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Abstract. Given trends in more frequent and severe natural disaster events, developing effective risk mitigation strategies is 16 

crucial to reduce negative economic impacts, due to the limited budget for rehabilitation. To address this need, this study aims 17 

to develop a strategic framework for natural disaster risk mitigation, highlighting two different strategic implementation 18 

processes (SIPs). SIP-1 is intended to improve the predictability of natural disaster-triggered financial losses using deep 19 

learning. To demonstrate SIP-1, SIP-1 explores deep neural networks (DNNs) that learn storm and flood insurance loss ratios 20 

associated with selected major indicators and then develops an optimal DNN model. SIP-2 underlines the risk mitigation 21 

strategy at the project level, by adopting a cost-benefit analysis method that quantifies the cost effectiveness of disaster 22 

prevention projects. In SIP-2, a case study of disaster risk reservoir projects in South Korea was adopted. The validated result 23 

of SIP-1 confirmed that the predictability of the developed DNN is more accurate and reliable than a traditional parametric 24 

model, while SIP-2 revealed that maintenance projects are economically more beneficial in the long-term as the loss amount 25 

becomes smaller after 8 years, coupled with the investment in the projects. The proposed framework is unique as it provides a 26 

combinational approach to mitigating economic damages caused by natural disasters at both financial loss and project levels. 27 

This study is its first kind and will help practitioners quantify the loss from natural disasters, while allowing them to evaluate 28 

the cost effectiveness of risk reduction projects through a holistic approach. 29 
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1 Introduction 32 

Over the past decades, the frequency and severity of extreme weather events are rapidly increasing due to climate changes. 33 

These events represented by flooding, drought, heavy rain, tropical cyclone, heat waves or cold waves have often caused 34 

various damages in not only short term, but also various long-term effects such as sea level rises and disease spreads. The 35 

negative impact of these event has been warned by the Intergovernmental Panel on Climate Change (The Fifth Assessment 36 

Report, 2014). Nevertheless, across the world, severe weather events such as typhoons, heavy rains and changing patterns of 37 

meteorological disasters have already increased the loss of many lives and built assets. These damages are still expected to be 38 

accelerated in coming future (Kim et al., 2020). 39 

 40 

Given the continuous trend, it is well known that natural disaster-triggered losses have been very closely tied with many 41 

economic losses worldwide. For example, Western European countries such as France, Germany, and Switzerland were hit by 42 

three consecutive tropical cyclones (e.g., Anatol, Lothar, and Martin) in 1999, resulting in a loss of 13 billion euros (Ulbrich 43 

et al., 1999). Typhoon Haiyan, which hit the Philippines and China of South Asia in 2013, was one of Category 5 Super 44 

Typhoons, was the most extreme tropical cyclone recorded on land. The typhoon's life-threatening wind and rain were enough 45 

to smash properties. South Asian countries adjacent to the typhoon track inflicted about $300 billion in damage (Kim et al., 46 

2019). Hurricane Katrina that hit the South Eastern areas in United States in 2005 caused the most severe damage in the 47 

national historic record as a Category 5 tropical cyclone. In detail, it caused the US Gulf Coast city to have $180 billion in 48 

direct and indirect damages due to substantial rain and robust winds (Blake et al., 2007). Later, in 2017 solely, three different 49 

strong hurricanes named by Harvey, Maria, and Irma caused together a total damage amount of about $293 billion, based on 50 

the individual damage amounts of $125 billion by Harvey, $90 billion by Maria, and $77.6 billion by Irma (USNHC, 2018).  51 

 52 

In this sense, the quality of living in the built environment has been threatened by natural disasters in the globe. To reduce 53 

these threats, many of non-governmental organizations and countries have investigated in prevention or post-disaster recovery 54 

strategies, on aspects of time, budget, and manpower to mitigate natural disaster risks. Mitigation of risks can reduce the loss 55 

by decreasing vulnerability or by decreasing the frequency and severity of causal factors (Rose et al., 2007). For risk mitigation, 56 

the execution and allocation of financial resources should be carried out promptly and extensively, against the limited resources 57 

available. Hence, it is important to estimate strategically the cost impact of natural disaster risks and the effect of risk reduction 58 

at the same time, specifically aiming at achieving the ultimate reduction and mitigation of risks through an efficient use of the 59 

limited resources.  60 
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2 Point of Departure: The need of more effective strategic framework for natural disaster risk mitigation  61 

2.1 Decision-support for natural disaster risk mitigation strategies  62 

Given the increasing frequency and severity of natural disasters, the demand for sophisticated natural disaster loss forecasting 63 

also increases. In response to such demand, various companies and national organizations have developed models to predict 64 

natural disaster losses. The New Multi-Hazards and Multi-Risk Assessment Method for Europe (MATRIX) in Europe, the 65 

HAZUS-Multi Hazard (HAZUS-MH) by the Federal Emergency Management Agency (FEMA) in the United States, the 66 

RiskScape in New Zealand, and the Probabilistic Risk Assessment initiative in Central America are representative models 67 

(Kim et al., 2017). Florida, USA, has developed a Florida Public Hurricane Loss Model (FPHLM) to predict losses due to 68 

hurricanes as it is located on the main north-facing road of hurricanes (Kim et al., 2020). These models are being used in 69 

different regions to assess the loss of life and potential economic losses for buildings and infrastructure owing to natural 70 

disasters. Nevertheless, since these models were developed based on the vulnerability of natural disasters and the severity and 71 

frequency of natural disasters in specific areas, they could not be applied to other areas. 72 

 73 

Companies specializing in natural disaster risk modeling have also developed different models, including EQECAT, Applied 74 

Insurance Research (AIR), and RMS (Risk Management Solution) (Kunreuther et al., 2004; Sanders, 2002). These models are 75 

widely used by insurers and reinsurers around the world to assess the risk of economic loss from natural disasters (e.g., 76 

windstorms, earthquakes, floods, winter storms, and tornadoes). Nonetheless, these models have annual fees that are expensive 77 

to small and medium-sized users. In addition, these models are available only for the limited number of major countries (Europe, 78 

