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and severe natural disaster events, developing effective risk mitigation strategies is crucial to reduce negative economic

impacts, due to the limited budget for rehabilitation. To address this need, this study aims to develop a strategic framework for

natural disaster risk mitigation, highlighting two different strategic implementation processes (SIPs). SIP-1 is intended to

improve the predictability of natural disaster-triggered financial losses using deep learning. To demonstrate SIP-1, SIP-1

explores deep neural networks (DNNs) that learn storm and flood insurance loss ratios associated with selected major indicators
and then develops an optimal DNN-driven-learning model-and-generatizeses. SIP-2 underlines the risk mitigation strategy at
the project level, by adopting a cost-benefit analysis method that quantifies the cost effectiveness of disaster prevention projects.

In SIP-2, a case study of disaster risk reservoir projects in South Korea was adopted. The validated result of SIP-1 confirmed

that the predictability of the developed DNN is more accurate and reliable than a traditional parametric model, while SIP-2

revealed that maintenance projects are economically more beneficial in the long-term as the loss amount becomes smaller after

8 years, coupled with the investment in the projects. The proposed framework is unigue as it provides a combinational approach

to mitigating economic damages caused by natural disasters at both financial loss and project levels. This study is its first kind

and will help practitioners quantify the loss from natural disasters, while allowing them to evaluate the cost effectiveness of

risk reduction projects through a holistic approach.

-«

-«

1 Introduction
Over the past decades, -+ Natural-disaster-andrisk

Fthe frequency and intensity-severity of extreme weather eventss-due-te-climate-change are rapidly increasing_due to climate
changes.; These events represented by flooding, drought, heavy rain, tropical cyclone, heat waves or cold waves have often
causedeausing various damages —Fhese-damages-are-expected-to-affect-extreme-weather-events-in the-not only short term, with
but also various long-term effects such as sea level rises and disease spreads.- Examples-of-extreme-weather-eventsinelude

The negative impact of these event has been warned

by the Intergovernmental Panel on Climate Change (The Fifth Assessment Report, 2014). Nevertheless, across the world

severe weather events such as typhoons, heavy rains and changing patterns of meteorological disasters have already increased

the loss of many lives and built assets. These damages are still expected to be accelerated in coming future (Kim et al., 2020).
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Given the continuous trend, it is well known that natural disaster-triggered losses trereases-of these-tosses-have are-catsingbeen

very closely tied with many economic losses worldwide. For example, Western European countries such as France, Germany,
and Switzerland were hit by three consecutive tropical cyclones (e.g., Anatol, Lothar, and Martin) in 1999, resulting in a loss
of 13 billion euros (Ulbrich et al., 1999). Typhoon Haiyan, which hit the Philippines and China of South Asia in 2013, was
one of Category 5 Super Typhoons, was the most extreme tropical cyclone recorded on land. The typhoon's life-threatening
wind and rain were enough to smash properties. South Asian countries adjacent to the typhoon track inflicted about $300
billion in damage (Kim et al., 2019). Hurricane Katrina that —which-hit the the-seutheasternSouth Eastern areas in United
States in 2005; caused the most severe damage in American-historythe national historic record as —HurricaneKatrina-was-a
Category 5 tropical cyclone. In detail, it e-that-had-caused the US Gulf Coast city to have $180 billion in direct and indirect
damages due to substantial rain and robust winds (Blake et al., 2007). Later, a-the United-States-in 2017 solely, three different
powerful-strong hurricanes named by {Harvey, Maria, and Irma) caused together a total damage amount of about $293 billion,
based on the individual damage amounts ofwith Harvey-causing-$125 billion by Harvey-in-damage, Maria-eausing-$90 billion
by Maria, and Hma-$77.6 billion by Irma (USNHC, 2018).

Fhereforeln this sense, the quality of Hvesliving in the built environmentand-property worldwide-are-has been threatened by

natural disasters_in the globe. Sueh-threats—wit-inerease—To reduce these threats, rumereus—-many of non-governmental
organizations and countries are-investinghave investigated -atet-efin -prevention or post-disaster recovery strategies, on aspects
of time, time-budget, and manpower to mitigate natural disaster risks-frem-natural-disasters. Mitigation of risks can reduce the

loss by decreasing vulnerability or by decreasing the frequency and severity of causal factors (Rose et al., 2007). For risk
mitigation, the execution_and allocation of financial resources should be carried out guiekly-promptly and extensively, against

the limited resources available.- #a-practicetheefficiency-and-amounts-of-financialresources-should-beconsidered-due-to
limited-resourees—Hence, it is important to estimate strategically grasp-the ameunt-cost impact of natural disaster risks and the

effect of risk reduction at the same time, specifically aiming at-te achievinge the ultimate reduction and mitigation of risks

through an efficient use of the limited resources. tr-other-words-it-is-essential-for-risk-mitigation-against-petentialrisks-by
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2 Point of Departure: The need of more effective strategic framework for natural disaster risk mitigation

