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Abstract 12 

In the domain of landslide risk science, landslide susceptibility mapping (LSM) is very 13 

important as it helps spatially identify potential landslide-prone regions. This study used a 14 

statistical ensemble model (Frequency Ratio and Evidence Belief Function) and two machine 15 

learning (ML) models (Random Forest and XG-Boost) for LSM in the Belluno province 16 

(Veneto Region, NE Italy). The study investigated the importance of the conditioning factors 17 

in predicting landslide occurrences using the mentioned models. In this paper, we evaluated 18 

the importance of the conditioning factors  in the overall prediction capabilities of the statistical 19 

and ML algorithms. By the trial-and-error method, we eliminated the least "important" features 20 

by using a common threshold. Conclusively, we found that removing the least "important" 21 

features does not impact the overall accuracy of the LSM for all three models. Based on the 22 

results of our study, the most commonly available features, for example, the topographic 23 

features, contributes to comparable results after removing the least "important" ones. This 24 

confirms that the requirement for the important conditioning factor maps can be assessed based 25 
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on the physiography of the region. Based on the analysis of the three models, it was observed 26 

that most commonly available feature data can be useful for carrying out LSM at regional scale. 27 

Identifying LSMs at regional scale has implications for understanding landslide phenomena in 28 

the region and post-event recovery measures, planning disaster risk reduction, mitigation, and 29 

evaluating potentially affected areas.  30 

 31 

1. Introduction 32 

Landslides are one of the most frequently occurring natural disasters that cause significant 33 

human casualties and infrastructure destruction. Landslides are triggered by several natural and 34 

man-made events such as earthquakes, volcanic eruptions, heavy rains, extreme winds, and 35 

unsustainable construction activities such as unplanned settlement development and cutting of 36 

roads along the slopes (Glade et al., 2006;van Westen et al., 2008). Extreme meteorological 37 

events such as the Vaia storm of 2018 triggered landslides and debris flow, destroyed critical 38 

infrastructures in the northern parts of Italy (Boretto et al., 2021). As reported by (Gariano et 39 

al., 2021) in the last 50 years between 1969-2018, landslides posed a severe threat to the Italian 40 

population. Approximately, 1500 out of the 8100 municipalities in Italy have faced landslides 41 

with severe fatalities. Between the years of 1990 and 1999, 263 people were killed by 42 

landslides. Studies by (Rossi et al., 2019) estimated that approximately 2500 people were killed 43 

between 1945-1990. Moreover, predictive modelling of the Italian population at risk to 44 

landslides (Rossi et al., 2019) shows massive tendency of risk to the population with data 45 

acquired between 1861-2015, emphasizing the necessity of landslide risk studies.  46 

Therefore, to assess landslide risk and plan for suitable risk mitigation measures, it is crucial 47 

to realize the significance of landslide studies, particularly Landslide susceptibility Mapping 48 

(LSM). LSM is an essential tool that incorporates the potential landslide locations (Senouci et 49 

al., 2021). The probability of a landslide occurring in a particular region owing to the effects 50 
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of several causative factors is referred to as landslide susceptibility. LSM is an essential step 51 

towards landslide risk management and helps in effective mapping of the spatial distribution 52 

of probable landslide manifestations (Dai et al., 2002). In the past, researchers have used a 53 

range of models to assess landslide susceptibility using technologies such as Earth Observation 54 

(EO) and Geographic Information Systems (GIS). The recognition and analysis of slope 55 

movements have been going on since the early 1970s (Brabb et al., 1972) and is still one of the 56 

most important components to perform LSM (Ercanoglu and Gokceoglu, 2002;Chacón et al., 57 

2006;Guzzetti et al., 2006;Castellanos Abella and Van Westen, 2008;Floris et al., 2011;Catani 58 

et al., 2013;Pham et al., 2015;Reichenbach et al., 2018;Youssef and Pourghasemi, 2021;Liu et 59 

al., 2021).  60 

Traditional methods such as the expert-based Analytical Hierarchy Process (AHP), multi-61 

variate statistics, data-driven Frequency Ratio (FR) have been employed for landslide 62 

susceptibility for many years, with satisfactory results (Pradhan, 2010;Castellanos Abella and 63 

Van Westen, 2008;Komac, 2006).  A use case of such approaches is given by Floris et al (2011) 64 

which apply traditional LSM methods (FR) for mapping landslide susceptibility in a case study 65 

in Veneto Region, Italy. Afterwards, with the development of new approaches, susceptibility 66 

modelling has advanced from traditional approaches. Presently, two approaches: (1) statistical 67 

and (2) machine learning, are practised for LSM at investigating the landslide predisposing 68 

factors and to map the geographical distribution of landslide processes. (Reichenbach et al., 69 

2018) classified landslide susceptibility models into six main groups: (1) classical statistics, (2) 70 

index-based, (3) machine learning, (4) multi-criteria analysis, (5) neural networks, and (6) 71 

others. Research by (Reichenbach et al., 2018) also depicted that before 1995, only five models 72 

were used for LSM, but in recent times, an investigation of 19 other models was carried out, 73 

which yielded good results. More than 50 per cent of the methods consisting of the first five 74 

models mentioned above accounted for landslide susceptibility studies. Recent work of 75 
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(Stanley et al., 2021) emphasized the importance of data-driven methods in global LSM, 76 

trained to report landslide spatial occurrences between the periods of 2015-2018. The first 77 

version of the Landslide Hazard Assessment for Situational Awareness (LHASA) from their 78 

work for NASA, reported landslide occurrences with a decision tree model that first defines 79 

the intensity of one week of rainfall. LHASA version 2 used the data-driven model of XG-80 

