
https://doi.org/10.5194/nhess-2021-

299 Preprint. Discussion started: 18 

November 2021  c Author(s) 2021. CC 

BY 4.0 License. 

1  

  

 

Assessing the importance of feature selection in Landslide Susceptibility for Belluno province 

(Veneto Region, NE Italy)  

  

Sansar Raj Meena1,2 *, Silvia Puliero1, Kushanav Bhuyan1,2, Mario Floris1, Filippo Catani1  

  

1 Department of Geosciences, University of Padova, Padova, Italy.  

2 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente,  

Enschede, Netherlands.  

  

* Corresponding author Email: sansarraj.meena@unipd.it  

  

Abstract  

  

In the domain of landslide risk science, landslide susceptibility mapping (LSM) is very important as it helps spatially 

identify potential landslide-prone regions. This study used a statistical ensemble model (Frequency Ratio and Evidence 

Belief Function) and two machine learning (ML) models (Random Forest and XG-Boost) for LSM in the Belluno 

province (Veneto Region, NE Italy). The study investigated the importance of the conditioning factors in predicting 

landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors 

(features) in the overall prediction capabilities of the statistical and ML algorithms. By the trial-and-error method, we 

eliminated the least "important" features by using a common threshold. Conclusively, we found that removing the least 

"important" features does not impact the overall accuracy of the LSM for all three models. Based on the results of our 

study, the most commonly available features, for example, the topographic features, contributes to comparable results 

after removing the least "important" ones. This confirms that the requirement for the important factor maps can be 

assessed based on the physiography of the region. Based on the analysis of the three models, it was observed that most 

commonly available feature data can be useful for carrying out LSM at regional scale, eliminating the least available 

ones in most of the use cases due to data scarcity. Identifying LSMs at regional scale has implications for understanding 

landslide phenomena in the region and post-event relief measures, planning disaster risk reduction, mitigation, and 

evaluating potentially affected areas.   
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1. Introduction  

Landslides are one of the most frequently occurring natural disasters that cause significant human casualties and 

infrastructure destruction. Landslides are triggered by several natural and man-made triggering events such as 

earthquakes, volcanic eruptions, heavy rains, extreme winds, and unsustainable construction activities such as informal 

settlement development and cutting of roads along the slopes (Glade et al., 2006; van Westen et al., 2008). Extreme 

meteorological events such as the Vaia storm of 2018 triggered landslides and debris flow, destroyed critical 

infrastructures in the northern parts of Italy (Boretto et al., 2021). As reported by (Gariano et al., (2021), in the last 50 

years between 1969-2018, landslides posed a severe threat to the Italian population. Approximately, 1500 out of the 

8100 municipalities in Italy have faced landslides with severe fatalities. Between the years of 1990 and 1999, 263 people 

were killed by landslides. Studies by (Rossi et al., (2019) estimated that approximately 2500 people were killed between 

1945-1990. Moreover, predictive modelling of the Italian population at risk to landslides (Rossi et al., 2019) shows 

massive tendency of risk to the population with data acquired between 1861-2015, emphasizing the necessity of 

landslide risk studies.   

Therefore, to assess landslide risk and plan for suitable risk mitigation measures, it is crucial to realize the significance 

of landslide studies, particularly landslide susceptibility mapping (LSM). LSM is anmay provide an essential tool that 

incorporates the potential landslide locations (Senouci et al., 2021). The probability of a landslide occurring in a 

particular region owing to the effects of several causative factors is referred to as landslide susceptibility. LSM is an 

essential step towards landslide risk management and helps in effective mapping of the spatial distribution of probable 

landslide manifestations (Dai et al., 2002). In the past, researchers have used a range of models to assess landslide 

susceptibility using technologies such as Earth Observation (EO) and Geographic Information Systems (GIS). The 

extraction recognition and analysis of slope movements have been going on since the early 1970s (Brabb et al., 1972) 

and is still one of the most important tools component to perform LSM (Castellanos Abella and Van Westen, 2008; 

Catani et al., 2013; Chacón et al., 2006; Ercanoglu and Gokceoglu, 2002; Floris et al., 2011; Guzzetti et al., 2006; Liu 

et al., 2021; Pham et al., 2015; Reichenbach et al., 2018; Youssef and Pourghasemi, 2021).   

Traditional methods such as the expert-based Analytical Hierarchy Process (AHP), multivariate statistics, data-driven 

Frequency Ratio (FR) have been employed for landslide susceptibility for many years, with satisfactory results 

(Castellanos Abella and Van Westen, 2008; Komac, 2006; Pradhan, 2010). Examples of such approaches is given in the 

study area, by Floris et al. (2011) which combined traditional LSM methods with an updated online landslide database  
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in the Veneto Region, Italy, where they used online spatial data from Italian portals for mapping landslide susceptibility 

at medium and large scales. Afterwards, with the development of new approaches, susceptibility modelling has 

advanced from traditional approaches. Presently, two approaches: (1) statistical and (2) machine learning, are practised 

for LSM at investigating the landslide predisposing factors and to map the geographical distribution of landslide 

processes. Reichenbach et al., (2018) classified landslide susceptibility models into six main groups: (1) classical 

statistics, (2) index-based, (3) machine learning, (4) multi-criteria analysis, (5) neural networks, and (6) others. Research 

by (Reichenbach et al., (2018) also depicted that before 1995, only five models were used for LSM, but in recent times, 

an investigation of 19 other models was carried out, which yielded good results. More than 50 per cent of the methods 

consisting of the first five models mentioned above accounted for landslide susceptibility studies. Recent work of 

