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Abstract. Due to gradual increases in the frequency and severity of natural disasters, risks to human life and property from 21 

natural disasters are exploding. To reduce these risks, various risk mitigation activities have been widely conducted. Risk 22 

mitigation activities are becoming more and more important for economic analysis of risk mitigation effects due to limited 23 

public budget and the need for economic development. To respond to this urgent need, this study aims to develop a strategic 24 

evaluation framework for natural disaster risk mitigation strategies. The proposed framework predicts natural disaster losses 25 

using a deep learning algorithm (stage I) and introduces a new methodology that quantifies the effect of natural disaster 26 

reduction projects adopting cost-benefit analysis (stage II). To achieve the main objectives of this study, data of insured loss 27 

amounts due to natural disasters associated with the identified risk indicators were collected and trained to develop the deep 28 

learning model. The robustness of the developed model was then scientifically validated. To demonstrate the proposed 29 

quantification methodology, reservoir maintenance projects affected by floods in South Korea were adopted. The results and 30 

main findings of this study can be used as valuable guidelines to establish natural disaster mitigation strategies. This study will 31 
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help practitioners quantify the loss from natural disasters and thus evaluate the effectiveness of risk reduction projects. This 32 

study will also assist decision-makers to improve the effectiveness of risk mitigation activities. Given trends in more frequent 33 

and severe natural disaster events, developing effective risk mitigation strategies is crucial to reduce negative economic 34 

impacts, due to the limited budget for rehabilitation. To address this need, this study aims to develop a strategic framework for 35 

natural disaster risk mitigation, highlighting two different strategic implementation processes (SIPs). SIP-1 is intended to 36 

improve the predictability of natural disaster-triggered financial losses using deep learning. To demonstrate SIP-1, SIP-1 37 

explores deep neural networks (DNNs) that learn storm and flood insurance loss ratios associated with selected major indicators 38 

and then develops an optimal DNN-driven learning model and generalizeses. SIP-2 underlines the risk mitigation strategy at 39 

the project level, by adopting a cost-benefit analysis method that quantifies the cost effectiveness of disaster prevention projects. 40 

In SIP-2, a case study of disaster risk reservoir projects in South Korea was adopted. The validated result of SIP-1 confirmed 41 

that the predictability of the developed DNN is more accurate and reliable than a traditional parametric model, while SIP-2 42 

revealed that maintenance projects are economically more beneficial in the long-term as the loss amount becomes smaller after 43 

8 years, coupled with the investment in the projects. The proposed framework is unique as it provides a combinational approach 44 

to mitigating economic damages caused by natural disasters at both financial loss and project levels. This study is its first kind 45 

and will help practitioners quantify the loss from natural disasters, while allowing them to evaluate the cost effectiveness of 46 

risk reduction projects through a holistic approach. 47 

 48 

Keywords. Natural disaster; risk mitigation strategy; economic damage; deep learning; cost-benefit analysis 49 

 50 

1 Introduction 51 

Over the past decades, 1.1 Natural disaster and risk 52 

Tthe frequency and intensity severity of extreme weather eventss due to climate change are rapidly increasing due to climate 53 

changes., These events represented by flooding, drought, heavy rain, tropical cyclone, heat waves or cold waves have often 54 

causedcausing various damages . These damages are expected to affect extreme weather events in the not only short term, with 55 

but also various long-term effects such as sea level rises and disease spreads.  Examples of extreme weather events include 56 

flooding, drought, heavy rain, tropical cyclone, heat waves, and cold waves. These extreme weather events are rapidly 57 

increasing losses associated with their increases in frequency and intensity. The negative impact of these event has been warned 58 

by the Intergovernmental Panel on Climate Change (The Fifth Assessment Report, 2014). Nevertheless, across the world, 59 

severe weather events such as typhoons, heavy rains and changing patterns of meteorological disasters have already increased 60 

the loss of many lives and built assets. These damages are still expected to be accelerated in coming future (Kim et al., 2020). 61 

 62 
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Given the continuous trend, it is well known that natural disaster-triggered losses Increases of these losses have are causingbeen 63 

very closely tied with many economic losses worldwide. For example, Western European countries such as France, Germany, 64 

and Switzerland were hit by three consecutive tropical cyclones (e.g., Anatol, Lothar, and Martin) in 1999, resulting in a loss 65 

of 13 billion euros (Ulbrich et al., 1999). Typhoon Haiyan, which hit the Philippines and China of South Asia in 2013, was 66 

one of Category 5 Super Typhoons, was the most extreme tropical cyclone recorded on land. The typhoon's life-threatening 67 

wind and rain were enough to smash properties. South Asian countries adjacent to the typhoon track inflicted about $300 68 

billion in damage (Kim et al., 2019). Hurricane Katrina that , which hit the the southeasternSouth Eastern areas in United 69 

States in 2005, caused the most severe damage in American historythe national historic record as . Hurricane Katrina was a 70 

Category 5 tropical cyclone. In detail, it e that had caused the US Gulf Coast city to have $180 billion in direct and indirect 71 

damages due to substantial rain and robust winds (Blake et al., 2007). Later, In the United States in 2017 solely, three different 72 

powerful strong hurricanes named by (Harvey, Maria, and Irma) caused together a total damage amount of about $293 billion, 73 

based on the individual damage amounts ofwith Harvey causing $125 billion by Harvey in damage, Maria causing $90 billion 74 

by Maria, and Irma $77.6 billion by Irma (USNHC, 2018).  75 

 76 

Moreover, over the past century, the severity and frequency of natural disasters worldwide have increased. Climate anomalies 77 

have also increased. The Intergovernmental Panel on Climate Change (The Fifth Assessment Report, 2014) has already warned 78 

of an increase in global average temperature, average sea level escalation, heating, and acidification. In many countries, severe 79 

weather events such as typhoons and heavy rains and changing patterns of meteorological disasters have already increased the 80 

loss of many lives and property. These damages are expected to accelerate in the future (Kim et al., 2020). 81 

