

1 **A Strategic Framework for Natural Disaster Induced Cost Risk**
2 **Analysis and Mitigation: A Two-Stage Approach Using Deep**
3 **Learning and Cost-Benefit Analysis****Strategic Framework for Natural**
4 **Disaster Risk Mitigation Using Deep Learning and Cost-Benefit**
5 **Analysis**

6
7
8
9 Ji-Myong Kim¹, Sang-Guk Yum², Hyunsoung Park³, and Junseo Bae⁴

10
11 ¹Department of Architectural Engineering, Mokpo National University, Mokpo 58554, South Korea; jimy6180@gmail.com
12 ²Department of Civil Engineering, Gangneung-Wonju National University, Gangneung 25457, South Korea;
13 skyeom0401@gwnu.ac.kr
14 ³Department of Mechanical and Civil Engineering, University of Evansville, Evansville, Indiana 47722, United States;
15 hp93@evansville.edu
16 ⁴School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United
17 Kingdom; junseo.bae@uws.ac.uk

18 *Correspondence to:* Junseo Bae (junseo.bae@uws.ac.uk)

19

20

21 **Abstract.** Due to gradual increases in the frequency and severity of natural disasters, risks to human life and property from
22 natural disasters are exploding. To reduce these risks, various risk mitigation activities have been widely conducted. Risk
23 mitigation activities are becoming more and more important for economic analysis of risk mitigation effects due to limited
24 public budget and the need for economic development. To respond to this urgent need, this study aims to develop a strategic
25 evaluation framework for natural disaster risk mitigation strategies. The proposed framework predicts natural disaster losses
26 using a deep learning algorithm (stage I) and introduces a new methodology that quantifies the effect of natural disaster
27 reduction projects adopting cost-benefit analysis (stage II). To achieve the main objectives of this study, data of insured loss
28 amounts due to natural disasters associated with the identified risk indicators were collected and trained to develop the deep
29 learning model. The robustness of the developed model was then scientifically validated. To demonstrate the proposed
30 quantification methodology, reservoir maintenance projects affected by floods in South Korea were adopted. The results and
31 main findings of this study can be used as valuable guidelines to establish natural disaster mitigation strategies. This study will

32 help practitioners quantify the loss from natural disasters and thus evaluate the effectiveness of risk reduction projects. This
33 study will also assist decision makers to improve the effectiveness of risk mitigation activities. Given trends in more frequent
34 and severe natural disaster events, developing effective risk mitigation strategies is crucial to reduce negative economic
35 impacts, due to the limited budget for rehabilitation. To address this need, this study aims to develop a strategic framework for
36 natural disaster risk mitigation, highlighting two different strategic implementation processes (SIPs). SIP-1 is intended to
37 improve the predictability of natural disaster-triggered financial losses using deep learning. To demonstrate SIP-1, SIP-1
38 explores deep neural networks (DNNs) that learn storm and flood insurance loss ratios associated with selected major indicators
39 and then develops an optimal DNN-driven learning model and generalizes. SIP-2 underlines the risk mitigation strategy at
40 the project level, by adopting a cost-benefit analysis method that quantifies the cost effectiveness of disaster prevention projects.
41 In SIP-2, a case study of disaster risk reservoir projects in South Korea was adopted. The validated result of SIP-1 confirmed
42 that the predictability of the developed DNN is more accurate and reliable than a traditional parametric model, while SIP-2
43 revealed that maintenance projects are economically more beneficial in the long-term as the loss amount becomes smaller after
44 8 years, coupled with the investment in the projects. The proposed framework is unique as it provides a combinational approach
45 to mitigating economic damages caused by natural disasters at both financial loss and project levels. This study is its first kind
46 and will help practitioners quantify the loss from natural disasters, while allowing them to evaluate the cost effectiveness of
47 risk reduction projects through a holistic approach.

48
49 **Keywords.** Natural disaster; risk mitigation strategy; economic damage; deep learning; cost-benefit analysis
50

서식 있음: 줄 간격: 1.5줄

서식 있음: 글꼴: 굵게

서식 있음: 줄 간격: 1줄

51 1 Introduction

52 Over the past decades, 1.1 Natural disaster and risk

53 The frequency and intensity severity of extreme weather events due to climate change are rapidly increasing due to climate
54 changes. These events represented by flooding, drought, heavy rain, tropical cyclone, heat waves or cold waves have often
55 caused causing various damages. These damages are expected to affect extreme weather events in the not only short term, with
56 but also various long-term effects such as sea level rises and disease spreads. Examples of extreme weather events include
57 flooding, drought, heavy rain, tropical cyclone, heat waves, and cold waves. These extreme weather events are rapidly
58 increasing losses associated with their increases in frequency and intensity. The negative impact of these events has been warned
59 by the Intergovernmental Panel on Climate Change (The Fifth Assessment Report, 2014). Nevertheless, across the world,
60 severe weather events such as typhoons, heavy rains and changing patterns of meteorological disasters have already increased
61 the loss of many lives and built assets. These damages are still expected to be accelerated in coming future (Kim et al., 2020).

63 Given the continuous trend, it is well known that natural disaster-triggered losses Increases of these losses have been causing very closely tied with many economic losses worldwide. For example, Western European countries such as France, Germany, 64 and Switzerland were hit by three consecutive tropical cyclones (e.g., Anatol, Lothar, and Martin) in 1999, resulting in a loss 65 of 13 billion euros (Ulbrich et al., 1999). Typhoon Haiyan, which hit the Philippines and China of South Asia in 2013, was 66 one of Category 5 Super Typhoons, was the most extreme tropical cyclone recorded on land. The typhoon's life-threatening 67 wind and rain were enough to smash properties. South Asian countries adjacent to the typhoon track inflicted about \$300 68 billion in damage (Kim et al., 2019). Hurricane Katrina that, which hit the southeastern areas in United 69 States in 2005, caused the most severe damage in American history the national historic record as Hurricane Katrina was a 70 Category 5 tropical cyclone. In detail, it that had caused the US Gulf Coast city to have \$180 billion in direct and indirect 71 damages due to substantial rain and robust winds (Blake et al., 2007). Later, In the United States in 2017 solely, three different 72 powerful strong hurricanes named by (Harvey, Maria, and Irma) caused together a total damage amount of about \$293 billion, 73 based on the individual damage amounts of with Harvey causing \$125 billion by Harvey in damage, Maria causing \$90 billion 74 by Maria, and Irma \$77.6 billion by Irma (USNHC, 2018).

75
76
77 Moreover, over the past century, the severity and frequency of natural disasters worldwide have increased. Climate anomalies 78 have also increased. The Intergovernmental Panel on Climate Change (The Fifth Assessment Report, 2014) has already warned 79 of an increase in global average temperature, average sea level escalation, heating, and acidification. In many countries, severe 80 weather events such as typhoons and heavy rains and changing patterns of meteorological disasters have already increased the 81 loss of many lives and property. These damages are expected to accelerate in the future (Kim et al., 2020).

82
83 Therefore In this sense, the quality of lives living in the built environment and property worldwide are has been threatened by 84 natural disasters in the globe. Such threats will increase. To reduce these threats, numerous many of non-governmental 85 organizations and countries are investing have investigated a lot of in prevention or post-disaster recovery strategies, on aspects 86 of time, time, budget, and manpower to mitigate natural disaster risks from natural disasters. Mitigation of risks can reduce the 87 loss by decreasing vulnerability or by decreasing the frequency and severity of causal factors (Rose et al., 2007). For risk 88 mitigation, the execution and allocation of financial resources should be carried out quickly promptly and extensively, against 89 the limited resources available. In practice, the efficiency and amounts of financial resources should be considered due to 90 limited resources. Hence, it is important to estimate strategically grasp the amount cost impact of natural disaster risks and the 91 effect of risk reduction at the same time, specifically aiming at to achieving the ultimate reduction and mitigation of risks 92 through an efficient use of the limited resources. In other words, it is essential for risk mitigation against potential risks by 93 predicting the exact amount of risk, which aims to make an active investment to reduce the predicted risk, and to find out the 94 economic effect of the risk reduction. Consequently, as part of a case study on risk mitigation costs, this study developed a 95 strategic framework by developing a natural disaster damage prediction model using deep learning algorithms and proposing 96 a methodology to quantify the effect of natural disaster reduction through cost benefit analysis.

97

98 **2 Point of Departure: The need of more effective strategic framework for natural disaster risk mitigation**

99

100 **2.14.2 Decision-support for Nnatural disaster risk mitigation strategies r-loss quantification**

101 Given the increasing frequency and severity of natural disasters, the demand for sophisticated natural disaster loss forecasting
102 also increases. In response to such demand, various companies and national organizations have developed models to predict
103 natural disaster losses. The New Multi-Hazards and Multi-Risk Assessment Method for Europe (MATRIX) in Europe, the
104 HAZUS-Multi Hazard (HAZUS-MH) by the Federal Emergency Management Agency (FEMA) in the United States, the
105 RiskScape in New Zealand, and the Probabilistic Risk Assessment initiative in Central America are representative models
106 (Kim et al., 2017). Florida, USA, has developed a Florida Public Hurricane Loss Model (FPHLM) to predict losses due to
107 hurricanes as it is located on the main north-facing road of hurricanes (Kim et al., 2020). These models are being used in
108 different regions to assess the loss of life and potential economic losses for buildings and infrastructure owing to natural
109 disasters. Nevertheless, since these models were developed based on the vulnerability of natural disasters and the severity and
110 frequency of natural disasters in specific areas, they could not be applied to other areas.