USA, Japan, China, etc.). Furthermore, it is difficult to optimize them for users since they have difficulties to reflect a user's 79 

portfolio, capital, business preference, and so on (Kim et al., 2019). 80 

 81 

To reflect characteristics and vulnerabilities of each country associated with various situations of users, it is crucial to evaluate 82 

the loss through its own model. In order to develop a loss evaluation model, the development of an in-house model using a 83 

deep learning algorithm can be a solution. Recently, the 4th revolution technology (e.g., unmanned transportation, big data, 84 

artificial intelligence, IoT, robots, etc.) has been applied to various fields and its effectiveness has been recognized (Gledson 85 

and Greenwood, 2017; IPA, 2017). To effectively and efficiently analyze the complexity of various sensors-driven big data, 86 

the demand for deep learning applications has been increased dramatically. Given the increasing demand, many research efforts 87 

on applying deep learning techniques for risk assessment were made recently (Al Najar et al. 2021; Khosravi et al. 2020; Kim 88 

et al. 2021; Moishin et al. 2021; Shane Crawford et al. 2020; Sugiyarto and Rasjava 2020; Yi et al. 2020; Zhang et al. 2022). 89 

Especially, for improved natural disaster risk assessment and mitigation, neural networks have been widely used for deep 90 

learning in various ways (Khosravi et al. 2020; Moishin et al. 2021; Shane Crawford et al. 2020; Yi et al. 2020). Some 91 

researchers developed deep learning models to predict flood events (Khosravi et al. 2020; Moishin et al. 2021). Khosravi et al. 92 

(2020) developed a flood susceptibility map using convolutional neural networks (CNN). More specifically, 769 historical 93 
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flood locations in Iran were trained and tested based on amounts of soil moisture, slopes, curvatures, altitudes, rainfalls, 94 

geology, land use and vegetation, distances from roads and rivers. In addition, a hybrid deep learning algorithm integrating the 95 

merits of CNN and long short-term memory (LSTM) networks was built to manage flood risks by predicting future flood 96 

events, by training and testing daily rainfall data obtained from 11 sites in Fiji between 1990 and 2019 (Moishin et al. 2021). 97 

 98 

Other previous studies focused on post-disaster detection caused by landslides or tornados, which uses remote sensed data 99 

collected from satellites for deep learning (Al Najar et al. 2021; Shane Crawford et al. 2020; Yi et al. 2020). Shane Crawford 100 

et al. (2020) adopted CNN to classify damages of 15,945 buildings affected by the 2011 Tuscaloosa tornado in Alabama. To 101 

this end, the authors used satellited-driven images of trees as the damage classification indicator to estimate wind speeds. In 102 

addition, satellite images were embraced into the CNN-driven deep learning process to detect earthquake-induced landslides 103 

in China (Yi et al. 2020). More recently, Al Najar et al. (2021) estimated accurately ocean depths simulating remote sensed 104 

images using a deep learning technique, which overcomes drawbacks of traditional bathymetry measurement activities to track 105 

the physical evolution of coastal areas against any potential natural disasters or extreme storm events. Previous studies 106 

reviewed reveal consistently that deep learning techniques can overcome shortcomings of existing methods and thus to provide 107 

more accurate and reliable decision-support models for risk assessment and risk-informed mitigation strategies. 108 

 109 

In addition to applications of deep learning for location detection or event prediction-focused, as stated earlier, it is important 110 

to quantify negative economic impacts caused by natural disasters. Given the importance of economic damage aspects, Kim 111 

et al. (2021) applied a deep learning technique as a cost-effective and risk-informed facilities management solution. In detail, 112 

the authors generalized maintenance and repair costs of educational facilities in Canada, using deep neural networks that learn 113 

sets of maintenance and repair records, asset values, natural hazards such as tornados, lightening, hails, floods, and storms. In 114 

this sense, this study proposed a deep learning modeling framework to predict financial losses caused by natural disasters. 115 

 116 

2.2 Investment strategies for natural disaster risk mitigation 117 

Mitigating the risk with efficient investment and operation of resources is a challenging task because risk reduction should be 118 

made in a timely manner, with the limited financial resources. To address these issues, cost-benefit analysis has been widely 119 

adopted (FEMA, 2005; Rose et al., 2007). For instance, efficient use of public resources is indicated when total estimated 120 

profits of a risk mitigation activity surpass the entire cost or are parallel to earnings on investment of both private and public. 121 

 122 

Disaster risk mitigation represents mitigating social, environmental, and economic damage caused by natural disasters. Since 123 

economic losses due to natural disasters are hard to minimize or avoid separately, there is an increasing public demand for risk 124 

reduction investments to reduce these economic losses (Bouwer et al., 2007; Shreve and Kelman, 2014). Since resources for 125 

risk mitigation investment are restricted, it is critical to estimate economic costs and benefits in order to determine the 126 
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effectiveness and appropriateness of the investment. For instance, the Federal Emergency Management Agency of the United 127 

States has reported that the average cost-benefit ratio is 4 for risk mitigation investment (e.g., structural defence measures 128 

against floods and typhoons, building renovations in preparation for earthquakes, etc.) after reviewing 4,000 natural disaster 129 

risk reduction programs in the United States (Kunreuther et al., 2012; Rose et al., 2007). In addition, studies in developing 130 

countries have shown a high cost-benefit ratio in a study of 21 investment activities such as re-establishment of schools and 131 

forestry in preparation for tsunami (Bouwer et al., 2014). 132 

 133 

Despite these high potential benefits, investment in risk reduction for residents living in areas at risk of natural disasters is 134 

restricted (Bouwer et al., 2014). According to Hochrainer-Stigler et al. (2010), since natural disaster risk reduction measures 135 

are focused on short-term outcomes, only about 10% of residents in areas vulnerable to natural disasters receive natural disaster 136 

risk reduction measures in the United States. In the case of a natural disaster risk reduction project, a large initial investment 137 

is required, which reduces the expected profit if performance indicators need to be met in a short period of time. As a result, 138 

policy makers and politicians are reluctant to make bold investments in natural disaster risk reduction. They prefer to provide 139 

economic support after disasters (Cavallo et al., 2013). This phenomenon is also reflected in the budget distribution of disaster 140 

management funds of donations and development agencies. Most (98%) of the budget is allocated to reconstruction or relief. 141 

Only the remaining budget (2%) is allocated to risk reduction (Mechler, 2005). As such, while the need for pre-disaster risk 142 

reduction through proactive disaster investment is widely recognized, the economic impact of natural disaster risk reduction 143 

is often not fully considered in decision-making. Moreover, although cost-benefit analysis is the main decision-making tool 144 

commonly used in investment and financial evaluations by public sectors, natural disaster risk is not sufficiently applied in the  145 

cost-benefit analysis (Hochrainer-Stigler et al., 2010). Natural disasters in public sectors’ investment projects were often 146 

overlooked or not evaluated based on the cost-to-benefit comparison (Kreimer et al., 2003). In turn, this study explored natural 147 

disaster risk reduction projects and analyzed the cost effectiveness of the projects adopting a cost-benefit analysis method. 148 