2.122 Decision-support for Nnatural disaster risk mitigation strategies ross-gquantification

Given the increasing frequency and severity of natural disasters, the demand for sophisticated natural disaster loss forecasting
also increases. In response to such demand, various companies and national organizations have developed models to predict
natural disaster losses. The New Multi-Hazards and Multi-Risk Assessment Method for Europe (MATRIX) in Europe, the
HAZUS-Multi Hazard (HAZUS-MH) by the Federal Emergency Management Agency (FEMA) in the United States, the
RiskScape in New Zealand, and the Probabilistic Risk Assessment initiative in Central America are representative models
(Kim et al., 2017). Florida, USA, has developed a Florida Public Hurricane Loss Model (FPHLM) to predict losses due to
hurricanes as it is located on the main north-facing road of hurricanes (Kim et al., 2020). These models are being used in
different regions to assess the loss of life and potential economic losses for buildings and infrastructure owing to natural
disasters. Nevertheless, since these models were developed based on the vulnerability of natural disasters and the severity and

frequency of natural disasters in specific areas, they could not be applied to other areas.

Companies specializing in natural disaster risk modeling have also developed different models, including EQECAT, Applied
Insurance Research (AIR), and RMS (Risk Management Solution) (Kunreuther et al., 2004; Sanders, 2002). These models are
widely used by insurers and reinsurers around the world to assess the risk of economic loss from natural disasters (e.g.,
windstorms, earthquakes, floods, eartheuakes;-winter storms, and tornadoes). Nonetheless, these models have annual fees that
are expensive to small and medium-sized users. In addition, these models are available only for the limited number of major
countries (Europe, USA, Japan, China, etc.). tr-additienFurthermore, it is difficult to optimize them for users since they have

difficulties to reflect a user's portfolio, capital, business preference, and so on (Kim et al., 2019).

To reflect characteristics and vulnerabilities of each country associated with various situations of users, it is crucial to evaluate
the loss through its own model. In order to develop a loss evaluation model, the development of an in-house model using a
deep learning algorithm can be a solution. Recently, the 4th revolution technology (e.g., unmanned transportation, big data,
artificial intelligence, 10T, robots, etc.) has been applied to various fields and its effectiveness has been recognized (Gledson
and Greenwood, 2017; IPA, 2017). To effectively and efficiently analyze the complexity of various sensors-driven big data,

the demand for deep learning applications has been increased dramatically. Given the increasing demand, many research efforts

on applying deep learning techniques for risk assessment were made recently (Al Najar et al. 2021; Khosravi et al. 2020; Kim
et al. 2021; Moishin et al. 2021; Shane Crawford et al. 2020; Sugiyarto and Rasjava 2020; Yi et al. 2020; Zhang et al. 2022).
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Especially, for improved natural disaster risk assessment and mitigation, neural networks have been widely used for deep

learning in various ways (Khosravi et al. 2020; Moishin et al. 2021; Shane Crawford et al. 2020; Yi et al. 2020). Some

researchers developed deep learning models to predict flood events (Khosravi et al. 2020; Moishin et al. 2021). Khosravi et al.

(2020) developed a flood susceptibility map using convolutional neural networks (CNN). More specifically, 769 historical

flood locations in Iran were trained and tested based on amounts of soil moisture, slopes, curvatures, altitudes, rainfalls

geology, land use and vegetation, distances from roads and rivers. In addition, a hybrid deep learning algorithm integrating the

merits of CNN and long short-term memory (LSTM) networks was built to manage flood risks by predicting future flood

events, by training and testing daily rainfall data obtained from 11 sites in Fiji between 1990 and 2019 (Moishin et al. 2021).

Other previous studies focused on post-disaster detection caused by landslides or tornados, which uses remote sensed data

collected from satellites for deep learning (Al Najar et al. 2021; Shane Crawford et al. 2020; Yi et al. 2020). Shane Crawford

et al. (2020) adopted CNN to classify damages of 15,945 buildings affected by the 2011 Tuscaloosa tornado in Alabama. To

this end, the authors used satellited-driven images of trees as the damage classification indicator to estimate wind speeds. In
addition, satellite images were embraced into the CNN-driven deep learning process to detect earthquake-induced landslides

in China (Yi et al. 2020). More recently, Al Najar et al. (2021) estimated accurately ocean depths simulating remote sensed

images using a deep learning technique, which overcomes drawbacks of traditional bathymetry measurement activities to track

the physical evolution of coastal areas against any potential natural disasters or extreme storm events. Previous studies

reviewed reveal consistently that deep learning techniques can overcome shortcomings of existing methods and thus to provide

more accurate and reliable decision-support models for risk assessment and risk-informed mitigation strategies.