111

112 Companies specializing in natural disaster risk modeling have also developed different models, including EQECAT, Applied
113 Insurance Research (AIR), and RMS (Risk Management Solution) (Kunreuther et al., 2004; Sanders, 2002). These models are
114 widely used by insurers and reinsurers around the world to assess the risk of economic loss from natural disasters (e.g.,
115 windstorms, earthquakes, floods, earthquakes, winter storms, and tornadoes). Nonetheless, these models have annual fees that
116 are expensive to small and medium-sized users. In addition, these models are available only for the limited number of major
117 countries (Europe, USA, Japan, China, etc.). In additionFurthermore, it is difficult to optimize them for users since they have
118 difficulties to reflect a user's portfolio, capital, business preference, and so on (Kim et al., 2019).

119

120 To reflect characteristics and vulnerabilities of each country associated with various situations of users, it is crucial to evaluate
121 the loss through its own model. In order to develop a loss evaluation model, the development of an in-house model using a
122 deep learning algorithm can be a solution. Recently, the 4th revolution technology (e.g., unmanned transportation, big data,
123 artificial intelligence, IoT, robots, etc.) has been applied to various fields and its effectiveness has been recognized (Gledson
124 and Greenwood, 2017; IPA, 2017). To effectively and efficiently analyze the complexity of various sensors-driven big data,
125 the demand for deep learning applications has been increased dramatically. Given the increasing demand, many research efforts
126 on applying deep learning techniques for risk assessment were made recently (Al Najar et al. 2021; Khosravi et al. 2020; Kim
127 et al. 2021; Moishin et al. 2021; Shane Crawford et al. 2020; Sugiyarto and Rasjaya 2020; Yi et al. 2020; Zhang et al. 2022).

128 Especially, for improved natural disaster risk assessment and mitigation, neural networks have been widely used for deep
129 learning in various ways (Khosravi et al. 2020; Moishin et al. 2021; Shane Crawford et al. 2020; Yi et al. 2020). Some
130 researchers developed deep learning models to predict flood events (Khosravi et al. 2020; Moishin et al. 2021). Khosravi et al.
131 (2020) developed a flood susceptibility map using convolutional neural networks (CNN). More specifically, 769 historical
132 flood locations in Iran were trained and tested based on amounts of soil moisture, slopes, curvatures, altitudes, rainfalls,
133 geology, land use and vegetation, distances from roads and rivers. In addition, a hybrid deep learning algorithm integrating the
134 merits of CNN and long short-term memory (LSTM) networks was built to manage flood risks by predicting future flood
135 events, by training and testing daily rainfall data obtained from 11 sites in Fiji between 1990 and 2019 (Moishin et al. 2021).
136

137 Other previous studies focused on post-disaster detection caused by landslides or tornados, which uses remote sensed data
138 collected from satellites for deep learning (Al Najar et al. 2021; Shane Crawford et al. 2020; Yi et al. 2020). Shane Crawford
139 et al. (2020) adopted CNN to classify damages of 15,945 buildings affected by the 2011 Tuscaloosa tornado in Alabama. To
140 this end, the authors used satellite-driven images of trees as the damage classification indicator to estimate wind speeds. In
141 addition, satellite images were embraced into the CNN-driven deep learning process to detect earthquake-induced landslides
142 in China (Yi et al. 2020). More recently, Al Najar et al. (2021) estimated accurately ocean depths simulating remote sensed
143 images using a deep learning technique, which overcomes drawbacks of traditional bathymetry measurement activities to track
144 the physical evolution of coastal areas against any potential natural disasters or extreme storm events. Previous studies
145 reviewed reveal consistently that deep learning techniques can overcome shortcomings of existing methods and thus to provide
146 more accurate and reliable decision-support models for risk assessment and risk-informed mitigation strategies.
147

148 In addition to applications of deep learning for location detection or event prediction-focused, as stated earlier, it is important
149 to quantify negative economic impacts caused by natural disasters. Given the importance of economic damage aspects, Kim
150 et al. (2021) applied a deep learning technique as a cost-effective and risk-informed facilities management solution. In detail,
151 the authors generalized maintenance and repair costs of educational facilities in Canada, using deep neural networks that learn
152 sets of maintenance and repair records, asset values, natural hazards such as tornados, lightening, hails, floods, and storms. In
153 this sense, this study proposed a deep learning modeling framework to predict financial losses caused by natural disasters. In
154 this sense, this study proposed a framework for developing a natural disaster risk quantification model based on deep learning
155 technology to predict losses due to natural disasters.
156
157

158 **2.24.3 Investment strategies for Cost-benefit analysis of natural disaster risk mitigation**

159 Mitigating the risk with efficient investment and operation of resources is a challenging task because resources are finite while
160 risk reduction should be done made quickly and extensively in a timely manner, with the limited financial resources. To address

161 these issues, cost-benefit analysis has been widely adopted (FEMA, 2005; Rose et al., 2007). For instance, efficient use of
162 public resources is indicated when total estimated profits of a risk mitigation activity surpass the entire cost or are parallel to
163 earnings on investment of both private and public.

164

165 Disaster risk mitigation represents mitigating social, environmental, and economic damage caused by natural disasters. Since
166 economic losses due to natural disasters are hard to minimize or avoid separately, there is an increasing public demand for risk
167 reduction investments to reduce these economic losses (Bouwer et al., 2007; Shreve and Kelman, 2014). Since resources for
168 risk mitigation investment are restricted, it is critical to estimate economic costs and benefits in order to determine the
169 effectiveness and appropriateness of the investment. For instance, the Federal Emergency Management Agency of the United
170 States has reported that the average ~~benefit-cost~~^{cost-benefit} ratio is 4 for risk mitigation investment (e.g., structural
171 ~~defense~~^{defence} measures against floods and typhoons, building renovations in preparation for earthquakes, etc.) after
172 reviewing 4,000 natural disaster risk reduction programs in the United States (-Kunreuther et al., 2012; Rose et al., 2007). In
173 addition, studies in developing countries have shown a high ~~cost-benefit~~^{benefit-cost} ratio in a study of 21 investment activities
174 such as re-establishment of schools and forestry in preparation for tsunami (Bouwer et al., 2014).

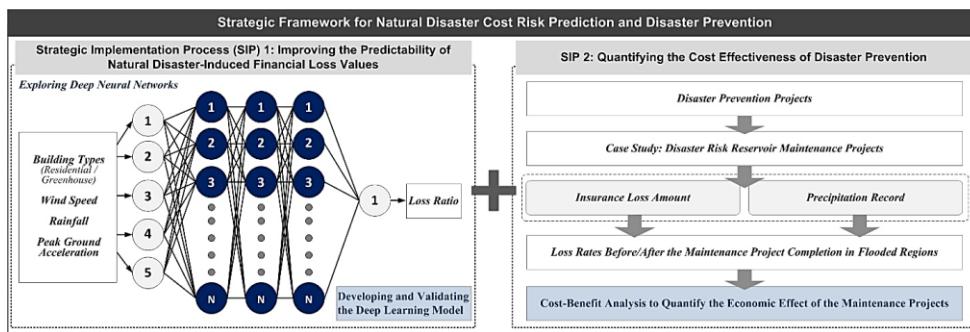
175

176 Despite these high potential benefits, investment in risk reduction for residents living in areas at risk of natural disasters is
177 restricted (Bouwer et al., 2014). According to Hochrainer-Stigler et al. (2010), since natural disaster risk reduction measures
178 are focused on short-term outcomes, only about 10% of residents in areas vulnerable to natural disasters receive natural disaster
179 risk reduction measures in the United States. In the case of a natural disaster risk reduction project, a large initial investment
180 is required, which reduces the expected profit if performance indicators need to be met in a short period of time. As a result,
181 policy makers and politicians are reluctant to make bold investments in natural disaster risk reduction. They prefer to provide
182 economic support after disasters (Cavallo et al., 2013). This phenomenon is also reflected in the budget distribution of disaster
183 management funds of donations and development agencies. Most (98%) of the budget is allocated to reconstruction or relief.
184 Only the remaining budget (2%) is allocated to risk reduction (Mechler, 2005). As such, while the need for pre-disaster risk
185 reduction through proactive disaster investment is widely recognized, the economic impact of natural disaster risk reduction
186 is often not fully considered in decision-making. Moreover, although cost-benefit analysis (~~CBA~~) is the main decision-making
187 tool commonly used in ~~public sector~~ investment and financial evaluations ~~by public sectors~~, natural disaster risk is not
188 sufficiently applied in ~~the CBA-cost-benefit analysis~~ (Hochrainer-Stigler et al., 2010). Natural disasters in public sectors'
189 investment projects ~~are~~^{were} often overlooked or not evaluated ~~in-based on the cost-to-benefit comparison~~^{CBA} assessments
190 (Kreimer et al., 2003). ~~Hence~~^{In turn}, ~~in this study, this study explored the effectiveness of a natural disaster risk reduction~~
191 ~~projects and analyzed the cost effectiveness of the projects -adopting a cost-benefit analysis method was determined through a~~
192 ~~case study of cost-benefit analysis conducted by the Korean government is considered and a methodology for calculating~~
193 ~~dismissal was presented~~

194 **2.3 Research objectives and methods**

195 Given trends in more frequent and severe natural disaster events, developing effective natural disaster risk mitigation strategies
196 is crucial to reduce negative economic impacts on built assets, due to the limited budget for rehabilitation. To address this need,
197 this study aims to develop a strategic framework for natural disaster risk mitigation, highlighting two different strategic
198 implementation processes (SIPs), as depicted in Figure 1.