3 Research objectives and methods 149 

Given trends in more frequent and severe natural disaster events, developing effective natural disaster risk mitigation strategies 150 

is crucial to reduce negative economic impacts on built assets, due to the limited budget for rehabilitation. To address this need, 151 

this study aims to develop a strategic framework for natural disaster risk mitigation, highlighting two different strategic 152 

implementation processes (SIPs), as depicted in Figure 1.  153 

 154 
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 155 

Figure 1. Research framework 156 

 157 

More specifically, SIP-1 is intended to improve the predictability of natural disaster-triggered financial loss model. To this 158 

end, SIP-1 develops a deep neural network (DNN) model that learns insurance loss amounts to generalize loss ratios, associated 159 

with major indicators including rainfall, wind, and ground acceleration. To demonstrate SIP-1, this study collected reliable 160 

storm and flood damage insurance data and natural disaster risk indicators, created a predictive model using deep learning, and 161 

validate the improved predictability of the model, through the following steps: 162 

1) To collect data on loss caused by natural disasters, this study collected data on claim payout for storm and flood 163 

damage insurance from the Korea Insurance Development Institute (KIDI) over the past11 years between 2009 and 164 

2019. 165 

2) This study obtained natural disaster risk indicators based on the collected data. 166 

3) A model of deep learning algorithm was developed using Python 3.7, Keras, and Scikit-Learn libraries. The model 167 

was trained, tested, and validated using the collected data. 168 

4) A multiple regression model was independently developed using IBM Statistical Package for the Social Sciences 169 

(SPSS) version 23 for model validation. 170 

5) The root mean squared error and mean absolute error values of the deep learning algorithm model and the multiple 171 

regression analysis model were estimated and paralleled, respectively. 172 

 173 

Compared to SIP-1, SIP-2 underlines the risk mitigation strategy at the project level, by proposing a methodological 174 

implementation process for quantifying the cost effectiveness of natural disaster risk reduction by adopting a cost-benefit 175 

analysis method that quantifies the cost effectiveness of disaster prevention project. To demonstrate SIP-2, a case study of 176 

disaster risk reservoir maintenance projects completed in South Korea was adopted, through the following steps: 177 

1) Among natural disaster risk reduction projects carried out by the South Korean government, information on disaster 178 

risk reservoir maintenance projects completed in 2009-2019 was collected. 179 
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2) The loss rate of storm and flood insurance in the region where the flood damage occurred after the completion of the 180 

maintenance project was investigated through KIDI. 181 

3) The amount of precipitation before and after the disaster risk reservoir maintenance project was investigated. 182 

4) Cost-benefit analysis was conducted to determine the economic feasibility of the maintenance project. 183 

4 SIP-1: Improving the predictability of natural disaster-induced financial loss values using deep learning 184 

SIP-1 aims to explore deep learning-driven modelling processes and develop an optimal learning model that can improve the 185 

predictability of natural disaster-triggered financial losses. To demonstrate SIP-1, the loss amounts of storm and flood 186 

insurance were learned, and the corresponding loss ratios were generalized associated with the selected risk indicators by the 187 

property type. To scientifically validate the robustness of the learning model, the prediction results were compared with a 188 

conventional parametric model underpinned by multiple regression analysis. 189 

4.1 Data collection 190 

A total of 458 storm and flood damage insurance claims for 11 years from 2009 to 2019 was collected from KIDI’s data sets. 191 

KIDI was established in 1983. It is an insurance professional service organization that develops insurance products, calculates 192 

insurance rates, and protects the rights of policyholders. It also collects and manages various statistical data such as insurance 193 

information and losses of each insurance company (Choi and Han, 2015). Storm and flood damage insurance, which reflects 194 

the loss amount, is an insurance that compensates for property damage caused by natural disasters (e.g., typhoons, floods, 195 

heavy rains, tsunamis, strong winds, storms, heavy snow, earthquakes, and so on). It has been implemented since 2006 under 196 

the initiative of state and local governments (Kwon and Oh, 2018). The insurance payout amount is determined by objective 197 

analysis of certified loss assessment service according to standardized procedures for each insurance company. Its reliability 198 

is high (Kim et al., 2020). The collected data information includes the total loss amounts, the total net premiums, building 199 

types, and location profiles, which is publicly available. The prediction model was trained, tested, and validated using losses 200 

and natural disaster risk indicators. 201 

 202 

The cost of loss due to natural disasters was divided by the total net premiums to calculate the ratio and then log-transformed, 203 

which distribution of the data is shown in Figure 2. In addition, natural disaster risk indicators affecting insurance loss due to 204 

natural disasters were collected. For natural disaster risk indicators, building type, wind speed, total rainfall, and peak ground 205 

acceleration were selected as variables through past literature studies (Kim et al., 2017, 2019; Kim et al., 2020; Kim et al., 206 

2021). Figure 3, 4, 5, and 6 shows the distributions of the selected indicators. A description of variables is presented in Table 207 

1. Building types were set as dummy variables that consist of residential buildings and greenhouses. Wind speed and the 208 

maximum value of rainfalls were collected from the Korea Meteorological Administration (KMA). Peak ground accelerations 209 
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were collected from the National Oceanic and Atmospheric Administration (NOAA). Accordingly, Table 2 summarises the 210 

descriptive statistics of variables. 211 

 212 

 213 

Figure 2. Distribution of the insurance loss ratio record 214 

 215 

  

Figure 3. Distributions of the indicators to learn the loss 

ratios of Wind speed (m/s) 

Figure 4. Distributions of the indicators to learn the loss 

ratios of Rainfall (mm/day) 
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Figure 5. Distributions of the indicators to learn the loss 

ratios of Peak ground acceleration (g) 

Figure 6. Distributions of the indicators to learn the loss 

ratios of Building type (1: residential, 2: greenhouse) 

 216 

Table 1. Description of variables 217 

Variable Explanation 

Loss ratio  Total loss divided by the total net premium (Amount unit: KRW) 

Building type Buildings covered by storm and flood insurance (Categorical variable - Residential 

building: 1; Greenhouse: 2) 

Wind speed 10-minute average maximum wind speed (m/s) 

Rainfall Maximum precipitation per day (mm/day) 