In addition to applications of deep learning for location detection or event prediction-focused, as stated earlier, it is important

to quantify negative economic impacts caused by natural disasters. Given the importance of economic damage aspects, Kim

et al. (2021) applied a deep learning technique as a cost-effective and risk-informed facilities management solution. In detail,
the authors generalized maintenance and repair costs of educational facilities in Canada, using deep neural networks that learn

sets of maintenance and repair records, asset values, natural hazards such as tornados, lightening, hails, floods, and storms. In
this sense, this study proposed a deep learning modeling framework to predict financial losses caused by natural disasters.n

2.21.3 Investment strategies for Cest-benefitanalysis-ef-natural disaster risk mitigation

Mitigating the risk with efficient investment and operation of resources is a challenging task because reseurees-are-finite-while
risk reduction should be dere-made guickhy-and-extensivelyin a timely manner, with the limited financial resources. To address

5
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these issues, cost-benefit analysis has been widely adopted (FEMA, 2005; Rose et al., 2007). For instance, efficient use of
public resources is indicated when total estimated profits of a risk mitigation activity surpass the entire cost or are parallel to
earnings on investment of both private and public.

Disaster risk mitigation represents mitigating social, environmental, and economic damage caused by natural disasters. Since
economic losses due to natural disasters are hard to minimize or avoid separately, there is an increasing public demand for risk
reduction investments to reduce these economic losses (Bouwer et al., 2007; Shreve and Kelman, 2014). Since resources for
risk mitigation investment are restricted, it is critical to estimate economic costs and benefits in order to determine the
effectiveness and appropriateness of the investment. For instance, the Federal Emergency Management Agency of the United
States has reported that the average benefit—eostcost-benefit ratio is 4 for risk mitigation investment (e.g., structural
defensedefence measures against floods and typhoons, building renovations in preparation for earthquakes, etc.) after
reviewing 4,000 natural disaster risk reduction programs in the United States (-Kunreuther et al., 2012; Rose et al., 2007). In
addition, studies in developing countries have shown a high cost-benefitberefit-eest ratio in a study of 21 investment activities

such as re-establishment of schools and forestry in preparation for tsunami (Bouwer et al., 2014).

Despite these high potential benefits, investment in risk reduction for residents living in areas at risk of natural disasters is
restricted (Bouwer et al., 2014). According to Hochrainer-Stigler et al. (2010), since natural disaster risk reduction measures
are focused on short-term outcomes, only about 10% of residents in areas vulnerable to natural disasters receive natural disaster
risk reduction measures in the United States. In the case of a natural disaster risk reduction project, a large initial investment
is required, which reduces the expected profit if performance indicators need to be met in a short period of time. As a result,
policy makers and politicians are reluctant to make bold investments in natural disaster risk reduction. They prefer to provide
economic support after disasters (Cavallo et al., 2013). This phenomenon is also reflected in the budget distribution of disaster
management funds of donations and development agencies. Most (98%) of the budget is allocated to reconstruction or relief.
Only the remaining budget (2%) is allocated to risk reduction (Mechler, 2005). As such, while the need for pre-disaster risk
reduction through proactive disaster investment is widely recognized, the economic impact of natural disaster risk reduction
is often not fully considered in decision-making. Moreover, although cost-benefit analysis {EBA}-is the main decision-making
tool commonly used in public-secter-investment and financial evaluations by public sectors, natural disaster risk is not
sufficiently applied in_the ©BA-cost-benefit analysis (Hochrainer-Stigler et al., 2010). Natural disasters in public sectors”
investment projects are-were often overlooked or not evaluated in-based on the cost-to-benefit comparisonEBA: Hents
(Kreimer et al., 2003). Heneeln turn, in-this-stuey;this study explored the-effectiveness-ef-a-natural disaster risk reduction
projects and analyzed the cost effectiveness of the projects -adopting a cost-benefit analysis methodwas-determined-through-a




194

195
196
197
198
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

2-3 Research objectives and methods

Given trends in more frequent and severe natural disaster events, developing effective natural disaster risk mitigation strategies

is crucial to reduce negative economic impacts on built assets, due to the limited budget for rehabilitation. To address this need,

this study aims to develop a strategic framework for natural disaster risk mitigation, highlighting two different strategic

implementation processes (SIPs), as depicted in Figure 1.

Strategic Framework for Natural Disaster Cost Risk Prediction and Disaster Prevention

Strategic Implementation Process (SIP) 1: Improving the Predictability of
Natural Disaster-Induced Financial Loss Values

SIP 2: Quantifying the Cost Effecti of Disaster

Exploring Deep Neural Networks

I Disaster Prevention Projects

I . =
Wi’ 2
l‘l

N i | Case Stuudy: Disaster Risk Reservoir Maintenance Projects
I|I
.L!JI. 3 .11{.& N :
w W Y1 e Loss Rasio ' Insurance Loss Amount Precipitation Record

| Laoss Rates Before/Afier the Maintenance Project Completion in Flaoded Regions

. =

| Cost-Benefit Analysis to Quantify the Economic Effect of the Maintenance Projecis

