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Title: "Ground motion prediction maps using seismic microzonation data and machine 
learning" by Federico Mori et al., Nat. Hazards Earth Syst. Sci. Discuss., 

 

Dear Editor,  

we thank you and reviewers for their thorough assessment of our paper. We have carefully addressed 
the reviewers’ comments and made corresponding changes to the manuscript. We have modified and 
added some figures. We have carefully revised the ambiguous statement in the article. The response 
to reviewers’ comments has been reported below. 

 

Referee comment RC1 https://doi.org/10.5194/nhess-2021-282-RC1 

The authors would like to thank the reviewer for his comments. 

 

The manuscript utilizes machine learning in ground motion prediction and compares ML based 
techniques with GMM and ShakeMap. The former has been shown to have better performance than 
the latter two. I am not surprised by the results, as has been demonstrated by many that ML techniques 
are advantages over parametric GMMs. ShakeMap is basically also based on GMMs which reply on 
an input grid-based VS30 map. 

 

General comments: 

 

 What is the logic behind the selection of site proxies? For instance, why do you utilize 
elevation? Is there any physical reasoning? Is it necessary to use elevation, slope (hx and hy) 
and curvature (hxx and hyy) simultaneously? Could you provide a plot or some discussions 
on the performance of each site proxy in the best performing model (GPR)? I recommend the 
authors expend a bit on the performance of these site proxies? 

Reply: 

Zhou et al. (2020) suggests that the parameters of the topographic elevation, the first gradient of the 
elevation and the second-order gradient in two orthogonal directions are enough to provide the 
acceptable topographic effect model. 

So, the philosophy was to add these five proxies (topographic effect proxies) respect to the four 
standard proxies (magnitude, epicentral distance, hypocentral depth, Vs30) already used in the Ground 
Motion Models GMMs. 

In the case of PGA, for example, adding these five proxies to the four standard proxies, performance 
improves (14% reduction in terms or Root mean squared error, RMSE, and 17% reduction in terms 
of Mean Absolute Error, MAE). In terms of residuals, there is a 46% reduction of standard deviation. 
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This table shows the details of the performance improvement. 

 

 

Specific comments: 

 Line 74-95: these paragraphs have many details. I suggest they better be moved to other 
sections, rather than in the introduction. The introduction shall serve to intrigue the readers to 
read the paper, but these paragraphs are too detailed and may be counterproductive. 

Reply: 

The lines 74-95 were rephrased and moved at the beginning of the section 3.2 “Testing phase”. 

 Selected proxies 
Root Mean Squared 

Error (RMSE) 

Mean 
Absolute Error 

(MAE) 
R-squared 

mean of 
residuals 

standard 
deviation of 

residuals 
GMMs standard 4 

proxies 
0.37 0.29 0.85 -0.001 0.3 

This study 9 
proxies 

0.31 0.24 0.89 -0.000033 0.161 
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Referee comment RC2 https://doi.org/10.5194/nhess-2021-282-RC2 

The authors would like to thank the reviewer for his comments. 

 

This document presents a review of the manuscript titled as “Ground motion prediction maps using 
seismic microzonation data and machine learning” by Mori et al. The main objective of the work is 
to apply the machine learning approach to provide ground motion maps predicted based on 
stratigraphic and morphological parameters. This is a somewhat novel idea when the validity of the 
outcome could be well-established. 

The use of English language is generally fine. However, there are repetitive misuses of some 
particular words/phrases that make the reading tedious and confusing. There are also some misuses 
of punctuations (e.g. comma). Some examples have been given below. This reviewer strongly 
recommends a proofread of the article by a better English user.  

The manuscript was revised accordingly. 