(Stanley et al., (2021) emphasized the importance of data-driven methods in global LSM, trained to report landslide 

spatial occurrences between the periods of 2015-2018. The first version of the Landslide Hazard Assessment for 

Situational Awareness (LHASA) from their work for NASA, reported landslide occurrences with a decision tree model 

that first defines the intensity of one week of rainfall. LHASA version 2 used the data-driven model of XG-Boost by 

adding two dynamically varying factors: snow and soil moisture. However, despite advances in LSM, the advent of 

feature importance or the importance of the causative factors in the prediction capability of a model is not discussed 

enough. The need of increasing our control over the model sensitivity to system parameters changes, including those 

induced by anthropogenic and climate-change dynamics, is becoming a key factor in the implementation of truly 

efficient LSM for risk mitigation purposes. The VAIA windstorm of 2018, as a typical extreme weather event, may 

easily escape traditional statistical prediction schemes and represent, therefore, a challenging test for exploring the 

sensitivity of the various LSM models to changing factors and conditions.  

One goal of this research is to look into the relative changes in LSM accuracy when the least "important" conditioning 

factors are removed. Feature selection in LSM is an approach in reducing landslide conditioning features to improve 

model performance and reduce computational costs. The purpose of this approach is to find the optimal set of 

conditioning features factors that will provide the best fit for the model to yield higher accuracy as predictions. 

Micheletti et al., (2014) emphasized the importance of feature selection in LSM and discussed the use of Machine 

Learning (ML) models such as Support Vector Machine (SVM), Random Forest (RF), and AdaBoost for LSM, as well 

as the significance of associated features within the confluence of the ML models for feature importance. However, 

their study did not consider geological and meteorological features like lithology, land use, and rainfall intensity for 
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both LSM and feature selection. Studies by Liu et al., (2021) depicted the 

improvement in the predictive capability of the so-called Feature Selected Machine Learning (FS-ML) model but also 

remarked on the fact that the same features may contribute differently in different ML models. In this study, we wanted 

to investigate post-prediction feature selection approach to improve LSM accuracy in contrast to what has been done in 

literature like Liu et al., (2021), where they perform pre-prediction feature importance using approaches like multi-

collinearity analysis, variance inflation factor. The identification of the most crucial relevant features can help in 

monitoring the effect of extreme events (such as Vaia) on the increase of landslide hazard. This has implications for 

observation of the influence of extreme events on crucial factors in comprehending the changes in the evolution of 

hazard can be evaluated.   

We present a study in the province of Belluno, northern Italy, with the comparison of feature or factor importance of 

statistical and ML models for LSM before the Vaia storm event. The results from the LSM will be then validated using 

the IFFI landslide inventory data for testing the various models' prediction capability with/without certain factors. We 

also investigate whether many of the latter features are crucial for LSM. As in many regions over the world, the same 

data or factor maps might not be available.   

  

2. Study area and Data  

2.1 Study area   

 

The area of the Belluno Province (Veneto Region, NE Italy) is part of the tectonic unit of the Southern Alps. The territory 

is 3,672 km² wide, stretching from north to south between the Dolomite Alps and the Venetian Pre-Alps, with elevations 

ranging from 42 to 3325 m above mean sea level. From a geological point of view, Dolomite Alps comprises the 

Hercynian crystalline basement consisting of micaschists and phyllites intruded by the Permian ignimbrites (Doglioni, 

1990; Schönborn, 1999). These Paleozoic units are mainly outcropping in the NE and central-West sectors. The Middle-

Upper Triassic includes carbonate, volcanic and dolomitic formations. In particular, the Upper Triassic Main Dolomite 

covers 14% of the whole province. Jurassic-Cretaceous limestone and marls are especially located between the 

Valsugana and Belluno thrusts (Sauro et al., 2013). Moreover, in the Belluno valley and in the southern part of the area, 

Cenozoic sediments, i.e., flysch and molasse and Quaternary glacial, alluvial and colluvial deposits are largely present. 

Instead, Venetian Prealps are characterized by Jurassic-Cretaceous sedimentary cover, such as layered limestones and 

dolomites with cherts (Compagnoni et al., 2005; Corò et al., 2015). Because of its morphological characteristics, the 

study area is affected by slope instability, which overlay an area of 165 km² corresponding to 6% of the province  
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(Baglioni et al., 2006). Most of the landslides phenomena are located in the NW (Upper basin of Cordevole River) and 

SE (Alpago district) sectors of the province (Figure 1). The dominant landslide types are slides (47%), rapid flows 

(20%), slow flows (12%), and shallow soil slips (7%) (Iadanza et al., 2021). The climate of the province of Belluno is 

continental. The mean annual temperature recorded in the period 1961–1990 is 7°C and the mean precipitation is 1284 

mm/year (Desiato et al., 2005) with two peaks distributed in spring and autumn. In the last 27 years, temperature and 

rainfall intensity in the study area have increased due to climatic changes leading to more frequent meteorological 

conditions (ARPAV (- Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto).   

  

2.2 Landslide inventory data   

The inventory of landslide phenomena in Italy (IFFI) conducted by the Italian Institute for Environmental Protection 

and Research (ISPRA) and the Regions and Autonomous Provinces was used in this study (Trigila et al., 2010). The 

IFFI Project was financed in 1997. Since 2005, the catalogue is available online and consists of point features indicating 

the scarp of the landslides and polygon features delineating the instabilities. The archive stores the main attributes of 

the landslides, such as morphometry, type of movement, rate, involved material, induced damages and mitigation 

measures. The inventory currently holds 620,808 landslides collected from historical documents, field surveys and aerial 

photointerpretation, covering an area of 23,700 km2, which corresponds to the 7.9% of the Italian territory (Trigila and 

Iadanza, 2018). In the Belluno province, the IFFI inventory consists of 5934 points of landslides occurred before 2006 

(Baglioni et al., 2006).   
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Figure 1: Location of the study area and landslides (yellow points) collected by IFFI (Inventory of Landslide 

Phenomena in Italy) project.  