Building Types
(Residential /
Greenhouse)
Wind Speed

Rainfall

Peak Ground [\
Acceleration

Developing and Validating
the Deep Learning Model

Figure 1. Research framework

More specifically, SIP-1 is intended to improve the predictability of natural disaster-triggered financial loss model. To this

end, SIP-1 develops a deep neural network (DNN) model that learns insurance loss amounts to generalize loss ratios, associated

with major indicators including rainfall, wind, and ground acceleration. Fe-reduce-economiclosses-caused-by-natural-disasters;

To demonstrate +r-SIP-1Stage, this study collected reliable storm and flood damage insurance data and natural disaster risk
indicators, created a predictive model based-erusing-a deep learning-atgerithm, and verifiedvalidate the improved predictability

of the model, —Fhi Hay-propoesed—a—aeeplearrng-oaeHng—Hamewo hat-could-accurately-learn-and-pred muttiple

the following steps:
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1) To collect data on loss caused by natural disasters, this study collected data on claim payout for storm and flood
damage insurance from the Korea Insurance Development Institute (KIDI) over the past11 years between 2009 and
2019.

2) This study obtained natural disaster risk indicators based on the collected data.

3) A model of deep learning algorithm was developed using Python 3.7, Keras, and Scikit-Learn libraries. The model
was trained, tested, and validated using the collected data.

4) A multiple regression model was independently developed using IBM Statistical Package for the Social Sciences
(SPSS) version 23 for model validation.

5) The root mean squared error and mean absolute error values of the deep learning algorithm model and the multiple
regression analysis model were estimated and paralleled, respectively.

Compared to SIP-1, SIP-2 underlines the risk mitigation strategy at the project level, by proposing a methodological

implementation process for quantifying the cost effectiveness of natural disaster risk reduction by adopting a cost-benefit

analysis method that quantifies the cost effectiveness of disaster prevention project. To demonstrate SIP-2, a case study of

disaster risk reservoir maintenance projects completed in South Korea was adopted, -Stage-H;-through the following stepsdata

1) Among natural disaster risk reduction projects carried out by the South Korean government, information on disaster

risk reservoir maintenance projects completed in 2009-2019 was collected.

2) The loss rate of storm and flood insurance in the region where the flood damage occurred after the completion of the
maintenance project was investigated through the-Kerea-tasurance-Developmenttnstitute (KIDI.

3) The amount of precipitation before and after the disaster risk reservoir maintenance project was investigated.

4) _Cost-benefit analysis was conducted to determine the economic feasibility of the maintenance project.

3-4 SIP-1: Improving the predictability of Staget—Development-of-a-natural disaster-induced financial -loss values
using deep learningprediction-medet

SIP-1 aims to explore deep learning-driven modelling processes and develop an optimal learning model that can improve the+—

predictability of natural disaster-triggered financial losses. To demonstrate SIP-1, the loss amounts of storm and flood

insurance were learned, and the corresponding loss ratios were generalized associated with the selected risk indicators by the
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property type. To scientifically validate the robustness of the learning model, the prediction results were compared with a

conventional parametric model underpinned by multiple regression analysis.

34.1 Data collection

used-A total of 458 K4B¥'s-storm and flood damage insurance claims for 11 years from 2009 to 2019 was collected from KIDI’s

data sets. KIDI was established in 1983. It is an insurance professional service organization that develops insurance products,
calculates insurance rates, and protects the rights of policyholders. It also collects and manages various statistical data such as
insurance information and losses of each insurance company (Choi and Han, 2015). Storm and flood damage insurance, which
reflects the loss amount, is an insurance that compensates for property damage caused by natural disasters (e.g., typhoons,
floods, heavy rains, tsunamis, strong winds, storms, heavy snow, earthquakes, and so on). It has been implemented since 2006
under the initiative of state and local governments (Kwon and Oh, 2018). The insurance payout amount is determined by
objective analysis of certified loss assessment service according to standardized procedures for each insurance company. Its

reliability is high (Kim et al., 2020). The collected data information includes the total loss amounts, the total net premiums,

building types, and location profiles, which is publicly available. The prediction model was trained, tested, and validated using

losses and natural disaster risk indicators.

The cost of loss due to natural disasters was divided by the total net premiums to calculate the ratio and then log-transformed,

which distribution of the data is shown in Figure 2. In addition, natural disaster risk indicators affecting insurance loss due to

natural disasters were collected. For natural disaster risk indicators, building type, wind speed, total rainfall, and peak ground
acceleration were selected as variables through past literature studies (Kim et al., 2017, 2019; Kim et al., 2020; Kim et al.,