199



200
201 **Figure 1. Research framework**

202
203 More specifically, SIP-1 is intended to improve the predictability of natural disaster-triggered financial loss model. To this
204 end, SIP-1 develops a deep neural network (DNN) model that learns insurance loss amounts to generalize loss ratios, associated
205 with major indicators including rainfall, wind, and ground acceleration. To reduce economic losses caused by natural disasters,
206 it is necessary to quantify losses caused by natural disasters and make active investments to reduce risks. Therefore, for
207 economic analysis of losses from natural disasters, this study attempted to examine the investment effects, predict losses caused
208 by natural disasters. The main objectives of this study are to develop a strategic framework that predicts natural disaster losses
209 using a deep learning algorithm and introduces a methodology to quantify the effect of natural disaster reduction projects using
210 cost benefit analysis. To achieve the main objective of this study, a two-stage approach was adopted.

211

212 To demonstrate in SIP-1 Stage 1, this study collected reliable storm and flood damage insurance data and natural disaster risk
213 indicators, created a predictive model based on using a deep learning algorithm, and verified validate the improved predictability
214 of the model. This study proposed a deep learning modeling framework that could accurately learn and predict multiple
215 natural disaster indicators known to affect losses caused by natural disasters. The first research objective was achieved through
216 the following steps:

217 1) To collect data on loss caused by natural disasters, this study collected data on claim payout for storm and flood
218 damage insurance from the Korea Insurance Development Institute (KIDI) over the past 11 years between 2009 and
219 2019.

220 2) This study obtained natural disaster risk indicators based on the collected data.

221 3) A model of deep learning algorithm was developed using Python 3.7, Keras, and Scikit-Learn libraries. The model
222 was trained, tested, and validated using the collected data.

223 4) A multiple regression model was independently developed using IBM Statistical Package for the Social Sciences
224 (SPSS) version 23 for model validation.

225 5) The root mean squared error and mean absolute error values of the deep learning algorithm model and the multiple
226 regression analysis model were estimated and paralleled, respectively.

227 5)
228 Compared to SIP-1, SIP-2 underlines the risk mitigation strategy at the project level, by proposing a methodological
229 implementation process for quantifying the cost effectiveness of natural disaster risk reduction by adopting a cost-benefit
230 analysis method that quantifies the cost effectiveness of disaster prevention project. To demonstrate SIP-2, a case study of
231 disaster risk reservoir maintenance projects completed in South Korea was adopted. In Stage II, through the following steps
232 ~~data on natural disaster risk reduction projects conducted by national institutions were collected and cost-benefit analysis was~~
233 ~~performed for cost of natural disaster risk reduction. This study intended to propose a framework for quantifying the economic~~
234 ~~cost of natural disaster risk reduction. To realize the goal of this study, the following steps were used. In addition, this study~~
235 ~~intended to propose a framework for quantifying the economic cost of natural disaster risk reduction. The second objective of~~
236 ~~this study was achieved through the following steps:~~

237 1) Among natural disaster risk reduction projects carried out by the South Korean government, information on disaster
238 risk reservoir maintenance projects completed in 2009-2019 was collected.

239 2) The loss rate of storm and flood insurance in the region where the flood damage occurred after the completion of the
240 maintenance project was investigated through the Korea Insurance Development Institute (KIDI).

241 3) The amount of precipitation before and after the disaster risk reservoir maintenance project was investigated.

242 4) Cost-benefit analysis was conducted to determine the economic feasibility of the maintenance project.

243 4)
244 3-4 SIP-1: Improving the predictability of Stage I: Development of a natural disaster-induced financial loss values
245 using deep learning prediction model

246 SIP-1 aims to explore deep learning-driven modelling processes and develop an optimal learning model that can improve the
247 predictability of natural disaster-triggered financial losses. To demonstrate SIP-1, the loss amounts of storm and flood
248 insurance were learned, and the corresponding loss ratios were generalized associated with the selected risk indicators by the

서식 있음: 들어쓰기, 원주: 1.41 cm, 글머리 기호 또는 번호 없이

서식 있음: 표준, 글머리 기호 또는 번호 없이

서식 있음: 표준

249 property type. To scientifically validate the robustness of the learning model, the prediction results were compared with a
250 conventional parametric model underpinned by multiple regression analysis.

251 **34.1 Data collection**

252 This section develops and validates a deep learning algorithm model that can efficiently and accurately predict losses due to
253 natural disasters based on data about the loss amount of flood insurance with high reliability. To collect such data, this study
254 used A total of 458 KIDI's storm and flood damage insurance claims for 11 years from 2009 to 2019 was collected from KIDI's
255 data sets. KIDI was established in 1983. It is an insurance professional service organization that develops insurance products,
256 calculates insurance rates, and protects the rights of policyholders. It also collects and manages various statistical data such as
257 insurance information and losses of each insurance company (Choi and Han, 2015). Storm and flood damage insurance, which
258 reflects the loss amount, is an insurance that compensates for property damage caused by natural disasters (e.g., typhoons,
259 floods, heavy rains, tsunamis, strong winds, storms, heavy snow, earthquakes, and so on). It has been implemented since 2006
260 under the initiative of state and local governments (Kwon and Oh, 2018). The insurance payout amount is determined by
261 objective analysis of certified loss assessment service according to standardized procedures for each insurance company. Its
262 reliability is high (Kim et al., 2020). The collected data information includes the total loss amounts, the total net premiums,
263 building types, and location profiles, which is publicly available. The prediction model was trained, tested, and validated using
264 losses and natural disaster risk indicators.

265

266 The cost of loss due to natural disasters was divided by the total net premiums to calculate the ratio and then log-transformed,
267 which distribution of the data is shown in Figure 2. In addition, natural disaster risk indicators affecting insurance loss due to
268 natural disasters were collected. For natural disaster risk indicators, building type, wind speed, total rainfall, and peak ground
269 acceleration were selected as variables through past literature studies (Kim et al., 2017, 2019; Kim et al., 2020; Kim et al.,
270 2021). Figure 3 shows the distributions of the selected indicators. A description of variables is presented in Table 1. Building
271 types were set as dummy variables that consist of residential buildings and greenhouses. Wind speed and the maximum value
272 of rainfalls were collected from the Korea Meteorological Administration (KMA). Peak ground accelerations were collected
273 from the National Oceanic and Atmospheric Administration (NOAA). Accordingly, Table 2 summarises the descriptive
274 statistics of variables are displayed in Table 2.

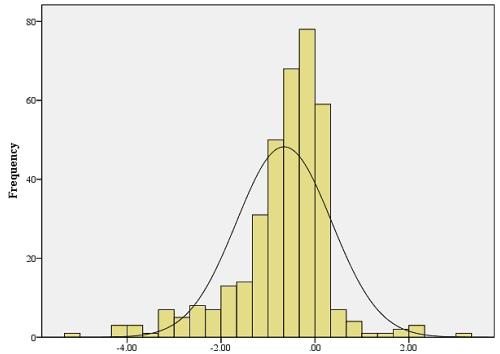
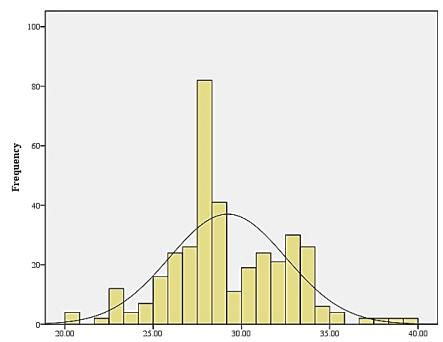
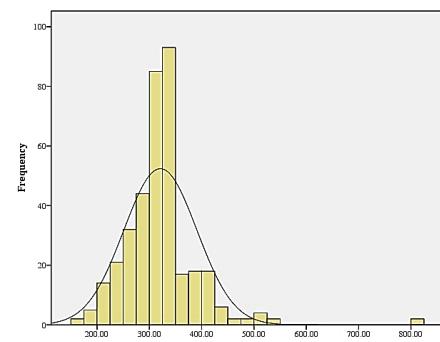