Boost by adding two dynamically varying factors: snow and soil moisture. However, despite 81 

advances in LSM, the importance of the conditioning factors in the prediction capability of a 82 

model is not discussed enough. The need of increasing our control over the model sensitivity 83 

to system parameters changes, including those induced by anthropogenic and climate-change 84 

dynamics, is becoming a key factor in the implementation of truly efficient LSM for risk 85 

mitigation purposes. The Vaia windstorm of 2018 (Forzieri et al, 2020), as a typical extreme 86 

weather event, may easily escape traditional statistical prediction schemes and represent, 87 

therefore, a challenging test for exploring the sensitivity of the various LSM models to 88 

changing factors and conditions. 89 

 One goal of this research is to look into the relative changes in LSM accuracy when the least 90 

"important" conditioning factors are removed. Feature selection in LSM is an approach in 91 

reducing landslide conditioning factors to improve model performance and reduce 92 

computational time. The purpose of this approach is to find the optimal set of conditioning 93 

factors that will provide the best fit for the model to yield higher accuracy as predictions. 94 

(Micheletti et al., 2014) emphasized the importance of feature selection in LSM and discussed 95 

the use of Machine Learning (ML) models such as Support Vector Machine (SVM), Random 96 

Forest (RF), and AdaBoost for LSM, as well as the significance of associated features within 97 

the confluence of the ML models for feature importance. However, their study did not consider 98 

geological and meteorological features like lithology, land use, and rainfall intensity for both 99 

LSM and feature selection. Studies by (Liu et al., 2021) depicted the improvement in the 100 
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predictive capability of the so-called Feature Selected Machine Learning (FS-ML) model but 101 

also remarked on the fact that the same conditioning factors may contribute differently in 102 

different ML models. In this study, we want to investigate the prediction capability of the model 103 

after removing conditioning factors as an approach to improve LSM accuracy in contrast to 104 

what has been done in literature like (Liu et al., 2021), where they assess conditioning factor 105 

importance using approaches like multi-collinearity analysis, variance inflation factor before 106 

prediction of the susceptibility. The identification of the most crucial features can help in 107 

monitoring the effect of extreme events (such as Vaia) on the changes in the evolution of 108 

landslide hazard.  109 

We present a study in the province of Belluno (Veneto Region, NE Italy) with the comparison 110 

of the conditioning factor importance of statistical and ML models for LSM before the Vaia 111 

storm event. The results from the LSM will be then validated using the IFFI landslide inventory 112 

data for testing the various models' prediction capability with/without certain factors. We also 113 

investigate whether many of the latter conditioning factors are crucial for LSM. As in many 114 

regions over the world, the same data or factor maps might not be available.  115 

 116 

2. Study area and Data 117 

2.1 Study area  118 

The area of the Belluno Province (Veneto Region, NE Italy) is part of the tectonic unit of the 119 

Southern Alps. The territory is 3,672 km² wide, stretching from north to south between the 120 

Dolomite Alps and the Venetian Pre-Alps, with elevations ranging from 42 to 3325 m above 121 

mean sea level. From a geological point of view, Dolomite Alps comprises the Hercynian 122 

crystalline basement consisting of micaschists and phyllites intruded by the Permian 123 

ignimbrites (Doglioni, 1990;Schönborn, 1999). These Paleozoic units are mainly outcropping 124 

in the NE and central-West sectors. The Middle-Upper Triassic includes carbonate, volcanic 125 
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and dolomitic formations. In particular, the Upper Triassic Main Dolomite covers 14% of the 126 

whole province. Jurassic-Cretaceous limestone and marls are especially located between the 127 

Valsugana and Belluno thrusts (Sauro et al., 2013). Moreover, in the Belluno valley and in the 128 

southern part of the area, Cenozoic sediments, i.e., flysch and molasse and Quaternary glacial, 129 

alluvial and colluvial deposits are largely present. Instead, Venetian Prealps are characterized 130 

by Jurassic-Cretaceous sedimentary cover, such as layered limestones and dolomites with 131 

cherts (Compagnoni et al., 2005;Corò et al., 2015). Because of its morphological 132 

characteristics, the study area is affected by slope instability, which overlay an area of 165 km² 133 

corresponding to 6% of the province (Baglioni et al., 2006). Most of the landslides are located 134 

in the NW (Upper basin of Cordevole River) and SE (Alpago district) sectors of the province 135 

(Figure 1). The dominant landslide types are slides (47%), rapid flows (20%), slow flows 136 

(12%), and shallow soil slips (7%) (Iadanza et al., 2021). The climate of the province of Belluno 137 

is continental. The mean annual temperature recorded in the period 1961–1990 is 7°C and the 138 

mean precipitation is 1284 mm/year (Desiato et al., 2005) with two peaks distributed in spring 139 

and autumn. In the last 27 years, temperature and rainfall intensity in the study area have 140 

increased due to climatic changes leading to more frequent meteorological conditions 141 

(ARPAV, 2021 ).  142 

 143 

2.2 Landslide inventory data  144 

The inventory of landslide phenomena in Italy (IFFI) conducted by the Italian Institute for 145 

Environmental Protection and Research (ISPRA) and the Regions and Autonomous 146 

Provinces was used in this study (Trigila et al., 2010). The IFFI Project was financed in 1997. 147 

Since 2005, the catalogue is available online and consists of point features indicating the 148 

scarp of the landslides and polygon features delineating the instabilities. The archive stores 149 

the main attributes of the landslides, such as morphometry, type of movement, rate, involved 150 
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material, induced damages and mitigation measures. The inventory currently holds 620,808 151 

landslides collected from historical documents, field surveys and aerial photointerpretation, 152 

covering an area of 23,700 km2, which corresponds to the 7.9% of the Italian territory (Trigila 153 

and Iadanza, 2018). In the Belluno province, the IFFI inventory consists of 5934 points of 154 

landslides occurred before 2006 (Baglioni et al., 2006).  155 
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2.3 Landslide conditioning factors  160 