  

2.3 Landslide conditioning factors   

Based on the regional environmental characteristics of the study area and the scientific literature, fourteen landslide 

conditioning factors were selected, including: (i) topographical factors such as elevation, slope angle, slope aspect, 

topographical wetness index (TWI), topographical position index (TPI), topographical roughness index (TRI), profile 

curvature, and plan curvature; (ii) hydrological factors (i.e., distance to drainage, precipitation); geological factors 

(lithology); (iii) anthropogenic factors (distance to roads); and (iv) environmental factors like Normalized Difference 

Vegetation Index (NDVI) and landcover (see figure 2). A freely accessible digital elevation model (DEM) with a spatial 

resolution of 25 metres was downloaded from the Veneto Region cartographic portal (https://idt2.regione.veneto.it), 

and was used to derive the topographical layers. Refer to table 1 for a detailed description of the conditioning factors. 

Land cover, lithology maps, road network and drainage maps were downloaded from the same portal. Rainfall data was  
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downloaded from the Regional Agency for the Environmental Prevention and Protection of Veneto (ARPAV: 

https://www.arpa.veneto.it/ ) web site.    

 Table 1: Description of the conditioning factors for landslide occurrences.   

Sl No.  Conditioning 

Factor  

Data Range  Description/Justification  

1  Elevation  42 m to 3325 

m  

The geomorphological and geological processes 

are affected by elevation (Raja et al., 2017). It has 

an impact on topographic characteristics, which 

contribute to spatial differences in many landform 

processes, as well as the distribution of 

vegetation.  

2  Slope  Flat areas to 

very high 

slopes till  

86.48°  

Slope is a derivative of the DEM which can cause 

failure of slope (Pham et al., 2018). Landforms 

having a higher angle of slope are usually more 

susceptible to collapse, which is closely  

correlated to landslides.  

 

3  Aspect  North (0 

degrees) to  

North (360 

degrees)  

Aspect has a correlation with other geo-

environmental factors is a crucial factor for LSM 

that describes the slope direction (Dahal et al., 

2008).  The slope direction to a degree dictates the 

frequency of landslides.    

4  Topographic 

wetness index  

-2.12 to 20.06  The influence of topography on the location and 

amount of saturated runoff source areas is an 

essential conditioning factor (Pourghasemi et al., 

2012).  TWI  measures  the 

 amount  of accumulated water and 

distribution of soil moisture at a location. Higher 

TWI values can relate to higher chances of 

landslide occurrence.   

5  Topographic 

Position Index  

-1143.68 to 

243.84  

The topographic position index (TPI) shows the 

difference between the elevation of a point and its 

surrounding defined by a specified radius. Lower 

values represents the plausibility of features lower 

than the surrounding, thus possibly relating to 

higher odds of landslide occurrence.   
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6  Topographic 

Roughness Index  

0 to 1077.30  Topographic Roughness Index (TRI) calculates 

the difference in elevation between adjacent 

pixels in a DEM which depicts the terrain 

fluctuation (Riley et al., 1999).  As the slope of a 

landscape moves, the TRI decreases, relating to 

slope movement.   

 

7  Profile Curvature  Concave Flat 

Convex  

The driving and resisting forces within a landslide 

in the slope direction are affected by profile 

curvature.  

8  Plan Curvature  Concave Flat 

Convex   

 The  direction  of  landslide  movement  is 

controlled by the plan curvature, which regulates 

the convergence or divergence of landslide 

material (Dury, 1972; Meten et al., 2015).  

9  Drainage  0 to 400  Drainage transports water, which induces 

material saturation, culminating in landslides in 

valleys. (Shahabi and Hashim, 2015).   

10  Rainfall  84 to 1198.05 

(mm/month)  

Precipitation characteristics shift by climatic 

conditions and geographical characteristics, 

resulting in significant temporal and geographical 

variations in rainfall quantity and intensity. This 

can lead to the triggering of landslides across large 

areas but also for specific smaller areas.  

11  Lithology  Volcanites, 

Pre-Permian, 

metamorphic, 

sequence 

Morainic, 

Gravels, etc.  

The geological strength indices, failure 

susceptibility, and permeability of lithological 

units differ (Yalcin and Bulut 2006), where 

changes in the stress-strain behaviour of the rock 

strata can be caused by lithological unit variation. 

Slope failure typically occurs on a slope with low 

strength and permeability.  

12  Distance to 

Roads  

0 to 200  A crucial manmade element impacting the 

occurrence of landslides is roads because of road 

clear-cutting and construction activities (Dunning 

et al., 2009).  

13  Landcover  Rock, Forest, 

Urban cover 

etc.   

Land cover can be utilized to describe the region's 

vastly dismembered zones and the likelihood of 

landslide activities.  