Figure 2. Distribution of the insurance loss ratio record



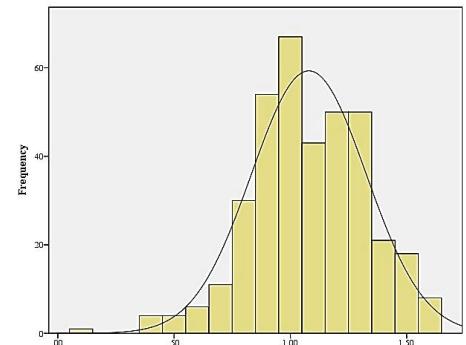
(a) Wind speed (m/s)



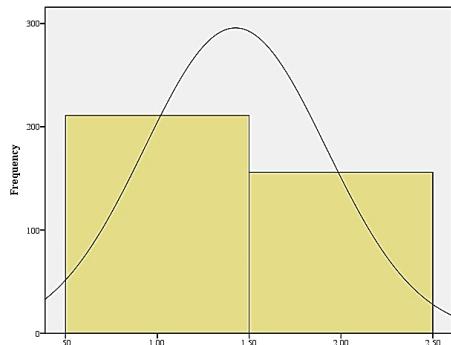
(b) Rainfall (mm/day)

서식 있음: 글꼴: 10 pt

서식 있음: 글꼴: 10 pt



(c) Peak ground acceleration (g)



(d) Building type (1: residential; 2: greenhouse)

Figure 3. Distributions of the indicators to learn the loss ratios

279

280

281

Table 1. Description of variables

Variable	Explanation
Loss ratio	Total loss divided by the total net premium (<u>Amount unit: KRW, log-transformed</u>)
Building type	Buildings covered by storm and flood insurance (Categorical variable - Residential building: 1; Greenhouse: 2)
Wind speed	10-minute average maximum wind speed (m/s)
Rainfall	Maximum precipitation per day (mm/day)
Peak <u>Ground ground Accelerationacceleration</u>	Value of <u>Peak-peak Ground-ground Acceleration-acceleration</u> (PGA) (g)

282

Table 2. Descriptive statistics of variables by the building type (i.e., residential building and greenhouse)

Variable (<u>Unit</u>)	<u>Sample size</u>	Minimum	Maximum	Mean	Std. Deviation
Loss ratio (<u>Log-transformed value KRW</u>)	458	-5.12	3.17	-0.66	1.01
Building type (1: residential; 2: greenhouse)	458	-	-	-	-
Wind speed (m/s)	458	20.80	39.20	29.21	3.17
Rainfall (mm/day)	458	172.00	801.20	319.02	68.57

서식 있음: 글꼴 10 pt

서식 있음: 가운데

서식 있는 표

Peak ground acceleration (g)	458	0.10	1.60	1.10	0.25
---------------------------------	-----	------	------	------	------

284

285 **34.2 Modeling** **Modelling** deep neural networks

286 A deep learning algorithm is a neural network with many layers and various structures in general. Its use in research and
287 industry for prediction and recognition has spread rapidly, proving its effectiveness (Kim et al., 2021). Deep learning
288 algorithms are also widely used for regression analysis and type classification as a machine learning technique (Ajayi et al.,
289 2019). Deep learning models have the same training framework as other types of neural networks. However, they can train
290 large data sets more effectively with multiple hidden layers (Bae et al., 2021). Deep learning algorithms can be divided into
291 deep neural network (DNN), generative adversarial network (GAN), recurrent neural network (RNN), convolutional neural
292 network (CNN), and auto encoder (AE) according to their structure and processing method (Kim et al., 2021). Especially,
293 DNN is used for cataloguing and prediction in various engineering and academic fields (Krizhevsky et al., 2012; Toya and
294 Skidmore, 2007). Moreover, DNNs can be applied to train and model complex nonlinear relationships due to their multi-
295 layered structures. Thus, in this study, a DNN model was accepted considering nonlinearity of collected loss data.

296

297 The learning performance of the model was appraised by measuring the values of root mean squared error (RMSE) and mean
298 absolute error (MAE). RMSE and MAE are representative indicators of the size of the error by comparing the predicted result
299 of an artificial neural network with the actual value (Daniell et al., 2011). RMSE is a value that measures the average error
300 magnitude. MAE is a value obtained by converting the difference between the actual value and the predicted value into an
301 absolute value and averaging it. Both indicators can be used to indicate that the prediction error decreases as the error value
302 gets smaller (e.g., closer to zero).

303

304 The collected loss data were pre-processed using a ~~z~~-score normalization method to adjust the unit and quantity of the data.
305 The pre-processed completed input data were divided into a training set, a verification set, and a test set of data. The training
306 set of data were used for learning of the DNN algorithm. The verification set of data were used to judge whether training was
307 optimal and the test set of data were used to verify whether the developed model was finally trained for the purpose. In this
308 study, considering the amount of data, 70% of the total data were set as training set of data and 30% of them were used as test
309 set of data. Then 30% of training data were utilized as verification data.

310

311 The DNN model selected the optimal combination through a trial-and-error method since the DNN model could update the
312 weights of neural network nodes with a backpropagation algorithm. Since various combinations were possible depending on
313 the input variable and the output variable, it was necessary to find the optimal combination through the trial-and-error method.
314 For such an optimal combination, it is necessary to define the network structure scenario for setting the number of layers and

서식 있음: 글꼴: 기울임꼴

315 nodes and defining hyper parameters such as optimizers, activation functions, and dropouts (Cavallo et al., 2013). This study
316 adopted a network structure scenario with three hidden layers considering data characteristics. Dropout is a regularization
317 penalty to avoid overfitting. It was set to reduce prediction errors caused by overfitting. In this study, making an allowance for
318 the amount of training data, dropout was set to 0 and 0.2 and simulated. The ReLu (Rectified Linear Unit) function was utilized
319 as the activation function, a method of adjusting the weight of each node for optimal learning. The ReLu function allows the
320 input value to change when the input value is greater than 0 or less than 0. It was established to resolve the problem of gradient
321 loss of the existing Sigmoid function (Krizhevsky et al., 2012). The Adaptive Moment Estimation (Adam) method was accepted
322 as the optimizer (Krizhevsky et al., 2012). Optimizer is used for speed and stability of learning. The Adam Method is a widely
323 assumed algorithm since its development in 2015 (Kingma and Ba, 2015). The batch was defined as 5 as a data group
324 designation for efficient learning and the number of epochs was designated as 1,000 for the number of learning (Bae and Yoo,
325 2018; Ryu et al., 2018).

326

327 **34.3 Development-Exploring DNNs and developing of the DNN model**

328 Table 3 shows MAE and RMSE values according to the network structure and dropout. Amongst outcomes, the model with
329 the minimum MAE and RMSE was adopted as the final structure. As the number of hidden layer nodes increased, the MAE
330 and RMSE values fluctuated slightly. However, the number of hidden layer nodes was minimized at 25-25-25. When the
331 dropout was 0, MAE and RMSE values were commonly lesser than when the dropout was 0.2. It could be realized that when
332 the number of hidden layer nodes was 25-25-25 and the dropout was 0.0, both MAE and RMSE had minimum values.
333 Consequently, in the final structure, the number of nodes was 25-25-25 and the dropout was 0. Table 4 [and Figure 4](#)
334 demonstrates the network structure and hyper parameter configuration of the optimization model.

335

336 Table 3. Training results

Network Structure Scenario	Dropout (0)		Dropout (0.2)	
	MAE	RMSE	MAE	RMSE
5-5-5	0.521	0.484	0.521	0.484
10-10-10	0.498	0.468	0.524	0.484
15-15-15	0.521	0.484	0.523	0.487
20-20-20	0.522	0.484	0.521	0.484
25-25-25	0.476	0.461	0.521	0.484
30-30-30	0.521	0.484	0.521	0.484
35-35-35	0.521	0.484	0.522	0.484

서식 있는 표

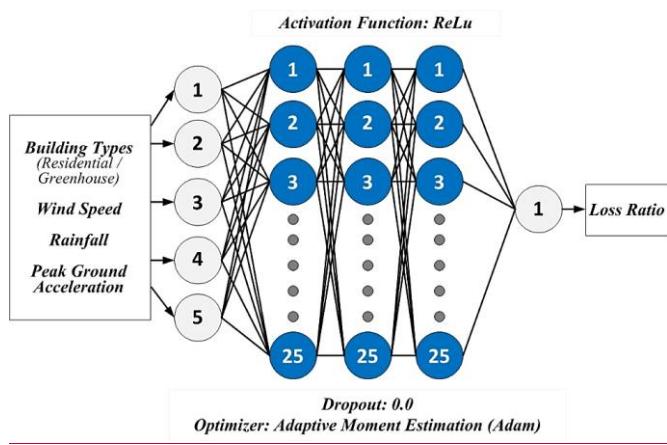
40-40-40	0.521	0.484	0.521	0.484
50-50-50	0.521	0.484	0.522	0.484