Peak ground acceleration Value of peak ground acceleration (PGA) (g) 

 218 

Table 2. Descriptive statistics of variables by the building type (i.e., residential building and greenhouse) 219 

Variable (Unit) Sample size Minimum Maximum Mean Std. Deviation 

Loss ratio (Log-transformed value) 458 -5.12 3.17 -0.66 1.01 

Wind speed (m/s) 458 20.80 39.20 29.21 3.17 

Rainfall (mm/day) 458 172.00 801.20 319.02 68.57 

Peak ground acceleration (g) 458 0.10 1.60 1.10 0.25 

 220 
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4.2 Modeling deep neural networks 221 

A deep learning algorithm is a neural network with many layers and various structures in general. Its use in research and 222 

industry for prediction and recognition has spread rapidly, proving its effectiveness (Kim et al., 2021). Deep learning 223 

algorithms are also widely used for regression analysis and type classification as a machine learning technique (Ajayi et al., 224 

2019). Deep learning models have the same training framework as other types of neural networks. However, they can train 225 

large data sets more effectively with multiple hidden layers (Bae et al., 2021). Deep learning algorithms can be divided into 226 

deep neural network (DNN), generative adversarial network (GAN), recurrent neural network (RNN), convolutional neural 227 

network (CNN), and auto encoder (AE) according to their structure and processing method (Kim et al., 2021). Especially, 228 

DNN is used for cataloguing and prediction in various engineering and academic fields (Krizhevsky et al., 2012; Toya and 229 

Skidmore, 2007). Moreover, DNNs can be applied to train and model complex nonlinear relationships due to their multi-230 

layered structures. Thus, in this study, a DNN model was accepted considering nonlinearity of collected loss data. 231 

 232 

The learning performance of the model was appraised by measuring the values of root mean squared error (RMSE) and mean 233 

absolute error (MAE). RMSE and MAE are representative indicators of the size of the error by comparing the predicted result 234 

of an artificial neural network with the actual value (Daniell et al., 2011). RMSE is a value that measures the average error 235 

magnitude. MAE is a value obtained by converting the difference between the actual value and the predicted value into an 236 

absolute value and averaging it. Both indicators can be used to indicate that the prediction error decreases as the error value 237 

gets smaller (e.g., closer to zero). 238 

 239 

The collected loss data were pre-processed using a z-score normalization method to adjust the unit and quantity of the data. 240 

The pre-processed completed input data were divided into a training set, a verification set, and a test set of data. The training 241 

set of data were used for learning of the DNN algorithm. The verification set of data were used to judge whether training was 242 

optimal and the test set of data were used to verify whether the developed model was finally trained for the purpose. In this 243 

study, considering the amount of data, 70% of the total data were set as training set of data and 30% of them were used as test 244 

set of data. Then 30% of training data were utilized as verification data. 245 

 246 

The DNN model selected the optimal combination through a trial-and-error method since the DNN model could update the 247 

weights of neural network nodes with a backpropagation algorithm. Since various combinations were possible depending on 248 

the input variable and the output variable, it was necessary to find the optimal combination through the trial-and-error method. 249 

For such an optimal combination, it is necessary to define the network structure scenario for setting the number of layers and 250 

nodes and defining hyper parameters such as optimizers, activation functions, and dropouts (Cavallo et al., 2013). This study 251 

adopted a network structure scenario with three hidden layers considering data characteristics. Dropout is a regularization 252 

penalty to avoid overfitting. It was set to reduce prediction errors caused by overfitting. In this study, making an allowance for 253 
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the amount of training data, dropout was set to 0 and 0.2 and simulated. The ReLu (Rectified Linear Unit) function was utilized 254 

as the activation function, a method of adjusting the weight of each node for optimal learning. The ReLu function allows the 255 

input value to change when the input value is greater than 0 or less than 0. It was established to resolve the problem of gradient 256 

loss of the existing Sigmoid function (Krizhevsky et al., 2012). The Adaptive Moment Estimation (Adam) method as accepted 257 

as the optimizer (Krizhevsky et al., 2012). Optimizer is used for speed and stability of learning. The Adam Method is a widely 258 

assumed algorithm since its development in 2015 (Kingma and Ba, 2015). The batch was defined as 5 as a data group 259 

designation for efficient learning and the number of epochs was designated as 1,000 for the number of learning (Bae and Yoo, 260 

2018; Ryu et al., 2018). 261 

 262 

4.3 Exploring DNNs and developing the DNN model 263 

Table 3 shows MAE and RMSE values according to the network structure and dropout. Amongst outcomes, the model with 264 

the minimum MAE and RMSE was adopted as the final structure. As the number of hidden layer nodes increased, the MAE 265 

and RMSE values fluctuated slightly. However, the number of hidden layer nodes was minimized at 25-25-25. When the 266 

dropout was 0, MAE and RMSE values were commonly lesser than when the dropout was 0.2. It could be realized that when 267 

the number of hidden layer nodes was 25-25-25 and the dropout was 0.0, both MAE and RMSE had minimum values. 268 

Consequently, in the final structure, the number of nodes was 25-25-25 and the dropout was 0. Table 4 and Figure 7 269 

demonstrate the network structure and hyper parameter configuration of the optimization model. 270 

 271 

Table 3. Training results 272 

Network Structure  

Scenario 

Dropout (0) Dropout (0.2) 

MAE RMSE MAE RMSE 

5-5-5 0.521 0.484 0.521 0.484 

10-10-10 0.498 0.468 0.524 0.484 

15-15-15 0.521 0.484 0.523 0.487 

20-20-20 0.522 0.484 0.521 0.484 

25-25-25 0.476 0.461 0.521 0.484 

30-30-30 0.521 0.484 0.521 0.484 

35-35-35 0.521 0.484 0.522 0.484 

40-40-40 0.521 0.484 0.521 0.484 

50-50-50 0.521 0.484 0.522 0.484 

 273 



12 

 

Table 4. Network structure and hyper parameter formation of the final model 274 

Category Configuration Feature 

Network structure 
Number of Hidden Layer 3 

Node  25-25-25 

Hyper-parameter 

Dropout 0.0 

Activation Function ReLu (Rectified Linear Unit) 

Optimizer  Adam (Adaptive Moment Estimation)  