2021). Figure 3 shows the distributions of the selected indicators. A description of variables is presented in Table 1. Building

types were set as dummy variables that consist of residential buildings and greenhouses. Wind speed and the maximum value
of rainfalls were collected from the Korea Meteorological Administration (KMA). Peak ground accelerations were collected
from the National Oceanic and Atmospheric Administration (NOAA). Accordingly, Table 2 summarises Bthe descriptive

statistics of variables-are-displayed-in-Fable 2.
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Table 1. Description of variables
Variable Explanation - [ LR =
Loss ratio Total loss divided by the total net premium (Amount unit: KRWleg-transformed)
Building type Buildings covered by storm and flood insurance
(Categorical variable - Residential building: 1; Greenhouse: 2)
Wind speed 10-minute average maximum wind speed (m/s)
Rainfall Maximum precipitation per day (mm/day)
Peak Greund-ground Value of Peak-peak Greund-ground Aeeeleration-acceleration (PGA) (g)
Aceelerationacceleration
Table 2. Descriptive statistics of variables by the building type (i.e., residential building and greenhouse)
Vana_ble Nw Minimum Maximum Mean  Std. Deviation ~ [AM A= X
(Uunit) size
Loss ratio
(Ltog-transformed valugiRWY) 458 .12 -0.66 1o
+ roci G 458 - - -
Wind speed 458 20.80 29.21 3.17
(mfs)
Rainfall 458 172.00 310.02 68.57
(mm/day)
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458 0.10 1.60 1.10 0.25
(9)

34.2 Modeling Medeling-deep neural networks

A deep learning algorithm is a neural network with many layers and various structures in general. Its use in research and
industry for prediction and recognition has spread rapidly, proving its effectiveness (Kim et al., 2021). Deep learning
algorithms are also widely used for regression analysis and type classification as a machine learning technique (Ajayi et al.,
2019). Deep learning models have the same training framework as other types of neural networks. However, they can train
large data sets more effectively with multiple hidden layers (Bae et al., 2021). Deep learning algorithms can be divided into
deep neural network (DNN), generative adversarial network (GAN), recurrent neural network (RNN), convolutional neural
network (CNN), and auto encoder (AE) according to their structure and processing method (Kim et al., 2021). Especially,
DNN is used for cataloguing and prediction in various engineering and academic fields (Krizhevsky et al., 2012; Toya and
Skidmore, 2007). Moreover, DNNs can be applied to train and model complex nonlinear relationships due to their multi-
layered structures. Thus, in this study, a DNN model was accepted considering nonlinearity of collected loss data.

The learning performance of the model was appraised by measuring the values of root mean squared error (RMSE) and mean
absolute error (MAE). RMSE and MAE are representative indicators of the size of the error by comparing the predicted result
of an artificial neural network with the actual value (Daniell et al., 2011). RMSE is a value that measures the average error
magnitude. MAE is a value obtained by converting the difference between the actual value and the predicted value into an
absolute value and averaging it. Both indicators can be used to indicate that the prediction error decreases as the error value
gets smaller (e.g., closer to zero).

The collected loss data were pre-processed using a z-score normalization method to adjust the unit and quantity of the data.
The pre-processed completed input data were divided into a training set, a verification set, and a test set of data. The training
set of data were used for learning of the DNN algorithm. The verification set of data were used to judge whether training was
optimal and the test set of data were used to verify whether the developed model was finally trained for the purpose. In this
study, considering the amount of data, 70% of the total data were set as training set of data and 30% of them were used as test
set of data. Then 30% of training data were utilized as verification data.

The DNN model selected the optimal combination through a trial-and-error method since the DNN model could update the
weights of neural network nodes with a backpropagation algorithm. Since various combinations were possible depending on
the input variable and the output variable, it was necessary to find the optimal combination through the trial-and-error method.
For such an optimal combination, it is necessary to define the network structure scenario for setting the number of layers and
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nodes and defining hyper parameters such as optimizers, activation functions, and dropouts (Cavallo et al., 2013). This study
adopted a network structure scenario with three hidden layers considering data characteristics. Dropout is a regularization
penalty to avoid overfitting. It was set to reduce prediction errors caused by overfitting. In this study, making an allowance for
the amount of training data, dropout was set to 0 and 0.2 and simulated. The ReLu (Rectified Linear Unit) function was utilized
as the activation function, a method of adjusting the weight of each node for optimal learning. The ReLu function allows the
input value to change when the input value is greater than 0 or less than 0. It was established to resolve the problem of gradient
loss of the existing Sigmoid function (Krizhevsky et al., 2012). The Adaptive Moment Estimation (Adam) method as accepted
as the optimizer (Krizhevsky et al., 2012). Optimizer is used for speed and stability of learning. The Adam Method is a widely
assumed algorithm since its development in 2015 (Kingma and Ba, 2015). The batch was defined as 5 as a data group
designation for efficient learning and the number of epochs was designated as 1,000 for the number of learning (Bae and Yoo,
2018; Ryu et al., 2018).