Based on the regional environmental characteristics of the study area and the scientific 161 

literature, fourteen landslide conditioning factors were selected, including: (i) topographical 162 

factors such as elevation, slope angle, slope aspect, topographical wetness index (TWI), 163 

topographical position index (TPI), topographical roughness index (TRI), profile curvature, 164 

and plan curvature; (ii) hydrological factors (i.e., distance to drainage, precipitation); 165 

geological factors (lithology); (iii) anthropogenic factors (distance to roads); and (iv) 166 

environmental factors like Normalized Difference Vegetation Index (NDVI) and landcover 167 

(see figure 2). A freely accessible digital elevation model (DEM) with a spatial resolution of 168 

25 metres and was downloaded from the Veneto Region cartographic portal 169 

(https://idt2.regione.veneto.it), was used to derive the topographic layers. Refer to table 1 for a 170 

detailed description of the conditioning factors. Land cover, lithology maps, road network and 171 

drainage maps were downloaded from the same portal. Rainfall data was downloaded from the 172 

Regional Agency for the Environmental Prevention and Protection of Veneto (ARPAV: 173 

https://www.arpa.veneto.it/ ) web site.  We resampled the conditioning factor maps to 25 meter 174 

pixels in order to do the analysis. 175 

Table 1: Description of the conditioning factors for landslide occurrences.  176 

Sl 

No. 

Conditioning 

Factor 

Data Range Description/Justification 

1 Elevation 42 m to 3325 m 

 

The geomorphological and geological processes 

are affected by elevation (Raja et al., 2017). It 

has an impact on topographic characteristics, 

which contribute to spatial differences in many 

landform processes, as well as the distribution of 

vegetation. 
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2 Slope Flat areas to 

very high 

slopes till 

86.48° 

Slope is a derivative of the DEM which can cause 

failure of slope (Pham et al., 2018). Landforms 

having a higher angle of slope are usually more 

susceptible to collapse, which is closely 

correlated to landslides. 

3 Aspect North (0 

degrees) to 

North (360 

degrees) 

Aspect has a correlation with other geo-

environmental factors is a crucial factor for LSM 

that describes the slope direction (Dahal et al., 

2008).  The slope direction to a degree dictates 

the frequency of landslides.   

4 Topographic 

wetness index 

-2.12 to 20.06 The influence of topography on the location and 

amount of saturated runoff source areas is an 

essential conditioning factor (Pourghasemi et al., 

2012). TWI measures the amount of 

accumulated water and distribution of soil 

moisture at a location. Higher TWI values can 

relate to higher chances of landslide occurrence.  

5 Topographic 

Position Index 

-1143.68  to 

243.84 

The topographic position index (TPI) shows the 

difference between the elevation of a point and 

its surrounding. Lower values represent the 

plausibility of features lower than the 

surrounding, thus possibly relating to higher 

odds of landslide occurrence.  
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6 Topographic 

Roughness 

Index 

0 to 1077.30 Topographic Roughness Index (TRI) calculates 

the difference in elevation between adjacent 

pixels in a DEM which depicts the terrain 

fluctuation (Riley et al., 1999).  As the slope of a 

landscape moves, the TRI decreases, relating to 

slope movement.  

 

7 Profile 

Curvature 

Concave  

Flat  

Convex  

The driving and resisting forces within a 

landslide in the slope direction are affected by 

profile curvature. 

8 Plan 

Curvature 

Concave  

Flat  

Convex  

The direction of landslide movement is 

controlled by the plan curvature, which regulates 

the convergence or divergence of landslide 

material (Dury, 1972;Meten et al., 2015). 

9 Drainage 0 to 400 Drainage transports water, which induces 

material saturation, culminating in landslides in 

valleys. (Shahabi and Hashim, 2015).  

10 Rainfall 84 to 1198.05 

(mm/month) 

Precipitation characteristics shift by climatic 

conditions and geographical characteristics, 

resulting in significant temporal and 

geographical variations in rainfall quantity and 

intensity. This can lead to the triggering of 

landslides across large areas but also for specific 

smaller areas. 
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11 Lithology Volcanites, 

Pre-Permian, 

metamorphic, 

sequence 

Morainic, 

Gravels, etc. 

The geological strength indices, failure 

susceptibility, and permeability of lithological 

units differ (Yalcin and Bulut 2006), where 

changes in the stress-strain behaviour of the rock 

strata can be caused by lithological unit 

variation. Slope failure typically occurs on a 

slope with low shear strength. 

12 Distance to 

Roads 

0 to 200 A crucial manmade element impacting the 

occurrence of landslides is roads because of road 

clear-cutting and construction activities 

(Dunning et al., 2009). 

13 Landcover Rock, Forest, 

Urban cover 

etc.  

Because land cover may influence the 

hydrological functioning of slopes, rainfall 

partitioning, infiltration properties, and runoff, as 

well as the soil shear strength, different land 

cover types may affect slope stability. 

14 NDVI -0.66 to 0.66 NDVI is important in realizing the amount of 

vegetation cover which can be interpreted to 

understand the strength of the slope and the 

landslide occurrences. The NDVI reflects the 

inhibitory effect of landslide occurrence (Huang 

et al., 2020).   

 177 
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 182 

Figure 2: Maps of the conditioning factors used in this study: (A) Elevation, (B) Slope, (C) 183 

Aspect, (D) Topographical wetness index, (E) Topographical position index, (F) Topographical 184 

roughness index, (G) Profile curvature, (H) Plane curvature, (I) Distance to drainage networks, 185 

(J) Rainfall monthly average (1994-2020) mm, (K) Lithology, (L) Distance to road network 186 

(M) Landcover, (N) NDVI 187 

 188 

3. Methodology 189 

We propose an approach that helps assess importance of the conditioning factors, which can 190 

help improve the susceptibility results by removing the less "important" factors throughout the 191 

statistical and ML models. As stated previously, the study attempts the application of sensitivity 192 

analysis to understand relative importance of the conditioning factors as a preliminary step 193 

towards improving the landslide susceptibility prediction capability. In this study, the LSM 194 
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was obtained by the combination between IFFI landslide inventory and the conditioning factors 195 

through statistical methods such as FR-EBF and ML models, i.e. Random Forest and XG-Boost  196 