 82 

ThereforeIn this sense, the quality of livesliving in the built environmentand property worldwide are has been threatened by 83 

natural disasters in the globe. Such threats will increase. To reduce these threats, numerous many of non-governmental 84 

organizations and countries are investinghave investigated  a lot ofin  prevention or post-disaster recovery strategies, on aspects 85 

of time, time, budget, and manpower to mitigate natural disaster risks from natural disasters. Mitigation of risks can reduce the 86 

loss by decreasing vulnerability or by decreasing the frequency and severity of causal factors (Rose et al., 2007). For risk 87 

mitigation, the execution and allocation of financial resources should be carried out quickly promptly and extensively, against 88 

the limited resources available.. In practice, the efficiency and amounts of financial resources should be considered due to 89 

limited resources. Hence, it is important to estimate strategically grasp the amount cost impact of natural disaster risks and the 90 

effect of risk reduction at the same time, specifically aiming at to achievinge the ultimate reduction and mitigation of risks 91 

through an efficient use of the limited resources. In other words, it is essential for risk mitigation against potential risks by 92 

predicting the exact amount of risk, which aims to make an active investment to reduce the predicted risk, and to find out the 93 

economic effect of the risk reduction. Consequently, as part of a case study on risk mitigation costs, this study developed a 94 

strategic framework by developing a natural disaster damage prediction model using deep learning algorithms and proposing 95 

a methodology to quantify the effect of natural disaster reduction through cost-benefit analysis.  96 
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 97 

2 Point of Departure: The need of more effective strategic framework for natural disaster risk mitigation  98 

 99 

2.11.2 Decision-support for Nnatural disaster risk mitigation strategies r loss quantification 100 

Given the increasing frequency and severity of natural disasters, the demand for sophisticated natural disaster loss forecasting 101 

also increases. In response to such demand, various companies and national organizations have developed models to predict 102 

natural disaster losses. The New Multi-Hazards and Multi-Risk Assessment Method for Europe (MATRIX) in Europe, the 103 

HAZUS-Multi Hazard (HAZUS-MH) by the Federal Emergency Management Agency (FEMA) in the United States, the 104 

RiskScape in New Zealand, and the Probabilistic Risk Assessment initiative in Central America are representative models 105 

(Kim et al., 2017). Florida, USA, has developed a Florida Public Hurricane Loss Model (FPHLM) to predict losses due to 106 

hurricanes as it is located on the main north-facing road of hurricanes (Kim et al., 2020). These models are being used in 107 

different regions to assess the loss of life and potential economic losses for buildings and infrastructure owing to natural 108 

disasters. Nevertheless, since these models were developed based on the vulnerability of natural disasters and the severity and 109 

frequency of natural disasters in specific areas, they could not be applied to other areas. 110 

 111 

Companies specializing in natural disaster risk modeling have also developed different models, including EQECAT, Applied 112 

Insurance Research (AIR), and RMS (Risk Management Solution) (Kunreuther et al., 2004; Sanders, 2002). These models are 113 

widely used by insurers and reinsurers around the world to assess the risk of economic loss from natural disasters (e.g., 114 

windstorms, earthquakes, floods, earthquakes, winter storms, and tornadoes). Nonetheless, these models have annual fees that 115 

are expensive to small and medium-sized users. In addition, these models are available only for the limited number of major 116 

countries (Europe, USA, Japan, China, etc.). In additionFurthermore, it is difficult to optimize them for users since they have 117 

difficulties to reflect a user's portfolio, capital, business preference, and so on (Kim et al., 2019). 118 

 119 

To reflect characteristics and vulnerabilities of each country associated with various situations of users, it is crucial to evaluate 120 

the loss through its own model. In order to develop a loss evaluation model, the development of an in-house model using a 121 

deep learning algorithm can be a solution. Recently, the 4th revolution technology (e.g., unmanned transportation, big data, 122 

artificial intelligence, IoT, robots, etc.) has been applied to various fields and its effectiveness has been recognized (Gledson 123 

and Greenwood, 2017; IPA, 2017). To effectively and efficiently analyze the complexity of various sensors-driven big data, 124 

the demand for deep learning applications has been increased dramatically. Given the increasing demand, many research efforts 125 

on applying deep learning techniques for risk assessment were made recently (Al Najar et al. 2021; Khosravi et al. 2020; Kim 126 

et al. 2021; Moishin et al. 2021; Shane Crawford et al. 2020; Sugiyarto and Rasjava 2020; Yi et al. 2020; Zhang et al. 2022).  127 



5 

 

Especially, for improved natural disaster risk assessment and mitigation, neural networks have been widely used for deep 128 

learning in various ways (Khosravi et al. 2020; Moishin et al. 2021; Shane Crawford et al. 2020; Yi et al. 2020). Some 129 

researchers developed deep learning models to predict flood events (Khosravi et al. 2020; Moishin et al. 2021). Khosravi et al. 130 

(2020) developed a flood susceptibility map using convolutional neural networks (CNN). More specifically, 769 historical 131 

flood locations in Iran were trained and tested based on amounts of soil moisture, slopes, curvatures, altitudes, rainfalls, 132 

geology, land use and vegetation, distances from roads and rivers. In addition, a hybrid deep learning algorithm integrating the 133 

merits of CNN and long short-term memory (LSTM) networks was built to manage flood risks by predicting future flood 134 

events, by training and testing daily rainfall data obtained from 11 sites in Fiji between 1990 and 2019 (Moishin et al. 2021). 135 

 136 

Other previous studies focused on post-disaster detection caused by landslides or tornados, which uses remote sensed data 137 

collected from satellites for deep learning (Al Najar et al. 2021; Shane Crawford et al. 2020; Yi et al. 2020). Shane Crawford 138 

et al. (2020) adopted CNN to classify damages of 15,945 buildings affected by the 2011 Tuscaloosa tornado in Alabama. To 139 

this end, the authors used satellited-driven images of trees as the damage classification indicator to estimate wind speeds. In 140 

addition, satellite images were embraced into the CNN-driven deep learning process to detect earthquake-induced landslides 141 

in China (Yi et al. 2020). More recently, Al Najar et al. (2021) estimated accurately ocean depths simulating remote sensed 142 

images using a deep learning technique, which overcomes drawbacks of traditional bathymetry measurement activities to track 143 

the physical evolution of coastal areas against any potential natural disasters or extreme storm events. Previous studies 144 

reviewed reveal consistently that deep learning techniques can overcome shortcomings of existing methods and thus to provide 145 

more accurate and reliable decision-support models for risk assessment and risk-informed mitigation strategies. 146 