34.3 Bevelopment-Exploring DNNs and developing efthe DNN model

Table 3 shows MAE and RMSE values according to the network structure and dropout. Amongst outcomes, the model with
the minimum MAE and RMSE was adopted as the final structure. As the number of hidden layer nodes increased, the MAE
and RMSE values fluctuated slightly. However, the number of hidden layer nodes was minimized at 25-25-25. When the
dropout was 0, MAE and RMSE values were commonly lesser than when the dropout was 0.2. It could be realized that when
the number of hidden layer nodes was 25-25-25 and the dropout was 0.0, both MAE and RMSE had minimum values.
Consequently, in the final structure, the number of nodes was 25-25-25 and the dropout was 0. Table 4 and Figure 4
demonstratetens the network structure and hyper parameter configuration of the optimization model .+

Table 3. Training results

Network Structure Dropout (0) Dropout (0.2)

Scenario MAE RMSE MAE RMSE

555 0.521 0.484 0.521 0.484
10-10-10 0.498 0.468 0.524 0.484
15-15-15 0.521 0.484 0.523 0.487
20-20-20 0.522 0.484 0.521 0.484
25-25-25 0.476 0.461 0.521 0.484
30-30-30 0.521 0.484 0.521 0.484
35-35-35 0.521 0.484 0.522 0.484
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40-40-40 0.521 0.484 0.521 0.484

50-50-50 0.521 0.484 0.522 0.484
337
338 Table 4. Network structure and hyper parameter formation of the final model
Category Configuration Feature hy [ A2 Qe ®
Number of Hidden Layer 3
Network structure
Node 25-25-25
Dropout 0.0
Activation Function ReLu (Rectified Linear Unit)
Hyper-parameter Optimizer Adam (Adaptive Moment Estimation)
Epoch 1000
Batch Size 5
339
Activation Function: ReLu
Building Types

(Residential /

Greenhouse)

Wind Speed Loss Ratio

Rainfall
Peak Ground
Acceleration
Dropout: 0.0

340 Optimizer: Adaptive Moment Estimation (Adam)
341 Figure 4. Final model of deep neural networks - [ A2 918 7hed

342  34.4 The robustness validation of the final DNN model

343 An MRA (Multiple Regression Analysis) model was added for systematic validation of the final DNN model. MAE and RMSE
344 values of these two models were compared. The MRA method is widely adopted as an essential method for numerical
345 prediction models (Kim et al., 2021). Table 5 displays validation results of these models. Results of the DNN model showed
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346 MAE of 0.531 and RMSE of 0.480 with the verification set of data. For the test set of data, results showed MAE of 0.452 and
347 RMSE of 0.435. There was no significant difference in MAE or RMSE between results with the test set of data and those with
348 the verification set of data since the overfitting problem of the final model could be overlooked. In addition, the MRA model
349 showed an MAE of 0.533 and a RMSE of 0.484. Equating outcomes of the DNN model and the MRA model, it was found
350 that the DNN model had meaningfully minor prediction error rates of 15.2% MAE and 10.12% RMSE than the MRA model.
351

352 Table 5. Results with the validation set and test set of data
Validation Set Test Set « [ FEDEES
MAE RMSE MAE RMSE
DNN 0.531 0.480 0.452 0.435
MRA - - 0.533 0.484
DNN/MRA (%) -15.20% -10.12%

353 4-5 SIP-2: Quantifying the cost effectiveness of Stage-H:—Cost-Benefit-analysis-ef-ranatural disaster risk reduction
354  projects_using cost-benefit analysis

355 Management of a disaster risk reservoir is a part of the disaster prevention project. According to the Special Act on the Disaster

356 Risk Reduction Project and Relocation Measures, the purpose of disaster prevention measures necessary for improving the

357 disaster risk area is for fundamental prevention and permanent recovery of disasters. The disaster prevention project was started

358 in 1998 when the Disaster Response Division of the Ministry of Government Administration and Home Affairs discovered

359 disaster-prone facilities and areas with risk of human casualties and provided government funds for the maintenance of natural

360 disaster risk areas for systematic management and prompt resolution of disaster risk factors (Lee, 2017). Disaster prevention

361 projects include natural disaster risk improvement districts, disaster risk reservoirs, steep slope collapse risk areas, small rivers,

362 and rainwater storage facilities (Kim et al., 2019). Given the significance of disaster prevention projects, SIP-2 examines

363 economic effects through cost-benefit analysis of natural disaster risk reduction projects to reduce losses from natural disasters.
364 To demonstrate SIP-2, a cost-benefit analysis was conducted for the natural disaster reduction project by comparing losses

365 from storm and flood insurance before and after the disaster risk reservoir maintenance project.
366

367 5.1 Data collection and investigation of historical record

368 Among natural disaster risk reduction projects carried out by the South Korean government, the data set of disaster risk

369 reservoir maintenance projects completed in 2009-2019 was extracted from the Public Data Portal (data.go.kr) managed by

370 the South Korean government to collect and provide public data created or acquired by public institutions in one place. The
371 system was established in 2011 to provide public data in the form of file data, visualization, and open API (Application
372  Programming Interface) (Closs et al., 2014). During the study period of 2009-2019, 474 reservoirs were designated as disaster
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risk reservoirs and 290 maintenance projects were initiated. Among them, a total of 12 areas were flooded before and after the

completion of the disaster risk reservoir maintenance project. Table 6 shows the loss rate and maximum precipitation at the

time of flooding before and after completion of the maintenance projects in these 12 areas. Data about the loss amounts from

storm and flood insurance were obtained from KIDI. Precipitation data were collected from KMA and the maximum daily

precipitation at the time of the flooding was used. Insured loss was expressed as a rate of the incurred loss divided by the

accrued premium. The loss rate before the maintenance project was 34.32% on average, while that after the maintenance

project was completed was 5.9% on average, showing a sharp decrease of 82.8% on average.