(Figure 3). The successive sub-sections address the definitions of the statistical and ML models 197 

for LSM.  198 
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Figure 3: Overview of the conceptual workflow of methodology for landslide susceptibility 200 

assessment. 201 

 202 
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3.1 Statistical approach 203 

3.1.1 Ensemble Frequency Ratio - Evidence Belief Function 204 

In landslide susceptibility studies, the frequency ratio (FR) model is often applied. This is an 205 

evaluation method which calculates the likelihood of landslide occurrence and non-occurrence 206 

for each conditioning factor. (Lee, 2013;Mondal and Maiti, 2013;Shahabi et al., 2014). For 207 

each landslide conditioning factor, the FR is a probabilistic model based on observed 208 

correlations between landslide distribution and related parameters (Lea Tien Tay 2014). The 209 

model depicts the relationship between spatial locations and the factors that determine the 210 

occurrence of landslides in a specific area. Spatial phenomenon and factor classes correlation 211 

can be found through FR and is very helpful for geospatial analysis (Mahalingam et al. 2016; 212 

Meena et al. 2019b). Figure 3 gives an overview of the methodology employed in this study.  213 

FR weights can be computed using the  ratios of landslide inventory points of all classes within 214 

each factor. The landslide inventory points are then overlaid with the conditioning factors to 215 

obtain the area ratio for each factor class to the total area. The FR weights are then obtained by 216 

dividing the landslide occurrence ratio in a class by the area in that class (Demir et al. 2012). 217 

 218 

Using the Eq. 1, the Landslide Susceptibility Index (LSI) was computed by summing the values 219 

of each factor ratio (Lee, 2013): 220 

 221 

LSI =∑ FR  (Eq.1) 222 

 223 

LSI= (DEM*wi)+(slope*wi)+(aspect*wi)+(Topographic Wetness Index*wi)+(Topographic 224 

Roughness Index*wi)+(Topographic Position Index*wi)+(Distance to road*wi)+(Distance to 225 

drainage*wi)+(Land Cover*wi)+(Lithology*wi)+(NDVI*wi)+(Rainfall*wi)+(Profile 226 

Curvature*wi)+(Plain Curvature*wi) 227 
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 228 

Where LSI is the landslide susceptibility index, FR is the frequency ratio of every factor type 229 

or class, and wi is the weight of each conditioning factor. The higher the LSI value, the higher 230 

the susceptibility to landslides. 231 

 We integrated the LSI results with Evidence Belief Function (EBF) derived predictor values. 232 

The EBF uses the conditioning factors defined by FR as the input data. Eq. (2) was applied to 233 

the rating of every spatial factor. 234 

 235 

𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑚𝑚𝑚𝑚𝑚𝑚  (Eq.2) 236 

where SA  is the indicator of Spatial Association between spatial factors and landslides, 237 

whereas PR is the Prediction Rate. The lowest absolute difference of all factors is divided by 238 

the computed absolute difference between the maximum and the least SA values (Table 2). 239 

Pairwise comparison of the PR values of the slope failure predictors yielded the pairwise rating 240 

matrix of the predictor rating. We used PR values for assigning weights of the factors for 241 

susceptibility analysis. 242 

 243 

3.2 Machine learning models 244 

3.2.1 Random Forest model 245 

Random Forest (RF) is based on the concept of the "wisdom of crowds" where multiple 246 

decision trees, introduced by (Breiman, 2001), has been utilized in a number of remote sensing 247 

research for a variety of applications (Melville et al., 2018). RF creates many deep decision 248 

trees using the training data and it can overcome the overfitting problem mostly resulting from 249 

complex datasets better than other decision trees. Each RF decision tree gives a prediction, 250 

which is then weighted according to the value created from votes from each tree leading to 251 

generation of the susceptibility map (see figure 4). Since the RF has shown an impressive 252 
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performance for classification purposes, it is regarded as one of the most efficient non-253 

parametric ensembles models (Chen et al., 2017). Based on the advantages listed above, the 254 

RF model is used to assess landslide susceptibility. Landslide inventories along with the 255 

conditioning factors are divided into training and testing data as seen in figure 4. Using the 256 

bagging technique, the training data is divided into training subsets, generally about one-third 257 

of the total training samples. A decision tree is created for each subset based on the training 258 

subset defined in the first stage and accordingly, votes as implemented that outputs the 259 

landslide susceptibility. 260 

 262 

Figure 4: Conceptual diagram of the Random Forest model. 263 

 264 

3.2.2 XG-Boost model 265 

Extreme gradient boosting or commonly known as the XG-Boost ML model is an optimized 266 

gradient boosting algorithm that is designed for optimum speed and performance and boosting 267 

ensembles are used to generate a prediction model (Sahin, 2020). The core idea of a boosting 268 

algorithm is to combine the weaker learners to improve accuracy (Can et al., 2021), meaning 269 

that different models with lower susceptibility accuracies are “boosted” by combining them to 270 
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achieve an ensembled higher susceptibility accuracy. The model is known for its fast-training 271 

speed for classification tasks. In the study, we use training parameters to adjust the XG-Boost 272 

algorithm like learning rate, subsample ratio, maximum depth of the tree and others. It uses 273 

boosting techniques to reduce overfitting problems to improve accuracy results (figure 5).  The 274 

training data is divided into subsets which are then trained using a tree ensemble model. This 275 

means that every weight derived from each model training of landslide instances in the area are 276 

added and then predicted on the test set with the average landslide susceptibility scores of the 277 

ensemble models.  278 

 279 

 281 

Figure 5: Training and testing procedure of the XG-Boost model. 282 

3.3 Feature selection algorithms 283 

The goal of feature selection is to remove the least important conditioning factors in order to 284 

increase the generalisability in landslide prediction. This selection help eliminates the 285 

irrelevant (less important) conditioning factors to obtain optimal prediction accuracy 286 