14  NDVI  -0.66 to 0.66  NDVI is important in realizing the amount of 

vegetation cover which can be interpreted to 

understand the strength of the slope and the 

landslide occurrences. The NDVI reflects the 

inhibitory effect of landslide occurrence (Huang 

et al., 2020).    
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Figure 2: Maps of the conditioning factors used in this study: (A) Elevation, (B) Slope, (C) Aspect, (D) Topographical 

wetness index, (E) Topographical position index, (F) Topographical roughness index, (G) Profile curvature, (H) Plane 

curvature, (I) Distance to drainage networks, (J) Rainfall monthly average (1994-2020) mm, (K) Lithology, (L) Distance 

to road network (M) Landcover, (N) NDVI  

  

3. Methodology  

We propose an approach that helps understand the intrinsic relationship between the features and the output post-

prediction, which can be then refined by removing the less "important" features throughout the statistical and ML 

models. As stated previously, the study attempts the application of sensitivity analysis to understand relative feature 

importance as a preliminary step towards the modelling of a space-time changing parameter in LSM methods. The 

apparent reality is not as simple as using a certain model that gives the highest LSM accuracy and using said derived 

outputs maps for disaster risk management and mitigation measures. Therefore, It is important to test the effects of the 

features and it’s relative importance in LSM. The successive sub-sections address the definitions of the statistical and 

ML models for LSM.   

3.1 Statistical approach  

3.1.1 Ensemble Frequency Ratio - Evidence Belief Function  

In landslide susceptibility studies, the frequency ratio (FR) model is often applied. This is a straightforward evaluation 

tool method which calculates the likelihood of landslide occurrence and non-occurrence for each conditioning factor.  
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(Lee, 2013; Mondal and Maiti, 2013; Shahabi et al., 2014). For each landslide, the FR is a probabilistic model based on 

observed correlations between landslide distribution and related parameters (Lea Tien Tay 2014). The model depicts 

the relationship between spatial locations and the factors that determine the occurrence of landslides in a specific area. 

Spatial phenomenon and factor classes correlation can be found through FR and is very helpful for geospatial analysis 

(Mahalingam et al. 2016; Meena et al. 2019b). Figure 3 gives an overview of the methodology employed in this study.   

The proportion of landslide inventory points for all classes within each factor can be used to compute FR weights. The 

area ratio for each of the factor classes in relation to the total area of the study region was calculated by overlapping the 

landslide inventory points with the conditioning factors. The FR weights are calculated by dividing the landslide 

occurrence ratio in a class by the entire area in that class (Demir et al. 2012).   
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Figure 3: Overview of the conceptual workflow of methodology for landslide susceptibility assessment.  

Using the equation, the landslide susceptibility index (LSI) was computed by summing the values of each factor ratio 

(Lee, 2013):  

LSI =∑ FR  (Eq.2)  
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LSI= (DEM)+(slope)+(aspect)+(Topographic Wetness Index)+(Topographic Roughness Index)+(Topographic Position 

Index)+(Distance to road)+(Distance to drainage)+(Land Cover)+(Lithology)+(NDVI)+(Rainfall)+(Profile 

Curvature)+(Plain Curvature)  

 

Where the landslide susceptibility index is the LSI, and the frequency ratio of each factor type is the FR. An FR value 

of 1 in the relationship analysis implies that the density of landslides in a specific class is proportionate to the size of 

the class in the map; an LSI value of 1 is an average value. Higher LSI values suggest a stronger correlation, whereas 

lower LSI values imply a weaker correlation. In a nutshell, a greater LSI value represents higher landslide susceptibility 

and the vice-versa. We integrated the LSI results with evidence belief functions (EBF) derived predictor values. The 

EBF uses the conditioning factors defined by FR as the input data. Eq. (3) was applied to the rating of every spatial 

factor with the training dataset.  

 

where SA is the indicator of spatial association (Bel) between spatial variables and landslides and PR is the prediction 

rate. The lowest absolute difference of all variables is divided by the computed absolute difference between the 

maximum and least SA values (Table 2). The eigenvectors of the matrix were calculated by normalising each column's 

pairwise result. The eigenvalue was calculated by dividing each pairwise importance rate in a column by the total of the 

pairwise importance rates in that column. The fractional predictor is obtained by averaging the eigenvectors across a 

row of matrices. Pairwise comparison of the PR values of the slope failure predictors yielded the pairwise rating matrix 

of the predictor rating.  

3.2 Machine learning models  

3.2.1 Random Forest model  

Random Forest (RF) is based on the fundamental concept of the "wisdom of crowds" where multiple decision trees, 

introduced by (Breiman, 2001), has been utilized in a number of remote sensing research for a variety of 

applications.(Melville et al., 2018). RF creates many deep  

decision trees using the training data and it can overcome the overfitting problem mostly resulting from complex datasets 

better than other decision trees. Each RF decision tree gives a prediction, which is then weighted according to the value 

created from votes from each tree (see figure 4). Since the RF has shown an impressive performance for classification 

purposes, it is regarded as one of the most efficient non-parametric ensembles models (Chen et al., 2017).  
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Figure 4: Conceptual diagram of the Random Forest model.  

3.2.2 XG-Boost model  

 

Extreme gradient boosting or commonly known as the XG-Boost ML model is an optimized gradient boosting algorithm 

that is designed for optimum speed and performance and boosting ensembles are used to generate a prediction model. 

(Sahin, 2020). The core idea of a boosting algorithm is to combine the weaker learners to improve accuracy (Can et al., 

2021). The model is known for its fast-training speed for classification tasks. In the study, we use training parameters 

to adjust the XG-Boost algorithm like learning rate, subsample ratio, maximum depth of the tree and others. It uses 

boosting techniques to reduce overfitting problems to improve accuracy results (figure 5).    

 

 

Figure 5: Training and testing procedure of the XG-Boost model.  
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3.3 Feature selection algorithms  

The goal of feature selection is to aid in the discovery of acceptable conditions for training the models and to increase 

generalisability in landslide prediction. This selection help eliminates the irrelevant (less important) conditioning factors 

to obtain optimal prediction accuracy (Micheletti et al., 2014). For the statistical model, we used class weights obtained 

from frequency ratio and used them as input for generating predictor rate from FR-EBF model which gives the final 

weights of the conditioning factors. So, we used the predictor rate weights to select the suitable features.  