Epoch 1000  

Batch Size 5 

 275 

 276 

Figure 7. Final model of deep neural networks 277 

4.4 The robustness validation of the final DNN model 278 

An MRA (Multiple Regression Analysis) model was added for systematic validation of the final DNN model. MAE and RMSE 279 

values of these two models were compared. The MRA method is widely adopted as an essential method for numerical 280 

prediction models (Kim et al., 2021). Table 5 displays validation results of these models. Results of the DNN model showed 281 

MAE of 0.531 and RMSE of 0.480 with the verification set of data. For the test set of data, results showed MAE of 0.452 and 282 

RMSE of 0.435. There was no significant difference in MAE or RMSE between results with the test set of data and those with 283 

the verification set of data since the overfitting problem of the final model could be overlooked. In addition, the MRA model 284 
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showed an MAE of 0.533 and a RMSE of 0.484. Equating outcomes of the DNN model and the MRA model, it was found 285 

that the DNN model had meaningfully minor prediction error rates of 15.2% MAE and 10.12% RMSE than the MRA model. 286 

 287 

Table 5. Results with the validation set and test set of data 288 

ModelAn Validation Set Test Set 

MAE RMSE MAE RMSE 

DNN 0.531 0.480 0.452 0.435 

MRA - - 0.533 0.484 

DNN/MRA (%)   -15.20 -10.12 

5 SIP-2: Quantifying the cost effectiveness of natural disaster risk reduction projects using cost-benefit analysis 289 

Management of a disaster risk reservoir is a part of the disaster prevention project. According to the Special Act on the Disaster 290 

Risk Reduction Project and Relocation Measures, the purpose of disaster prevention measures necessary for improving the 291 

disaster risk area is for fundamental prevention and permanent recovery of disasters. The disaster prevention project was started 292 

in 1998 when the Disaster Response Division of the Ministry of Government Administration and Home Affairs discovered 293 

disaster-prone facilities and areas with risk of human casualties and provided government funds for the maintenance of natural 294 

disaster risk areas for systematic management and prompt resolution of disaster risk factors (Lee, 2017). Disaster prevention 295 

projects include natural disaster risk improvement districts, disaster risk reservoirs, steep slope collapse risk areas, small rivers, 296 

and rainwater storage facilities (Kim et al., 2019). Given the significance of disaster prevention projects, SIP-2 examines 297 

economic effects through cost-benefit analysis of natural disaster risk reduction projects to reduce losses from natural disasters. 298 

To demonstrate SIP-2, a cost-benefit analysis was conducted for the natural disaster reduction project by comparing losses 299 

from storm and flood insurance before and after the disaster risk reservoir maintenance project. 300 

 301 

5.1 Data collection and investigation of historical record 302 

Among natural disaster risk reduction projects carried out by the South Korean government, the data set of disaster risk 303 

reservoir maintenance projects completed in 2009-2019 was extracted from the Public Data Portal (data.go.kr) managed by 304 

the South Korean government to collect and provide public data created or acquired by public institutions in one place. The 305 

system was established in 2011 to provide public data in the form of file data, visualization, and open API (Application 306 

Programming Interface) (Closs et al., 2014). During the study period of 2009-2019, 474 reservoirs were designated as disaster 307 

risk reservoirs and 290 maintenance projects were initiated. Among them, a total of 12 areas were flooded before and after the 308 

completion of the disaster risk reservoir maintenance project. Table 6 shows the loss rate and maximum precipitation at the 309 

time of flooding before and after completion of the maintenance projects in these 12 areas. Data about the loss amounts from 310 

storm and flood insurance were obtained from KIDI. Precipitation data were collected from KMA and the maximum daily 311 
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precipitation at the time of the flooding was used. Insured loss was expressed as a rate of the incurred loss divided by the 312 

accrued premium. The loss rate before the maintenance project was 34.32% on average, while that after the maintenance 313 

project was completed was 5.9% on average, showing a sharp decrease of 82.8% on average. 314 

 315 

Table 6. Comparison of loss rate and precipitation before and after maintenance projects in flooded regions in South Korea 316 

No Region 
Loss rate Precipitation (mm/day) 

Before (%) After (%) Before After  

1 Yongin City 47.40 20.60 425 188 

2 Nonsan City 30.10 0.80 334 306 

3 Wanju-gun 40.70 3.40 364 142 

4 Gangjin-gun 76.30 0.40 235 166 

5 Sejong City 7.30 4.90 257 223 

6 Muan-gun 25.80 2.00 285 192 

7 Hampyeong-gun 23.80 10.30 301 230 

8 Gyeongju City 33.10 1.20 488 280 

9 Changwon City 10.60 10.70 300 266 

10 Namhae City 22.10 8.50 324 231 

11 Naju City 53.90 5.10 330 106 

12 Goheung-gun 40.70 3.00 325 249 

    Average (%) 34.32 5.9 331 215 

     After/Before (%)  82.8  35.0 

 317 

5.2 Cost-benefit analysis and results of natural disaster risk reduction projects 318 

As seen in Table 6, when data of precipitation as the main cause of flooding accidents during flood damage were compared, 319 

the average precipitation was 331 mm/day before the maintenance project and 215 mm/day after the maintenance project. It 320 

could be seen that the amount of precipitation was decreased by 35% when flood damage occurred after the maintenance 321 

project. The sharp decrease in the loss rate after the maintenance project could be due to not only the effect of maintenance 322 

project, but also decreased rainfalls. In turn, it is difficult to conclude that the decreased loss rate is due to the effect of reducing 323 

storm and flood damage caused by the maintenance project. 324 

 325 

To analyze the cost effectiveness of the maintenance projects in flood regions, a cost-benefit analysis method using an equal-326 

payment-series present-worth factor was adopted. The present-worth factor, assuming an annual loss rate i, is a coefficient 327 

used to find the present value corresponding to annual equivalent loss A for the next n years. Eq. (1) presents a widely used 328 

concept in economic analysis (Park & Sharp, 2021): 329 

 330 
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𝑃 =  𝐴[(1+𝑖)𝑛−1)]

𝑖(1+𝑖)𝑛                                                                     (1) 331 

 332 

Where: 333 

P: Present value 334 

A: Annual loss amount 335 

i: Loss rate 336 

n: Year  337 

 338 

The initial cost of each maintenance project was collected through The Public Data Portal and the average cost of the 339 

maintenance project was calculated. For the loss rate, the average loss rate of the loss area was used. For the annual loss amount, 340 

the average annual loss for the study period (2009-2019) was used as seen in Table 7. However, it was assumed that no 341 

additional costs incurred due to the maintenance project. Figure 8 shows calculation results before and after the maintenance 342 

projects, which reveals that the loss amount becomes smaller after 8 years due to investment through the maintenance projects. 343 