(Micheletti et al., 2014). For the statistical model, we used class weights obtained from 287 

frequency ratio and used them as input for generating predictor rate from FR-EBF model which 288 
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gives the final weights of the conditioning factors. So, we used the predictor rate weights to 289 

select the suitable features. 290 

In terms of the feature importance for selecting the right set factors for both RF and XG-Boost, 291 

we use the in-built impurity feature importance algorithm which is performed on the training 292 

set (refer to feature selection in figure 3). Based on the results of the feature selection 293 

algorithms for the conditioning factors for each model, the most important factors will be 294 

selected to investigate the improvement of model performance. With this, we can understand 295 

which of the conditioning factors played the most important roles in giving the highest accuracy 296 

for each ML model.  297 

4. Results 298 

4.1 Statistical model  299 

The class weights were derived from data driven FR model and the final weights of the factors 300 

were derived by using predictor rate from evidence belief function given in Table 2. The class 301 

and factor weights were calculated using equations 1 and 2. The final weights of landslide 302 

conditioning factors were calculated using an ensemble of FR-EBF, and then utilised to create 303 

the final LSM. Because there is no common approach for identifying landslide susceptibility 304 

classes in the final LSM, we normalised the findings to 0 to 100 for uniformity and 305 

comparability. Using a natural breaks classification, which separates the values into groups 306 

with random number of values, the resultant LSM was classified into five  classes: very low, 307 

low, moderate, high, and very high, as shown in figure 7 (Chung and Fabbri, 2003). This 308 

method of classification gives a better distribution of values in each class than common 309 

approaches such as natural breaks, which can result in certain classes having limited or 310 

excessive data. 311 

In terms of the feature importance that we observe in figure 6 and Table 2 (normalized weights), 312 

based on the trial-and-error approach, factors (or features) under the threshold of 0.3 were 313 
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discarded as they did not make much of a difference in terms of predicting landslide 314 

occurrences in the study area. Therefore, five conditioning factors having coefficient values 315 

lower than 0.30 were dropped and overall, the area under the curve (AUC) accuracy still 316 

remained similar to the original accuracy with the 14 factors.  317 

 318 

 319 

Figure 6: Feature importance of the statistical model 320 

 321 

Table 2: Frequency ratio values for spatial factors class weighting and EBF coefficients for 322 

predictor rates (PR) based on degrees of spatial associations. 323 

Factors and 

classes 

Bel Min Max [Max-Min] Predictor 

Rate 

FR Weights Normalized 

weights  

Elevation  0.07 0.24 0.17 0.73   

<430 0.07     0.50 0.06 

430 - 700 0.15     1.13 0.20 

700 - 1000 0.13     0.96 0.19 

1000 - 1500 0.12     0.86 0.15 

1500 - 1900 0.11     0.81 0.12 

1900 - 2300 0.24     1.72 0.17 

>2300 0.18     1.31 0.12 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
po

rt
an

ce
  c

oe
ffi

ci
en

t v
al

ue
s

FR-EBF-14 Features



25 
 

Profile 

Curvature 

 0.00 0.53 0.53 2.30   

Concave  0.53     1.05 0.40 

Flat  0.00     0.00 0.30 

Convex  0.47     0.95 0.30 

Plan 

Curvature 

 0.00 0.52 0.52 2.26   

Concave  0.52     1.03 0.35 

Flat 0.00     0.00 0.33 

Convex  0.48     0.97 0.32 

Slope  0.14 0.25 0.11 0.48   

<10 0.14     0.70 0.14 

10 - 20 0.23     1.11 0.22 

20 - 30 0.25     1.25 0.27 

30 - 40 0.20     0.99 0.20 

>40 0.17     0.86 0.17 

Distance from 

drainage 

 0.02 0.36 0.34 1.49   

0 - 100 0.36     1.15 0.28 

100 - 200 0.30     0.97 0.19 

200 - 300 0.23     0.74 0.12 

300 - 400 0.10     0.31 0.07 

>400 0.02     0.06 0.34 

Distance from 

roads 

 0.08 0.24 0.15 0.67   

0 - 50 0.36     1.15 0.27 

50 - 100 0.30     0.97 0.19 

100 - 150 0.23     0.74 0.17 

150 - 200 0.10     0.31 0.16 

>200 0.02     0.06 0.13 
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Landcover  0.01 0.24 0.23 2.98   

Urban 0.17     1.48 0.17 

Rocks 0.10     0.90 0.09 

Arable 0.01     0.07 0.01 

Permanent 

cultivation 

0.10     0.92 0.13 

Forest 0.11     0.95 0.11 

Grassland 0.24     2.11 0.14 

Shrubland 0.04     0.37 0.04 

Sparse 

vegetation 

0.12     1.08 0.21 

Water body 0.12     1.05 0.09 

TWI  0.17 0.25 0.08 1.00   

-2.12 - 1.52 0.19     1.01 0.20 

1.52 - 3.35 0.20     1.04 0.20 

3.35 - 5.70 0.18     0.92 0.18 

5.70 - 9.62 0.17     0.90 0.18 

9.62 - 20.06 0.25     1.30 0.24 

TPI  0.00 0.31 0.31 1.35   

-1143.68 - -

202.34 

0.00     0.00 0.00 

-202.34 - -

17.33 

0.18     0.74 0.21 

-17.33 - -1.01 0.26     1.06 0.27 

-1.01 - 20.75 0.24     0.98 0.26 

20.75 - 243.84 0.31     1.24 0.27 

TRI  0.00 0.34 0.34 1.47   

0 - 4.22 0.22     0.73 0.23 

4.22 - 21.1 0.34     1.11 0.35 

21.12 - 46.47 0.25     0.82 0.22 
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46.47 - 257.70 0.20     0.65 0.20 