The organization of the article is generally fine. However, the abstract does not seem to be a good 
summary of the work. It gives us the impression that the current work deals with near-realtime 
prediction of damage, which is not the case. The last sentence refers to a conclusion regarding the 
effects of short-distance variability, which has not been extensively addressed or proven by this 
article. The introduction segment could be improved. The texts between Line no. (L) 74 and 95 seem 
irrelevant. They should be presented in a different segment under a different title. The major weakness 
of this article is that the method section remains completely underdeveloped. As machine learning is 
at the core of this work, the method of evaluating the training dataset and validating the outputs should 
be clearly presented.  

Reply to Comment #1. 

Abstract and Introduction were modified according to the reviewer suggestion. 

“Past seismic events worldwide demonstrated that damage and death toll depend on both the strong 
ground motion (i.e., source effects) and the local site effects. The variability of earthquake ground 
motion distribution is caused by local stratigraphic and/or topographic setting and buried 
morphologies, that can give rise to amplification and resonances with respect to the ground motion 
expected at the reference site. Therefore, local site conditions can affect an area with damage related 
to the full collapse or loss in functionality of facilities, roads, pipelines, and other lifelines. To this 
concern, the near real time prediction of ground motion variation over large areas is a crucial issue 
to support the rescue and operational interventions. A machine learning approach was adopted to 
produce ground motion prediction maps considering both stratigraphic and morphological conditions. 
A set of about 16,000 accelometric data and about 46,000 geological and geophysical data were 
retrieved from Italian and European databases. The intensity measures of interest were estimated 
based on 9 input proxies. The adopted machine learning regression model (i.e., Gaussian Process 
Regression) allows to improve both the precision and the accuracy in the estimation of the intensity 
measures with respect to the available near real time predictions methods (i.e., Ground Motion 
Prediction Equation and shaking maps). In addition, maps with a 50 m x 50 m resolution were 
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generated providing a ground motion variability in agreement with the results of advanced numerical 
simulations based on detailed sub-soil models.”. 

The lines 74-95 were rephrased and moved at the beginning of the section 3.2 “Testing phase”. 

Section 4.2 “Spatial correlation structure of the predicted maps” was removed from the manuscript 
and reported as Appendix. The authors would make the readers known about the fact that we are 
working on the analysis of ground motion spatial correlation and this analysis will be improved in a 
future work. Hence, the last sentence of the abstract was removed. 

The major weakness of this article is that the method section remains completely underdeveloped. As 
machine learning is at the core of this work, the method of evaluating the training dataset and 
validating the outputs should be clearly presented.   

Figure 4 and the following lines (Line 176 to Line 193) were reported in the revised manuscript 
(section 3 Method): 

“Fig. 4 shows the adopted ML workflow. After having imported and selected the data (input variables 
and output variables), the training and validation phases begin. In these phases the ML model that 
will be used is "adapted" or rather the algorithm is adapted to the training dataset. One of the 
objectives of this phase is the tuning of the model, acting on the hyperparameters (parameters whose 
value is used to control the learning process) of the algorithm to minimize errors. The k-fold cross-
validation technique was used in this work. The models included in “Matlab Regression Learner App” 
tool have all been tested. The fitting performance (in term of RMSE) on the validation set was 
considered as an indicator for the generalization ability of models. Among the available models the 
best fitting performance in terms of RMSE was provided by the GPR model with exponential kernel 
(Table 2). GPR is a nonparametric, Bayesian approach to regression, which provides uncertainty 
measurements on the predictions. 

The second step is to test the model with the best performance (GPR in this research) adopting a 
dataset not included in the training and validation phases. The dataset for the 30 October 2016 seismic 
event was used since the accelerometric data of many accelerometric stations are available. The test 
is used to evaluate the accuracy of the model in terms of residuals (Eq. 1). In the workflow of Fig. 4 
there is also a phase (comparison) that is not part of the standard ML methodology. The comparison 
with the ground shaking obtained by completely different methodologies was used to further analyse 
the ML model in terms of ground motion resolution and variability. 

Training and cross-validation phases are described in § 3.1. Comparison in terms of residuals with 
the performance of the existing methods (i.e., an external test) is presented in § 3.2. The comparison 
with the ground shaking obtained by completely different methodologies is presented in § 4. 