 344 

Table 7. Summary of inputs 345 

Input Before After 

Initial cost - 22.088* 

Loss rate 0.343 0.059 

Annual loss amount 0.371* 0.006* 
* Billion KRW 346 

 347 

 348 

Figure 8. Comparison of losses before and after the maintenance projects 349 
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6 Discussion 350 

Within the proposed strategic framework, SIP-1 developed an improved model for predicting economic losses due to natural 351 

disasters using the DNN algorithm. For model development, insurance company’s storm and flood damage insurance loss 352 

records were used to collect economic losses caused by actual natural disasters. After developing a DNN model and training 353 

it with collected data, the final network model was selected by comparing with other DNN alternatives. To scientifically 354 

validate the improved predictability, the performance (i.e., actual-to-predicted comparison using MAE and RMSE methods) 355 

of the developed DNN model was compared with a parametric model underpinned by MRA. The results revealed that the 356 

DNN model was 15.2% less in the MAE and 10.12% less in the RMSE, compared to the MRA model. These results confirm 357 

that deep learning can produce more accurate and reliable prediction results of natural disaster-induced economic loss values 358 

associated with non-linear characteristics of risk indicators. It is noteworthy that the proposed implementation process is 359 

applicable to various natural disaster-triggered loss predictions, as the amount and its fluctuation of losses are diverse 360 

dependant on various types and strengths of natural disasters. In this sense, the proposed SIP-1 will help natural disaster risk 361 

managers predict the financial loss cost of natural disasters or develop an optimally customized prediction model by adopting 362 

deep learning. It can also be used as a reference when developing risk reduction investment plans or financial guideline in 363 

public and private sectors. For example, by applying this implementation process, it would be possible to estimate reliably the 364 

negative impact of natural disaster events on existing financial management practices and thus make decisions proactively on 365 

the most feasible risk reduction investment plan that can strengthen natural disaster risk management and reduce the amount 366 

of risk, ultimately reducing the economic loss caused by natural disasters. Based on the well-developed financial guideline, it 367 

would be possible to avoid any transfers of unexpected financial losses from insurance coverages or special purchases suitable 368 

for expected losses. Despite the merit of SIP-1, there still remain some limitations. First, owing to the limited data set, it was 369 

problematic to accumulate different data sets. Additional research in the future is needed to parallel and prove loss records in 370 

other countries or regions. In addition, further research is required to increase the amount of available data and upgrade the 371 

model through the introduction of additional variables to more precisely predict losses from natural disasters using deep 372 

learning algorithms.  373 

 374 

Compared to SIP-1, SIP-2 proposed a new methodology that can quantify the cost effectiveness of natural disaster risk 375 

reduction projects through the cost-benefit analysis. To demonstrate SIP-2, among natural disaster risk reduction projects were 376 

implemented in South Korea, specific information of the disaster risk reservoir maintenance projects where flood damage 377 

occurred before and after completion was collected. Then, to identify benefits and costs, corresponding loss rates and daily 378 

precipitation amounts were investigated and compared at the project level. Lastly, the cost effectiveness of the projects was 379 

analyzed using a cost-benefit analysis method. As the result of cost-benefit analysis, in the short term, the loss after the 380 

maintenance project was greater than that before the maintenance project. However, this was reversed from 8 years after the 381 

maintenance project and the loss amount before the maintenance project was larger than that after the maintenance project. 382 
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Although it is difficult to expect profits from the maintenance project in the short term, it can be seen that the maintenance 383 

project is economically beneficial in the long term (8 years or more). SIP-2 would be useful for making sounder decisions on 384 

natural disaster management policy and natural disaster risk reduction project investment plans. Evaluating the effectiveness 385 

of risk reduction through SIP-2 will lead to drastic investment, which will ultimately reduce the amount of natural disaster 386 

risks. However, it should be noted that the study period shown in the SIP-2 case study was relatively short, while the location 387 

of project samples was limited to South Korea. In addition, it was assumed that the inflation rate is identical during the study 388 

period. In turn, it is necessary to conduct additional analyses considering various locations venerable to natural disasters in 389 

other countries and more realistic financial loss values using a net present value concept. 390 

7 Conclusion 391 

Due to increasing threats to the life of general public and built assets from natural disasters, a variety of risk mitigation activities 392 

are being carried out extensively. Given the continuous trend toward natural disaster risk mitigation, the significance of relevant 393 

economic analyses has been underlined, against the limited public budget and its economic feasibility. To overcome this 394 

difficulty, this study proposed a strategic framework for natural disaster risk mitigation, highlighting two different SIPs. SIP-395 

1 introduced more powerful method that can improve the predictability of natural disaster-triggered financial loss values using 396 

deep learning, while SIP-2 highlighted the risk mitigation strategy at the project level, adopting a cost-benefit analysis method. 397 

In SIP-1, a DNN model for natural disaster loss prediction was developed, and the improved predictability was validated by 398 

comparing with MRA. The developed model learned and generalized the loss amount of natural disaster risk indicator facilities 399 

(building type, wind speed, total rainfall, and peak ground acceleration) and wind and flood insurance. By evaluating learning 400 

performances of 18 different DNN alternatives using RMSE and MAE values as representative evaluation indicators of deep 401 

learning algorithms, 25-25-25 hidden layers with dropouts of 0.0 structure was selected as the optimal learning model. The 402 

robustness of the developed model was technically validated by comparing RMSE and MAE values of a conventional 403 

parametric model using a multiple regression analysis. Validation results confirmed that the non-parametric DNN model was 404 

powerful for predicting non-linear characteristics of losses caused by natural disasters. In SIP-2, The cost-benefit analysis was 405 

conducted on the disaster risk reservoir maintenance project that occurred before and after the completion of the flood damage. 406 

As the result, it was difficult to expect profits from the maintenance business in the short term. However, in the long term 407 

(more than 8 years), it was found that the maintenance business was economically profitable. The proposed framework is 408 

unique as it provides a combinational approach to mitigating cost risk impacts of natural disasters at both financial loss and 409 

project levels. Main findings of this study could be used as a guideline for decision-making of natural disaster management 410 

policies and investment in natural disaster risk reduction projects. This study is its first kind and supporting the current 411 

knowledge framework. This study will help practitioners quantify the loss from various natural disasters, while allowing them 412 

to evaluate the cost effectiveness of risk reduction projects through a holistic approach.  413 