 147 

In addition to applications of deep learning for location detection or event prediction-focused, as stated earlier, it is important 148 

to quantify negative economic impacts caused by natural disasters. Given the importance of economic damage aspects, Kim 149 

et al. (2021) applied a deep learning technique as a cost-effective and risk-informed facilities management solution. In detail, 150 

the authors generalized maintenance and repair costs of educational facilities in Canada, using deep neural networks that learn 151 

sets of maintenance and repair records, asset values, natural hazards such as tornados, lightening, hails, floods, and storms. In 152 

this sense, this study proposed a deep learning modeling framework to predict financial losses caused by natural disasters.In 153 

this sense, this study proposed a framework for developing a natural disaster risk quantification model based on deep learning 154 

technology to predict losses due to natural disasters. 155 

 156 

 157 

2.21.3 Investment strategies for Cost-benefit analysis of natural disaster risk mitigation 158 

Mitigating the risk with efficient investment and operation of resources is a challenging task because resources are finite while 159 

risk reduction should be done made quickly and extensivelyin a timely manner, with the limited financial resources. To address 160 
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these issues, cost-benefit analysis has been widely adopted (FEMA, 2005; Rose et al., 2007). For instance, efficient use of 161 

public resources is indicated when total estimated profits of a risk mitigation activity surpass the entire cost or are parallel to 162 

earnings on investment of both private and public. 163 

 164 

Disaster risk mitigation represents mitigating social, environmental, and economic damage caused by natural disasters. Since 165 

economic losses due to natural disasters are hard to minimize or avoid separately, there is an increasing public demand for risk 166 

reduction investments to reduce these economic losses (Bouwer et al., 2007; Shreve and Kelman, 2014). Since resources for 167 

risk mitigation investment are restricted, it is critical to estimate economic costs and benefits in order to determine the 168 

effectiveness and appropriateness of the investment. For instance, the Federal Emergency Management Agency of the United 169 

States has reported that the average benefit costcost-benefit ratio is 4 for risk mitigation investment (e.g., structural 170 

defensedefence measures against floods and typhoons, building renovations in preparation for earthquakes, etc.) after 171 

reviewing 4,000 natural disaster risk reduction programs in the United States ( Kunreuther et al., 2012; Rose et al., 2007). In 172 

addition, studies in developing countries have shown a high cost-benefitbenefit cost ratio in a study of 21 investment activities 173 

such as re-establishment of schools and forestry in preparation for tsunami (Bouwer et al., 2014). 174 

 175 

Despite these high potential benefits, investment in risk reduction for residents living in areas at risk of natural disasters is 176 

restricted (Bouwer et al., 2014). According to Hochrainer-Stigler et al. (2010), since natural disaster risk reduction measures 177 

are focused on short-term outcomes, only about 10% of residents in areas vulnerable to natural disasters receive natural disaster 178 

risk reduction measures in the United States. In the case of a natural disaster risk reduction project, a large initial investment 179 

is required, which reduces the expected profit if performance indicators need to be met in a short period of time. As a result, 180 

policy makers and politicians are reluctant to make bold investments in natural disaster risk reduction. They prefer to provide 181 

economic support after disasters (Cavallo et al., 2013). This phenomenon is also reflected in the budget distribution of disaster 182 

management funds of donations and development agencies. Most (98%) of the budget is allocated to reconstruction or relief. 183 

Only the remaining budget (2%) is allocated to risk reduction (Mechler, 2005). As such, while the need for pre-disaster risk 184 

reduction through proactive disaster investment is widely recognized, the economic impact of natural disaster risk reduction 185 

is often not fully considered in decision-making. Moreover, although cost-benefit analysis (CBA) is the main decision-making 186 

tool commonly used in public sector investment and financial evaluations by public sectors, natural disaster risk is not 187 

sufficiently applied in the  CBA cost-benefit analysis (Hochrainer-Stigler et al., 2010). Natural disasters in public sectors’ 188 

investment projects are were often overlooked or not evaluated in based on the cost-to-benefit comparisonCBA assessments 189 

(Kreimer et al., 2003). HenceIn turn, in this study,this study explored the effectiveness of a natural disaster risk reduction 190 

projects and analyzed the cost effectiveness of the projects  adopting a cost-benefit analysis methodwas determined through a 191 

case study of cost-benefit analysis conducted by the Korean government is considered and a methodology for calculating 192 

dismissal was presented. 193 
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2 3 Research objectives and methods 194 

Given trends in more frequent and severe natural disaster events, developing effective natural disaster risk mitigation strategies 195 

is crucial to reduce negative economic impacts on built assets, due to the limited budget for rehabilitation. To address this need, 196 

this study aims to develop a strategic framework for natural disaster risk mitigation, highlighting two different strategic 197 

implementation processes (SIPs), as depicted in Figure 1.  198 

 199 

 200 

Figure 1. Research framework 201 

 202 

More specifically, SIP-1 is intended to improve the predictability of natural disaster-triggered financial loss model. To this 203 

end, SIP-1 develops a deep neural network (DNN) model that learns insurance loss amounts to generalize loss ratios, associated 204 

with major indicators including rainfall, wind, and ground acceleration. To reduce economic losses caused by natural disasters, 205 

it is necessary to quantify losses caused by natural disasters and make active investments to reduce risks. Therefore, for 206 

economic analysis of losses from natural disasters, this study attempted to examine the investment effects, predict losses caused 207 

by natural disasters. The main objectives of this study are to develop a strategic framework that predicts natural disaster losses 208 

using a deep learning algorithm and introduces a methodology to quantify the effect of natural disaster reduction projects using 209 

cost-benefit analysis. To achieve the main objective of this study, a two-stage approach was adopted. 210 

 211 

To demonstrate In SIP-1Stage I, this study collected reliable storm and flood damage insurance data and natural disaster risk 212 

indicators, created a predictive model based onusing a deep learning algorithm, and verifiedvalidate the improved predictability 213 

of the model, . This study proposed a deep learning modeling framework that could accurately learn and predict multiple 214 

natural disaster indicators known to affect losses caused by natural disasters. The first research objective was achieved through 215 

the following steps: 216 
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1) To collect data on loss caused by natural disasters, this study collected data on claim payout for storm and flood 217 

damage insurance from the Korea Insurance Development Institute (KIDI) over the past11 years between 2009 and 218 

2019. 219 

2) This study obtained natural disaster risk indicators based on the collected data. 220 

3) A model of deep learning algorithm was developed using Python 3.7, Keras, and Scikit-Learn libraries. The model 221 

was trained, tested, and validated using the collected data. 222 

4) A multiple regression model was independently developed using IBM Statistical Package for the Social Sciences 223 

(SPSS) version 23 for model validation. 224 

5) The root mean squared error and mean absolute error values of the deep learning algorithm model and the multiple 225 

regression analysis model were estimated and paralleled, respectively. 226 

5)  227 

Compared to SIP-1, SIP-2 underlines the risk mitigation strategy at the project level, by proposing a methodological 228 

implementation process for quantifying the cost effectiveness of natural disaster risk reduction by adopting a cost-benefit 229 

analysis method that quantifies the cost effectiveness of disaster prevention project. To demonstrate SIP-2, a case study of 230 

disaster risk reservoir maintenance projects completed in South Korea was adopted, In Stage II, through the following stepsdata 231 

on natural disaster risk reduction projects conducted by national institutions were collected and cost-benefit analysis was 232 

performed for cost of natural disaster risk reduction. This study intended to propose a framework for quantifying the economic 233 

cost of natural disaster risk reduction. To realize the goal of this study, the following steps were used. In addition, this study 234 

intended to propose a framework for quantifying the economic cost of natural disaster risk reduction. The second objective of 235 

this study was achieved through the following steps: 236 

1) Among natural disaster risk reduction projects carried out by the South Korean government, information on disaster 237 

risk reservoir maintenance projects completed in 2009-2019 was collected. 238 

2) The loss rate of storm and flood insurance in the region where the flood damage occurred after the completion of the 239 

maintenance project was investigated through the Korea Insurance Development Institute (KIDI). 240 