Moreover, a detailed description of GPR method is outside the scope of this work. Suggested 
references for comprehensive descriptions of the GPR method are Rasmussen and Williams (2006) 
and chapter 6 of MathWorks (2019). The above-mentioned k-fold cross-validation (k=5) method is 
described in chapter 24 of Mathworks (2019).”. 
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Figure 4. ML workflow adopted in this study. In figure, ESM (ITACA), ALOS, and SM are the 
open-source datasets from which training and test data for ML models were retrieved. 

*The selected test set was the input and output data for the October 30, 2016 seismic event. 
** This element of the workflow is not part of the standard ML methodology. This element was 

introduced to enlighten the capability of the adopted ML procedure in estimating local scale ground 
motion variability. Comparison against predictions from ShakeMap and 2D numerical simulations 

was based on August 24, 2016 seismic event input and output data. 
 

At the current state, reproducibility of the results of this work remains under doubt. In the following 
sections, the interpretation of results could also be improved.  

Reply to comment #2. 

An Excel file dataset.xls will be attached: input variables are in grey and output variables in yellow. 

With this Excel file and the explanation inserted in Line 176 to Line 193 and relative Figure 4, it is 
possible to reproduce what has been done. 
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The last segment related to the spatial correlation of the ground motion predictions seems completely 
underdeveloped. If the authors intend to present it in a future article (as mentioned in L 348-349), 
then there is no point addressing this issue and drawing some concrete conclusions without any 
explanation within this article. 

Reply to comment #3. 

Section 4.2 “Spatial correlation structure of the predicted maps” has been moved in the Appendix. 
Lines 92-95 in the Introduction were modified as following: “Finally, evaluation of the spatial 
correlation structure was studied to provide the relation between local site effects and spatial 
resolution of ground motion maps; results of such analysis were not reported in the main text since it 
is out of the scope but preliminary results in terms of sill and range are reported in the Appendix 
referring to the seismic event occurred on October 30, 2016 (i.e., the strongest of the Central Italy 
seismic sequence).”. 

 

Therefore, this reviewer recommends a major improvement of the article before being considered for 
the publication. The main comments are as below: 

Scientific Comments: 

 The presentation of the datasets as maps would be helpful. Median and percentiles could be 
indicated on Figure 1 and 2 for a better comprehension. 

Reply to comment #4. 

A new Figure 1 with spatial distribution of the dataset was added to the manuscript. 

Figs. 1 and 2 (Fig. 2 and 3 in the revised manuscript) were modified accordingly with median and 
percentiles of input and output data of the dataset. 

 

 

Figure 1. Location of selected dataset (i.e., 1,435 accelerometric stations). 
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Figure 2. Distribution of input data for the training dataset. 

 

Figure 3. Distribution of output data for the training dataset in terms of geoH IMs. 

 

 A) The method section must be improved. How are the outputs estimated from the input data. 
Which parameters have been used and how? B) Which proxy performed the best? What are 
the differences among different ML prediction models (Table 2) and why have they been 
adopted? C) How come the SD values are reduced by 45-60% (L217)? D) It’s not clear how 
Openquake was used to determine the IMs – which site and fault parameters have been used 
for the calculation? 
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Reply to comment #5. 

A) Please see Reply to comment #1. 

B) Zhou et al. (2020) suggests that the parameters of the topographic elevation, the first gradient of 
the elevation and the second-order gradient in two orthogonal directions are enough to provide the 
acceptable topographic effect model. 

So, the philosophy was to add these five proxies (topographic effect proxies) respect to the four 
standard proxies (magnitude, epicentral distance, hypocentral depth, Vs30) already used in the Ground 
Motion Models GMMs. 

In the case of PGA, for example, adding these five proxies to the four standard proxies, performance 
improves (14% reduction in terms or Root mean squared error, RMSE, and 17% reduction in terms 
of Mean Absolute Error, MAE). C) In terms of residuals, there is a 46% reduction of standard 
deviation. 