257.70 - 

1077.30 

0.00     0.00 0.00 

Rainfall 

intensity 

 0.00 0.81 0.81 3.54   

84 - 110.83 0.81     11.29 0.32 

110.83 - 

127.38 

0.08     1.15 0.27 

127.38 - 

140.80 

0.05     0.70 0.15 

140.80 - 

157.35 

0.06     0.81 0.19 

157.35 - 

198.05 

0.00     0.00 0.06 

NDVI  0.14 0.25 0.11 0.48   

-0.66 - 0.15 0.14     0.70 0.13 

0.15 - 0.34 0.22     1.13 0.21 

0.34 - 0.52 0.25     1.26 0.25 

0.52 - 0.66 0.21     1.07 0.21 

0.66 - 0.99 0.18     0.89 0.20 

Aspect  0.05 0.15 0.09 0.41   

Flat (-1) 0.11     1.02 0.10 

North (0-22.5) 0.08     0.75 0.07 

Northeast 

(22.5-67.5) 

0.09     0.84 0.09 

East (67.5-

112.5) 

0.11     1.08 0.11 

Southeast 

(112.5-157.5) 

0.14     1.31 0.14 
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South (157.5-

202.5) 

0.15     1.40 0.14 

Southwest 

(202.5-247.5) 

0.14     1.33 0.14 

West (247.5-

292.5) 

0.08     0.76 0.09 

Northwest 

(292.5-337.5) 

0.05     0.50 0.07 

North (337.5-

360) 

0.06     0.58 0.06 

        

Lithology  0.04 0.26 0.22 2.84   

Volcanites 0.26     3.45 0.16 

Pre-Permian 

metamorphic 

sequence 

0.11     1.50 0.11 

Morainic 0.06     0.85 0.15 

Gravels 0.04     0.52 0.04 

Mix of alluvial 

deposits 

0.05     0.70 0.03 

Conglomerate

s 

0.21     2.84 0.21 

Limestone and 

dolomitic 

limestone 

0.13     1.76 0.16 

Calcareous 

shales 

0.08     1.04 0.08 

Shales and 

gypsums 

0.06     0.76 0.07 
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Alternation of 

marls and 

sandstones 

0.07     0.91 0.06 

Water body 0.22     2.97 0.00 

 324 
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Figure 7: Landslide susceptibility maps derived using the ensemble of FR-EBF approaches 326 

for (A) 14 landslide features and (B) 9 landslide features (Black square represents the 327 

enlarged area). 328 

 329 

4.2 Machine learning models 330 

The LSM was generated based on the conditioning factor data, where the model learnt the 331 

information from the feature maps, which helped identify areas of susceptibility. The final 332 

results of the ML models in generating the LSM are given in Table 3. We observe that the AUC 333 

scores of RF are not much apart from the XG-Boost model, indicating similar predictive skills 334 

of both the modelsVisually the results show more susceptible areas near the landslide features 335 

(figures 8 and 9).  336 

The model performance in terms of the accuracy of AUC is relatively similar to the results after 337 

eliminating the lower degree of feature importance for both RF and XG-Boost. As discussed 338 

previously in section 3.3, the feature importance for the ML models is carried out using the 339 

impurity feature importance algorithm that enables to assess the relative relevance of the 340 

conditioning factors in the optimal prediction of the landslides in terms of accuracy. As seen 341 

in figure 10, the factors of Landcover, Profile Curvature, Plan Curvature, TWI and TPI have 342 

the lowest values for the RF model. We examined various values as a cut-off for choosing the 343 

"important" conditioning factors and after much trial-and-error, a value of 0.03 was chosen as 344 

the threshold. Any factors above this value were considered as "important" factors for landslide 345 

susceptibility, hence, in figure 8, we see that the five factors mentioned above are removed and 346 

giving us 0.906 AUC as accuracy, which is better in AUC accuracy without removing the five 347 

factors (0.902 AUC as seen in Table 3).  348 

Similarly, the same was repeated for the XG-Boost ML model and referring to Table 3, and 349 

despite removing the lower valued conditioning factors of Profile Curvature, TPI, and Plan 350 



32 
 

Curvature, the AUC accuracy score was similar (Table 3). We observe that Slope and Distance 351 

to Roads had a much bigger impact on the RF mode than the XG-Boost model. On the other 352 

hand, Lithology played a bigger role in estimating landslide occurrences in the XG-Boost 353 

model. These observations indicate interesting results which will be discussed further in the 354 

discussion section.  355 

 356 

Table 3: Overall table with AUC results for landslide susceptibility of Belluno. 357 

 358 

No. Model AUC  

1 FR-EBF 14 features 0.836 

2 FR-EBF 9 features 0.834 

3 RF 14 features 0.902 

4 RF 9 features 0.906 

5 XG-Boost 14 features 0.910 

6 XG-Boost 10 features 0.907 

 359 

 360 
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Figure 8: LSMs derived using the Random Forest approach for (A) 14 landslide features and 363 

(B) 9 landslide features (Black square represents the enlarged area). 364 

 365 

 366 
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 368 

Figure 9: LSMs derived using the XG-Boost approach for (A) 14 landslide features and (B) 9 369 

landslide features (Black square represents the enlarged area). 370 
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 371 

 372 

 373 

Figure 10: Feature importance of the RF and XG-Boost models. 374 

 375 

5. Accuracy Assessmen 376 

Accuracy assessment is crucial in producing quality LSMs for natural hazards where the 377 

information presented in the map is beneficial for planners (Goetz et al., 2015) A number of 378 

accuracy assessment approaches may be used to assess the quality of the LSMs. We compare 379 

the landslide inventory data to the resultant maps derived using the ensemble of FR-EBF, 380 

machine learning RF and XG-Boost models. The efficiency of any model for LSM is calculated 381 

by comparing the inventory data to the produced maps. This reflects if the models in use can 382 

accurately forecast which areas are susceptible to landslides (Pourghasemi et al., 2018). The 383 

findings from the total landslide input events were tested using 30% of the landslide 384 

occurrences. Testing for this study was done using the Receiver Operating Characteristics 385 

(ROC) and the Relative Landslide Density (R-Index) approaches. 386 
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 387 