3) The amount of precipitation before and after the disaster risk reservoir maintenance project was investigated. 241 

4) Cost-benefit analysis was conducted to determine the economic feasibility of the maintenance project. 242 

4)  243 

3 4 SIP-1: Improving the predictability of Stage I: Development of a natural disaster-induced financial  loss values 244 

using deep learningprediction model 245 

SIP-1 aims to explore deep learning-driven modelling processes and develop an optimal learning model that can improve the 246 

predictability of natural disaster-triggered financial losses. To demonstrate SIP-1, the loss amounts of storm and flood 247 

insurance were learned, and the corresponding loss ratios were generalized associated with the selected risk indicators by the 248 

서식 있음: 들여쓰기: 왼쪽:  1.41 cm,  글머리 기호 또는 번호 없이

서식 있음: 표준,  글머리 기호 또는 번호 없이

서식 있음: 표준
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property type. To scientifically validate the robustness of the learning model, the prediction results were compared with a 249 

conventional parametric model underpinned by multiple regression analysis. 250 

34.1 Data collection 251 

This section develops and validates a deep learning algorithm model that can efficiently and accurately predict losses due to 252 

natural disasters based on data about the loss amount of flood insurance with high reliability. To collect such data, this study 253 

used A total of 458 KIDI's storm and flood damage insurance claims for 11 years from 2009 to 2019 was collected from KIDI’s 254 

data sets. KIDI was established in 1983. It is an insurance professional service organization that develops insurance products, 255 

calculates insurance rates, and protects the rights of policyholders. It also collects and manages various statistical data such as 256 

insurance information and losses of each insurance company (Choi and Han, 2015). Storm and flood damage insurance, which 257 

reflects the loss amount, is an insurance that compensates for property damage caused by natural disasters (e.g., typhoons, 258 

floods, heavy rains, tsunamis, strong winds, storms, heavy snow, earthquakes, and so on). It has been implemented since 2006 259 

under the initiative of state and local governments (Kwon and Oh, 2018). The insurance payout amount is determined by 260 

objective analysis of certified loss assessment service according to standardized procedures for each insurance company. Its 261 

reliability is high (Kim et al., 2020). The collected data information includes the total loss amounts, the total net premiums, 262 

building types, and location profiles, which is publicly available. The prediction model was trained, tested, and validated using 263 

losses and natural disaster risk indicators. 264 

 265 

The cost of loss due to natural disasters was divided by the total net premiums to calculate the ratio and then log-transformed, 266 

which distribution of the data is shown in Figure 2. In addition, natural disaster risk indicators affecting insurance loss due to 267 

natural disasters were collected. For natural disaster risk indicators, building type, wind speed, total rainfall, and peak ground 268 

acceleration were selected as variables through past literature studies (Kim et al., 2017, 2019; Kim et al., 2020; Kim et al., 269 

2021). Figure 3 shows the distributions of the selected indicators. A description of variables is presented in Table 1. Building 270 

types were set as dummy variables that consist of residential buildings and greenhouses. Wind speed and the maximum value 271 

of rainfalls were collected from the Korea Meteorological Administration (KMA). Peak ground accelerations were collected 272 

from the National Oceanic and Atmospheric Administration (NOAA). Accordingly, Table 2 summarises Dthe descriptive 273 

statistics of variables are displayed in Table 2. 274 

 275 
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 276 

Figure 2. Distribution of the insurance loss ratio record 277 

 278 

  

(a) Wind speed (m/s) (b) Rainfall (mm/day) 서식 있음: 글꼴: 10 pt
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(c) Peak ground acceleration (g) (d) Building type (1: residential; 2: greenhouse) 

Figure 3. Distributions of the indicators to learn the loss ratios 279 

 280 

Table 1. Description of variables 281 

Variable Explanation 

Loss ratio  Total loss divided by the total net premium (Amount unit: KRW, log-transformed) 

Building type Buildings covered by storm and flood insurance  

(Categorical variable - Residential building: 1; Greenhouse: 2) 

Wind speed 10-minute average maximum wind speed (m/s) 

Rainfall Maximum precipitation per day (mm/day) 

Peak Ground ground 

Accelerationacceleration 

Value of Peak peak Ground ground Acceleration acceleration (PGA) (g) 

 282 

Table 2. Descriptive statistics of variables by the building type (i.e., residential building and greenhouse) 283 

Variable  

(Uunit) 

NSample 

size 
Minimum Maximum Mean Std. Deviation 

Loss ratio  

(Llog-transformed valueKRW)) 
458 -5.12 3.17 -0.66 1.01 

Building type 

(1: residential; 2: greenhouse) 
458 - - - - 

Wind speed  

(m/s) 
458 20.80 39.20 29.21 3.17 

Rainfall  

(mm/day) 
458 172.00 801.20 319.02 68.57 

서식 있음: 글꼴: 10 pt

서식 있음: 글꼴: 10 pt

서식 있음: 글꼴: 10 pt

서식 있음: 글꼴: 10 pt

서식 있음: 가운데

서식 있는 표

서식 있는 표
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Peak ground acceleration  

(g) 
458 0.10 1.60 1.10 0.25 

 284 

34.2 Modeling Modelling deep neural networks 285 

A deep learning algorithm is a neural network with many layers and various structures in general. Its use in research and 286 

industry for prediction and recognition has spread rapidly, proving its effectiveness (Kim et al., 2021). Deep learning 287 

algorithms are also widely used for regression analysis and type classification as a machine learning technique (Ajayi et al., 288 

2019). Deep learning models have the same training framework as other types of neural networks. However, they can train 289 

large data sets more effectively with multiple hidden layers (Bae et al., 2021). Deep learning algorithms can be divided into 290 

deep neural network (DNN), generative adversarial network (GAN), recurrent neural network (RNN), convolutional neural 291 

network (CNN), and auto encoder (AE) according to their structure and processing method (Kim et al., 2021). Especially, 292 

DNN is used for cataloguing and prediction in various engineering and academic fields (Krizhevsky et al., 2012; Toya and 293 