This table shows the details of the performance improvement for the PGA. 

 

 

D) Official ShakeMap interpolates the values predicted by the GMM with the values of the stations, 
while this study results were compared with results (i.e., the external test) based on an equivalent 
method that uses only the forecast of the GMM. For this purpose, the Openquake software was used 
with these settings: 

-calculation mode: scenario  

- rupture_model_file = earthquake_rupture_model.xml (<magnitude>6.5</magnitude> 

        <rake>-89</rake>  <hypocenter lat="42.8322" lon="13.1107" depth="9.2"/> 

        <planarSurface strike="151" dip="47"> 

-intensity_measure_types = PGA, PGV, SA(0.3), SA(1.0), SA(3.0) 

-truncation_level = 3.0 

-gsim = BindiEtAl2011 

 

 

 Selected proxies 
Root Mean Squared 

Error (RMSE) 

Mean 
Absolute Error 

(MAE) 
R-squared 

mean of 
residuals 

standard 
deviation of 

residuals 
GMMs standard 4 

proxies 
0.37 0.29 0.85 

-0.001 0.3 

This study 9 
proxies 

0.31 0.24 0.89 
-0.000033 0.161 
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 The reviewer disagrees with the statement in L 264-265. It’s very difficult to visually 
determine if the maps in Figures 4 and 5 are coherent with geological and geomorphological 
characteristics. 

 
Reply to comment #6. 

Lines 264-265 were modified as “The map of Fig. 6 show an output that is in good agreement with 
the geophysical data (i.e., VS30 in Fig. 7) and geomorphological data (i.e., h, hx, hy, hxx, hyy not shown 
here for sake of brevity) and, therefore, highlights local site effects.”. 
The VS30 map has been added to the manuscript (see Fig. 7). 
 

 
Figure 7. VS30 maps for the area of interest shown in Fig. 6. It can be noted that two extended areas 
in the southern part of the map (i.e., near Petrana and Torrita villages) are characterized by lowest 

values of VS30 inducing the highest Sa0.3 values (i.e., valley effect) as shown in Fig. 6. 
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 No such maps of the area have been presented. For comparison, the existing ground motion 
estimation for this area (e.g., from the shake map) and/or microzonation map could be 
presented on a same color scale. 
 

Reply to comment #7. 

ShakeMap (Fig. 8) and following lines were added to the text: “Fig. 8 shows the ShakeMap of Sa0.3 
(resolution 50 m x 50 m) regarding the Central Italy earthquake occurred on August 24, 2016 for the 
same area sketched in Fig. 7. As a general issue referring to the ShakeMap, the higher the distance 
from the epicentre (the star in Fig. 8) and the lower the predicted Sa0.3. Hence, the ShakeMap does 
not provide ground motion variability induced by the local site condition (i.e., sub-soil setting and 
topography). In detail, ShakeMap provides Sa0.3 equal to 0.36 g for the entire area of Arquata del 
Tronto (square A in Fig. 8) and equal to 0.99 and 1.08 g for Amatrice (square B in Fig. 8) as there is 
the data recorded by the AMT station. 

On the other hand, the map proposed in this study provides ground motion variation also at the close-
up scale (i.e., for urban area).”. 
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Figure 8. ShakeMap (slightly modified from ShakeMap, 2021) of Sa0.3 (resolution 50 m x 50 m) 
regarding the Central Italy earthquake occurred on August 24, 2016. A and B squares are referred to 
the close-ups at Arquata del Tronto and Amatrice, respectively. From the centre of the figure to the 
border, the homogenous coloured areas correspond to 1.20-1.50 g, 0.90-1.20 g, 0.60-0.90 g, 0.30-
0.60 g, and 0.01-0.30 g intervals. It is evident that the map does not capture the variability at short 

distances. 