In terms of the feature importance for selecting the right set of features (or factors in this case) for both RF and XG-

Boost, we use the in-built impurity feature importance algorithm which is performed on the training set. Based on the 

results as ranks of features sorted in a descending order, the most important features will be selected to investigate the 

improvement of model performance in terms of the accuracy obtained. Thus, we can comment on whether certain factors 

are impactful in performing LSM with ML models. Besides, the comparison of the resulting important features of the 

different models can be interpreted to highlight the respective strengths of the models and allow drawing better 

conclusions towards the robustness of the relevant features for landslide predictions.   

  

4. Results  

4.1 Statistical model   

The class weights were derived from data driven FR model and the final weights of the factors were derived by using 

predictor rate from evidence belief function given in Table 2. The class and factor weights were calculated using 

equations 1 and 2. The final weights of landslide conditioning factors were calculated using an ensemble of FR-EBF, 

and then utilised to create the final LSM. Because there is no common approach for identifying landslide susceptibility 

classes in the final LSM, we normalised the findings to 0 to 100 for uniformity and comparability. Using a quantile 

classification, which separates the values into groups with an equal number of values, the resultant LSM was classified 

into five classes: very low, low, moderate, high, and very high, as shown in figure 7. (Chung and Fabbri, 2003). This 

method of classification gives a better distribution of values in each class than common approaches such as natural 

breaks, which can result in certain classes having limited or excessive data. In terms of the feature importance that we 

observe in figure 6 and Table 2 (normalized weights), based on the trial-and-error approach, factors (or features) under 

the threshold of 0.3 were discarded as they did not make much of a difference in terms of predicting landslide 

occurrences in the study area. Therefore, five conditioning factors having coefficient values lower than 0.30 were  
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dropped and overall, the area under the curve (AUC) accuracy still remained similar to the original accuracy with the 

14 factors.   

 
Figure 6: Feature importance of the statistical model  

 

 Table 2: Frequency ratio values for spatial factors class weighting and EBF coefficients for predictor rates (PR) 

based on degrees of spatial associations.  

   

 Factors and  Bel  Min  Max  [Max-Min]  Predictor  FR Weights  Normalized  

 classes  Rate  weights   

 
 Elevation    0.07  0.24  0.17  0.73      

 <430  0.07          0.50  0.06  

430 - 700  0.15          1.13  0.20  

700 - 1000  0.13          0.96  0.19  

1000 - 1500  0.12          0.86  0.15  

1500 - 1900  0.11          0.81  0.12  

1900 - 2300  0.24          1.72  0.17  

>2300  0.18          1.31  0.12  

Profile 

Curvature  
  0.00  0.53  0.53  2.30      

Concave   0.53          1.05  0.40  

Flat   0.00          0.00  0.30  

Convex   0.47          0.95  0.30  

Plan 

Curvature  
  0.00  0.52  0.52  2.26      
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Concave   0.52          1.03  0.35  

Flat  0.00          0.00  0.33  

Convex   0.48          0.97  0.32  

Slope    0.14  0.25  0.11  0.48      

<10  0.14          0.70  0.14  

10 - 20  0.23          1.11  0.22  

20 - 30  0.25          1.25  0.27  

30 - 40  0.20          0.99  0.20  

>40  0.17          0.86  0.17  

 Distance from    0.02  0.36  0.34  1.49      

drainage  

 0 - 100  0.36          1.15  0.28  

 100 - 200  0.30          0.97  0.19  

 200 - 300  0.23          0.74  0.12  

 300 - 400  0.10          0.31  0.07  

 >400  0.02          0.06  0.34  

Distance from 

roads  
  0.08  0.24  0.15  0.67      

0 - 50  0.36          1.15  0.27  

50 - 100  0.30          0.97  0.19  

100 - 150  0.23          0.74  0.17  

150 - 200  0.10          0.31  0.16  

>200  0.02          0.06  0.13  

Landcover    0.01  0.24  0.23  2.98      

Urban  0.17          1.48  0.17  

Rocks  0.10          0.90  0.09  

Arable  0.01          0.07  0.01  

Permanent 

cultivation  

0.10          0.92  0.13  

Forest  0.11          0.95  0.11  

Grassland  0.24          2.11  0.14  
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Shrubland  0.04          0.37  0.04  

Sparse 

vegetation  

0.12          1.08  0.21  

Water body  0.12          1.05  0.09  

TWI    0.17  0.25  0.08  1.00      

-2.12 - 1.52  0.19          1.01  0.20  

1.52 - 3.35  0.20          1.04  0.20  

3.35 - 5.70  0.18          0.92  0.18  

5.70 - 9.62  0.17          0.90  0.18  

9.62 - 20.06  0.25          1.30  0.24  

 TPI    0.00  0.31  0.31  1.35      

 -1143.68 - - 0.00          0.00  0.00  

202.34  

 -202.34 - - 0.18          0.74  0.21  

17.33  

 
-17.33 - -1.01  0.26          1.06  0.27  

-1.01 - 20.75  0.24          0.98  0.26  

20.75 - 243.84  0.31          1.24  0.27  

TRI    0.00  0.34  0.34  1.47      

0 - 4.22  0.22          0.73  0.23  

4.22 - 21.1  0.34          1.11  0.35  

21.12 - 46.47  0.25          0.82  0.22  

46.47 - 257.70  0.20          0.65  0.20  

257.70 -  

1077.30  

0.00          0.00  0.00  

Rainfall 

intensity  
  0.00  0.81  0.81  3.54      

84 - 110.83  0.81          11.29  0.32  

110.83 -  

127.38  

0.08          1.15  0.27  
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127.38 -  