Skidmore, 2007). Moreover, DNNs can be applied to train and model complex nonlinear relationships due to their multi-294 

layered structures. Thus, in this study, a DNN model was accepted considering nonlinearity of collected loss data. 295 

 296 

The learning performance of the model was appraised by measuring the values of root mean squared error (RMSE) and mean 297 

absolute error (MAE). RMSE and MAE are representative indicators of the size of the error by comparing the predicted result 298 

of an artificial neural network with the actual value (Daniell et al., 2011). RMSE is a value that measures the average error 299 

magnitude. MAE is a value obtained by converting the difference between the actual value and the predicted value into an 300 

absolute value and averaging it. Both indicators can be used to indicate that the prediction error decreases as the error value 301 

gets smaller (e.g., closer to zero). 302 

 303 

The collected loss data were pre-processed using a z-score normalization method to adjust the unit and quantity of the data. 304 

The pre-processed completed input data were divided into a training set, a verification set, and a test set of data. The training 305 

set of data were used for learning of the DNN algorithm. The verification set of data were used to judge whether training was 306 

optimal and the test set of data were used to verify whether the developed model was finally trained for the purpose. In this 307 

study, considering the amount of data, 70% of the total data were set as training set of data and 30% of them were used as test 308 

set of data. Then 30% of training data were utilized as verification data. 309 

 310 

The DNN model selected the optimal combination through a trial-and-error method since the DNN model could update the 311 

weights of neural network nodes with a backpropagation algorithm. Since various combinations were possible depending on 312 

the input variable and the output variable, it was necessary to find the optimal combination through the trial-and-error method. 313 

For such an optimal combination, it is necessary to define the network structure scenario for setting the number of layers and 314 

서식 있음: 글꼴: 기울임꼴
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nodes and defining hyper parameters such as optimizers, activation functions, and dropouts (Cavallo et al., 2013). This study 315 

adopted a network structure scenario with three hidden layers considering data characteristics. Dropout is a regularization 316 

penalty to avoid overfitting. It was set to reduce prediction errors caused by overfitting. In this study, making an allowance for 317 

the amount of training data, dropout was set to 0 and 0.2 and simulated. The ReLu (Rectified Linear Unit) function was utilized 318 

as the activation function, a method of adjusting the weight of each node for optimal learning. The ReLu function allows the 319 

input value to change when the input value is greater than 0 or less than 0. It was established to resolve the problem of gradient 320 

loss of the existing Sigmoid function (Krizhevsky et al., 2012). The Adaptive Moment Estimation (Adam) method as accepted 321 

as the optimizer (Krizhevsky et al., 2012). Optimizer is used for speed and stability of learning. The Adam Method is a widely 322 

assumed algorithm since its development in 2015 (Kingma and Ba, 2015). The batch was defined as 5 as a data group 323 

designation for efficient learning and the number of epochs was designated as 1,000 for the number of learning (Bae and Yoo, 324 

2018; Ryu et al., 2018). 325 

 326 

34.3 Development Exploring DNNs and developing of the DNN model 327 

Table 3 shows MAE and RMSE values according to the network structure and dropout. Amongst outcomes, the model with 328 

the minimum MAE and RMSE was adopted as the final structure. As the number of hidden layer nodes increased, the MAE 329 

and RMSE values fluctuated slightly. However, the number of hidden layer nodes was minimized at 25-25-25. When the 330 

dropout was 0, MAE and RMSE values were commonly lesser than when the dropout was 0.2. It could be realized that when 331 

the number of hidden layer nodes was 25-25-25 and the dropout was 0.0, both MAE and RMSE had minimum values. 332 

Consequently, in the final structure, the number of nodes was 25-25-25 and the dropout was 0. Table 4 and Figure 4 333 

demonstrateions the network structure and hyper parameter configuration of the optimization model.l. 334 

 335 

Table 3. Training results 336 

Network Structure  

Scenario 

Dropout (0) Dropout (0.2) 

MAE RMSE MAE RMSE 

5-5-5 0.521 0.484 0.521 0.484 

10-10-10 0.498 0.468 0.524 0.484 

15-15-15 0.521 0.484 0.523 0.487 

20-20-20 0.522 0.484 0.521 0.484 

25-25-25 0.476 0.461 0.521 0.484 

30-30-30 0.521 0.484 0.521 0.484 

35-35-35 0.521 0.484 0.522 0.484 
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40-40-40 0.521 0.484 0.521 0.484 

50-50-50 0.521 0.484 0.522 0.484 

 337 

Table 4. Network structure and hyper parameter formation of the final model 338 

Category Configuration Feature 

Network structure 
Number of Hidden Layer 3 

Node  25-25-25 

Hyper-parameter 

Dropout 0.0 

Activation Function ReLu (Rectified Linear Unit) 

Optimizer  Adam (Adaptive Moment Estimation)  

Epoch 1000  

Batch Size 5 

 339 

 340 

Figure 4. Final model of deep neural networks 341 

34.4 The robustness validation of the final DNN model 342 

An MRA (Multiple Regression Analysis) model was added for systematic validation of the final DNN model. MAE and RMSE 343 

values of these two models were compared. The MRA method is widely adopted as an essential method for numerical 344 

prediction models (Kim et al., 2021). Table 5 displays validation results of these models. Results of the DNN model showed 345 
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MAE of 0.531 and RMSE of 0.480 with the verification set of data. For the test set of data, results showed MAE of 0.452 and 346 

RMSE of 0.435. There was no significant difference in MAE or RMSE between results with the test set of data and those with 347 

the verification set of data since the overfitting problem of the final model could be overlooked. In addition, the MRA model 348 

showed an MAE of 0.533 and a RMSE of 0.484. Equating outcomes of the DNN model and the MRA model, it was found 349 

that the DNN model had meaningfully minor prediction error rates of 15.2% MAE and 10.12% RMSE than the MRA model. 350 

 351 

Table 5. Results with the validation set and test set of data 352 

ModelAn Validation Set Test Set 

MAE RMSE MAE RMSE 

DNN 0.531 0.480 0.452 0.435 

MRA - - 0.533 0.484 

DNN/MRA (%)   -15.20% -10.12% 

4 5 SIP-2: Quantifying the cost effectiveness of Stage II: Cost-Benefit analysis of nanatural disaster risk reduction 353 

projects using cost-benefit analysis 354 

Management of a disaster risk reservoir is a part of the disaster prevention project. According to the Special Act on the Disaster 355 