 The estimation of uncertainty presented in Figure 5 should be elaborated. What kinds of 
uncertainties have been considered and how have they been estimated? 

 

Reply to comment #8. 

The GPR model and the estimation of uncertainty of a GPR model is described here 
(https://it.mathworks.com/help/stats/gaussian-process-regression-models.html). 
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Because a GPR model is probabilistic, it is possible to compute the uncertainty using the trained 
model. GPR provides a probabilistic (Bayesian) approach for learning generic regression problems 
with kernels (Rasmussen and Williams, 2006). We used an exponential kernel function. 
The kernel is thus parametrized by signal and noise hyperparameters. For training purposes, we 
assume that the observed variable is formed by noisy observations of the true underlying function. 
Moreover, we assume the noise to be additive independently identically Gaussian distributed with 
zero mean and variance. For prediction purposes, the GPR is obtained by computing the posterior 
distribution over the unknown output. Interestingly, this posterior can be shown to be a Gaussian 
distribution for which one can estimate the predictive mean (point-wise predictions) and the 
predictive variance (confidence intervals). The corresponding hyperparameters are typically selected 
by Maximum Likelihood, using the marginal likelihood (also called evidence) of the observations, 
which is also analytical. When the derivatives of the log-evidence are also analytical, which is often 
the case, conjugated gradient ascent is typically used for optimization (see Rasmussen and Williams, 
2006 for further details). 
A GPR model provides not only a prediction but also an uncertainty (or confidence) level for the 
prediction. Hence in contrary to other approaches (e.g. Neural Networks) uncertainty intervals are 
directly delivered along with mean estimates. 
The uncertainty intervals estimated by GPR and through standard boostrapping of the nonlinear 
regression solution are compared in the figure below.  
 

 
 

Note that GPR basically accounts for a reduction of uncertainty based on the relative local density of 
the input data points, not the outputs. This is obvious by looking at the predictive variance equation 
not here reported for sake of brevity. On the other hand, the variance of the bootstrap variance 
estimate quickly vanishes if one moves away from data points in the set. This behaviour correctly 
reflects the fact that the predictions will be practically zero far away from points in the training sets. 
Gaussian processes indicate that the uncertainty is high because no data has been observed in that 
area. 
 
For these reasons in L 287-292 we comment in this way: 
“It should be noted that the uncertainty is provided by a combination of the input data values. The 
uncertainty increases referring to input data values for which the ML is not well trained (Figs. 2 and 
3 and discussion in § 2). For instance, std values around 0.3-0.4 are in the areas of inhabited 
villages, characterised by input data values widely represented in the training dataset, while values 
in the range 0.6-0.8 are observed in correspondence with the combination of high slope values and 
high VS30 values, which are underrepresented in the training dataset.” We have added a reference in 
the caption of fig. 9. 



 Consiglio Nazionale delle Ricerche (CNR) 
Istituto di Geologia Ambientale e Geoingegneria (IGAG) 

 

 The validation of the results seems insufficient. It uses the results from only one earthquake, 
for one spectral period and only 3 cross-sections. How are the Sa profiles (in Figure 6) 
obtained and modified from Giallini et al.? What about the ground motions at other spectral 
periods? Do they compare well? Other than these 3 cross-sections from two sites, how many 
more sites have been used to validate the results? How long are the cross-sections? 
 

Reply to comment #9. 

Work-flow of the adopted Machine Learning procedure discussed in Reply to comment #1 allows us 
to enlighten the difference between the validation phase and the comparison with different 
methodologies to predict ground motion. In detail, the validation phase was performed by means of 
k-5 fold cross validation. Testing phase was carried out referring to records of the October 30, 2016 
Central Italy earthquake from 241 accelerometric stations. In addition, the comparison with different 
methodologies (ShakeMap, 2021, and 2D numerical simulations) allows us to show the ML capability 
to forecast the local scale ground motion variability despite ShakeMap (2021) and being in agreement 
with more advanced numerical simulations. Sa profiles by Giallini et al. and Gaudiosi et al. shown in 
this paper were provided by Giallini and Gaudiosi as personal communications. 