140.80  

0.05          0.70  0.15  

140.80 -  

157.35  

0.06          0.81  0.19  

157.35 -  

198.05  

0.00          0.00  0.06  

NDVI    0.14  0.25  0.11  0.48      

-0.66 - 0.15  0.14          0.70  0.13  

0.15 - 0.34  0.22          1.13  0.21  

0.34 - 0.52  0.25          1.26  0.25  

0.52 - 0.66  0.21          1.07  0.21  

0.66 - 0.99  0.18          0.89  0.20  

 Aspect    0.05  0.15  0.09  0.41      

 Flat (-1)  0.11          1.02  0.10  

 North (0-22.5)  0.08          0.75  0.07  

 Northeast  0.09          0.84  0.09  

(22.5-67.5)  

 East (67.5- 0.11          1.08  0.11  

112.5)  

 Southeast  0.14          1.31  0.14  

(112.5-157.5)  

 South (157.5- 0.15          1.40  0.14  

202.5)  

 Southwest  0.14          1.33  0.14  

(202.5-247.5)  

 West (247.5- 0.08          0.76  0.09  

292.5)  

 Northwest  0.05          0.50  0.07  

(292.5-337.5)  

 North (337.5- 0.06          0.58  0.06  

360)  
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 Lithology    0.04  0.26  0.22  2.84 

     

 Volcanites  0.26          3.45  0.16  

 Pre-Permian  0.11          1.50  0.11  

metamorphic sequence  

 Morainic  0.06          0.85  0.15  

 Gravels  0.04          0.52  0.04  

 Mix of alluvial  0.05          0.70  0.03  

deposits  

 Conglomerate 0.21          2.84  0.21  

s  

 Limestone and  0.13          1.76  0.16  

dolomitic limestone  

 Calcareous  0.08          1.04  0.08  

shales  

 Shales and  0.06          0.76  0.07  

gypsums  

 Alternation of  0.07          0.91  0.06  

marls and sandstones  

 Water body  0.22          2.97  0.00  
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Figure 7: Landslide susceptibility maps derived using the ensemble of FR-EBF approaches for (A) 14 landslide 

features and (B) 9 landslide features (Black square represents the  

enlarged area).  

4.2 Machine learning models  

The LSM was generated based on the conditioning factor data, where the model learnt the information from the feature 

maps, which helped identify areas of susceptibility. The final results of the ML models in generating the LSM are given 

in Table 3. We observe that the AUC scores of RF are not much apart from the XG-Boost model, indicating very good  
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prediction capability of both the models. Based on the information in Table 2, the number of pixels in the moderate 

susceptibility class is more in the XG-Boost model than the RF model. Visually the results show more susceptible areas 

near the landslide features (figures 8 and 9).  The model performance in terms of the accuracy of AUC is relatively 

similar to the results after eliminating the lower degree of feature importance for both RF and XG-Boost. As discussed 

previously in section 3.3, the feature importance for the ML models is carried out using the impurity feature importance 

algorithm that enables to assess the relative relevance of the conditioning factors in the optimal prediction of the 

landslides in terms of accuracy. As seen in figure 10, the factors of Landcover, Profile Curvature, Plan Curvature, TWI 

and TPI have the lowest values for the RF model. After trial-and-error, a value of 0.03 was chosen as the threshold, and 

any factors above that were considered the "important" factors for landslide susceptibility. Hence, in figure 8, we see 

that the five factors mentioned above are removed and giving us 0.906 AUC as accuracy, which is better in AUC 

accuracy without removing the five factors (0.902 Table 3).   

Similarly, the same was repeated for the XG-Boost ML model and referring to Table 3, and despite removing the lower 

valued conditioning factors of Profile Curvature, TPI, and Plan Curvature, the AUC accuracy score was similar (Table 

3). We observe that Slope and Distance to Roads had a much bigger impact on the RF mode than the XG-Boost model. 

On the other hand, Lithology played a bigger role in estimating landslide occurrences in the XG-Boost model. These 

observations indicate interesting results which will be discussed further in the discussion section.   

 Table 3: Overall table with AUC results for landslide susceptibility of Belluno.  

No.  Model  AUC   

1  FR-EBF 14 features  0.836  

2  FR-EBF 9 features  0.834  

3  RF 14 features  0.902  

4  RF 9 features  0.906  

5  XG-Boost 14 features  0.910  

6  XG-Boost 10 features  0.907  
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 Figure 8: LSMs derived using the Random Forest approach for (A) 14 landslide features and (B) 9 landslide features 

(Black square represents the enlarged area).  Commentato [r160]: IN the map you show validation 

landslides. These are failures not used to prepare the model? 



https://doi.org/10.5194/nhess-2021-299 Preprint. 

Discussion started: 18 November 2021  c Author(s) 2021. 

CC BY 4.0 License. 

26  

  

 

 Figure 9: LSMs derived using the XG-Boost approach for (A) 14 landslide features and (B) 9 landslide features (Black 

square represents the enlarged area).  
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 Figure 10: Feature importance of the RF and XG-Boost models.  

   

5. Validation  

Validation is crucial in producing quality LSMs for natural hazards where the information presented in the map is 

beneficial for planners (Goetz et al., 2015) A number of validation approaches may be used to assess the quality of the 

LSMs. We compare the landslide inventory data to the resultant maps derived using the ensemble of FR-EBF, machine 

learning RF and XG-Boost models. The efficiency of any model for LSM is calculated by comparing the inventory data 

to the produced maps. This reflects if the models in use can accurately forecast which areas are susceptible to landslides 

(Pourghasemi et al., 2018). The findings from the total landslide input events were validated using 30% of the landslide 

occurrences. Validation for this study was done using the Receiver Operating Characteristics (ROC) and the Relative 

Landslide Density (R-Index) approaches.  