Risk Reduction Project and Relocation Measures, the purpose of disaster prevention measures necessary for improving the 356 

disaster risk area is for fundamental prevention and permanent recovery of disasters. The disaster prevention project was started 357 

in 1998 when the Disaster Response Division of the Ministry of Government Administration and Home Affairs discovered 358 

disaster-prone facilities and areas with risk of human casualties and provided government funds for the maintenance of natural 359 

disaster risk areas for systematic management and prompt resolution of disaster risk factors (Lee, 2017). Disaster prevention 360 

projects include natural disaster risk improvement districts, disaster risk reservoirs, steep slope collapse risk areas, small rivers, 361 

and rainwater storage facilities (Kim et al., 2019). Given the significance of disaster prevention projects, SIP-2 examines 362 

economic effects through cost-benefit analysis of natural disaster risk reduction projects to reduce losses from natural disasters. 363 

To demonstrate SIP-2, a cost-benefit analysis was conducted for the natural disaster reduction project by comparing losses 364 

from storm and flood insurance before and after the disaster risk reservoir maintenance project. 365 

 366 

5.1 Data collection and investigation of historical record 367 

Among natural disaster risk reduction projects carried out by the South Korean government, the data set of disaster risk 368 

reservoir maintenance projects completed in 2009-2019 was extracted from the Public Data Portal (data.go.kr) managed by 369 

the South Korean government to collect and provide public data created or acquired by public institutions in one place. The 370 

system was established in 2011 to provide public data in the form of file data, visualization, and open API (Application 371 

Programming Interface) (Closs et al., 2014). During the study period of 2009-2019, 474 reservoirs were designated as disaster 372 
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risk reservoirs and 290 maintenance projects were initiated. Among them, a total of 12 areas were flooded before and after the 373 

completion of the disaster risk reservoir maintenance project. Table 6 shows the loss rate and maximum precipitation at the 374 

time of flooding before and after completion of the maintenance projects in these 12 areas. Data about the loss amounts from 375 

storm and flood insurance were obtained from KIDI. Precipitation data were collected from KMA and the maximum daily 376 

precipitation at the time of the flooding was used. Insured loss was expressed as a rate of the incurred loss divided by the 377 

accrued premium. The loss rate before the maintenance project was 34.32% on average, while that after the maintenance 378 

project was completed was 5.9% on average, showing a sharp decrease of 82.8% on average. 379 

This section examines economic effects through cost-benefit analysis of natural disaster risk reduction projects to reduce losses 380 

from natural disasters. To gather data, among natural disaster risk reduction projects carried out by the South Korean 381 

government, information on disaster risk reservoir maintenance projects completed in 2009-2019 was collected from the Public 382 

Data Portal (data.go.kr) managed by the South Korean government to collect and provide public data created or acquired by 383 

public institutions in one place. The system was established in 2011 to provide public data in the form of file data, visualization, 384 

and open API (Application Programming Interface) (Closs et al., 2014).  385 

 386 

Management of a disaster risk reservoir is a part of the disaster prevention project. According to the Special Act on the Disaster 387 

Risk Reduction Project and Relocation Measures, the purpose of disaster prevention measures necessary for improving the 388 

disaster risk area is for fundamental prevention and permanent recovery of disasters. The disaster prevention project was started 389 

in 1998 when the Disaster Response Division of the Ministry of Government Administration and Home Affairs discovered 390 

disaster-prone facilities and areas with risk of human casualties and provided government funds for the maintenance of natural 391 

disaster risk areas for systematic management and prompt resolution of disaster risk factors (Lee, 2017). Disaster prevention 392 

projects include natural disaster risk improvement districts, disaster risk reservoirs, steep slope collapse risk areas, small rivers, 393 

and rainwater storage facilities (Kim et al., 2019). In this paper, a cost-benefit analysis was conducted for the natural disaster 394 

reduction project by comparing losses from storm and flood insurance before and after the disaster risk reservoir maintenance 395 

project. During the study period of 2009-2019, 474 reservoirs were designated as disaster risk reservoirs and 290 maintenance 396 

projects were initiated. Among them, a total of 12 areas were flooded before and after the completion of the disaster risk 397 

reservoir maintenance project. Table 6 shows the loss rate and maximum precipitation at the time of flooding before and after 398 

completion of the maintenance projects in these 12 areas. Data about the loss amounts from storm and flood insurance were 399 

obtained from KIDI. Precipitation data were collected from KMA and the maximum daily precipitation at the time of the 400 

flooding was used. Insured loss was expressed as a rate of the incurred loss divided by the accrued premium. The loss rate 401 

before the maintenance project was 34.32% on average, while that after the maintenance project was completed was 5.9% on 402 

average, showing a sharp decrease of 82.8% on average. However, when data of precipitation as the main cause of flooding 403 

accidents during flood damage were compared, the average precipitation was 331 mm/day before the maintenance project and 404 

215 mm/day after the maintenance project. It could be seen that the amount of precipitation was decreased by 35% when flood 405 

damage occurred after the maintenance project. The sharp decrease in the loss rate after the maintenance project could be due 406 
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to the effect of the maintenance project. It could also be attributed to a relatively small amount of precipitation compared to 407 

that before the maintenance project. Therefore, it is difficult to conclude that the decreased loss rate is due to the effect of 408 

reducing storm and flood damage caused by the maintenance project. 409 

Table 6. Comparison of loss rate and precipitation before and after maintenance projects in flooded regions in South Korea 410 

No Region 
Loss rate Precipitation (mm/day) 

Before (%) After (%) Before After  

1 Yongin City 47.40% 20.60% 425 188 

2 Nonsan City 30.10% 0.80% 334 306 

3 Wanju-gun 40.70% 3.40% 364 142 

4 Gangjin-gun 76.30% 0.40% 235 166 

5 Sejong City 7.30% 4.90% 257 223 

6 Muan-gun 25.80% 2.00% 285 192 

7 Hampyeong-gun 23.80% 10.30% 301 230 

8 Gyeongju City 33.10% 1.20% 488 280 

9 Changwon City 10.60% 10.70% 300 266 

10 Namhae City 22.10% 8.50% 324 231 

11 Naju City 53.90% 5.10% 330 106 

12 Goheung-gun 40.70% 3.00% 325 249 

    Average (%) 34.32% 5.9% 331 215 

     After/Before (%)  82.8%  35.0% 

 411 

5.2 Cost-benefit analysis and results of natural disaster risk reduction projects 412 

As seen in Table 6, when data of precipitation as the main cause of flooding accidents during flood damage were compared, 413 

the average precipitation was 331 mm/day before the maintenance project and 215 mm/day after the maintenance project. It 414 

could be seen that the amount of precipitation was decreased by 35% when flood damage occurred after the maintenance 415 

project. The sharp decrease in the loss rate after the maintenance project could be due to not only the effect of maintenance 416 

project, but also decreased rainfalls. In turn, it is difficult to conclude that the decreased loss rate is due to the effect of reducing 417 

storm and flood damage caused by the maintenance project. 418 

 419 

To analyze the cost effectiveness of the maintenance projects in flood regions, a cost-benefit analysis method using an equal-420 

payment-series present-worth factor was adopted. The present-worth factor, assuming an annual loss rate i, is a coefficient 421 

used to find the present value corresponding to annual equivalent loss A for the next n years. Eq. (1) presents a widely used 422 

concept in economic analysis (Park & Sharp, 2021): 423 

Therefore, cost-benefit analysis was conducted to analyze the economic effect. Equal-payment-series present-worth factor was 424 

used for cost-benefit analysis. Equal-payment-series present-worth factor, assuming an annual loss rate i, is a coefficient used 425 
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to find the present value corresponding to annual equivalent loss A for the next n years. Eq. (1) presents a widely used concept 426 

in economic analysis (Park and Sharp, 2021): 427 

𝑃 =  𝐴[(1+𝑖)𝑛−1)]