5.1 Receiver Operating Characteristics (ROC) 388 

The test dataset was used to corroborate the six resultant LSMs from statistical and machine 389 

learning using the receiver operating characteristics (ROC) approach. The ROC approach 390 

shows how to evaluate the true positive rate (TPR) and false positive rate (FPR) in the 391 

LSMs (Ghorbanzadeh et al., 2018; Linden, 2006). TPRs are pixels that are correctly labeled as 392 

high susceptibility in the landslide validation data, whereas FPRs are pixels that are incorrectly 393 

labeled. ROC curves are created using TPRs versus FPRs. The accuracy of the generated LSMs 394 

is determined by the AUC. The AUC shows whether there were more correctly labeled pixels 395 

than incorrectly labeled pixels. Greater AUC values suggest a more accurate susceptibility 396 

map, and vice versa. The susceptibility map is meaningful if the AUC values are close to unity 397 

or one. A map with a value of 0.5 is considered insignificant since it was created by chance. 398 

(Baird, 2013). 399 

Figure 11 shows the accuracy values obtained using the ROC technique for the statistical 400 

approaches of FR-EBF and machine learning approaches of RF and XG-Boost. XG-Boost 401 

shows the highest accurate results with an AUC value of 0.91 and RF with 0.906, and FR-EBF 402 

with 0.836 (refer to Table 3). These results are quite good as it is closer to unity or one. The 403 

ensemble of FR-EBF shows lower AUC values than the machine learning-based XG-Boost and 404 

Random Forest. Machine learning results may differ because the models used landslide and 405 

non-landslide features as training data, whereas FR-EBF results are derived solely from 406 

landslide data. The results may differ depending on the geographical location and the selection 407 

of landslide conditioning factors. 408 
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409 

 410 

Figure 11. Testing for the performance of  the statistical and machine learning models for 411 

LSM in Belluno province, Italy. 412 

 413 

5.2 Relative Landslide Density (R-Index) 414 

The relative landslide density index was also used to assess the accuracy of the LSMs (R-415 

index). Equation (4) is used to get the R-index: 416 

R = (ni/Ni)/Σ(ni/Ni)) ×100 (Eq.4) 417 

 418 

where Ni is the percentage of landslides in each susceptibility class and ni is the percentage of 419 

area susceptible to landslides in each susceptibility class Table 4 shows the quantile 420 

classification approach to classify the six landslide susceptibility maps into five susceptible 421 

classes. In comparison to the RF and FR-EBF models, the XG-Boost model with 14 and 10 422 

features has a higher R-index for very high susceptibility classes. The R-index findings show 423 



39 
 

that FR EBF has a better R-index value for high susceptibility class than XG-Boost, which has 424 

the lowest R-index for high susceptibility class. FR-EBF has a higher r-index value for the high 425 

susceptibility class than the other three approaches. In addition, the R-index of FR-EBF is 426 

higher for the very low susceptible class. Table 4 shows the R-index values for susceptibility 427 

class in FR-EBF, RF, and XG-Boost, as well as plots of the same in figure 12. 428 

 429 

Table 4: R-indices for the FR-EBF, RF, and XG-Boost models' landslide susceptibility 430 

mappings (LSMs). 431 

Validation 

methods 

Susceptibility 

class 

Number of 

pixels 
Area (m²) 

Area (%) 

(ni) 

Number of 

landslides 

Landslide 

(%) (Ni) 
R- index 

FR-EBF-14 

Features 
Very Low 

21875 334248750 9.28 48 2.71 6 

 Low 90000 570760000 15.85 171 9.66 13 

 Moderate 165000 896709375 24.90 308 17.40 15 

 High 263750 1026578125 28.50 460 25.99 20 

 Very High 444375 773585000 21.48 783 44.24 45 

        

FR-EBF-9 

Features 
Very Low 

19375 323332500 8.98 38 2.15 5 

 Low 91875 541371875 15.03 179 10.11 15 

 Moderate 153125 894758125 24.84 289 16.33 15 

 High 276875 1041846875 28.93 480 27.12 21 

 Very High 443750 800571875 22.23 784 44.29 44 

        

RF-14 

Features 
Very Low 

6875 682346250 18.94 11 0.62 1 

 Low 34375 658375000 18.28 55 3.11 4 

 Moderate 75625 619031875 17.19 122 6.89 9 
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 High 159375 749470625 20.81 264 14.92 17 

 Very high 712500 892657500 24.78 1318 74.46 69 

RF-9 

Features 
Very Low 

7500 735246875 20.41 12 0.68 1 

 Low 30000 632679375 17.57 48 2.71 4 

 Moderate 75000 581844375 16.15 120 6.78 10 

 High 147500 692276250 19.22 245 13.84 17 

 Very High 729375 959834375 26.65 1345 75.99 68 

        

XG-Boost-

14 Features 
Very Low 

11250 1076978750 29.90 18 1.02 1 

 Low 6875 330045625 9.16 11 0.62 3 

 Moderate 11875 278243750 7.72 19 1.07 5 

 High 11250 352568125 9.79 18 1.02 4 

 Very High 947500 1564045000 43.42 1704 96.27 87 

        

 Very Low 12500 1094226250 30.38 20 1.13 1 

 Low 7500 297782500 8.27 12 0.68 3 

XG-Boost-

10 Features 
Moderate 

8125 242914375 6.74 13 0.73 4 

 High 15625 314181875 8.72 25 1.41 7 

 Very High 945000 1652776250 45.89 1700 96.05 84 

 432 

6. Discussion 433 

Landslides are very dynamic in nature, meaning that their behaviour, movement, and spatial 434 

distribution changes over space and time. Therefore, it is important to analyse the significance 435 

of the conditioning factors that lead to landslide occurrences. The relevance of the conditioning 436 

features for LSM is essential to realize which of the features had the biggest impact on the 437 

prediction of landslide occurrences. As not all conditioning factor maps be available globally, 438 
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or sometimes even locally, due to reasons such as non-compliance in sharing data, data 439 

unavailability, erroneous data structure, and others, it can be worthwhile to understand which 440 

of the available conditioning factors play an important role in LSM. For example, topographical 441 

features derived from digital elevation models such as Elevation, Slope, aspect, Plan curvature, 442 