 5.1 Receiver Operating Characteristics (ROC)  

The receiver operating characteristics (ROC) approach was used for this study to corroborate the six resultant LSMs 

from statistical and machine learning using the validation data. The ROC approach demonstrates the assessment between 

the true positive rate (TPR) and the false positive rate (FPR) in the resulting LSMs (Ghorbanzadeh et al., 2018; Linden, 

2006). TPRs are pixels in the landslide validation data that are correctly categorised as high susceptibility, whereas 

FPRs are pixels that are erroneously labeled. TPRs versus FPRs are shown to create ROC curves. The AUC refers to 

the degree to which the generated LSMs are accurate. The AUC indicates whether more correctly labelled pixels were  
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present than incorrectly labelled pixels. Greater AUC values indicate that the susceptibility map is more accurate and 

the viceversa. If the AUC values are near to unity or one, the susceptibility map is meaningful. A map with a value of 

0.5 is considered insignificant since it was created by chance. (Baird, 2013).  

Figure 11 shows the accuracy values obtained using the ROC technique for the statistical approaches of FR-EBF and 

machine learning approaches of RF and XG-Boost. XG-Boost shows the highest accurate results with an AUC value of 

0.91 and RF with 0.906, and FR-EBF with 0.836 (refer to Table 3). These results are quite good as it is closer to unity 

or one. The ensemble of FR-EBF shows lower AUC values than the machine learning-based XG-Boost and Random 

Forest. Machine learning results may vary as the models used landslides and non-landslides features as training data, 

whereas results of FR-EBF are derived only from the landslide data. The results could vary based on the geographical 

location and the selection of landslide conditioning factors as well.   

 

Figure 11. The ROC represents the success rate curves for the statistical based and machine learning models for LSM 

in Belluno province, Italy.  

 

5.2 Relative Landslide Density (R-Index)  

The relative landslide density index was also used to assess the accuracy of the LSMs that resulted (R-index). Equation 

(4) is used to get the R-index:  

R = (ni/Ni)/Σ(ni/Ni)) ×100 (Eq.4)  
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where Ni is the percentage of landslides in each susceptibility class and ni is the percentage of land susceptible to 

landslides in each susceptibility class. Table 4 shows the quantile classification approach to classify the six landslide 

susceptibility maps into five susceptible groupsclasses. In comparison to the RF and FR-EBF models, the XG-Boost 

model with 14 and 10 features has a higher R-index for very high susceptibility classes. The R-index findings show that 

FR EBF has a better R-index value for high susceptibility class than XG-Boost, which has the lowest R-index for high 

susceptibility class. FR-EBF has a higher r-index value for the high susceptibility class than the other three approaches. 

In addition, the R-index of FR-EBF is higher for the very low susceptible class. Table 4 shows the R-index values for 

susceptibility class in FR-EBF, RF, and XG-Boost, as well as plots of the same in figure 12.  

  

Table 4: R-indices for the FR-EBF, RF, and XG-Boost models' landslide susceptibility mappings (LSMs).  

Validation 
methods  

Susceptibility 
class  

Number of 

pixels  
Area (km²)  Area (%) 

(ni)  
Number of 
landslides  

Landslide 

(%) (Ni)  
R- index  

FR-EBF-14  

Features  
Very Low  

21875  334248750  9.28  48  2.71  6  

  Low  90000  570760000  15.85  171  9.66  13  

  Moderate  165000  896709375  24.90  308  17.40  15  

  High  263750  1026578125  28.50  460  25.99  20  

  

  

Very High  

  

444375  

  

773585000  

  

21.48  

  

783  

  

44.24  

  

45  

  

FR-EBF-9  

Features  Very Low  19375  323332500  8.98  38  2.15  5  

  Low  91875  541371875  15.03  179  10.11  15  

  Moderate  153125  894758125  24.84  289  16.33  15  

  High  276875  1041846875  28.93  480  27.12  21  
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  Very High  443750  800571875  22.23  784  44.29  44  

  

RF-14  

              

Features  
Very Low  

6875  682346250  18.94  11  0.62  1  

  Low  34375  658375000  18.28  55  3.11  4  

  Moderate  75625  619031875  17.19  122  6.89  9  

  High  159375  749470625  20.81  264  14.92  17  

  

RF-9  

Very high  712500  892657500  24.78  1318  74.46  69  

Features  
Very Low  

7500  735246875  20.41  12  0.68  1  

  Low  30000  632679375  17.57  48  2.71  4  

  Moderate  75000  581844375  16.15  120  6.78  10  

  High  147500  692276250  19.22  245  13.84  17  

  Very High  729375  959834375  26.65  1345  75.99  68  

  

XG-Boost- 

              

14 Features  
Very Low  

11250  1076978750  29.90  18  1.02  1  

  Low  6875  330045625  9.16  11  0.62  3  

  Moderate  11875  278243750  7.72  19  1.07  5  

  High  11250  352568125  9.79  18  1.02  4  

  Very High  947500  1564045000  43.42  1704  96.27  87  

                

  Very Low  12500  1094226250  30.38  20  1.13  1  

  

XG-Boost- 

Low  7500  297782500  8.27  12  0.68  3  

10 Features  
Moderate  

8125  242914375  6.74  13  0.73  4  

  High  15625  314181875  8.72  25  1.41  7  

  Very High  945000  1652776250  45.89  1700  96.05  84  
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 6. Discussion  

 