 414 



18 

 

Code and data availability.  415 

The data presented in this research are available from the first or corresponding author upon reasonable request. 416 

Author contributions.  417 

J.-M.: contributed to the conceptualization and supervision; methodology development; data curation; investigation; project 418 

administration; resources and visualization; and writing the original manuscript and reviewing the revised manuscript. S.-G: 419 

contributed to data curation; investigation and validation; and reviewing the manuscript. H.: contributed to investigation; 420 

improving the literature review; and reviewing the manuscript. J.: contributed to strengthening research methodology and 421 

strategic framework design; visualization and validation; and reviewing and editing the manuscript as the corresponding author. 422 

Competing interests.  423 

The authors declare that they have no conflict of interests. 424 

Acknowledgement 425 

This research was supported by Research Funds of Mokpo National University in 2021. 426 

References 427 

Ajayi, A., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., Delgado, J.M.D., and Akanbi, L.: Deep learning models for health 428 

and safety risk prediction in power infrastructure projects, Risk Anal., 40, 2019–2039, 2019. 429 

Al Najar, M., Thoumyre, G., Bergsma, E. W., Almar, R., Benshila, R., and Wilson, D. G.: Satellite derived bathymetry using 430 

deep learning. Machine Learning, 1-24, 2021. 431 

Bae, S. W. and Yoo, J. S.: Apartment price estimation using machine learning: Gangnam-gu, Seoul as an example. Real Estate 432 

Stud., 24, 69–85, 2018. 433 

Bae, J., Yum, S. G., and Kim, J. M.: Harnessing machine learning for classifying economic damage trends in transportation 434 

infrastructure projects, Sustainability, 13, 1–12, https://doi.org/10.3390/su13116376, 2021. 435 

Blake, E. S., Rappaport, E. N., and Landsea, C. W.: The Deadliest, Costliest, and most Intense United States Tropical Cyclones 436 

from 1851 to 2006, NOAA Technical Memorandum NWS NHC: Washington, DC, USA, 2011. 437 

Bouwer, L. M., Crompton, R. P., Faust, E., Höppe, P., and Pielke, R. A.: Confronting disaster losses, Science, 318, 753. 438 

https://doi.org/10.1126/science.1149628, 2007. 439 

Bouwer, L. M., Papyrakis, E., Poussin, J., Pfurtscheller, C., and Thieken, A. H.: The costing of measures for natural hazard 440 

mitigation in Europe, Natural Hazards Review, 15, 04014010, https://doi.org/10.1061/(asce)nh.1527-6996.0000133, 441 

2014. 442 

Choi, C.H. and Han, S. W.: Current status and implications of earthquake insurance in major countries, Insurance Research 443 

Institute Research Report, 20, 1-118, 2017. 444 

Cavallo, E., Galiani, S., Noy, I., and Pantano, J.: Catastrophic natural disasters and economic growth, Review of Economics 445 

and Statistics, 95, 1549–1561, https://doi.org/10.1162/REST_a_00413, 2013. 446 



19 

 

Closs, S., Studer, R., Garoufallou, E., and Sicilia, M. A.:  Metadata and semantics research: 8th Research Conference, MTSR 447 

2014 Karlsruhe, Germany, November 27-29, 2014 Proceedings 13, Communications in Computer and Information 448 

Science, 478(Smiraglia 2014), 88–89. https://doi.org/10.1007/978-3-319-13674-5, 2014. 449 

Daniell, J. E., Khazai, B., Wenzel, F., and Vervaeck, A.: The CATDAT damaging earthquakes database, Natural Hazards and 450 

Earth System Science, 11, 2235–2251, https://doi.org/10.5194/nhess-11-2235-2011, 2011. 451 

Federal Emergency Management Agency.: Detailed expenditure data, 1993–2003, Computer file, Washington, D.C., 2005. 452 

Gledson, B.J.; Greenwood, D.: The adoption of 4d bim in the UK construction industry: An innovation diffusion approach, 453 

Eng. Constr. Archit. Manag, 24, 950–967, 2017. 454 

Hochrainer-Stigler, S., Kunreuther, H., Linnerooth-Bayer, J., Mechler, R., Michel-Kerjan, E., Muir-Wood, R., Ranger, N., 455 

Vaziri, P., and Young, M.: The Costs and Benefits of Reducing Risk from Natural Hazards to Residential Structures in 456 

Developing Countries. 32. http://personal.lse.ac.uk/RANGERN/WP2010-12-457 

01_IIASA,RMS,Wharton_DevelopingCountries.pdf, 2010. 458 

IPA.:Transforming infrastructure performance; Infrastructure and projects authority: London, UK, 2017. 459 

Kim, J. M., Bae, J., Son, S., Son, K., amd Yum, S. G.: Development of model to predict natural disaster-induced financial 460 

losses for construction projects using deep learning techniques. Sustainability, 13, https://doi.org/10.3390/su13095304, 461 

2021. 462 

Kim, J. M., Ha, K. C., Ahn, S., Son, S., and Son, K.: Quantifying the third-party loss in building construction sites utilizing 463 

claims payouts: A case study in south korea, Sustainability, 12, 1–13. https://doi.org/10.3390/su122310153, 2020. 464 

Kim, D. H., Kim, J. D., Choi, C. H., Wang, W. J., Yoo, Y. H., amd Kim., H. S.: Estimation of disaster risk rainfall and collapse 465 

runoff of old reservoirs, Proceedings of the Korean Society for Disaster Prevention, 19, 421-432, 2019. 466 

Kim, J. M., Kim, T., and Son, K.: Revealing building vulnerability to windstorms through an insurance claim payout prediction 467 

model: a case study in South Korea, Geomatics, Natural Hazards and Risk, 8, 1333–1341, 468 

https://doi.org/10.1080/19475705.2017.1337651, 2017. 469 

Kim, J. M., Kim, T., Son, K., Yum, S. G., and Ahn, S.: Measuring vulnerability of Typhoon in residential facilities: Focusing 470 

on Typhoon Maemi in South Korea. Sustainability, 11, https://doi.org/10.3390/su11102768, 2019. 471 

Kim, J. M., Son, K., Yum, S. G., and Ahn, S.: Typhoon vulnerability analysis in South Korea utilizing damage record of 472 

typhoon Maemi, Advances in Civil Engineering, 2020, https://doi.org/10.1155/2020/8885916, 2020. 473 

Kim, J. M., Son, S., Lee, S., and Son, K.: Cost of climate change: Risk of building loss from typhoon in South Korea, 474 