337

338 Table 4. Network structure and hyper parameter formation of the final model

Category	Configuration	Feature
Network structure	Number of Hidden Layer	3
	Node	25-25-25
	Dropout	0.0
Hyper-parameter	Activation Function	ReLU (Rectified Linear Unit)
	Optimizer	Adam (Adaptive Moment Estimation)
	Epoch	1000
	Batch Size	5

339



340 Figure 4. Final model of deep neural networks

341 서식 있는 표

342 서식 있음: 가운데

342 **34.4 The robustness validation of the final DNN model**

343 An MRA (Multiple Regression Analysis) model was added for systematic validation of the final DNN model. MAE and RMSE
 344 values of these two models were compared. The MRA method is widely adopted as an essential method for numerical
 345 prediction models (Kim et al., 2021). Table 5 displays validation results of these models. Results of the DNN model showed

346 MAE of 0.531 and RMSE of 0.480 with the verification set of data. For the test set of data, results showed MAE of 0.452 and
347 RMSE of 0.435. There was no significant difference in MAE or RMSE between results with the test set of data and those with
348 the verification set of data since the overfitting problem of the final model could be overlooked. In addition, the MRA model
349 showed an MAE of 0.533 and a RMSE of 0.484. Equating outcomes of the DNN model and the MRA model, it was found
350 that the DNN model had meaningfully minor prediction error rates of 15.2% MAE and 10.12% RMSE than the MRA model.

351

352 Table 5. Results with the validation set and test set of data

	Validation Set		Test Set	
	MAE	RMSE	MAE	RMSE
DNN	0.531	0.480	0.452	0.435
MRA	-	-	0.533	0.484
DNN/MRA (%)			-15.20%	-10.12%

서식 있는 표

353 **4-5 SIP-2: Quantifying the cost effectiveness of Stage II: Cost-Benefit analysis of natural disaster risk reduction**
354 **projects using cost-benefit analysis**

355 Management of a disaster risk reservoir is a part of the disaster prevention project. According to the Special Act on the Disaster
356 Risk Reduction Project and Relocation Measures, the purpose of disaster prevention measures necessary for improving the
357 disaster risk area is for fundamental prevention and permanent recovery of disasters. The disaster prevention project was started
358 in 1998 when the Disaster Response Division of the Ministry of Government Administration and Home Affairs discovered
359 disaster-prone facilities and areas with risk of human casualties and provided government funds for the maintenance of natural
360 disaster risk areas for systematic management and prompt resolution of disaster risk factors (Lee, 2017). Disaster prevention
361 projects include natural disaster risk improvement districts, disaster risk reservoirs, steep slope collapse risk areas, small rivers,
362 and rainwater storage facilities (Kim et al., 2019). Given the significance of disaster prevention projects, SIP-2 examines
363 economic effects through cost-benefit analysis of natural disaster risk reduction projects to reduce losses from natural disasters.
364 To demonstrate SIP-2, a cost-benefit analysis was conducted for the natural disaster reduction project by comparing losses
365 from storm and flood insurance before and after the disaster risk reservoir maintenance project.

366

367 **5.1 Data collection and investigation of historical record**

368 Among natural disaster risk reduction projects carried out by the South Korean government, the data set of disaster risk
369 reservoir maintenance projects completed in 2009-2019 was extracted from the Public Data Portal (data.go.kr) managed by
370 the South Korean government to collect and provide public data created or acquired by public institutions in one place. The
371 system was established in 2011 to provide public data in the form of file data, visualization, and open API (Application
372 Programming Interface) (Closs et al., 2014). During the study period of 2009-2019, 474 reservoirs were designated as disaster

373 risk reservoirs and 290 maintenance projects were initiated. Among them, a total of 12 areas were flooded before and after the
374 completion of the disaster risk reservoir maintenance project. Table 6 shows the loss rate and maximum precipitation at the
375 time of flooding before and after completion of the maintenance projects in these 12 areas. Data about the loss amounts from
376 storm and flood insurance were obtained from KIDI. Precipitation data were collected from KMA and the maximum daily
377 precipitation at the time of the flooding was used. Insured loss was expressed as a rate of the incurred loss divided by the
378 accrued premium. The loss rate before the maintenance project was 34.32% on average, while that after the maintenance
379 project was completed was 5.9% on average, showing a sharp decrease of 82.8% on average.

380 This section examines economic effects through cost-benefit analysis of natural disaster risk reduction projects to reduce losses
381 from natural disasters. To gather data, among natural disaster risk reduction projects carried out by the South Korean
382 government, information on disaster risk reservoir maintenance projects completed in 2009–2019 was collected from the Public
383 Data Portal (data.go.kr) managed by the South Korean government to collect and provide public data created or acquired by
384 public institutions in one place. The system was established in 2011 to provide public data in the form of file data, visualization,
385 and open API (Application Programming Interface) (Closs et al., 2014).

386
387 Management of a disaster risk reservoir is a part of the disaster prevention project. According to the Special Act on the Disaster
388 Risk Reduction Project and Relocation Measures, the purpose of disaster prevention measures necessary for improving the
389 disaster risk area is for fundamental prevention and permanent recovery of disasters. The disaster prevention project was started
390 in 1998 when the Disaster Response Division of the Ministry of Government Administration and Home Affairs discovered
391 disaster-prone facilities and areas with risk of human casualties and provided government funds for the maintenance of natural
392 disaster risk areas for systematic management and prompt resolution of disaster risk factors (Lee, 2017). Disaster prevention
393 projects include natural disaster risk improvement districts, disaster risk reservoirs, steep slope collapse risk areas, small rivers,
394 and rainwater storage facilities (Kim et al., 2019). In this paper, a cost-benefit analysis was conducted for the natural disaster
395 reduction project by comparing losses from storm and flood insurance before and after the disaster risk reservoir maintenance
396 project. During the study period of 2009–2019, 474 reservoirs were designated as disaster risk reservoirs and 290 maintenance
397 projects were initiated. Among them, a total of 12 areas were flooded before and after the completion of the disaster risk
398 reservoir maintenance project. Table 6 shows the loss rate and maximum precipitation at the time of flooding before and after
399 completion of the maintenance projects in these 12 areas. Data about the loss amounts from storm and flood insurance were
400 obtained from KIDI. Precipitation data were collected from KMA and the maximum daily precipitation at the time of the
401 flooding was used. Insured loss was expressed as a rate of the incurred loss divided by the accrued premium. The loss rate
402 before the maintenance project was 34.32% on average, while that after the maintenance project was completed was 5.9% on
403 average, showing a sharp decrease of 82.8% on average. However, when data of precipitation as the main cause of flooding
404 accidents during flood damage were compared, the average precipitation was 331 mm/day before the maintenance project and
405 215 mm/day after the maintenance project. It could be seen that the amount of precipitation was decreased by 35% when flood
406 damage occurred after the maintenance project. The sharp decrease in the loss rate after the maintenance project could be due

407 to the effect of the maintenance project. It could also be attributed to a relatively small amount of precipitation compared to
408 that before the maintenance project. Therefore, it is difficult to conclude that the decreased loss rate is due to the effect of
409 reducing storm and flood damage caused by the maintenance project.

410 Table 6. Comparison of loss rate and precipitation before and after maintenance projects in flooded regions [in South Korea](#)

No	Region	Loss rate		Precipitation (mm/day)	
		Before (%)	After (%)	Before	After
1	Yongin City	47.40%	20.60%	425	188
2	Nonsan City	30.10%	0.80%	334	306
3	Wanju-gun	40.70%	3.40%	364	142
4	Gangjin-gun	76.30%	0.40%	235	166
5	Sejong City	7.30%	4.90%	257	223
6	Muan-gun	25.80%	2.00%	285	192
7	Hampyeong-gun	23.80%	10.30%	301	230
8	Gyeongju City	33.10%	1.20%	488	280
9	Changwon City	10.60%	10.70%	300	266
10	Namhae City	22.10%	8.50%	324	231
11	Naju City	53.90%	5.10%	330	106
12	Goheung-gun	40.70%	3.00%	325	249
Average (%)		34.32%	5.9%	331	215
After/Before (%)		82.8%		35.0%	

서식 있음: 왼쪽
서식 있는 표
서식 있음: 왼쪽
서식 있음: 왼쪽

411

412 5.2 Cost-benefit analysis and results of natural disaster risk reduction projects

413 As seen in Table 6, when data of precipitation as the main cause of flooding accidents during flood damage were compared,
414 the average precipitation was 331 mm/day before the maintenance project and 215 mm/day after the maintenance project. It
415 could be seen that the amount of precipitation was decreased by 35% when flood damage occurred after the maintenance
416 project. The sharp decrease in the loss rate after the maintenance project could be due to not only the effect of maintenance
417 project, but also decreased rainfalls. In turn, it is difficult to conclude that the decreased loss rate is due to the effect of reducing
418 storm and flood damage caused by the maintenance project.