407
408
409
410

Table 6. Comparison of loss rate and precipitation before and after maintenance projects in flooded regions_in South Korea

. Loss rate Precipitation (mm/day)
No Region
Before (%) After (%) Before After
1  Yongin City 47.40% 20.60% 425 188 <
2 Nonsan City 30.10% 0.80% 334 306 “
3 Wanju-gun 40.70% 3.40% 364 142 «
4 Gangjin-gun 76.30% 0.40% 235 166 «
5  Sejong City 7.30% 4.90% 257 223 «
6  Muan-gun 25.80% 2.00% 285 192 “
7 Hampyeong-gun 23.80% 10.30% 301 230 “
8  Gyeongju City 33.10% 1.20% 488 280 «
9  Changwon City 10.60% 10.70% 300 266 <
10  Namhae City 22.10% 8.50% 324 231 <
11 Naju City 53.90% 5.10% 330 106 <
12 Goheung-gun 40.70% 3.00% 325 249 <
Average (%) 34.32% 5.9% 331 215
After/Before (%) 82.8% 35.0%

5.2 Cost-benefit analysis and results of natural disaster risk reduction projects

As seen in Table 6, when data of precipitation as the main cause of flooding accidents during flood damage were compared

the average precipitation was 331 mm/day before the maintenance project and 215 mm/day after the maintenance project. It

could be seen that the amount of precipitation was decreased by 35% when flood damage occurred after the maintenance

project. The sharp decrease in the loss rate after the maintenance project could be due to not only the effect of maintenance

project, but also decreased rainfalls. In turn, it is difficult to conclude that the decreased loss rate is due to the effect of reducing

storm and flood damage caused by the maintenance project.

To analyze the cost effectiveness of the maintenance projects in flood regions, a cost-benefit analysis method using an equal-

payment-series present-worth factor was adopted. The present-worth factor, assuming an annual loss rate i, is a coefficient

used to find the present value corresponding to annual equivalent loss A for the next n years. Eq. (1) presents a widely used

concept in economic analysis (Park & Sharp, 2021):
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The initial cost of each maintenance project was collected through The Public Data Portal and the average cost of the
maintenance project was calculated. For the loss rate, the average loss rate of the loss area was used. For the annual loss amount,
the average annual loss for the study period (2009-2019) was used as seen in Ttable 7. However, it was assumed that no
additional costs incurred due to the maintenance project. Figure -5 shows calculation results before and after the maintenance
projects, which reveals that —As-can-be-seenfrem-Figure-1-the loss amount becomes smaller after 8 years due to investment
through the maintenance projects.

Table 7. Summary of inputs
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Figure 45. Comparison of losses before and after the maintenance projects-

5-6 Discussion

Within the proposed strategic framework, ta-Stage-+-this-studySIP-1 developed aan improved model for predicting economic
losses due to natural disasters using the DNN algorithm-ameng-deep-learning-algorithms. For model development, insurance
company’s storm and flood damage insurance loss records were used to collect economic losses caused by actual natural
disasters. After developing a DNN algerithm-model and training it with collected data, the final network model was vatidated
selected by comparing different-modelswith other DNN alternatives. To scientifically validate the improved predictability, the

performance (i.e., actual-to-predicted comparison using MAE and RMSE methods) of the developed DNN model was

compared with a parametric model underpinned by MRA. The results revealed that the DNN model was 15.2% less in the

MAE and 10.12% less in the RMSE, compared to the MRA model. These results confirm that deep learning can produce more

accurate and reliable prediction results of natural disaster-induced economic loss values associated with non-linear

characteristics of risk indicators. It is noteworthy that the proposed implementation process is applicable to various natural

disaster-triggered loss predictions, as the amount and its fluctuation of losses are diverse dependant on various types and

strengths of natural disasters. In this sense, the proposed SIP-1 will help tr-addition-network-seenarios-and-hyper-parameters