Sustainability, 12, 1–11. https://doi.org/10.3390/su12177107, 2020. 475 

Kim, J., Yum, S., Son, S., Son, K., and Bae, J.:  Modeling deep neural networks to learn maintenance and repair costs of 476 

educational facilities, Buildings, 11, 165. https://doi.org/10.3390/buildings11040165, 2021. 477 

Kingma, D. P. and Ba, J. L.: Adam: A method for stochastic optimization. 3rd International Conference on Learning 478 

Representations, ICLR 2015 - Conference Track Proceedings, 1–15, 2015. 479 

Khosravi, K., Panahi, M., Golkarian, A., Keesstra, S. D., Saco, P. M., Bui, D. T., and Lee, S.: Convolutional neural network 480 

approach for spatial prediction of flood hazard at national scale of Iran. Journal of Hydrology, 591, 125552, 2020. 481 

Krizhevsky, B. A., Sutskever, I., and Hinton, G. E.: ImageNet classification with deep convolutional natural networks, Adv. 482 

Neural Inf. Process. Syt., 60, 84–90, 2012. 483 

Kunreuther H. and Michel-Kerjan E.: Challenge Paper: Natural Disasters, Policy options for reducing losses from natural 484 

disasters: Allocating $75billion, Revised version for Copenhagen Consensus, Center for Risk Management and Decision 485 

Processes, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A., 2012. 486 

Kunreuther, H., Meyer, R., and Van De Bulte, C.: Risk analysis for extreme events : Economic Incentives for reducing future 487 

losses, Technology, 93. http://www.bfrl.nist.gov/oae/publications/gcrs/04871.pdf, 2004. 488 

Kwon, T. Y. and Oh, G. Y.: Development of integrated management system for wind and flood damage insurance management 489 

map equipped with insurance rate analysis algorithm module, Proceedings of the Korean Society for Disaster Prevention, 490 

18, 105-114, 2018. 491 

Mechler, R.: Cost-benefit analysis of natural disaster risk management in developing countries, Eschborn: Deutsche 492 

Gesellschaft Fur Technische Zusammenarbeit (GTZ) GmbH, Sector Project: Disaster Risk Management in Development 493 

Cooperation, 5–67. http://maail1.mekonginfo.org/assets/midocs/0003131-environment-cost-benefit-analysis-of-natural-494 

disaster-risk-management-in-developing-countries-manual.pdf, 2005. 495 



20 

 

Moishin, M., Deo, R. C., Prasad, R., Raj, N., and Abdulla, S.: Designing deep-based learning flood forecast model with 496 

ConvLSTM hybrid algorithm. IEEE Access, 9, 50982-50993, 2021. 497 

Multihazard Mitigation Council.: Natural hazard mitigation saves: Independent study to assess the future benefits of hazard 498 

mitigation activities, Study documentation, Vol. 2, Federal Emergency Management Agency of the U.S. Department of 499 

Homeland Security by the Applied Technology Council under contract to the Multihazard Mitigation Council of the 500 

National Institute of Building Sciences, Washington, D.C., 2005. 501 

Kreimer, A., Arnold, M., and Carlin, A.: Building safer cities: the future of disaster risk (No. 3), World Bank Publications, 502 

2003. 503 

Lee, S. W.: Exploring the limitations of disaster prevention projects and improvement measures, Disaster Prevention Review, 504 

19, 15-20, 2017. 505 

Park, C. S. and Sharp, G. P.: Advanced engineering economics, John Wiley & Sons, 2021. 506 

Rasjava, A. R. I., Sugiyarto, A. W., Kurniasari, Y., and Ramadhan, S. Y.: Detection of Rice Plants Diseases Using 507 

Convolutional Neural Network (CNN). In Proceeding International Conference on Science and Engineering, 3, 393-396, 508 

2020. 509 

Rose, A., Porter, K., Dash, N., Bouabid, J., Huyck, C., Whitehead, J., Shaw, D., Eguchi, R., Taylor, C., McLane, T., Tobin, L. 510 

T., Ganderton, P. T., Godschalk, D., Kiremidjian, A. S., Tierney, K., and West, C. T.: Benefit-cost analysis of FEMA 511 

hazard mitigation grants, Natural Hazards Review, 8, 97–111, https://doi.org/10.1061/(asce)1527-6988(2007)8:4(97), 512 

2007. 513 

Ryu, J. D., Park, S. M., Park, S. H., Kwon, C. W., and Yoon, I. S.: A study on the development of a model for predicting the 514 

number of highway traffic accidents using deep learning, J. Korean Soc., 17, 14–25, 2018. 515 

Sanders, D. E. A.: The management of losses arising from extreme events, Giro 2002, 261. 516 

papers2://publication/uuid/61B316B3-6F10-4364-BFA2-9C9174665E44, 2002. 517 

Shane Crawford, P., Hainen, A. M., Graettinger, A. J., van de Lindt, J. W., and Powell, L.: Discrete-outcome analysis of 518 

tornado damage following the 2011 Tuscaloosa, Alabama, tornado. Natural Hazards Review, 21(4), 04020040, 2020. 519 

Shreve, C. M. and Kelman, I.: Does mitigation save? Reviewing cost-benefit analyses of disaster risk reduction, International 520 

Journal of Disaster Risk Reduction, 10(PA), 213–235. https://doi.org/10.1016/j.ijdrr.2014.08.004, 2014. 521 

Toya, H. and Skidmore, M.: Economic development and the impacts of natural disasters, Economics Letters, 94, 20–25. 522 

https://doi.org/10.1016/j.econlet.2006.06.020, 2007. 523 

United States National Hurricane Center.: Costliest, U.S. tropical cyclones tables update, Retrieved from 524 

https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf. Accessed May 31, 2021, 2018. 525 

Ulbrich, U., Fink, A. H., Klawa, M., and Pinto, G.: Archives of Ophthalmology, 117, 1661. 526 

https://doi.org/10.1001/archopht.117.12.1661, 1999. 527 

Yi, Y. and Zhang, W.: A new deep-learning-based approach for earthquake-triggered landslide detection from single-temporal 528 

RapidEye satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 529 

6166-6176, 2020. 530 

Zhang, Y., Shi, X., Zhang, H., Cao, Y., and Terzija, V.: Review on deep learning applications in frequency analysis and control 531 

of modern power system. International Journal of Electrical Power & Energy Systems, 136, 107744, 2022. 532 

 533 