Landslides are very dynamic in nature, meaning that their behaviour, movement, and spatial distribution changes over 

space and time. Therefore, it is vital to analyse the significance of the conditioning factors that lead to landslide 

occurrence. The relevance of the conditioning features for LSM is essential to realize which of the features had impact 

on the prediction of landslide occurrences. As not all features can be available globally, or even locally due to various 

restriction or data unavailability, it is essential to choose the important features which could be available for most use 

cases. For example, topographical features derived from digital elevation models such as Elevation, Slope, aspect, Plan 

curvature, Profile curvature, TWI, TPI, TRI. Other features, such as distance to roads and drainage networks, that might 

have direct or indirect influence on the occurrence of landslides, can also be easily accessed through numerous open-

source platforms. In this study we used fourteen features for landslide susceptibility assessment and cariedcarried out 

the feature importance test using traditional statistical ensemble model of FR-EBF and machine learning models RF and 

XG-Boost. The feature selection approach from statistical model is dependent upon the landslide data and its relation to 

each feature and their classes. On the other hand, feature selection and determining their importance using machine 

learning models depends upon the landslide and non-landslide samples used to train the models. We used the in-built 

impurity feature importance algorithm to assess the importance of the features during the model training phases. Based 

on literature review for this sort of study, there is no standard threshold values available for discarding or selection of 

features for LSM. In this study, we used a trial-and-error approach to determine a threshold of 0.30 for selection of 

features used for landslide susceptibility for all the three models.   

Feature importance algorithms used in this study are different, however there is similarity in the importance of the 

features in both statistical and machine learning algorithms (See figure 6 and 10). As we look at the figures 7, 8, and 9 

in the enlarged region, we observe that there are not many differences despite removing the least important features. 

The reason for such observation can be linked to the lower impact of least important factors on overall LSM results. 

Furthermore, there are several factors that determine the importance of features for carrying out LSM such as (1) 

completeness and quality of the landslide inventory dataset used for analysis, (2) mapping scale of the features maps 

like landcover, lithology, or other geological features. If the spatial locations of landslides in an inventory does not 

represent the ground truth phenomenon, then there can be negative impact of landslide input data for feature selection. 

Most importantly, the type of landslide inventory data also impacts the landslide feature selection algorithms, such as 

landslides mapped as points and polygons. Sampling methodology of  landslide selection is important, there are various 

ways to use landslides in carrying out susceptibility assessment, many studies have used 70-30 ratio and others have  
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used random sampling or K-fold sampling methods (Chen et al., 2018; Merghadi et al., 2018). One of the most important 

observations from this study was the reclusion of the "least important features" in the context of LSM. The fact that 

despite removal of certain factors, we still get very good results or comparable results post feature removal. This 

observation annotates the use of very important features for LSM which can be obtained for most of the use cases.  The 

use of landslide samples along with non-landslide samples can affect the landslide feature importance as can be seen in 

results in this study. In the case of the statistical model, one of the reasons for the lower AUC performance can be 

accredited to the absence of the non-landslide samples. Therefore, the model's ability to discriminate between the non-

landslide and landslide pixels is affected hence, predicting landslide occurrences over potentially non-landslide 

locations. Thus, this exhibits the homogeneous distribution of predicted landslide pixels (see figure 7). We used 

landslides and non-landslide samples for training the ML models which shows varying results from that of the statistical 

ensemble model (See figure 8 and 9). There is more homogeneous distribution of landslide susceptibility classes in 

statistical model results, but it is evident from the machine learning results that the non-landslide samples have a greater 

impact on final landslide susceptibility results.   

 7. Conclusions  

In context of the current state-of-the-art approaches for LSM, the contemporary literature lays emphasis on the advent 

of different models for improving accuracy of landslide occurrences against the test data. However, this study 

investigated how the conditioning factors affect the overall prediction of landslides in the context of northeast Italy, 

Belluno province. An important aspect of this study was to identify if at all, removing the “least important” conditioning 

factors in the modelling process affects the performance in predicting new unknown landslides.    

As understood, ML models require conditioning factors as input for LSM, however, investing on the importance of the 

features (conditioning factors) could possibly direct a better understanding of landslide occurrences with respect to the 

available factor/feature maps for LSM. This study indicates that various models behave differently with different 

features, whereby the same features that are important in one instance of a particular model, can be the least important 

(even null-void) in other models. Therefore, this study gave new insights towards the application and use of already 

available maps, without spending/exhausting resources for generating other maps/features that would otherwise not be 

available, thus suggesting a streamlined acquisition of data and modelling of landslide occurrences for future events.    

In this study we also concluded that the landslides and non-landslides samples impacts the feature importance, especially 

in the ML models as these models use inputs in the form of landslides and non-landslides samples. Therefore, it was  
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found to be crucial in asserting a balance between the two data samples to avoid overfitting or underfitting. This study 

illustrates that feature selection is very important step of carrying out LSMs. We found that there are differences in the 

final LSMs derived from the statistical and ML models, which are attributed to the above-mentioned sample selection 

techniques.   

This research introduces the importance of post-training feature importance algorithms for LSM. This approach can also 

be used to assess the susceptibility of other natural disasters. The results can eventually comment whether certain 

conditioning factors can be discarded while modelling landslide occurrences. In many parts of the globe, the availability 

of data is scarce and therefore, with the ability to model landslides without relying on the conventional factors, we can 

still predict landslides spatially over a given region. Although there are certain drawbacks like (1) the same factor maps 

will not be available everywhere, (2) factors that are least important in one region might not repeat the same behaviour 

in other regions of the world, and (3) model capability changes with respect to different regions, the resulting 

susceptibility maps can still give quality information for local emergency relief measures, planning of disaster risk 

reduction, mitigation, and to evaluate potentially affected areas.  
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