e found-usina-th al-and-erro hod-to-deriv he-optimal-mode

and-the-methodelogy-deseribed-in-this-study,-natural disaster risk managers wit-be-able-te-predict the financial loss cost of
19
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natural disasters or develop an optimally customized deep-tearning-prediction model aceording-to-user-conditionsby adopting
deep learning. It can also be used as a reference when developing systems-ermedelsrisk reduction investment plans or financial
guideline-for -predicting-patural-disaster-losses-in a-public ander private sectors. For example, by applying this implementation
process, it would be possible Based-on-this-sephisticated-economicloss-predictionit-will-be-pessible-to estimate reliably the
negative impact of natural disaster events on existing financial management practices and thus make decisions proactively
foron the most feasible aetive-risk reduction investment plan that —Sueh-investment-can strengthen natural disaster risk
management and reduce the amount of risk, ultimately reducing the economic loss caused by natural disasters. Based on the
well-developed financial guideline, it would be possible to avoid any transfers of unexpected financial losses from insurance

coverages or special purchases suitable for expected losses. Despite the merit of SIP-1, there still remain some limitations. Fer

accumulate different data sets. Additional research in the future is needed to parallel and prove loss records in other countries

or regions. In addition, further research is required to increase the amount of available data and upgrade the model through the
introduction of additional variables to more precisely predict losses from natural disasters using deep learning algorithms.

Compared to SIP-1, SIP-2 proposed a new methodology that can quantify the cost effectiveness of natural disaster risk

reduction projects through the cost-benefit analysis. To demonstrate SIP-2, among natural disaster risk reduction projects were

implemented in South Korea, specific information of the disaster risk reservoir maintenance projects where flood damage

occurred before and after completion was collected. Then, to identify benefits and costs, corresponding loss rates and daily

precipitation amounts were investigated and compared at the project level. Lastly, the cost effectiveness of the projects was

analyzed using a cost-benefit analysis method. As the result of cost-benefit analysis, in the short term, the loss after the

maintenance project was greater than that before the maintenance project. However, this was reversed from 8 years after the

maintenance project and the loss amount before the maintenance project was larger than that after the maintenance project.

Although it is difficult to expect profits from the maintenance project in the short term, it can be seen that the maintenance

project is economically beneficial in the long term (8 years or more). SIP-2 would be useful for making sounder decisions on

natural disaster management policy and natural disaster risk reduction project investment plans. Evaluating the effectiveness

of risk reduction through SIP-2 will lead to drastic investment, which will ultimately reduce the amount of natural disaster

risks. However, it should be noted that the study period shown in the SIP-2 case study was relatively short, while the location

of project samples was limited to South Korea. In addition, it was assumed that the inflation rate is identical during the study
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503 period. In turn, it is necessary to conduct additional analyses considering various locations venerable to natural disasters in

504 other countries and more realistic financial loss values using a net present value concept.
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534 6-7 Conclusion

535 Due to increasing threats to the life of general public and preperty-built assets from natural disasters, a variety of risk mitigation

536 activities are being carried out extensively-te-reduee-these-threats. Given the continuous trend toward natural disaster risk

537 mitigation, the significance of relevant Eeconomic anabysis-analyses of-natural-disasterrisk-mitigation-effects-ishas been
538 underlined, against-becoming-inereasinghy-important-due-to the limited public budget and its economic feasibility. To overcome
539 this difficulty, this study proposed a strategic framework for natural disaster risk mitigation, highlighting two different SIPs.

540 SIP-1 introduced more powerful method that can improve the predictability of natural disaster-triggered financial loss values

541 using deep learning, while SIP-2 highlighted the risk mitigation strategy at the project level, adopting a cost-benefit analysis
542 method. In SIP-1, Fherefore-inthisstudy,aframework for developinga-natural-disasterloss prediction-model-hased-on-a-deep
543 i b
544
545 prediction was developed, and the improved predictability was validated by comparing with MRA-ane-verified. The developed

546 model learned and generalized the loss amount of natural disaster risk indicator facilities (building type, wind speed, total
547 rainfall, and peak ground acceleration) and wind and flood insurance. By evaluating learning performances of 18 different
548 DNN alternatives using RMSE and MAE values as representative evaluation indicators of deep learning algorithms, 25-25-25
549 hidden layers with dropouts of 0.0 structure was selected as the optimal learning model. The robustness of the developed model
550 was technically validated by comparing RMSE and MAE values of a conventional parametric model using a multiple
551 regression analysis-metheds. Validation results confirmed that the non-parametric DNN model was powerful for predicting

552 non-linear characteristics of losses caused by natural disasters. In SIP-2, The cost-benefit analysis was conducted on the

553 disaster risk reservoir maintenance project that occurred before and after the completion of the flood damage. As the result, it

554  was difficult to expect profits from the maintenance business in the short term. However, in the long term (more than 8 years),

555 it was found that the maintenance business was economically profitable. The proposed framework is unique as it provides a
556 combinational approach to mitigating cost risk impacts of natural disasters at both financial loss and project levels. Main

557 findings of this study could be used as a guideline for decision-making of natural disaster management policies and investment

558 in natural disaster risk reduction projects. This study is its first kind and supporting the current knowledge framework. This

559 study will help practitioners quantify the loss from various natural disasters, while allowing them to evaluate the cost

560 effectiveness of risk reduction projects through a holistic approach.
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