𝑖(1+𝑖)𝑛                                                                           428 

(1) 429 

 430 

Where: 431 

P: Present value 432 

A: Annual loss amount 433 

Ii: Loss rate 434 

n: Year  435 

 436 

The initial cost of each maintenance project was collected through The Public Data Portal and the average cost of the 437 

maintenance project was calculated. For the loss rate, the average loss rate of the loss area was used. For the annual loss amount, 438 

the average annual loss for the study period (2009-2019) was used as seen in Ttable 7. However, it was assumed that no 439 

additional costs incurred due to the maintenance project. Figure 1 5 shows calculation results before and after the maintenance 440 

projects, which reveals that . As can be seen from Figure 1, the loss amount becomes smaller after 8 years due to investment 441 

through the maintenance projects. 442 

 443 

Table 7. Summary of inputs 444 

 Input Before After 

Initial cost - 22.088* 

Loss rate 0.343 0.059 

Annual loss amount 0.371* 0.006* 
* Billion KRW 445 

 446 
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 447 

Figure 15. Comparison of losses before and after the maintenance projects. 448 

5 6 Discussion 449 

Within the proposed strategic framework, In Stage I, this studySIP-1 developed aan improved model for predicting economic 450 

losses due to natural disasters using the DNN algorithm among deep learning algorithms. For model development, insurance 451 

company’s storm and flood damage insurance loss records were used to collect economic losses caused by actual natural 452 

disasters. After developing a DNN algorithm model and training it with collected data, the final network model was validated 453 

selected by comparing different modelswith other DNN alternatives. To scientifically validate the improved predictability, the 454 

performance (i.e., actual-to-predicted comparison using MAE and RMSE methods) of the developed DNN model was 455 

compared with a parametric model underpinned by MRA. The results revealed that the DNN model was 15.2% less in the 456 

MAE and 10.12% less in the RMSE, compared to the MRA model. These results confirm that deep learning can produce more 457 

accurate and reliable prediction results of natural disaster-induced economic loss values associated with non-linear 458 

characteristics of risk indicators. It is noteworthy that the proposed implementation process is applicable to various natural 459 

disaster-triggered loss predictions, as the amount and its fluctuation of losses are diverse dependant on various types and 460 

strengths of natural disasters. In this sense, the proposed SIP-1 will help In addition, network scenarios and hyper-parameters 461 

were found using the trial-and-error method to derive the optimal model. The DNN model was 15.2% less in the MAE and 462 

10.12% less in the RMSE than the MRA model. As shown in prediction results, the non-parametric model DNN was more 463 

proper than the parametric model MRA model for the economic loss analysis of natural disasters with non-linear characteristics. 464 

These results also indicate that the DNN model has higher reliability than other models in identifying financial losses due to 465 

natural disasters. Due to the nature of natural disasters, the loss is very diverse. Thus, the prediction error value can be very 466 

large. It can be seen that the DNN model reflects this diversity of natural disaster losses well. By using the development model 467 

and the methodology described in this study, natural disaster risk managers will be able to predict the financial loss cost of 468 
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natural disasters or develop an optimally customized deep learning prediction model according to user conditionsby adopting 469 

deep learning. It can also be used as a reference when developing systems or modelsrisk reduction investment plans or financial 470 

guideline for  predicting natural disaster losses in a public andor private sectors. For example, by applying this implementation 471 

process, it would be possible Based on this sophisticated economic loss prediction, it will be possible to estimate reliably the 472 

negative impact of natural disaster events on existing financial management practices and thus make decisions proactively 473 

foron the most feasible active risk reduction investment plan that . Such investment can strengthen natural disaster risk 474 

management and reduce the amount of risk, ultimately reducing the economic loss caused by natural disasters. Based on the 475 

well-developed financial guideline, it would be possible to avoid any transfers of unexpected financial losses from insurance 476 

coverages or special purchases suitable for expected losses. Despite the merit of SIP-1, there still remain some limitations. For 477 

example, it will be possible to calculate the amount of economic loss in an area expected to be flooded in advance and establish 478 

a preventive strategy for loss measures and appropriate facility investment according to the expected loss amount. Moreover, 479 

such loss forecasting can help prepare financial guidelines such as emergency reserves and budgeting. It can also be used to 480 

prepare budget guidelines according to the calculated expected loss and manage business continuity. In addition, according to 481 

established financial guidelines, it will be helpful for strategies to avoid and transfer financial losses through insurance 482 

coverage or special purchases suitable for expected losses. These activities can ultimately reduce the risk of financial loss due 483 

to natural disasters. Nevertheless, this study has some limitations. First, owing to the limited data set, it was problematic to 484 

accumulate different data sets. Additional research in the future is needed to parallel and prove loss records in other countries 485 

or regions. In addition, further research is required to increase the amount of available data and upgrade the model through the 486 

introduction of additional variables to more precisely predict losses from natural disasters using deep learning algorithms.  487 

 488 

Compared to SIP-1, SIP-2 proposed a new methodology that can quantify the cost effectiveness of natural disaster risk 489 

reduction projects through the cost-benefit analysis. To demonstrate SIP-2, among natural disaster risk reduction projects were 490 

implemented in South Korea, specific information of the disaster risk reservoir maintenance projects where flood damage 491 

occurred before and after completion was collected. Then, to identify benefits and costs, corresponding loss rates and daily 492 

precipitation amounts were investigated and compared at the project level. Lastly, the cost effectiveness of the projects was 493 

analyzed using a cost-benefit analysis method. As the result of cost-benefit analysis, in the short term, the loss after the 494 

maintenance project was greater than that before the maintenance project. However, this was reversed from 8 years after the 495 

maintenance project and the loss amount before the maintenance project was larger than that after the maintenance project. 496 