Profile curvature, TWI, TPI, TRI are available almost globally because of missions such as the 443 

Shuttle Radar Topography Mission (SRTM). Other features, such as distance to roads and 444 

drainage networks, that might have direct or indirect influence on the occurrence of landslides, 445 

can also be easily accessed through numerous open-source platforms. However, conditioning 446 

factor maps of rainfall data derived from rain gauge stations are not easily accessible and 447 

available. In this study, we used fourteen features for landslide susceptibility assessment and 448 

carried out the feature importance of the conditioning factors for traditional statistical ensemble 449 

model of FR-EBF and machine learning models of RF and XG-Boost. The feature selection 450 

approach from statistical model is dependent upon the landslide data and its relation to each 451 

feature and their classes. On the other hand, feature selection for machine learning models 452 

depends upon the landslide and non-landslide samples that are used to train the models. We 453 

used the in-built impurity feature importance algorithm to assess the importance of the features 454 

during the model training phases. Based on literature review for this sort of study, there is no 455 

standard threshold values available for discarding or selection of features for LSM. In this 456 

study, we used a trial-and-error approach to determine a threshold of 0.30 for the selection of 457 

conditioning factors used for landslide susceptibility for all the three models.  458 

Feature importance algorithms used in this study are different, however there is similarity in 459 

the importance of the features in both statistical and machine learning algorithms (See figure 6 460 

and 10). As we look at the figures 7, 8, and 9 in the enlarged region, we observe that there are 461 

not many differences despite removing the least important features. The reason for such 462 

observation can be linked to the lower impact of least important factors on overall LSM results. 463 
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Furthermore, there are several factors that determine the importance of features for carrying 464 

out LSM such as (1) completeness and quality of the landslide inventory dataset used for 465 

analysis, (2) mapping scale of the features maps like landcover, lithology, or other geological 466 

features. If the spatial locations of landslides in an inventory does not represent the ground 467 

truth phenomenon, then there can be negative impact of landslide input data for feature 468 

selection. Sampling methodology of  landslide selection is important, there are various ways to 469 

use landslides in carrying out susceptibility assessment, many studies have used 70-30 ratio 470 

and others have used random sampling or K-fold sampling methods (Merghadi et al., 471 

2018;Chen et al., 2018). One of the most important observations from this study was the 472 

reclusion of the "least important factors" in the context of LSM. The fact that despite removal 473 

of certain conditioning factors, we still get very good results or comparable results after 474 

removing them, this observation explains employing the important conditioning factors are 475 

enough for LSM.  476 

The use of landslide samples along with non-landslide samples can affect the landslide feature 477 

importance as can be seen in results in this study. In the case of the statistical model, one of the 478 

reasons for the lower AUC performance can be accredited to the absence of the non-landslide 479 

samples. As the model was trained without non-landslide samples and simply trained with only 480 

landslide samples, the model's ability to discriminate between the non-landslide and landslide 481 

pixels is affected therefore, predicting landslide occurrences over non-landslide locations. 482 

Because of this reason, the statistical model exhibited homogeneous distribution of predicted 483 

landslide pixels (see figure 7). We used landslides and non-landslide samples for training the 484 

ML models which shows varying results from that of the statistical ensemble model (See figure 485 

8 and 9). There is more homogeneous distribution of landslide susceptibility classes in 486 

statistical model results, but it is evident from the machine learning results that the non-487 

landslide samples have a greater impact on final landslide susceptibility results.  488 
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 489 

7. Conclusions 490 

In the current state-of-the-art approaches for LSM, the contemporary literature lays emphasis 491 

on different models for improving accuracy of landslide susceptibility against the test data. 492 

However, this study investigated how the conditioning factors affect the overall prediction of 493 

landslides in the context of northeast Italy, Belluno province. An important aspect of this study 494 

was to identify if at all, removing the “least important” conditioning factors in the modelling 495 

process affects the performance in predicting new unknown landslides.   496 

As understood, ML models require conditioning factors as input for LSM, however, investing 497 

on the importance of the features (conditioning factors) could possibly provide a better 498 

understanding of landslide occurrences with respect to the available conditioning factor maps 499 

for LSM. This study indicates that various models behave differently with different features, 500 

whereby the same features that are important in one instance of a particular model, can be the 501 

least important in other models. Therefore, this study gives new insights towards the use of 502 

already available conditioning factor maps, without exhausting resources for generating other 503 

conditioning factor maps that might not be available.   504 

In this study we also concluded that the landslides and non-landslides samples impacts the 505 

feature importance, especially in the ML models, and in contrast, the statistical model used 506 

only landslide samples. Therefore, it was found to be crucial in asserting a balance between the 507 

two data samples to avoid overfitting or underfitting. This study illustrates that feature selection 508 

is very important step of carrying out LSMs. We found that there are differences in the final 509 

LSMs derived from the statistical and ML models, which are attributed to the above-mentioned 510 

sample selection techniques.  511 

This research introduces the importance of post-training feature importance algorithms for 512 

LSM. This approach can also be used to assess the susceptibility of other natural disasters. The 513 
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results can eventually comment whether certain conditioning factors can be discarded while 514 

modelling landslide occurrences. In many parts of the globe, the availability of data is scarce 515 

and therefore, with the ability to model landslides without relying on the conventional factors, 516 

we can still predict landslides spatially over a given region. Although there are certain 517 

drawbacks like (1) the same factor maps will not be available everywhere, (2) factors that are 518 

least important in one region might not repeat the same behaviour in other regions of the world, 519 

and (3) model capability changes with respect to different regions, the resulting susceptibility 520 

maps can still give quality information for local emergency relief measures, planning of disaster 521 

risk reduction, mitigation, and to evaluate potentially affected areas. 522 
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