419

420 To analyze the cost effectiveness of the maintenance projects in flood regions, a cost-benefit analysis method using an equal-
421 payment-series present-worth factor was adopted. The present-worth factor, assuming an annual loss rate i , is a coefficient
422 used to find the present value corresponding to annual equivalent loss A for the next n years. Eq. (1) presents a widely used
423 concept in economic analysis (Park & Sharp, 2021):

424 Therefore, cost benefit analysis was conducted to analyze the economic effect. Equal payment-series present-worth factor was
425 used for cost benefit analysis. Equal payment-series present-worth factor, assuming an annual loss rate i , is a coefficient used

426 to find the present value corresponding to annual equivalent loss A for the next n years. Eq. (1) presents a widely used concept
427 in economic analysis (Park and Sharp, 2021):

428
$$P = \frac{A[(1+i)^n - 1]}{i(1+i)^n} \quad (1)$$

429
430
431 Where:
432 P : Present value
433 A : Annual loss amount
434 i : Loss rate
435 n : Year

436
437 The initial cost of each maintenance project was collected through The Public Data Portal and the average cost of the
438 maintenance project was calculated. For the loss rate, the average loss rate of the loss area was used. For the annual loss amount,
439 the average annual loss for the study period (2009-2019) was used as seen in Table 7. However, it was assumed that no
440 additional costs incurred due to the maintenance project. Figure 4-5 shows calculation results before and after the maintenance
441 projects, which reveals that, As can be seen from Figure 1, the loss amount becomes smaller after 8 years due to investment
442 through the maintenance projects.

443
444 Table 7. Summary of inputs

Input	Before	After
Initial cost	-	22.088*
Loss rate	0.343	0.059
Annual loss amount	0.371*	0.006*

445 * Billion KRW

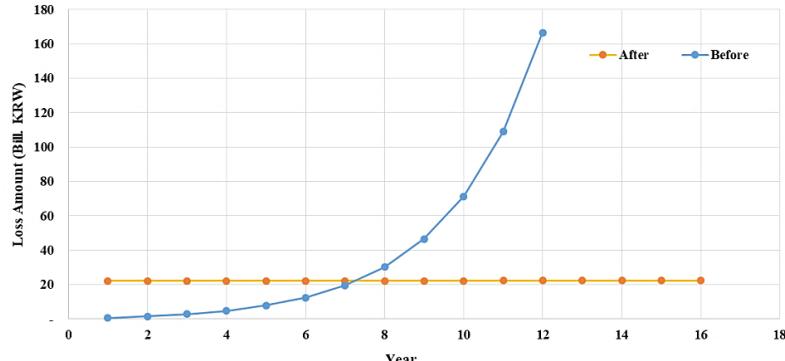


Figure 45. Comparison of losses before and after the maintenance projects.

447
448

449 5.6 Discussion

450 Within the proposed strategic framework, In Stage I, this study SIP-1 developed an improved model for predicting economic
451 losses due to natural disasters using the DNN algorithm among deep learning algorithms. For model development, insurance
452 company's storm and flood damage insurance loss records were used to collect economic losses caused by actual natural
453 disasters. After developing a DNN algorithm model and training it with collected data, the final network model was validated
454 selected by comparing different models with other DNN alternatives. To scientifically validate the improved predictability, the
455 performance (i.e., actual-to-predicted comparison using MAE and RMSE methods) of the developed DNN model was
456 compared with a parametric model underpinned by MRA. The results revealed that the DNN model was 15.2% less in the
457 MAE and 10.12% less in the RMSE, compared to the MRA model. These results confirm that deep learning can produce more
458 accurate and reliable prediction results of natural disaster-induced economic loss values associated with non-linear
459 characteristics of risk indicators. It is noteworthy that the proposed implementation process is applicable to various natural
460 disaster-triggered loss predictions, as the amount and its fluctuation of losses are diverse dependant on various types and
461 strengths of natural disasters. In this sense, the proposed SIP-1 will help In addition, network scenarios and hyper parameters
462 were found using the trial and error method to derive the optimal model. The DNN model was 15.2% less in the MAE and
463 10.12% less in the RMSE than the MRA model. As shown in prediction results, the non parametric model DNN was more
464 proper than the parametric model MRA model for the economic loss analysis of natural disasters with non linear characteristics.
465 These results also indicate that the DNN model has higher reliability than other models in identifying financial losses due to
466 natural disasters. Due to the nature of natural disasters, the loss is very diverse. Thus, the prediction error value can be very
467 large. It can be seen that the DNN model reflects this diversity of natural disaster losses well. By using the development model
468 and the methodology described in this study, natural disaster risk managers will be able to predict the financial loss cost of

469 natural disasters or develop an optimally customized deep learning prediction model according to user conditions by adopting
470 deep learning. It can also be used as a reference when developing systems or models risk reduction investment plans or financial
471 guideline for predicting natural disaster losses in a public and/or private sectors. For example, by applying this implementation
472 process, it would be possible Based on this sophisticated economic loss prediction, it will be possible to estimate reliably the
473 negative impact of natural disaster events on existing financial management practices and thus make decisions proactively
474 for the most feasible active-risk reduction investment plan that Such investment can strengthen natural disaster risk
475 management and reduce the amount of risk, ultimately reducing the economic loss caused by natural disasters. Based on the
476 well-developed financial guideline, it would be possible to avoid any transfers of unexpected financial losses from insurance
477 coverages or special purchases suitable for expected losses. Despite the merit of SIP-1, there still remain some limitations. For
478 example, it will be possible to calculate the amount of economic loss in an area expected to be flooded in advance and establish
479 a preventive strategy for loss measures and appropriate facility investment according to the expected loss amount. Moreover,
480 such loss forecasting can help prepare financial guidelines such as emergency reserves and budgeting. It can also be used to
481 prepare budget guidelines according to the calculated expected loss and manage business continuity. In addition, according to
482 established financial guidelines, it will be helpful for strategies to avoid and transfer financial losses through insurance
483 coverage or special purchases suitable for expected losses. These activities can ultimately reduce the risk of financial loss due
484 to natural disasters. Nevertheless, this study has some limitations. First, owing to the limited data set, it was problematic to
485 accumulate different data sets. Additional research in the future is needed to parallel and prove loss records in other countries
486 or regions. In addition, further research is required to increase the amount of available data and upgrade the model through the
487 introduction of additional variables to more precisely predict losses from natural disasters using deep learning algorithms.
488

489 Compared to SIP-1, SIP-2 proposed a new methodology that can quantify the cost effectiveness of natural disaster risk
490 reduction projects through the cost-benefit analysis. To demonstrate SIP-2, among natural disaster risk reduction projects were
491 implemented in South Korea, specific information of the disaster risk reservoir maintenance projects where flood damage
492 occurred before and after completion was collected. Then, to identify benefits and costs, corresponding loss rates and daily
493 precipitation amounts were investigated and compared at the project level. Lastly, the cost effectiveness of the projects was
494 analyzed using a cost-benefit analysis method. As the result of cost-benefit analysis, in the short term, the loss after the
495 maintenance project was greater than that before the maintenance project. However, this was reversed from 8 years after the
496 maintenance project and the loss amount before the maintenance project was larger than that after the maintenance project.
497 Although it is difficult to expect profits from the maintenance project in the short term, it can be seen that the maintenance
498 project is economically beneficial in the long term (8 years or more). SIP-2 would be useful for making sounder decisions on
499 natural disaster management policy and natural disaster risk reduction project investment plans. Evaluating the effectiveness
500 of risk reduction through SIP-2 will lead to drastic investment, which will ultimately reduce the amount of natural disaster
501 risks. However, it should be noted that the study period shown in the SIP-2 case study was relatively short, while the location
502 of project samples was limited to South Korea. In addition, it was assumed that the inflation rate is identical during the study

503 period. In turn, it is necessary to conduct additional analyses considering various locations vulnerable to natural disasters in
504 other countries and more realistic financial loss values using a net present value concept.

505 Based on this sophisticated economic loss prediction, it will be possible to make decisions for active risk reduction investment.
506 Such investment can strengthen natural disaster risk management and reduce the amount of risk, ultimately reducing the
507 economic loss caused by natural disasters. For example, it will be possible to calculate the amount of economic loss in an area
508 expected to be flooded in advance and establish a preventive strategy for loss measures and appropriate facility investment
509 according to the expected loss amount. Moreover, such loss forecasting can help prepare financial guidelines such as
510 emergency reserves and budgeting. It can also be used to prepare budget guidelines according to the calculated expected loss
511 and manage business continuity. In addition, according to established financial guidelines, it will be helpful for strategies to
512 avoid and transfer financial losses through insurance coverage or special purchases suitable for expected losses. These
513 activities can ultimately reduce the risk of financial loss due to natural disasters. Nevertheless, this study has some limitations.
514 First, owing to the limited data set, it was problematic to accumulate different data sets. Additional research in the future is
515 needed to parallel and prove loss records in other countries or regions. In addition, further research is required to increase the
516 amount of available data and upgrade the model through the introduction of additional variables to more precisely predict
517 losses from natural disasters using deep learning algorithms.