Although it is difficult to expect profits from the maintenance project in the short term, it can be seen that the maintenance 497 

project is economically beneficial in the long term (8 years or more). SIP-2 would be useful for making sounder decisions on 498 

natural disaster management policy and natural disaster risk reduction project investment plans. Evaluating the effectiveness 499 

of risk reduction through SIP-2 will lead to drastic investment, which will ultimately reduce the amount of natural disaster 500 

risks. However, it should be noted that the study period shown in the SIP-2 case study was relatively short, while the location 501 

of project samples was limited to South Korea. In addition, it was assumed that the inflation rate is identical during the study 502 
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period. In turn, it is necessary to conduct additional analyses considering various locations venerable to natural disasters in 503 

other countries and more realistic financial loss values using a net present value concept. 504 

Based on this sophisticated economic loss prediction, it will be possible to make decisions for active risk reduction investment. 505 

Such investment can strengthen natural disaster risk management and reduce the amount of risk, ultimately reducing the 506 

economic loss caused by natural disasters. For example, it will be possible to calculate the amount of economic loss in an area 507 

expected to be flooded in advance and establish a preventive strategy for loss measures and appropriate facility investment 508 

according to the expected loss amount. Moreover, such loss forecasting can help prepare financial guidelines such as 509 

emergency reserves and budgeting. It can also be used to prepare budget guidelines according to the calculated expected loss 510 

and manage business continuity. In addition, according to established financial guidelines, it will be helpful for strategies to 511 

avoid and transfer financial losses through insurance coverage or special purchases suitable for expected losses. These 512 

activities can ultimately reduce the risk of financial loss due to natural disasters. Nevertheless, this study has some limitations. 513 

First, owing to the limited data set, it was problematic to accumulate different data sets. Additional research in the future is 514 

needed to parallel and prove loss records in other countries or regions. In addition, further research is required to increase the 515 

amount of available data and upgrade the model through the introduction of additional variables to more precisely predict 516 

losses from natural disasters using deep learning algorithms.  517 

 518 

In Stage II, a methodology was proposed to quantify the effectiveness of natural disaster risk reduction projects using cost-519 

benefit analysis. Among natural disaster risk reduction projects were implemented in South Korea, information was collected 520 

and analyzed for the disaster risk reservoir maintenance project where flood damage occurred before and after completion. To 521 

analyze benefits and costs, this study collected and analyzed the loss rate and precipitation from wind and flood damage before 522 

and after the maintenance project in the target area and judged the efficiency of the maintenance project. As a result of CBA 523 

analysis, in the short term, the loss after the maintenance project was greater than that before the maintenance project. However, 524 

this was reversed from 8 years after the maintenance project and the loss amount before the maintenance project was larger 525 

than that after the maintenance project. Although it is difficult to expect profits from the maintenance project in the short term, 526 

it can be seen that the maintenance project is economically beneficial in the long term (8 years or more). Results and 527 

methodology of this study will be helpful for decision making of natural disaster management policy and natural disaster risk 528 

reduction project investment. Evaluating the effectiveness of risk reduction through this analysis will lead to drastic investment, 529 

which will ultimately reduce the amount of natural disaster risk. However, the study period was relatively short and cases that 530 

could be analyzed were limited because all study subjects were from South Korea. In addition, it was assumed that the inflation 531 

rate is identical during the study period. Therefore, it is necessary to conduct additional analyses considering various locations 532 

venerable to natural disasters in other countries and more realistic financial loss values using a net present value concept. 533 
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6 7 Conclusion 534 

Due to increasing threats to the life of general public and property built assets from natural disasters, a variety of risk mitigation 535 

activities are being carried out extensively to reduce these threats. Given the continuous trend toward natural disaster risk 536 

mitigation, the significance of relevant Eeconomic analysis analyses of natural disaster risk mitigation effects ishas been 537 

underlined, against becoming increasingly important due to the limited public budget and its economic feasibility. To overcome 538 

this difficulty, this study proposed a strategic framework for natural disaster risk mitigation, highlighting two different SIPs. 539 

SIP-1 introduced more powerful method that can improve the predictability of natural disaster-triggered financial loss values 540 

using deep learning, while SIP-2 highlighted the risk mitigation strategy at the project level, adopting a cost-benefit analysis 541 

method. In SIP-1, Therefore, in this study, a framework for developing a natural disaster loss prediction model based on a deep 542 

learning algorithm for predicting natural disaster losses was presented and a methodology for quantifying the effect of natural 543 

disaster reduction through cost-benefit analysis was presented as a case study. Aa DNN model for natural disaster loss 544 

prediction was developed, and the improved predictability was validated by comparing with MRA and verified. The developed 545 

model learned and generalized the loss amount of natural disaster risk indicator facilities (building type, wind speed, total 546 

rainfall, and peak ground acceleration) and wind and flood insurance. By evaluating learning performances of 18 different 547 

DNN alternatives using RMSE and MAE values as representative evaluation indicators of deep learning algorithms, 25-25-25 548 

hidden layers with dropouts of 0.0 structure was selected as the optimal learning model. The robustness of the developed model 549 

was technically validated by comparing RMSE and MAE values of a conventional parametric model using a multiple 550 

regression analysis methods. Validation results confirmed that the non-parametric DNN model was powerful for predicting 551 

non-linear characteristics of losses caused by natural disasters. In SIP-2, The cost-benefit analysis was conducted on the 552 

disaster risk reservoir maintenance project that occurred before and after the completion of the flood damage. As the result, it 553 

was difficult to expect profits from the maintenance business in the short term. However, in the long term (more than 8 years), 554 

it was found that the maintenance business was economically profitable. The proposed framework is unique as it provides a 555 

combinational approach to mitigating cost risk impacts of natural disasters at both financial loss and project levels. Main 556 

findings of this study could be used as a guideline for decision-making of natural disaster management policies and investment 557 

in natural disaster risk reduction projects. This study is its first kind and supporting the current knowledge framework. This 558 

study will help practitioners quantify the loss from various natural disasters, while allowing them to evaluate the cost 559 

effectiveness of risk reduction projects through a holistic approach.  560 

 561 

This study offers a holistic analytical modeling framework for the prediction of natural disaster losses utilizing deep learning 562 

algorithms.  563 

 564 

The cost-benefit analysis was conducted on the disaster risk reservoir maintenance project that occurred before and after the 565 

completion of the flood damage. As the result, it was difficult to expect profits from the maintenance business in the short 566 
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term. However, in the long term (more than 8 years), it was found that the maintenance business was economically profitable. 567 

Results and methodology of this study could be used as a guideline for decision-making of natural disaster management 568 

policies and investment in natural disaster risk reduction projects. This study an also be used as a reference for application to 569 

other types of loss. The suggested methodology can also be used to support the current knowledge framework. 570 
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