 
 Segment 4.2 should be either eliminated or better explained. Results shown in Figure 7 and 

Table 5 should be interpreted in plain terms. The fact that the estimated short-scale variability 
is related to site conditions should be validated in terms of physical parameters. Which input 
parameters are causing these variations and to what extent? How close it is to the reality 
(example from a site)? 

 

Reply to comment #10. 

Section 4.2 “Spatial correlation structure of the predicted maps” has been moved in the Appendix. 
Following lines were reported in the Introduction of the paper: “Finally, evaluation of the spatial 
correlation structure was studied to provide the relation between local site effects and spatial 
resolution of ground motion maps; results of such analysis were not reported in the main text since is 
out of the scope but preliminary results in terms of sill and range are reported in the Appendix 
referring to the seismic event occurred on October 30, 2016 (i.e., the strongest of the Central Italy 
seismic sequence).”. 
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Editorial Comments: 

 The phrases ‘referred to’ or ‘with reference to’ have been heavily repeated and misused. All 
of them must be replaced by appropriate vocabulary or the sentences should be rewritten. The 
phrase ‘bearing in mind’ has been tediously repeated.  
 

Reply: 

The manuscript has been revised accordingly. 

 
 The resolution of the map mentioned as ‘50 X 50 m’ should be corrected as ‘50 m X 50 m’ 

for the entire article. 

Reply: 

The resolution mention has been modified accordingly. 



 For all the large numbers used in the article, the thousand separator should be corrected from 
‘XXX’000’ to ‘XXX,000’ In English, comma separates the thousand. 

Reply: 

The thousand separator has been modified accordingly. 

 

 Figure 2 has not been mentioned or explained anywhere. The cross-section labels on Figure 5 
are not readable. The long web-address in the title could be replaced by a reference. The Figure 
6 title should mention that the cross-sections are presented from Figure 5. 

Reply: 

The cross-section labels on Figure 5 (Fig. 9 in the revised manuscript) were modified (please see the 
figure reported here). 
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Figure 9. Ground motion prediction maps (Central Italy earthquake occurred on August 24, 2016) 
regarding the Arquata del Tronto (top) and Amatrice (bottom) in terms of Sa0.3 mean value (left) 
and standard deviation (right) (resolution 50 m x 50 m). The base topographic layer was retrieved 

from Regione Marche (2021) and Regione Lazio (2021) for Arquata del Tronto and Amatrice maps, 
respectively. 

The web-address in the caption has been replaced by a reference. 

“Cross sections’ locations are in Fig. 9.” was included in the caption of Fig. 10 (Fig. 6 in the original 
form of the paper). 

 

 L 108-112 should be rewritten. The current form is grammatically incoherent. 

Reply: 

For instance, focusing on Fig. 2 and M distribution, it results that the first and third quartile are 4.1 
and 5.1, respectively. Moreover, focusing on elevation distribution, it results that the first and third 
quartile are 136 m and 761 m, respectively. 
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 In L 150 the phrase ‘here adopted’ should be corrected as ‘adopted here’. 

Reply: 

The text has been modified accordingly. 

 

 In L 232 ‘gauge the IMs’ sounds unnatural. It could be replaced by ‘estimate the IMs’. 

Reply: 

The text has been modified accordingly. 

 

 The webpage links should be referred to as a reference with last access date. It is sufficient to 
cite them as references in the text rather than citing the link everywhere. 

Reply: 

The webpage links have been referred to as a reference with last access date. 

 

L 376 and 385 are not expressed as full sentences. Either they should be turned into paragraph 
subtitles by using a colon (:) after ‘following’ in L375 or they should be rewritten as full sentences. 
Similar remark for L 397-403. 

Reply: 

The text has been modified accordingly. 

 