518

519 In Stage II, a methodology was proposed to quantify the effectiveness of natural disaster risk reduction projects using cost-
520 benefit analysis. Among natural disaster risk reduction projects were implemented in South Korea, information was collected
521 and analyzed for the disaster risk reservoir maintenance project where flood damage occurred before and after completion. To
522 analyze benefits and costs, this study collected and analyzed the loss rate and precipitation from wind and flood damage before
523 and after the maintenance project in the target area and judged the efficiency of the maintenance project. As a result of CBA
524 analysis, in the short term, the loss after the maintenance project was greater than that before the maintenance project. However,
525 this was reversed from 8 years after the maintenance project and the loss amount before the maintenance project was larger
526 than that after the maintenance project. Although it is difficult to expect profits from the maintenance project in the short term,
527 it can be seen that the maintenance project is economically beneficial in the long term (8 years or more). Results and
528 methodology of this study will be helpful for decision making of natural disaster management policy and natural disaster risk
529 reduction project investment. Evaluating the effectiveness of risk reduction through this analysis will lead to drastic investment,
530 which will ultimately reduce the amount of natural disaster risk. However, the study period was relatively short and cases that
531 could be analyzed were limited because all study subjects were from South Korea. In addition, it was assumed that the inflation
532 rate is identical during the study period. Therefore, it is necessary to conduct additional analyses considering various locations
533 vulnerable to natural disasters in other countries and more realistic financial loss values using a net present value concept.

534 **6.7 Conclusion**

535 Due to increasing threats to the life of general public and property built assets from natural disasters, a variety of risk mitigation
536 activities are being carried out extensively to reduce these threats. Given the continuous trend toward natural disaster risk
537 mitigation, the significance of relevant economic analyses of natural disaster risk mitigation effects is has been
538 underlined, against becoming increasingly important due to the limited public budget and its economic feasibility. To overcome
539 this difficulty, this study proposed a strategic framework for natural disaster risk mitigation, highlighting two different SIPs.
540 SIP-1 introduced more powerful method that can improve the predictability of natural disaster-triggered financial loss values
541 using deep learning, while SIP-2 highlighted the risk mitigation strategy at the project level, adopting a cost-benefit analysis
542 method. In SIP-1, Therefore, in this study, a framework for developing a natural disaster loss prediction model based on a deep
543 learning algorithm for predicting natural disaster losses was presented and a methodology for quantifying the effect of natural
544 disaster reduction through cost benefit analysis was presented as a case study. A DNN model for natural disaster loss
545 prediction was developed, and the improved predictability was validated by comparing with MRA and verified. The developed
546 model learned and generalized the loss amount of natural disaster risk indicator facilities (building type, wind speed, total
547 rainfall, and peak ground acceleration) and wind and flood insurance. By evaluating learning performances of 18 different
548 DNN alternatives using RMSE and MAE values as representative evaluation indicators of deep learning algorithms, 25-25-25
549 hidden layers with dropouts of 0.0 structure was selected as the optimal learning model. The robustness of the developed model
550 was technically validated by comparing RMSE and MAE values of a conventional parametric model using a multiple
551 regression analysis methods. Validation results confirmed that the non-parametric DNN model was powerful for predicting
552 non-linear characteristics of losses caused by natural disasters. In SIP-2, The cost-benefit analysis was conducted on the
553 disaster risk reservoir maintenance project that occurred before and after the completion of the flood damage. As the result, it
554 was difficult to expect profits from the maintenance business in the short term. However, in the long term (more than 8 years),
555 it was found that the maintenance business was economically profitable. The proposed framework is unique as it provides a
556 combinational approach to mitigating cost risk impacts of natural disasters at both financial loss and project levels. Main
557 findings of this study could be used as a guideline for decision-making of natural disaster management policies and investment
558 in natural disaster risk reduction projects. This study is its first kind and supporting the current knowledge framework. This
559 study will help practitioners quantify the loss from various natural disasters, while allowing them to evaluate the cost
560 effectiveness of risk reduction projects through a holistic approach.
561
562 This study offers a holistic analytical modeling framework for the prediction of natural disaster losses utilizing deep learning
563 algorithms.
564
565 The cost benefit analysis was conducted on the disaster risk reservoir maintenance project that occurred before and after the
566 completion of the flood damage. As the result, it was difficult to expect profits from the maintenance business in the short

567 term. However, in the long term (more than 8 years), it was found that the maintenance business was economically profitable.
568 Results and methodology of this study could be used as a guideline for decision making of natural disaster management
569 policies and investment in natural disaster risk reduction projects. This study can also be used as a reference for application to
570 other types of loss. The suggested methodology can also be used to support the current knowledge framework.

571

572 **Code and data availability.**

573 The data presented in this research are available from the first or corresponding author upon reasonable request.

574 **Author contributions.**

575 **J.-M.**: contributed to the conceptualization and supervision; methodology development; data curation; investigation; project
576 administration; resources and visualization; and writing the original manuscript and reviewing the revised manuscript. **S.-G.**:
577 contributed to data curation; investigation and validation; and reviewing the manuscript. **H.**: contributed to investigation;
578 improving the literature review; and reviewing the manuscript. **J.**: contributed to strengthening research methodology and
579 strategic framework design; visualization and validation; and reviewing and editing the manuscript as the corresponding author.

580 **Competing interests.**

581 The authors declare that they have no conflict of interests.

582 **Acknowledgement**

583 This research was supported by Research Funds of Mokpo National University in 2021.

584 **References**

585 Ajayi, A., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., Delgado, J.M.D., and Akanbi, L.: Deep learning models for health
586 and safety risk prediction in power infrastructure projects, *Risk Anal.*, 40, 2019–2039, 2019.
587 Al Najar, M., Thoumyre, G., Bergsma, E. W., Almar, R., Benshila, R., and Wilson, D. G.: Satellite derived bathymetry using
588 deep learning, *Machine Learning*, 1-24, 2021.
589
590 Bae, S. W. and Yoo, J. S.: Apartment price estimation using machine learning: Gangnam-gu, Seoul as an example. *Real Estate
591 Stud.*, 24, 69–85, 2018.
592 Bae, J., Yum, S. G., and Kim, J. M.: Harnessing machine learning for classifying economic damage trends in transportation
593 infrastructure projects, *Sustainability*, 13, 1–12, <https://doi.org/10.3390/su13116376>, 2021.

서식 있음: 글꼴: 10 pt

서식 있음: 글꼴: 10 pt

서식 있음: 글꼴: 10 pt

594 Blake, E. S., Rappaport, E. N., and Landsea, C. W.: The Deadliest, Costliest, and most Intense United States Tropical Cyclones
 595 from 1851 to 2006, NOAA Technical Memorandum NWS NHC: Washington, DC, USA, 2011.

596 Bouwer, L. M., Crompton, R. P., Faust, E., Höppe, P., and Pielke, R. A.: Confronting disaster losses, *Science*, 318, 753.
 597 <https://doi.org/10.1126/science.1149628>, 2007.

598 Bouwer, L. M., Papyrakis, E., Poussin, J., Pfurtscheller, C., and Thielen, A. H.: The costing of measures for natural hazard
 599 mitigation in Europe, *Natural Hazards Review*, 15, 04014010, [https://doi.org/10.1061/\(asce\)nh.1527-6996.0000133](https://doi.org/10.1061/(asce)nh.1527-6996.0000133),
 600 2014.

601 Choi, C.H. and Han, S. W.: Current status and implications of earthquake insurance in major countries, *Insurance Research
 602 Institute Research Report*, 20, 1-118, 2017.

603 Cavallo, E., Galiani, S., Noy, I., and Pantano, J.: Catastrophic natural disasters and economic growth, *Review of Economics
 604 and Statistics*, 95, 1549-1561, https://doi.org/10.1162/REST_a_00413, 2013.

605 Closs, S., Studer, R., Garoufallou, E., and Sicilia, M. A.: Metadata and semantics research: 8th Research Conference, MTSR
 606 2014 Karlsruhe, Germany, November 27-29, 2014 Proceedings 13, *Communications in Computer and Information
 607 Science*, 478(Smiraglia 2014), 88-89. https://doi.org/10.1007/978-3-319-13674-5_14, 2014.

608 Daniell, J. E., Khazai, B., Wenzel, F., and Vervaeck, A.: The CATDAT damaging earthquakes database, *Natural Hazards and
 609 Earth System Science*, 11, 2235-2251, <https://doi.org/10.5194/nhess-11-2235-2011>, 2011.

610 Federal Emergency Management Agency.: Detailed expenditure data, 1993-2003, Computer file, Washington, D.C., 2005.

611 Gledson, B.J.; Greenwood, D.: The adoption of 4d bim in the UK construction industry: An innovation diffusion approach,
 612 *Eng. Constr. Archit. Manag*, 24, 950-967, 2017.

