

literature on human casualties during past tsunamis. For instance, Suppasri et al. (2016) point out that the inundation depths 

that increased fatality ratios during the 2011 Great East Japan Tsunami are primarily around 10 or 5 m, depending on the 

specific geographical characteristics of different examined areas. In line with this, Murakami et al. (2012) examined the human 

loss distribution during the 2011 disaster in Yuriage District, Natori City, showing that inundation depths between 1.87 m and 

8.50 m triggered death ratios up to 22.3%. In turn, in the case of the ground elevation, the average value of the ‘safe’ cells is 495 

13.82 m. When we include ‘lethal’ cells in the analysis, we can see that fatalities concentrate around elevations of six meters 

and below. In this respect, Eckert et al. (2012) argue that buildings located at a height of 5-10 m can be considered of medium 

vulnerability to tsunamis, while those with an elevation above 10 m have low vulnerability. For the previously mentioned case 

of the Yuriage District, Murakami et al. (2012) report elevations less than five m in the deadly areas. It is also noticeable that 
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cells belonging to street networks with good integration levels, that also allow short walks to the safe assembly areas, and have 500 

few direction changes (i.e. with high betweenness, straightness and PDR values, respectively), have lower death ratios. In this 

respect, as Sharifi (2019) underlines, locations with high betweenness centrality values can easily lead to many other sites 

within the network. Therefore, it is critical to maintaining their functionality during disasters. 

To focus on possible paths to improvement for these case studies it is helpful to examine the outcomes from our multivariate 

regressive analysis. In this respect, as we pointed out above, some independent variables have comparatively higher impacts 505 

on the death ratios as predicted by our regressive model. The most significant one is the maximum flood depth, followed by 

the straightness, the total route length, and the travel time. The maximum floods on ‘lethal’ cells are difficult to mitigate unless 

hardware-type defences are built (which, as mentioned above, is unlikely in developing countries like Chile). Moreover, we 

already pointed out that the tsunami flood also affects the travel time in our regressive analysis. Nevertheless, the straightness 

and total route length depend on real-world urban configurations, resulting from the case studies’ historical development 510 

process. They hence can be subject to strategic interventions to modify their values to reduce the cells’ death ratios. In this 

respect, more direct routes are not only faster to walk (thus reducing escape distances and evacuation times) but also help to 

improve wayfinding as they reduce the changes of directions that evacuees must undertake between their origins and 

destinations (Fakhrurrazi and Van Nes, 2012; Mohareb, 2011). The importance of wayfinding cannot be underestimated, 

especially in the case of tourists and non-locals, who may constitute a large percentage of casualties during a tsunami (as 515 

shown by the Chilean disaster of 2010) (Kubisch et al., 2020). Also, the total route length (and the shelter distance) could also 

be reduced by incorporating vertical evacuation across the urban fabric, which has been proven to reduce the evacuation times 

significantly (León et al., 2019; Mostafizi et al., 2019). Currently, vertical evacuation in Chile is recommended as only a 

second choice of escape if horizontal evacuation is not feasible (ONEMI, 2014). 

Thorough evacuation analyses are context-dependent and must take care of geographical and socio-psychological aspects that 520 

affect the populations’ behaviour (Makinoshima et al., 2021; Mohareb, 2011; Murray-Tuite and Wolshon, 2013; Perry et al., 

1981). In this respect, one limitation of our study is that socio-psychological factors are not analysed. However, future research 

on this type of determinants of tsunami evacuation could help to critically review some of our model’s central assumptions 

(e.g. a ‘full compliance’ evacuation, the probabilistically distributed departure times, or the routing process) and strengthen 

future outputs. Furthermore, as Suppasri et al. (2016, p.11) point out, “analyses involving statistically significant correlations 525 

between characteristics and fatality rate must be performed with caution and based on various data sources”. We are aware 

that the reliability of our findings depends on the quality of the model’s assumptions, functions, and source data. In this respect, 

we included a secondary SHAP values analysis to assess the validity of our results at coarser resolutions of the input data 

generated by our flood and evacuation model. This analysis showed that the overall importance hierarchy of the examined 

independent variables (as predictors of the death ratio) remains unchanged throughout the different resolutions of the study. 530 

Moreover, halving the resolution of our input data could lead to absolute changes not greater than 18% on the impact of the 

most significant independent variables on the expected death ratio. Our results also show that increasingly less accurate 

resolutions might lead to noticeable variations in these impacts (for instance, up to roughly 35% when the maximum flood 
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depth is compared between the x1 and x32 resolutions). Along these lines, future research could deepen into the possible 

sources of these variations (including, but not limited to the scale of the input data), for instance, the appropriate resolution, 535 

type, functioning and parameters of the evacuation models, the characteristics of the examined independent variables, and the 

chosen regressive analysis method, among others. We also point out that reality-based validation procedures (as the one 

mentioned in León et al. (2021a)) will always be necessary, and that the related spatial planning guidelines for evacuation 

improvement should be delivered cautiously. Nevertheless, as tsunamis are relative rare phenomena (where populations’ actual 

behaviours are still hard to capture), our simulation-based analysis provides a significant step into identifying and examining 540 

geographical and built environment’s attributes that might influence the evacuation potential of coastal communities, as a 

spatial framework for the subsequent analysis of their specific socio-psychological characteristics. 

5 Conclusion 

• We proposed a modelling-based approach (including inundation, evacuation, and urban form metrics) to 

quantitatively appraise, through statistical regressive analysis, some of the most relevant aspects of the geographical 545 

and built environments that could contribute to the success (or failure) of evacuation in the case of a tsunami, using a 

cross-case study of seven Chilean coastal cities. 

• According to our results, some of these cities can have up to roughly 55% of their move boundaries (i.e. the evacuation 

area between the coastline and the safe inland assembly areas) susceptible to having dead evacuees. 

• We also demonstrated that geographical, urban form and evacuation variables, including the maximum flood depth 550 

(within the examined evacuation threshold), straightness, total route length, and mean travel time, could significantly 

impact the expected death ratios in each case study. Moreover, we describe the average values of these metrics related 

to different thresholds of death ratio. 

• We argued that, while engineered countermeasures to control flood levels are unlikely in developing countries like 

Chile, urban form metrics like the street network’s straightness could be the subject of improvements through planning 555 

processes. Moreover, this would allow other enhancements in other evacuation dimensions like the travel time and 

evacuees’ wayfinding. 

• Future research could enhance our approach with the incorporation of socio-psychological aspects and probabilistic 

tsunami flood modelling. Also, more case studies (at both the national and global levels) and validation procedures 

(also considering different resolutions of the input data) could help test our findings' robustness and generalizability. 560 
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