613 Hochrainer-Stigler, S., Kunreuther, H., Linnerooth-Bayer, J., Mechler, R., Michel-Kerjan, E., Muir-Wood, R., Ranger, N.,
 614 Vaziri, P., and Young, M.: The Costs and Benefits of Reducing Risk from Natural Hazards to Residential Structures in
 615 Developing Countries. 32. http://personal.lse.ac.uk/RANGERN/WP2010-12-01_IIASA,RMS,Wharton_DevelopingCountries.pdf, 2010.

616 IPA.:Transforming infrastructure performance; Infrastructure and projects authority: London, UK, 2017.

617 Kim, J. M., Bae, J., Son, S., Son, K., and Yum, S. G.: Development of model to predict natural disaster-induced financial
 618 losses for construction projects using deep learning techniques. *Sustainability*, 13, <https://doi.org/10.3390/su13095304>,
 619 2021.

620 Kim, J. M., Ha, K. C., Ahn, S., Son, S., and Son, K.: Quantifying the third-party loss in building construction sites utilizing
 621 claims payouts: A case study in south korea, *Sustainability*, 12, 1-13. <https://doi.org/10.3390/su122310153>, 2020.

622 Kim, D. H., Kim, J. D., Choi, C. H., Wang, W. J., Yoo, Y. H., and Kim, H. S.: Estimation of disaster risk rainfall and collapse
 623 runoff of old reservoirs, *Proceedings of the Korean Society for Disaster Prevention*, 19, 421-432, 2019.

624 Kim, J. M., Kim, T., and Son, K.: Revealing building vulnerability to windstorms through an insurance claim payout prediction
 625 model: a case study in South Korea, *Geomatics, Natural Hazards and Risk*, 8, 1333-1341,
 626 <https://doi.org/10.1080/19475705.2017.1337651>, 2017.

627 Kim, J. M., Kim, T., Son, K., Yum, S. G., and Ahn, S.: Measuring vulnerability of Typhoon in residential facilities: Focusing
 628 on Typhoon Maemi in South Korea. *Sustainability*, 11, <https://doi.org/10.3390/su1102768>, 2019.

629 Kim, J. M., Son, K., Yum, S. G., and Ahn, S.: Typhoon vulnerability analysis in South Korea utilizing damage record of
 630 typhoon Maemi, *Advances in Civil Engineering*, 2020, <https://doi.org/10.1155/2020/8885916>, 2020.

631 Kim, J. M., Son, S., Lee, S., and Son, K.: Cost of climate change: Risk of building loss from typhoon in South Korea,
 632 *Sustainability*, 12, 1-11. <https://doi.org/10.3390/su12177107>, 2020.

633 Kim, J., Yum, S., Son, S., Son, K., and Bae, J.: Modeling deep neural networks to learn maintenance and repair costs of
 634 educational facilities, *Buildings*, 11, 165. <https://doi.org/10.3390/buildings11040165>, 2021.

635 Kingma, D. P. and Ba, J. L.: Adam: A method for stochastic optimization. 3rd International Conference on Learning
 636 Representations, ICLR 2015 - Conference Track Proceedings, 1-15, 2015.

637 Khosravi, K., Panahi, M., Golkarian, A., Keesstra, S. D., Saco, P. M., Bui, D. T., and Lee, S.: Convolutional neural network
 638 approach for spatial prediction of flood hazard at national scale of Iran. *Journal of Hydrology*, 591, 125552, 2020.

639

640 Krizhevsky, B. A., Sutskever, I., and Hinton, G. E.: ImageNet classification with deep convolutional natural networks, *Adv.
 641 Neural Inf. Process. Syst.*, 60, 84-90, 2012.

643 Kunreuther H. and Michel-Kerjan E.: Challenge Paper: Natural Disasters, Policy options for reducing losses from natural
 644 disasters: Allocating \$75billion, Revised version for Copenhagen Consensus, Center for Risk Management and Decision
 645 Processes, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A., 2012.

646 Kunreuther, H., Meyer, R., and Van De Bulte, C.: Risk analysis for extreme events : Economic Incentives for reducing future
 647 losses, Technology, 93. <http://www.bfrl.nist.gov/aoe/publications/gcrs/04871.pdf>, 2004.

648 Kwon, T. Y. and Oh, G. Y.: Development of integrated management system for wind and flood damage insurance management
 649 map equipped with insurance rate analysis algorithm module, Proceedings of the Korean Society for Disaster Prevention,
 650 18, 105-114, 2018.

651 Mechler, R.: Cost-benefit analysis of natural disaster risk management in developing countries, Eschborn: Deutsche
 652 Gesellschaft Fur Technische Zusammenarbeit (GTZ) GmbH, Sector Project: Disaster Risk Management in Development
 653 Cooperation, 5–67. <http://maail1.mekonginfo.org/assets/midocs/0003131-environment-cost-benefit-analysis-of-natural-disaster-risk-management-in-developing-countries-manual.pdf>, 2005.

652 [Moishin, M., Deo, R. C., Prasad, R., Raj, N., and Abdulla, S.: Designing deep-based learning flood forecast model with ConvLSTM hybrid algorithm. IEEE Access, 9, 50982-50993, 2021.](#)

653

654 Multihazard Mitigation Council.: Natural hazard mitigation saves: Independent study to assess the future benefits of hazard
 655 mitigation activities, Study documentation, Vol. 2, Federal Emergency Management Agency of the U.S. Department of
 656 Homeland Security by the Applied Technology Council under contract to the Multihazard Mitigation Council of the
 657 National Institute of Building Sciences, Washington, D.C., 2005.

658 Kreimer, A., Arnold, M., and Carlin, A.: Building safer cities: the future of disaster risk (No. 3), World Bank Publications,
 659 2003.

660 Lee, S. W.: Exploring the limitations of disaster prevention projects and improvement measures, Disaster Prevention Review,
 661 19, 15-20, 2017.

662 Park, C. S. and Sharp, G. P.: Advanced engineering economics, John Wiley & Sons, 2021.

663 [Rasjava, A. R. I., Sugiyarto, A. W., Kurniasari, Y., and Ramadhan, S. Y.: Detection of Rice Plants Diseases Using Convolutional Neural Network \(CNN\). In Proceeding International Conference on Science and Engineering, 3, 393-396, 2020.](#)

664

665 Rose, A., Porter, K., Dash, N., Bouabid, J., Huyck, C., Whitehead, J., Shaw, D., Eguchi, R., Taylor, C., McLane, T., Tobin, L.
 666 T., Ganderton, P. T., Godschalk, D., Kiremidjian, A. S., Tierney, K., and West, C. T.: Benefit-cost analysis of FEMA
 667 hazard mitigation grants, Natural Hazards Review, 8, 97–111, [https://doi.org/10.1061/\(ASCE\)1527-6988\(2007\)8:4\(97\)](https://doi.org/10.1061/(ASCE)1527-6988(2007)8:4(97)), 2007.

668 Ryu, J. D., Park, S. M., Park, S. H., Kwon, C. W., and Yoon, I. S.: A study on the development of a model for predicting the
 669 number of highway traffic accidents using deep learning, J. Korean Soc., 17, 14–25, 2018.

670 Sanders, D. E. A.: The management of losses arising from extreme events, Giro 2002, 261. <https://publication/uuid/61B316B3-6F10-4364-BFA2-9C9174665E44>, 2002.

671 [Shane Crawford, P., Hainen, A. M., Graettinger, A. J., van de Lindt, J. W., and Powell, L.: Discrete-outcome analysis of tornado damage following the 2011 Tuscaloosa, Alabama, tornado. Natural Hazards Review, 21\(4\), 04020040, 2020.](#)

672

673 Shreve, C. M. and Kelman, I.: Does mitigation save? Reviewing cost-benefit analyses of disaster risk reduction, International
 674 Journal of Disaster Risk Reduction, 10(PA), 213–235. <https://doi.org/10.1016/j.jidrr.2014.08.004>, 2014.

675 Toya, H. and Skidmore, M.: Economic development and the impacts of natural disasters, Economics Letters, 94, 20–25.
 676 <https://doi.org/10.1016/j.econlet.2006.06.020>, 2007.

677 United States National Hurricane Center.: Costliest, U.S. tropical cyclones tables update, Retrieved from
 678 <https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf>. Accessed May 31, 2021, 2018.

679 Ulbrich, U., Fink, A. H., Klawa, M., and Pinto, G.: Archives of Ophthalmology, 117, 1661.
 680 <https://doi.org/10.1001/archophth.117.12.1661>, 1999.

681 [Yi, Y. and Zhang, W.: A new deep-learning-based approach for earthquake-triggered landslide detection from single-temporal RapidEye satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6166-6176, 2020.](#)

682

서식 있음: 들여쓰기 왼쪽: 0 cm, 첫 줄: 0 cm

693 [Zhang, Y., Shi, X., Zhang, H., Cao, Y., and Terzija, V.: Review on deep learning applications in frequency analysis and control](#)
694 [of modern power system. International Journal of Electrical Power & Energy Systems, 136, 107744, 202](#)
695 [2.](#)
696